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TextTiling is a technique for subdividing texts into multi-paragraph units that represent passages, 
or subtopics. The discourse cues for identifying major subtopic shifts are patterns of lexical 
co-occurrence and distribution. The algorithm is fully implemented and is shown to produce 
segmentation that corresponds well to human judgments of the subtopic boundaries of 12 texts. 
Multi-paragraph subtopic segmentation should be useful for many text analysis tasks, including 
information retrieval and summarization. 

1. Introduction 

Most work in discourse processing, both theoretical and computational, has focused 
on analysis of interclausal or intersentential phenomena. This level of analysis is im- 
portant for many discourse-processing tasks, such as anaphor resolution and dialogue 
generation. However, important and interesting discourse phenomena also occur at 
the level of the paragraph. This article describes a paragraph-level model of discourse 
structure based on the notion of subtopic shift, and an algorithm for subdividing 
expository texts into multi-paragraph "passages" or subtopic segments. 

In this work, the structure of an expository text is characterized as a sequence of 
subtopical discussions that occur in the context of one or more main topic discussions. 
Consider a 21-paragraph science news article, called Stargazers, whose main topic is the 
existence of life on earth and other planets. Its contents can be described as consisting 
of the following subtopic discussions (numbers indicate paragraphs): 

l m 3  Intro - the search for life in space 
4--5  The moon's chemical composition 
6m8 How early earth-moon proximity shaped the moon 

9--12 How the moon helped life evolve on earth 
13 Improbability of the earth-moon system 

14--16 Binary/trinary star systems make life unlikely 
17--18 The low probability of nonbinary/trinary systems 
19--20 Properties of earth's sun that facilitate life 

21 Summary 

Subtopic structure is sometimes marked in technical texts by headings and sub- 
headings. Brown and Yule (1983, 140) state that this kind of division is one of the most 
basic in discourse. However, many expository texts consist of long sequences of para- 
graphs with very little structural demarcation, and for these a subtopical segmentation 
can be useful. 
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This article describes fully implemented techniques for the automatic detection 
of multi-paragraph subtopical structure. Because the goal is to partition texts into 
contiguous, nonoverlapping subtopic segments, I call the general approach TextTiling 
(Hearst, 1993, 1994a, 1994b). 1 Subtopic discussions are assumed to occur within the 
scope of one or more overarching main topics, which span the length of the text. 
This two-level structure is chosen for reasons of computational feasibility and for the 
purposes of the application types described below. 

TextTiling makes use of patterns of lexical co-occurrence and distribution. The 
algorithm has three parts: tokenization into terms and sentence-sized units, determi- 
nation of a score for each sentence-sized unit, and detection of the subtopic bound- 
aries, which are assumed to occur at the largest valleys in the graph that results from 
plotting sentence-units against scores. Three methods for score assignment have been 
explored: blocks, vocabulary introductions, and chains, although only the first two 
are evaluated in this article (the third is discussed in Hearst [1994b]). All three scoring 
methods make use only of patterns of lexical co-occurrence and distribution within 
texts, eschewing other kinds of discourse cues. 

The ultimate goal of passage-level structuring is not just to identify the subtopic 
units, but also to identify and label their subject matter. This article focuses only 
on the discovery of the segment boundaries, but there is extensive ongoing research 
on automated topic classification (Lewis and Hayes 1994). Most classification work 
focuses on identifying main topic(s), as opposed to TextTiling's method of finding 
both globally distributed main topics and locally occurring subtopics; nevertheless, 
variations on some existing algorithms should be applicable to subtopic classification. 

The next section argues for the need for algorithms that can detect multi-paragraph 
subtopic structure (referred to here interchangeably as passages and subtopic seg- 
ments), and discusses application areas that should benefit from such structure. Sec- 
tion 3 describes in more detail what is meant in this article by "subtopic" and presents 
a description of the discourse model that underlies this work. Section 4 introduces the 
general framework of using lexical co-occurrence information for detecting subtopic 
shift, and describes other related work in empirical discourse analysis. The TextTil- 
ing algorithms are described in more detail in Section 5 and their performance is 
assessed in Section 6. Finally, Section 7 summarizes the work and describes future 
directions. 

2. Why Multi-paragraph Units? 

In school we are taught that paragraphs are to be written as coherent, self-contained 
units, complete with topic sentence and summary sentence. In real-world text, these 
expectations are often not met. Paragraph markings are not always used to indicate 
a change in discussion, but instead can sometimes be invoked just to break up the 
physical appearance of the text in order to aid reading (Stark 1988). A conspicuous 
example of this practice can be found in the layout of the columns of text in many 
newspapers (Longacre 1979). Brown and Yule (1983, 95-96) note that text genre has 
a strong influence on the role of paragraph markings, and that markings differ for 
different languages. Hinds (1979, 137) also suggests that different discourse types have 
different organizing principles. 

Although most discourse segmentation work is done at a finer granularity than 

1 A free version of the code, written in C, is available for research purposes. Contact the author for more 
information. 
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that suggested here, multi-paragraph segmentation has many potential applications. 
TextTiling is geared towards expository text; that is, text that explicitly explains or 
teaches, as opposed to, say, literary texts, since expository text is better suited to the 
main target applications of information retrieval and summarization. More specifi- 
cally, TextTiling is meant to apply to expository text that is not heavily stylized or 
structured, and for simplicity does not make use of headings or other kinds of or- 
thographic information. A typical example is a 5-page science magazine article or a 
20-page environmental impact report. 

This section concentrates on two application areas for which the need for multi- 
paragraph units has been recognized: hypertext display and information retrieval. 
There are also potential applications in some other areas, such as text summarization. 
Some summarization algorithms extract sentences directly from the text. These meth- 
ods make use of information about the relative positions of the sentences in the text 
(Kupiec, Pedersen, and Chen 1995; Chen and Withgott 1992). However, these methods 
do not use subtopic structure to guide their choices, focusing more on the beginning 
and ending of the document and on position within paragraphs. Paice (1990) recog- 
nizes the need for taking topical structure into account but does not suggest a method 
for determining such structure. 

Another area that models the multi-paragraph unit is automated text generation. 
Mooney, Carberry, and McCoy (1990) present a method centered around the notion of 
Basic Blocks: multi-paragraph units of text, each of which consists of (1) an organiza- 
tional focus such as a person or a location, and (2) a set of concepts related to that 
focus. Their scheme emphasizes the importance of organizing the high-level structure 
of a text according to its topical content, and afterwards incorporating the necessary 
related information, as reflected in discourse cues, in a finer-grained pass. 

2.1 Online Text Display and Hypertext 
Research in hypertext and text display has produced hypotheses about how textual 
information should be displayed to users. One study of an on-line documentation 
system (Girill 1991) compares display of fine-grained portions of text (i.e., sentences), 
full texts, and intermediate-sized units. Girill finds that divisions at the fine-grained 
level are less efficient to manage and less effective in delivering useful answers than 
intermediate-sized units of text. 

Girill does not make a commitment about exactly how large the desired text unit 
should be, but talks about "passages" and describes passages in terms of the com- 
municative goals they accomplish (e.g., a problem statement, an illustrative example, 
an enumerated list). The implication is that the proper unit is the one that groups 
together the information that performs some communicative function; in most cases, 
this unit will range from one to several paragraphs. (Girill also finds that using doc- 
ument boundaries is more useful than ignoring document boundaries, as is done in 
some hypertext systems, and that premarked sectional information, if available and 
not too long, is an appropriate unit for display.) 

Tombaugh, Lickorish, and Wright (1987) explore issues relating to ease of read- 
ability of long texts on CRT screens. Their study explores the usefulness of multiple 
windows for organizing the contents of long texts, hypothesizing that providing read- 
ers with spatial cues about the location of portions of previously read texts will aid 
in their recall of the information and their ability to quickly locate information that 
has already been read once. In the experiment, the text is divided using premarked 
sectional information, and one section is placed in each window. They conclude that 
segmenting the text by means of multiple windows can be very helpful if readers are 
familiar with the mechanisms supplied for manipulating the display. 

35 



Computational Linguistics Volume 23, Number 1 

Converting text to hypertext, in what is called post hoc authoring (Marchionini, 
Liebscher, and Lin 1991), requires division of the original text into meaningful units (a 
task noted by these authors to be a challenging one) as well as meaningful intercon- 
nection of the units. Automated multi-paragraph segmentation should help with the 
first step of this process, and is more important than ever now that pre-existing docu- 
ments are being put up for display on the World Wide Web. Salton et al. (1996) have 
recognized the need for multi-paragraph units in the automatic creation of hypertext 
links as well as theme generation (this work is discussed in Section 5). 

2.2 Information Retrieval 
In the field of information retrieval, there has recently been a surge of interest in 
the role of passages in full text. Until very recently, most information retrieval ex- 
periments made use only of titles and abstracts, bibliographic entries, or very short 
newswire articles, as opposed to full text. When long texts are available, there arises 
the question: can retrieval results be improved if the query is compared against only a 
passage or subpart of the text, as opposed to the text as a whole? And if so, what size 
unit should be used? In this context, "passage" refers to any segment of text isolated 
from the full text. This includes author-determined segments, marked orthographi- 
cally (paragraphs, sections, and chapters) (Hearst and Plaunt 1993; Salton, Allan, and 
Buckley 1993; Moffat et al. 1994) and /or  automatically derived units of text, includ- 
ing fixed-length blocks (Hearst and Plaunt 1993; Callan 1994), segments motivated 
by subtopic structure (TextTiles) (Hearst and Plaunt 1993), or segments motivated by 
properties of the query (Mittendorf and Sch~iuble 1994). 

Hearst and Plaunt (1993), in some early passage-based retrieval experiments, re- 
port improved results using passages over full-text documents, but do not find a 
significant difference between using motivated subtopic segments and arbitrarily cho- 
sen block lengths that approximated the average subtopic segment length. Salton, Al- 
lan, and Buckley (1993), working with encyclopedia text, find that comparing a query 
against orthographically marked sections and then paragraphs is more successful than 
comparing against full documents alone. 

Moffat et al. (1994) find, somewhat surprisingly, that manually supplied section- 
ing information may lead to poorer retrieval results than techniques that automatically 
subdivide the text. They compare two methods of subdividing long texts. The first con- 
sists of using author-supplied sectioning information. The second uses a heuristic in 
which small numbers of paragraphs are grouped together until they exceed a size 
threshold. The results are that the small, artificial multi-paragraph groupings seemed 
to perform better than the author-supplied sectioning information (which usually con- 
sisted of many more paragraphs than Moffet et al.'s subdivision algorithm or Text- 
Tiling would create). More experiments in this vein are necessary to firmly establish 
this result, but it does lend support to the conjecture that multi-paragraph subtopic- 
sized segments, such as those produced by TextTiling, are useful for similarity-based 
comparisons in information retrieval. 

It will not be surprising if motivated subtopic segments are not found to per- 
form significantly better than appropriately sized, but arbitrarily segmented, units in 
a coarse-grained information retrieval evaluation. At TREC, the most prominent in- 
formation retrieval evaluation platform (Harman 1993), the top 1,000 documents are 
evaluated for each query, and the best-performing systems tend to use very simple 
statistical methods for ranking documents. In this kind of evaluation methodology, 
subtle distinctions in analysis techniques tend to be lost, whether those distinctions be 
how accurately words are reduced to their roots (Hull and Grefenstette 1995; Harman 
1991), or exactly how passages are subdivided. The results of Hearst and Plaunt (1993), 
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Salton, Allan, and Buckley (1993) and Moffat et al. (1994) suggest that it is the nature 
of the intermediate size of the passages that matters. 

Perhaps a more appropriate use of motivated segment information is in the display 
of information to the user. One obvious way to use segmentation information is to have 
the system display the passages with the closest similarity to the query, and to display 
a passage-based summary of the documents' contents. 

As a more elaborate example of using segmentation in full-text information ac- 
cess, I have used the results of TextTiling in a new paradigm for display of retrieval 
results (Hearst 1995). This approach, called TileBars, allows the user to make informed 
decisions about which documents and which passages of those documents to view, 
based on the distributional behavior of the query terms in the documents. TileBars 
allows users to specify different sets of query terms, as discussed later. The goal is to 
simultaneously and compactly indicate: 

1. the relative length of the document, 

2. the frequency of the term sets in the document, and 

3. the distribution of the term sets with respect to the document and to 
each other. 

TextTiling is used to partition each document, in advance, into a set of multi-paragraph 
subtopical segments. 

Figure 1 shows an example query about automated systems for medical diagno- 
sis, run over the ZIFF portion of the TIPSTER collection (Harman 1993). Each large 
rectangle next to a title indicates a document, and each square within the rectangle 
represents a TextTile in the document. The darker the tile, the more frequent the term 
(white indicates 0, black indicates 8 or more hits; the frequencies of all the terms within 
a term set are added together). The top row of each rectangle corresponds to the hits 
for Term Set 1, the middle row to hits for Term Set 2, and the bottom row to hits for 
Term Set 3. The first Column of each rectangle corresponds to the first TextTile of the 
document, the second column to the second TextTile, and so on. The patterns of gray- 
level are meant to provide a compact summary of which passages of the document 
matched which topics of the query. 

Users' queries are written as lists of words, where each list, or term set, is meant 
to correspond to a different component of the query. 2 This list of words is then trans- 
lated into conjunctive normal form. For example, the query in the Figure is translated 
by the system as: (patient OR medicine OR medical) AND (test OR scan OR cure OR 
diagnosis) AND (software OR program). This formulation allows the interface to reflect 
each conceptual part of the query: the medical terms, the diagnosis terms, and the 
software terms. The document whose title begins "VA automation means faster ad- 
missions" is quite likely to be relevant to the query, and has hits on all three term sets 
throughout the document. By contrast, the document whose title begins "It's hard to 
ghostbust a network . . . "  is about computer-aided diagnosis, but has only a passing 
reference to medical diagnosis, as can be seen by the graphical representation. 

This version of the TileBars interface allows the user to filter the retrieved doc- 
uments according to which aspects of the query are most important. For example, if 
the user decides that medical terms should be better represented, the Min Hits or Min 

2 This query format was found to be unproblematic for users in a separate study (Hearst et al. 1996), and 
is also used in the Grateful Med medical information system (Hersh et al. 1995). 
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Figure 1 
The TileBars Display on a query about automated systems for medical diagnosis (Hearst 1995 
(~) ACM). 

Distr ibution constraint  on this t e rm set can be adjusted accordingly. Min Hits indicates 
the m i n i m u m  n u m b e r  of t imes words  f rom a t e rm set mus t  appea r  in the d o c u m e n t  
in order  for it to be  displayed.  Similarly, Min Distr ibution indicates the m i n i m u m  per-  
centage of tiles that  mus t  have  a representat ive f rom the t e rm set. The setting Min 
Over lap  Span refers to the m i n i m u m  n u m b e r  of tiles that  m u s t  have  at least one hit 
f rom each of the three t e rm sets. In Figure 1, the user  has  indicated that  the diagnosis  
aspect  of the query  mus t  be  s trongly present  in the re t r ieved documents ,  by  setting 
the Min Distr ibution to 30% for the second t e rm set. 3 

When  the user  mouse-cl icks on a square in a TileBar, the cor responding  documen t  
is d isp layed beginning  at the selected TextTile. Thus the user  can also v iew the subtopic  
structure wi thin  the docum en t  itself. 

3 Most likely this setting information is too complicated for a typical user; I have performed some 
experiments to determine how to set these constraints automatically (Hearst 1996) to be used in future 
versions of the interface. 
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This section has discussed why multi-paragraph segmentation is important and 
how it might be used. The next section elaborates on what is meant by multi-paragraph 
subtopic structure, casting the problem in terms of detection of topic or subtopic shift. 

3. Coarse-Grained Subtopic Structure 

3.1 What is Subtopic Structure? 
In order to describe the detection of subtopic structure, it is important to define the 
phenomenon of interest. The use of the term subtopic here is meant to signify pieces 
of text "about" something and is not to be confused with the topic/comment distinc- 
tion (Grimes 1975), also known as the given/new contrast (Kuno 1972), found within 
individual sentences. 

The difficulty of defining the notion of topic is discussed at length in Brown and 
Yule (1983, Section 3). They note: 

The notion of 'topic' is clearly an intuitively satisfactory way of de- 
scribing the unifying principle which makes one stretch of discourse 
'about' something and the next stretch 'about' something else, for it 
is appealed to very frequently in the discourse analysis literature . . . .  
Yet the basis for the identification of 'topic' is rarely made explicit. 
(pp. 69-70) 

After many pages of attempting to pin the concept down, they suggest, as one 
alternative, investigating topic-shift markers instead: 

It has been suggested. . ,  that instead of undertaking the difficult task 
of attempting to define 'what a topic is', we should concentrate on 
describing what we recognize as topic shift. That is, between two con- 
tiguous pieces of discourse which are intuitively considered to have 
two different 'topics', there should be a point at which the shift from 
one topic to the next is marked. If we can characterize this marking 
of topic-shift, then we shall have found a structural basis for dividing 
up stretches of discourse into a series of smaller units, each on a sep- 
arate topic . . . .  The burden of analysis is consequently transferred to 
identifying the formal markers of topic-shift in discourse. (pp. 94-95) 

This notion of looking for a shift in content bears a close resemblance to Chafe's notion 
of The Flow Model of discourse in narrative texts (Chafe 1979), in description of which 
he writes: 

Our data . . .  suggest that as a speaker moves from focus to focus (or 
from thought to thought) there are certain points at which there may 
be a more or less radical change in space, time, character configuration, 
event structure, or, even, world . . . .  At points where all of these change 
in a maximal way, an episode boundary is strongly present. But often 
one or another will change considerably while others will change less 
radically, and all kinds of varied interactions between these several 
factors are possible. 4 (pp. 179-80) 

4 Interestingly, Chafe arrived at the Flow Model after working extensively with, and then becoming 
dissatisfied with, a hierarchical model of paragraph structure like that of Longacre (1979). 
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Thus, rather than identifying topics (or subtopics) per se, several theoretical dis- 
course analysts have suggested that changes or shifts in topic can be more readily 
identified and discussed. TextTiling adopts this stance. The problem remains, then, of 
how to detect subtopic shift. Brown and Yule (1983) consider in detail two markers: 
adverbial clauses and certain kinds of prosodic markers. By contrast, the next sub- 
section will show that lexical co-occurrence patterns can be used to identify subtopic 
shift. 

3.2 Relationship to Segmentation in Hierarchical Discourse Models 
Much of the current work in empirical discourse processing makes use of hierarchical 
discourse models, and several prominent theories of discourse assume a hierarchical 
segmentation model. Foremost among these are the attentional/intentional structure of 
Grosz and Sidner (1986) and the Rhetorical Structure Theory of Mann and Thompson 
(1987). The building blocks for these theories are phrasal or clausal units, and the 
targets of the analyses are usually very short texts, typically one to three paragraphs in 
length. 5 Many problems in discourse analysis, such as dialogue generation and turn- 
taking (Moore and Pollack 1992; Walker and Whittaker 1990), require fine-grained, 
hierarchical models that are concerned with utterance-level segmentation. Progress is 
being made in the automatic detection of boundaries at this level of granularity using 
machine learning techniques combined with a variety of well-chosen discourse cues 
(Litman and Passonneau 1995). 

In contrast, TextTiling has the goal of identifying major subtopic boundaries, at- 
tempting only a linear segmentation. We should expect to see, in grouping together 
paragraph-sized units instead of utterances, a decrease in the complexity of the fea- 
ture set and algorithm needed. The work described here makes use only of lexical 
distribution information, in lieu of prosodic cues such as intonational pitch, pause, 
and duration (Hirschberg and Nakatani 1996), discourse markers such as oh, well, 
ok, however (Schiffrin 1987; Litman and Passonneau 1995), pronoun reference resolu- 
tion (Passonneau and Litman 1993; Webber 1988) and tense and aspect (Webber 1987; 
Hwang and Schubert 1992). From a computational viewpoint, deducing textual topic 
structure from lexical occurrence information alone is appealing, both because it is 
easy to compute, and because discourse cues are sometimes misleading with respect 
to the topic structure (Brown and Yule 1983, Section 3). 

4. Detecting Subtopic Change via Lexical Co-occurrence Patterns 

TextTiling assumes that a set of lexical items is in use during the course of a given 
subtopic discussion, and when that subtopic changes, a significant proportion of the 
vocabulary changes as well. The algorithm is designed to recognize episode boundaries 
by determining where thematic components like those listed by Chafe (1979) change 
in a maximal way. However, unlike other researchers who have studied setting, time, 
characters, and the other thematic factors that Chafe mentions, I attempt to determine 
where a relatively large set of active themes changes simultaneously, regardless of 
the type of thematic factor. This is especially important in expository text in which 
the subject matter tends to structure the discourse more so than characters, setting, 
and so on. For example, in the Stargazers text introduced in Section 1, a discussion of 

5 Discourse work at the multi-paragraph level has been mainly in the theoretical, as opposed to 
computational, realm, notably the work on macrostructures (van Dijk 1980, 1981) and story grammars 
(Lakoff 1972; Rumelhart 1975). 
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continental movement, shoreline acreage, and habitability gives way to a discussion 
of binary and unary star systems. This is not so much a change in setting or character 
as a change in subject matter. 

The flow of subtopic structure as determined by lexical co-occurrence is illustrated 
graphically in Figure 2. This figure shows the distribution, by sentence number, of se- 
lected terms from the Stargazers text. The number of times a given word occurs in a 
given sentence is shown, with blank spaces indicating zero occurrences. Words that 
occur frequently throughout the text (e.g., life, moon) are often indicative of the main 
topic(s) of the text. Words that are less frequent but more uniform in distribution, such 
as form and scientist, tend to be neutral and do not provide much information about 
the divisions within the discussions. The remaining words are what are of interest 
here. They are "clumped" together, and it is these clumps or groups that TextTiling 
assumes are indicative of the subtopic structure. The problem of segmentation there- 
fore becomes the problem of detecting where these clumps begin and end. 

For example, words binary through planet have considerable overlap in sentences 
58 to 78, and correspond to the subtopic discussion Binary/trinary star systems make 
life unlikely shown in the (manually produced) outline in Section 1. There is also a 
well-demarcated cluster of terms between sentences 35 and 50, corresponding to the 
grouping together of paragraphs 10, 11, and 12 by human judges who have read the 
text, and to the subtopic discussion in Section 1 of How the moon helped life evolve on 
earth. 

These observations suggest that a very simple take on lexical cohesion relations 
(Halliday and Hasan 1976) can be used to determine subtopic boundaries. However, 
from the diagram it is evident that simply looking for chains of repeated terms (as 
suggested by Morris and Hirst [1991]) is not sufficient for determining subtopic breaks. 
Even combining terms that are closely related semantically into single chains is insuf- 
ficient, since often several different themes are active within the same segment. For 
example, sentences 37 to 51 contain dense interactions among the terms move, conti- 
nent, shoreline, time, species, and life, and all but the latter occur only in this region. (It 
is, however, the case that the interlinked terms of sentences 57 to 71, space, star, binary, 
trinary, astronomer, orbit, are closely related semantically, assuming the appropriate 
senses of the words.) 

Because groups of words that are not necessarily closely related conceptually seem 
to work together to indicate subtopic structure, I adopt a technique that can take into 
account the occurrences of multiple simultaneous themes rather than use chains of 
lexical cohesion relations alone. This viewpoint is also advocated by Skorochod'ko 
(1972), who suggests discovering a text's structure by dividing it up into sentences 
and seeing how much word-overlap appears among the sentences. The overlap forms 
a kind of intrastructure; fully connected graphs might indicate dense discussions of a 
topic, while long spindly chains of connectivity might indicate a sequential account. 
The central idea is that of defining the structure of a text as a function of the con- 
nectivity patterns of the terms that comprise it, in contrast with segmentation guided 
primarily by fine-grained discourse cues such as register change and cue words. 

Many researchers, (e.g., Halliday and Hasan [1976], Tarmen [1989], and Walker 
[1992]), have noted that term repetition is a strong cohesion indicator. Phillips (1985) 
suggests performing "an analysis of the distribution of the selected text elements rela- 
tive to each other in some suitable text interval . . .  for whatever patterns of association 
they may contract with each other as a function of repeated co-occurrence" (p. 59). 
Perhaps surprisingly, however, the results in Section 6 show that term repetition alone, 
independent of other discourse cues, can be a very useful indicator of subtopic struc- 
ture. This may be less true in the case of narrative texts, which tend to use more 
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variation in the way concepts are expressed, and so may require that thesaural rela- 
tions be used as well, as in (Kozima 1993). 

It should be noted that other researchers have experimented with the display of 
patterns of cohesion cues other than lexical cohesion as tools for analyzing discourse 
structure. Grimes (1975, Chapter 6) introduces span charts to show the interaction 
of various thematic devices such as character identification, setting, and tense. Stod- 
dard (1991) creates cohesion maps by assigning to each word a location on a two- 
dimensional grid corresponding to the word's position in the text. 

To summarize, many discourse analysis tasks require a fine-grained, hierarchical 
model, and consequently require many kinds of discourse cues for segmentation in 
practice. TextTiling attempts a coarser-grained analysis and so gets away with using 
a simpler feature set. Additionally, if we think of subtopic segmentation in terms of 
detection of shift from one discussion to the next, we can simplify the task to one 
of detecting where the use of one set of terms ends and another set begins. Figure 2 
illustrates that lexical distribution information can be used to discover such subtopic 
shifts. 

The next subsections describe three different strategies for detecting subtopic shift. 
The first is based on the observations of this subsection, that subtopics can be viewed 
as "clumps" of vocabulary, and the problem of segmentation is one of detecting these 
clumps. The following two subsections describe alternative techniques, derived by 
recasting other researchers' algorithms into a more appropriate framework for the 
TextTiling task. 

4.1 Comparing Adjacent Blocks of Text 
In the block comparison algorithm, adjacent pairs of text blocks are compared for 
overall lexical similarity. The TextTiling algorithm requires that a score, called the 
lexical score, be computed for every sentence, or more precisely, for the gap between 
every pair of sentences (since this is where paragraph breaks take place). 

The sketch in Figure 3(a) illustrates the scores computed for the block comparison 
algorithm. In this figure is shown a sequence of eight hypothetical sentences, their 
contents represented as columns of letters, where each letter represents a term or 
word. The sentences are grouped into blocks of size k, where in this illustration k = 2. 
The more words the blocks have in common, the higher the lexical score at the gap 
between them. If a low lexical score is preceded by and followed by high lexical scores, 
this is assumed to indicate a shift in vocabulary corresponding to a subtopic change. 

The blocks act as moving windows over the text. Several sentences can be con- 
tained within a block, but the blocks shift by only one sentence at a time. Thus if there 
are k sentences within a block, each sentence occurs in k ,  2 score computations (except 
for sentences at the extreme ends of the text). 

The current version of the block algorithm computes scores in a very simple man- 
ner, as the inner product of two vectors, where a vector contains the number of times 
each lexical item occurs in its corresponding block. The inner product is normalized 
to make the score fall between 0 and 1, inclusive. 

Figure 3(a) shows the computation of the scores at the gaps between sentences 2 
and 3, between 4 and 5, and between 6 and 7. The scores shown are simple, unnor- 
malized inner products of the frequencies of the terms in the blocks. For example the 
gap between sentences 2 and 3 gets assigned a score of 8 computed as 2 • 1 (for A) 
+1 • 1 (for B) +2 * 1 (for C) +1 * 1 (for D) +1 * 2 (for E). Results for this approach are 
reported in Section 6. 

After these scores are computed, the blocks are shifted by one sentence (sentences 
1 and 8 need to be handled as boundary conditions). So, for example, in addition 
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F i g u r e  3 
Illustration of three ways to compute the lexical score at gaps between sentences. Numbers 
indicate a numbered sequence of sentences, columns of letters signify the terms in the given 
sentence. (a) Blocks - dot product of vectors of word counts in the block on the left and the 
block on the right. (b) Vocabulary introduction - the number of words that occur for the first 
time within the interval centered at the sentence gap. (c) Chains - the number of active chains, 
or terms that repeat within threshold sentences and span the sentence gap. 

to compar ing  sentences 3 and  4 against  sentences 5 and  6, the a lgor i thm compares  
sentences 4 and  5 against  sentences 6 and  7. 

An earlier vers ion of the a lgor i thm (Hearst  1993; Hears t  and  Plaunt  1993) weigh ted  
terms according to tf.idf weights  f rom Informat ion  Retrieval (Salton 1989). This weight-  
ing function computes ,  for each word,  the n u m b e r  of t imes it occurs in the documen t  
tf, t imes the inverse of the n u m b e r  of documen t s  that the t e rm occurs in, in a large col- 
lection idf, or as in this case, wi th  some normal iz ing  constants.  The idea is that  t e rms  
that c o m m o n l y  occur th roughou t  a collection are not  necessari ly good  indicators of 
relevance to a query  because  they are so common ,  and  so their impor tance  is down-  
weighted.  Hears t  (1993) posi ted that  this a rgumen t  should  also app ly  to de te rmin ing  
which  words  best  dist inguish one subtopic f rom another. However ,  the est imates of 
impor tance  that tf.idf makes  seem not to be  accurate enough  within  the scope of com- 
par ing adjacent pieces of text to justify using this measure ,  and  the results seem more  
robust  weight ing  the words  according to their f requency within  the block alone. 
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4.2 Vocabulary Introductions 
Another recent analytic technique that makes use of lexical information is described in 
Youmans (1991), which introduces a variant on type/token curves, called the Vocabu- 
lary-Management Profile. Type/token curves are simply plots of the number of unique 
words against the number of words in a text, starting with the first word and pro- 
ceeding through the last. Youmans modifies this algorithm to keep track of how many 
first-time uses of words occur at the midpoint of every 35-word window in a text. 
Youmans' goal is to study the distribution of vocabulary in discourse rather than to 
segment it along topical lines, but upon examining many English narratives, essays, 
and transcripts he notices that sharp upturns after deep valleys in the curve "correlate 
closely to constituent boundaries and information flow" (p. 788). 

Youmans' analysis of the graphs is descriptive in nature, mainly attempting to 
identify the cause of each peak or valley in terms of a principle of narrative structure, 
and is done at a very fined-grained level. He discusses one text in detail, describ- 
ing changes at the single-word level, and focusing on within-paragraph and within- 
sentence events. Examples of events are changes in characters, occurrences of dialogue, 
and descriptions of places, each of which ranges in length from one clause to a few sen- 
tences. He also finds that paragraph boundaries are not always predicted--sometimes 
the onset of a new paragraph is signaled by the occurrence of a valley in the graph, 
but often paragraph onset is not signaled until one or two sentences beyond onset. 6 

One of Youmans' main foci is an attempt to cast the resulting peaks in terms of 
co-ordination and subordination relations. However, in the discussion he notes that 
this does not seem like an appropriate use of the graphs. No systematic evaluation of 
the algorithm is presented, nor is there any discussion of how one might automatically 
determine the significance of the peaks and valleys. 

Nomoto and Nitta (1994) attempt to use Youmans' algorithm for distinguishing 
entire articles from one another when they are concatenated into a single file. They find 
that it "fails to detect any significant pattern in the corpus" (p. 1148). I recast Youmans' 
algorithm into the TextTiling framework, renaming it the vocabulary introduction 
method. Figure 3(b) illustrates. The text is analyzed, and the positions at which terms 
are first introduced are recorded (shown in black circles in the figure). A moving 
window is used again, as in the blocks algorithm, and this window corresponds to 
Youmans' interval. The number of new terms that occur on either side of the midpoint, 
or the sentence gap of interest, are added together and plotted against sentence gap 
number. 

This approach differs from that of Youmans (1991) and Nomoto and Nitta (1994) in 
two main ways. First, Nomoto and Nitta (1994) use too large an interval--300 words--  
because this is approximately the average size needed for their implementation of the 
blocks version of TextTiling. Large paragraph-sized intervals for measuring introduc- 
tion of new words seem unlikely to be useful since every paragraph of a given length 
should have approximately the same number of new words, although those at the be- 
ginning of a subtopic segment will probably have slightly more. Instead, I use interval 
lengths of size 40, closer to Youmans' suggestion of 35. 

Second, the granularity at which Youmans takes measurements is too fine, since 
he plots the score at every word. Sampling this frequently yields a very spiky plot 
from which it is quite difficult to draw conclusions at a paragraph-sized granularity. I 

6 This might be explained in part by Stark (1988) who shows that readers disagree measurably about 
where to place paragraph boundaries when presented with texts with those boundaries removed. 
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plot the score at every sentence gap, thus eliminating the wide variation that is seen 
when measuring after each word. Results for this approach are reported in Section 6. 

4.3 Lexical Chains 
Morris and Hirst's pioneering work on computing discourse structure from lexical 
relations (Morris and Hirst 1991; Morris 1988) is a precursor to the work reported on 
here. Influenced by Halliday and Hasan's (1976) theory of lexical coherence, Morris 
developed an algorithm that finds chains of related terms via a comprehensive the- 
saurus (Roget's Fourth Edition). 7 For example, the words residential and apartment both 
index the same thesaural category and can thus be considered to be in a coherence 
relation with one another. The chains are used to structure texts according to the at- 
tentional/intentional theory of discourse structure (Grosz and Sidner 1986) discussed 
above. The extent of the lexical chains is assumed to correspond to the extent of a 
segment. The algorithm also incorporates the notion of chain returns--repetition of 
terms after a long hiatus--to complete an intention that spans over a digression. The 
boundaries of the segments correspond to the sentences that contain the first and last 
words of the chain. 

Since the Morris and Hirst (1991) algorithm attempts to discover attentional/inten- 
tional structure, its goals are different than those of TextTiling. Specifically, the dis- 
course structure it attempts to discover is hierarchical and more fine-grained than 
that discussed here. Morris (1988) provides five short example texts for which she has 
determined the intentional structure, and states that the lexical chains generated by 
her algorithm provide a good indication of the segment boundaries that Grosz and 
Sidner's theory assumes. In Morris (1988) and Morris and Hirst (1991), tables are pre- 
sented showing the sentences spanned by the lexical chains and by the corresponding 
segments of the attentional/intentional structure (derived by hand), but no formal 
evaluation is performed. 

This algorithm is not directly applicable for TextTiling for several reasons. First, 
many words are ambiguous and fall into more than one thesaurus class. This is not 
stated as a concern in Morris's work, perhaps because the texts were short, and pre- 
sumably, if a word were ambiguous, the correct thesaurus class would nevertheless 
be chosen because the chained-to words would share only the correct thesaurus class. 
However, my experimentation with an implemented version of Morris' algorithm that 
made use of Roget's 1911 thesaurus (which is admittedly less structured than the 
thesaurus used by Morris), when run on longer texts, found ambiguous links to be a 
common occv',:ence and detrimental to the algorithm. A thesaurus-based disambigua- 
tion algorithm (Yarowsky 1992) may help alleviate this problem (this option is revisited 
in Section 7), but another solution is to move away from thesaurus classes and use 
simple word co-occurrence instead, since within a given text a word is usually used 
with only one sense (Gale, Church, and Yarowsky 1992b). The potential downside of 
this approach is that many useful links may be missed. 

Another limitation of the Morris algorithm is that it does not take advantage of, 
or discuss how to account for, the tendency for multiple simultaneous chains to occur 
over the same intention (each chain corresponds to one intention). Related to this is the 
fact that chains tend to overlap one another in long texts, as can be seen in Figure 2. 

These two types of difficulties can be circumvented by recasting the Morris al- 
gorithm to take advantage of the observations at the beginning of this section. Three 

7 The algorithm was executed by hand since the thesaurus is not generally available online. Current 
extensions to this work make use of WordNet (Miller et al. 1990). 
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changes are made to the algorithm: First, no thesaurus classes are used (only term 
repetition of morphological variants of the same word); second, multiple chains are 
allowed to span an intention; and third, chains at all levels of intentions are analyzed 
simultaneously. Instead of deciding which chain is the applicable one for a given in- 
tention, it measures how many chains at all levels are active at each sentence gap. 
This approach is illustrated in Figure 3(c). A lexical chain for term t is considered 
active across a sentence gap if instances of t occur within some distance threshold of 
one another. In the figure, all three instances of the word A occur within the distance 
threshold. The third B, however, follows too far after the second B to continue the 
chain. The score for the gap between 2 and 3 is simply the number of active chains 
that span this gap. Boundaries are determined as specified in Section 5. This variation 
of the TextTiling algorithm is explored and evaluated in Hearst (1994b). 

4.4 Vector Space Similarity Comparisons 
As mentioned in Section 2, Salton and Allan (1993) report work in the automatic de- 
tection of hypertext links and theme generation from large documents, focusing pri- 
marily on encyclopedia text. They describe the application of similarity comparisons 
between articles, sections, and paragraphs within an encyclopedia, both for creating 
links among related passages, and for better facilitating retrieval of articles in response 
to user queries. Their approach finds similarities among the paragraphs of large doc- 
uments using normalized t f idf term weighting, scoring text segments according to 
a normalized inner product of vectors of these weights (this algorithm is called the 
vector space model [Salton 1989]). 

Salton and Allan (1993) do not try to determine the extents of passages within 
articles or sections. Instead, all paragraphs, sections, and articles are assigned pair- 
wise similarity scores, and links are drawn between those with the highest scores, 
independent of their position within the text. This distinction is important because 
the difficulty in subtopic segmentation lies in detecting the subtle differences between 
adjacent text blocks. A method that finds blocks with the topmost similarity to one 
another can succeed at finding the equivalent of the center of a subtopic extent, but 
does not distinguish where one subtopic ends and the next begins. 

If the algorithm of Salton and Allan (1993) were transformed so that adjacent text 
units were compared, and a method for determining where the similarity scores are 
low were used, then it would resemble the blocks algorithm with t f idf weighting, 
but without the use of overlapping text windows. However, a consequence of the 
fact that the vector space method is better at distinguishing similarities than differ- 
ences, is that similarity scores alone are probably less effective at finding the transition 
points between subtopic discussions than sequences of similarity scores, using moving 
windows of text, in the manner described above. 

Salton et al. (1996) attempt to address a version of the subtopic segmentation prob- 
lem by extending the algorithm to finding "text pieces exhibiting internal consistency 
that can be distinguished from the remainder of the surrounding text" (p. 55). As one 
part of this goal, they seek what is called the text segment, which is defined as "a 
contiguous piece of text that is linked internally, but largely disconnected from the 
adjacent text. Typically, a segment might consist of introductory material, or cover the 
exposition and development of the text, or contain conclusions and results" (p. 55). 
Thus, they do not address the subtopic detection task because they attempt only to 
find those segments of text that are strongly different than the surrounding text. They 
do this by comparing similarity between a paragraph and its four closest paragraph 
neighbors to the left and the right. If a similarity score between a pair of paragraphs 
does not exceed a threshold, then the link between that pair is removed. If a discon- 
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nected sequence of paragraphs is found, that sequence is considered a text segment. 
This algorithm is not evaluated. 

4.5 Other Related Approaches 
Kozima (1993) describes an algorithm for the detection of text segments, which are 
defined as "a sequence of clauses or sentences that display local coherence" (p. 286) in 
narrative text. Kozima (1993) presents a very elaborate algorithm for computing the 
lexical cohesiveness of a window of words, using spreading activation in a seman- 
tic network created from an English dictionary. The cohesion score is plotted against 
words and smoothed, and boundaries are considered to fall at the lowest-scoring 
words. This complex computation, as opposed to simple term repetition, may be nec- 
essary when working with narrative texts, but no comparison of methods is done. The 
algorithm's results are shown on one text, but are not evaluated formally. 

Reynar (1994) describes an algorithm similar to that of Hearst (1993) and Hearst 
and Plaunt (1993) with a difference in the way in which the size of the blocks of 
adjacent regions are chosen. A greedy algorithm is used: the algorithm begins with no 
boundaries, then a boundary b (between two sentences) is chosen which maximizes 
the lexical score resulting from comparing the block on the left whose extent ranges 
from b to the closest existing boundary on the left, and similarly for the right. This 
process is repeated until a prespecified number of boundaries have been chosen. This 
seems problematic, since the initial comparisons are between very large text segments: 
the first boundary is chosen by comparing the entire text to the right and left of the 
initial position. The algorithm is evaluated only in terms of how well it distinguishes 
entire articles from one another when concatenated into one file. The precision/recall 
tradeoffs varied widely: on 660 Wall Street Journal articles, if the algorithm is allowed 
to be off by up to three sentences, it achieves precision of .80 with recall of .30, and 
precision of .30 with recall of .92. 

5. The TextTiling Algorithm 

The TextTiling algorithm for discovering subtopic structure using term repetition has 
three main parts: 

1. 

2. 

3. 

Tokenization 

Lexical Score Determination 

Boundary Identification 

Each is discussed in turn below. The methods for lexical score determination were 
outlined in Section 4, but more detail is presented here. 

5.1 Tokenization 
Tokenization refers to the division of the input text into individual lexical units, and 
is sensitive to the format of the input text. For example, if the document has markup 
information, the header and other auxiliary information is skipped until the body of 
the text is located. Tokens that appear in' the body of the text are converted to all 
lower-case characters and checked against a stop list of closed-classed and other high- 
frequency words, s If the token is a stop word then it is not passed on to the next 

8 "Stop list" is a term commonly used in Information Retrieval (Salton 1989). In this case, the list consists 
of 898 words, developed in a somewhat ad hoc manner. 
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step. Otherwise, the token is reduced to its root by a morphological analysis function 
based on that of Kartunen, Koskenniemi, and Kaplan (1987), converting regularly and 
irregularly inflected nouns and verbs to their roots. 

The text is subdivided into pseudosentences of a predefined size w (a parameter of 
the algorithm) rather than using "real" syntactically-determined sentences. This is done 
to allow for comparison between equal-sized units, since the number of shared terms 
between two long sentences and between a long and a short sentence would probably 
yield incomparable scores (and sentences are too short to expect normalization to 
really accommodate for the differences). For the purposes of the rest of the discussion 
these groupings of tokens will be referred to as token-sequences. The morphologically 
analyzed token is stored in a table along with a record of the token-sequence number 
it occurred in, and the number of times it appeared in the token-sequence. A record is 
also kept of the locations of the paragraph breaks within the text. Stop words contribute 
to the computation of the size of the token-sequence, but not to the computation of 
the similarity between blocks of text. 

5.2 Determining Scores 
As mentioned above, two methods for determining the score to be assigned at each 
token-sequence gap are explored here. The first, block comparison, compares adjacent 
blocks of text to see how similar they are according to how many words the adjacent 
blocks have in common. The second, the vocabulary introduction method, assigns 
a score to a token-sequence gap based on how many new words were seen in the 
interval in which it is the midpoint. 

5.2.1 Blocks. In the block comparison algorithm, adjacent pairs of blocks of token- 
sequences are compared for overall lexical similarity. The block size, labeled k, is the 
number of token-sequences that are grouped together into a block to be compared 
against an adjacent group of token-sequences. This value is meant to approximate the 
average paragraph length. Actual paragraphs are not used because their lengths can 
be highly irregular, leading to unbalanced comparisons, but perhaps with a clever 
normalizing scheme, "real" paragraphs could be used (analogous to the substitution 
of token-sequences for real sentences). 

Similarity values are computed for every token-sequence gap number; that is, a 
score is assigned to token-sequence gap i corresponding to how similar the token- 
sequences from token-sequence i - k to i are to the token-sequences from i + 1 to 
i + k + 1. Note that this moving window approach means that each token-sequence 
appears in k • 2 similarity computations. 

The lexical score for the similarity between blocks is calculated by a nor- 
malized inner product: given two text blocks bl and b2, each with k token-se- 
quences, where bl = { token-sequencei_k , . . . ,  token-sequencei} and b2 ~- {token-sequencei+l, 
. . . .  token-sequencei+k + l }, 

score(i) = Y~t Wt,bl Wt,b2 

V/G  w2 G w2 t,bl t,b2 

where t ranges over all the terms that have been registered during the tokenization 
step (thus excluding stop words), and Wt,b is the weight assigned to term t in block b. 
As mentioned in Section 4, in this version of the algorithm, the weights on the terms 
are simply their frequency within the block, This formula yields a score between 0 
and 1, inclusive. 

These scores can be plotted, token-sequence number against similarity score. How- 
ever, since similarity is measured between blocks bl and b2, the score's x-axis coordi- 
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nate falls between token-sequences i and i + 1. Rather than plotting a token-sequence 
number on the x-axis, the token-sequence gap number i is plotted instead. 

5.2.2 Vocabulary Introduction. The lexical score assigned in the vocabulary introduc- 
tion version of scoring is the ratio of new words in an interval divided by the length 
of that interval. Tokenization is as described above, eliminating stop words and per- 
forming morphological analysis. A score is then assigned to a token-sequence gap as 
follows: the number of never-yet-seen words in the token-sequence to the left of the 
gap is added to the number of never-yet-seen words in the token-sequence to the right, 
and this number is divided by the total number of tokens in the two token-sequences, 
or w • 2. Since in these experiments w is set to 20, this yields an interval length of 40, 
which is close to the parameter 35 suggested as most useful in (Youmans 1991). As in 
the block version of the algorithm, the score is plotted at the token-sequence gap, and 
scores can range from 0 to 1, inclusive. 

The lexical score is computed as follows. For each token-sequence gap i, create a 
text interval b of length w • 2 (where w is the length of the token-sequences) centered 
around i, and let b be subdivided into two equal-length parts, bl and b2, where bl = 
{ tokensi_w . . . .  , tokensi } and b2 : { tokensi+ l, . . . , tokensi+w+ l }. Then, 

score(i) = N u m N e w T e r m s ( b l  ) + N um N ew T erm s (b2 )  
w , 2  

where N u m N e w T e r m s ( b )  returns the number of terms in interval b seen for the first 
time in the text. 

5.3 Boundary Identification 
Boundary identification is done identically for all lexical scoring methods, and assigns 
a depth score, the depth of the valley (if one occurs), to each token-sequence gap. The 
depth score corresponds to how strongly the cues for a subtopic changed on both sides 
of a given token-sequence gap and is based on the distance from the peaks on both 
sides of the valley to that valley. Figure 4 illustrates. In Figure 4(a), the depth score at 
gap a2 is (Yax -Ya2)  q- (Ya3 --Ya2)" Relatively "deeper" valleys receive higher scores than 
shallower ones. More formally, for a given token-sequence gap i, the program records 
the lexical score of the token-sequence gap I to the left of i until the score for I - 1 is 
smaller than the score for l (meaning the top of the peak was found at 1). Similarly, for 
token sequences to the right of i, the program monitors the score of token-sequence 
r until the score for r + 1 is less than that of r. Finally, score(r) - score(i) is added to 
score(l) - score(i), and the result is the depth score at i. 

A potential problem with this scoring method is illustrated in Figure 4(b). Here 
we see a small valley at gap b4 that can be said to "interrupt" the score for b2. As one 
safeguard, the algorithm uses smoothing (described below) to help eliminate small 
perturbations of the kind seen at b4. Additionally, because the distance between Yb3 
and Yb4 is small in these kinds of cases, this gap is less likely to be marked as a 
boundary than gaps like b2, which have large peak distances both to the left and the 
right. This example illustrates the need to take into account the length of both sides 
of the valley, since a valley that has high peaks on both sides indicates that not only 
has the vocabulary on the left decreased in score, but the vocabulary on the right has 
increasing score, thus signaling a strong subtopic change. 

Figure 4(c) shows another potentially problematic case, in which two strong peaks 
flank a long, flat valley. The question becomes which of gaps c2, c3, or both, should 
be assigned a boundary. Such "plateaus" occur when vocabulary changes very grad- 
ually and reflect a poor fit of the corresponding portion of the document to the model 
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(a) (b) (c) 
Figure 4 
A sketch illustrating the computation of depth scores in three different situations. The x-axis 
indicates token sequence gap number and the y-axis indicates lexical score. 

assumed by TextTiling. When the plateau occurs over a longer stretch, usually it is rea- 
sonable to choose both bordering gaps as boundaries. However, when such a plateau 
occurs over a very short stretch of text, the algorithm is forced to make a somewhat 
arbitrary choice. Choices like these are cases in which the algorithm should proba- 
bly make use of additional information, such as more localized lexical distribution 
information, or perhaps more conventional discourse cues. 

Note that the depth scores are based only on relative score information, ignoring 
absolute values. The justification for this is twofold. First, it helps make decisions in the 
cases in which a gap's lexical score falls into the middle of the lexical score range, but 
is flanked by tall peaks on either side, and this situation happens commonly enough to 
be important. Second, using relative rather than absolute scores helps avoid problems 
associated with situations like that of Figure 4(c), in which all gaps between c2 and c3 
would be considered boundaries if only absolute scores were taken into account. 

The depth scores are sorted and used to determine segment boundaries. The larger 
the score, the more likely the boundary occurs at that location, modulo adjustments 
as necessary to place the boundaries at orthographically marked paragraphs (if avail- 
able). A proviso check is made to prevent assignment of very close adjacent segment 
boundaries. Currently, at least three intervening token-sequences are required between 
boundaries. This helps control for the fact that many texts have spurious header in- 
formation and single-sentence paragraphs. 

An alternative to this method of computing depth scores is to use the slope of 
the valley's sides, or the "sharpness" of the vocabulary change. However, because 
deeper valleys with smaller slopes indicate larger, although more gradual, shifts in 
vocabulary usage than shallower valleys with larger slopes, they are preferable for 
detecting subtopic boundaries. Furthermore, steep slopes can sometimes indicate a 
spurious change associated with a very short digression. The depth score is more 
robust for the purposes of subtopic boundary detection. 
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5.4 Smoothing the Plot 
As mentioned above, the plot is smoothed to remove small dips, using average smooth- 
ing with a width of size s, as follows: 

for each token-sequence gap g and a small even number s 
find the scores of the s/2 gaps to the left of g 
find the scores of the s/2 gaps to the right of g 
find the score at g 
take the average of these scores and assign it to g 

repeat this procedure n times 

The choice of smoothing function is somewhat arbitrary; other low-pass filters could 
be used instead. 

5.5 Determining the Number of Boundaries 
The algorithm must determine how many segments to assign to a document, since 
every paragraph is a potential segment boundary. Any attempt to make an absolute 
cutoff, even one normalized for the length of the document, is problematic since there 
should be some relationship between the structure and style of the text and the number 
of segments assigned to it. As discussed above, a cutoff based on a particular valley 
depth is similarly problematic. 

Instead, I suggest making the cutoff a function of the characteristics of the depth 
scores for a given document, using the average ~ and standard deviation ~ of their 
scores (thus assuming that the scores are normally distributed). One version of this 
function entails drawing a boundary only if the depth score exceeds ~ - cr (the liberal 
measure, LC). This function can be varied to achieve correspondingly varying preci- 
sion/recall trade-offs. A higher precision but lower recall can be found by setting the 
limit to be depth scores exceeding ~ - or/2 (the conservative measure, HC) instead of 
3 -  o-. 

6. Evaluation 

There are several ways to evaluate a segmentation algorithm, including comparing 
its segmentation against that of human judges, comparing its segmentation against 
author-specified orthographic information, and comparing its segmentation against 
other automated segmentation strategies in terms of how they effect the outcome of 
some computational task. This section presents comparisons of the results of the algo- 
rithm against human judgments and against article boundaries. It is possible to com- 
pare against author-specified markups, but unfortunately, as discussed above, authors 
usually do not specify the kind of subtopic information desired. As mentioned above, 
Hearst (1995) and Hearst and Plaunt (1993) show how to use TextTiles in information 
retrieval tasks, although this work does not show whether or not the results of these 
algorithms produce better performance than the results of some other segmentation 
strategy would. 

6.1 Reader Judgments 
There is a growing concern surrounding issues of intercoder reliability when using 
human judgments to evaluate discourse-processing algorithms (Carletta 1996; Condon 
and Cech 1995). Proposals have recently been made for protocols for the collection of 
human discourse segmentation data (Nakatani et al. 1995) and for how to evaluate the 
validity of judgments so obtained (Carletta 1996; Isard and Carletta 1995; Ros6 1995; 
Passonneau and Litman 1993; Litman and Passonneau 1995). Recently, Hirschberg 
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and Nakatani (1996) have reported promising results for obtaining higher interjudge 
agreement using their collection protocols. 

For the evaluation of the TextTiling algorithms, judgments were obtained from 
seven readers for each of 12 magazine articles that satisfied the length criteria (between 
1,800 and 2,500 words) 9 and that contained little structural demarcation. The judges 
were asked simply to mark the paragraph boundaries at which the topic changed; they 
were not given more explicit instructions about the granularity of the segmentation. 1° 

Figure 5 shows the boundaries marked by seven judges on the Stargazers text. This 
format helps illustrate the general trends in the judges' assessments, and also helps 
show where and how often they disagree. For instance, all but one judge marked a 
boundary between paragraphs 2 and 3. The dissenting judge did mark a boundary 
after 3, as did two of the concurring judges. The next three major boundaries occur 
after paragraphs 5, 9, 12, and 13. There is some contention in the later paragraphs; 
three readers marked both 16 and 18, two marked 18 alone, and two marked 17 alone. 
The outline in the Introduction gives an idea of what each segment is about. 

Passonneau and Litman (1993) discuss at length considerations about evaluat- 
ing segmentation algorithms according to reader judgment information. As Figure 5 
shows, agreement among judges is imperfect, but trends can be discerned. In the 
data of Passonneau and Litman (1993), if four or more out of seven judges mark a 
boundary, the segmentation is found to be significant using a variation of the Q-test 
(Cochran 1950). However, in later work (Litman and Passonneau 1995), three out of 
seven judges marking a boundary was considered sufficient to classify, that point as a 
"major" boundary. 

Carletta (1996) and Ros6 (1995) point out the importance of taking into account 
the expected chance agreement among judges when computing whether or not judges 
agree significantly. They suggest using the kappa coefficient (K) for this purpose. Ac- 
cording to Carletta (1996), K measures pairwise agreement among a set of coders 
making category judgments, correcting for expected chance agreement as follows: 

K -  P(A) -P(E) 
1 -P(E) 

where P(A) is the proportion of times that the coders agree and P(E) is the proportion 
of times that they would be expected to agree by chance. The coefficient can be com- 
puted by making pairwise comparisons against an expert or by comparing to a group 
decision. Carletta (1996) also states that in the behavioral sciences, K > .8 signals good 
replicability, and .67 < K < .8 allows tentative conclusions to be drawn. The kappa 
coefficients found in Isard and Carletta (1995) ranged from .43 to .68 for four coders 
placing transaction boundaries, and those found in (Ros~ 1995) ranged from .65 to 
.90 for four coders segmenting sentences. Carletta cautions, however, that ". . .  coding 
discourse and dialogue phenomena, and especially coding segment boundaries, may 

9 One longer  text of 2,932 words  was  used  since reader j u d g m e n t s  had  been obtained for it f rom an 
earlier experiment .  Judges  were technical researchers. Two texts had  three or four  short  headers ,  which  
were r emoved  for consistency. One  text that  was  used  in Hears t  (1994b) is not  used  here because  
inconsistencies were found  in the  pa rag raph  break locations. 

10 Specifically, the instruct ions were in wri t ten form and ran as follows: "You will receive three texts. 
Mark where  the topics seem to c h a n g e - - d r a w  a line be tween  the paragraphs ,  where  any  blank line can 
be considered a pa rag raph  boundary.  It 's r e c o m m e n d e d  that  you  read quickly; no need  to unde r s t and  
all the nuances .  However,  you  are a l lowed to go back and  look over par ts  that  you 've  already looked 
at and  change  your  ma rk i ngs  if desired. If on occasion you  can ' t  decide be tween  two places, definitely 
pick one bu t  indicate that  you  t hough t  the other  one was  just  as appropriate ."  On  the rare occasions in 
which  the subject picked a secondary  boundary ,  only the p r imary  one was  retained for evaluat ion.  

53 



Computational Linguistics Volume 23, Number 1 

be inherently more difficult than many previous types of content analysis (for instance, 
dividing newspaper articles based on subject matter)" and so implies that the levels of 
agreement needed to indicate good reliability for TextTiling may be justified in being 
lower. 

For my test texts, the judges placed boundaries on average 39.1% of the time, 
and nonboundaries 60.9%. Thus the expected chance agreement P(E) is .524 (since 
P(Boundary) = .391 and P(Nonboundary) ~- .609, (.3912 + .6092) = .524). To compute K, 
each judge's decision was compared to the group decision, where a paragraph gap was 
considered a "true" boundary if at least three out of seven judges placed a boundary 
mark there, as in Litman and Passonneau (1995). 11 The remaining gaps are considered 
nonboundaries. The average K for these texts was .647. This score is at the low end 
of the stated acceptability range but is comparable with those of other interreliability 
results (with fewer judges) found in discourse segmentation experiments. 

6.2 Parameter Settings 
An unfortunate aspect of the algorithm in its current form is that it requires the set- 
ting of several interdependent parameters, the most important of which are the size of 
the text unit that is compared, and the number of words in a token-sequence (which 
controls the number of times a term appears in a window as well as the number of 
data points that are sampled). The method, width, and number of rounds of smoothing 
must also be chosen. Usually only modest amounts of smoothing can be allowed, since 
more dramatic smoothing tends to obscure the point at which the subtopic transition 
takes place. Finally, the method for determining how many boundaries to assign must 
be specified. The three are interrelated: for example, using a larger text window re- 
quires less smoothing and fewer boundaries will be found, yielding a coarser-grained 
segmentation. 

Initial testing was done on the texts evaluated with several different sets of pa- 
rameter settings and a default configuration that seems to cover many different text 
types was chosen. The defaults set w = 20, k = 10, n = 1, s = 2, for token-sequence 
size, block size, number of rounds of smoothing, and smoothing width, respectively. 
The evaluation presented here shows the results for different setting types to give a 
feeling for the space of results. Because the evaluation collection is very small, these 
results can be seen only as a suggestion; different settings may work better in different 
situations. 

6.3 Results: Qualitative Analysis 
Figure 6 shows a plot of the results of applying the block comparison algorithm to the 
Stargazer text with k set to 10. When the lowermost portion of a valley is not located at 
a paragraph gap, the judgment is moved to the nearest paragraph gap. 12 For the most 
part, the regions of strong similarity correspond to the regions of strong agreement 
among the readers. (The results for this text are among the stronger ones and appear 
in the last line of Table 2.) Note however, that the similarity information around para- 
graph 12 is weak. This paragraph briefly summarizes the contents of the previous 
three paragraphs; much of the terminology that occurred in all of them reappears in 

11 Paragraphs of three or fewer sentences were combined wi th  their neighbor  if that neighbor was  
deemed to follow at a "major"  boundary,  as in paragraphs  2 and 3 of the Stargazers text. 

12 More specifically, if the closest paragraph location (first left, then right) has not  been marked as a 
boundary,  then mark it. Otherwise,  look to the paragraph to the left. If that paragraph has not  been 
marked and if it is at least gap_limit = 3 token-sequences away, then mark the paragraph to the left. If 
this fails, try the paragraph to the right in a similar way. If both fail, mark nothing. 
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F i g u r e  5 
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I f 1; 2; 3; ,; 3; 6; 7; ~o ~ . . . .  

Judgments of seven readers on the Stargazer text. Internal numbers indicate location of gaps 
between paragraphs; x-axis indicates token-sequence gap number, y-axis indicates judge 
number, a break in a horizontal line indicates a judge-specified segment break. 
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Figure 6 
Results of the block similarity algorithm on the Stargazer text with k set to 10 and the loose 
boundary cutoff limit. Both the smoothed and unsmoothed plot are shown. Internal numbers 
indicate paragraph numbers, x-axis indicates token-sequence gap number, y-axis indicates 
similarity between blocks centered at the corresponding token-sequence gap. Vertical lines 
indicate boundaries chosen by the algorithm; for example, the leftmost vertical line represents 
a boundary after paragraph 3. Note how these align with the boundary gaps of Figure 5 above. 

this one location (in the spirit of a Grosz and Sidner [1986] "pop"  operation). Thus 
it displays low similarity both to itself and to its neighbors. This is an example of a 
b reakdown caused by the assumptions about  the subtopic structure. 

Because of the depth  score cutoff, not all valleys are chosen as boundaries.  Al- 
though there is a dip around paragraph gaps 5 and 6, no boundary  is marked  there. 
From the summary  of the text's contents in Section 1, we know that paragraphs  4 and 
5 discuss the moon 's  chemical composit ion while 6 to 8 discuss how it got its shape; 
these two subtopic discussions are more similar to one another  in content than they 
are to the subtopics on either side of them, thus accounting for the small change in 
similarity. 
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Table 1 
Average K, precision, and recall scores for 12 test texts. Baseline shows the scores for an 
algorithm that assigns a boundary 39% of the time (the average overall), Tiling (V) indicates 
the vocabulary introduction version of computing lexical scores with token-sequence size 
w = 20, and Tiling (B) indicates the blocks version with token-sequence size w = 20 and block 
size k = 10. Both versions' results are shown at both the low cutoff (LC) and the high cutoff 
(HC) for terminating boundary assignment. Judges shows the average kappa, precision, and 
recall for all judges averaged over all texts. 

Baseline Tiling (V) Tiling (B) Judges 

LC HC LC HC 

P R K P K P K 

75 47 

K P K 

50 51 23 52 78 32 58 64 46 66 71 59 65 83 71 

Five out of seven readers indicated a break between paragraphs 18 and 19. The 
algorithm registers a slight, but not significant valley at this point. Upon inspection it 
turns out that paragraph 19 really is a continuation of the discussion in 18, answering 
a question that is posed at the end of 18. However, paragraph 19 begins with an 
introductory phrase type that strongly signals a change in subtopic: For the last two 
centuries, astronomers have studied . . . .  

The final paragraph is a summary of the entire text; the algorithm recognizes the 
change in terminology from the preceding paragraphs and marks a boundary, but only 
two of the readers chose to differentiate the summary; for this reason the algorithm is 
judged to have made an error even though this sectioning decision is reasonable. This 
illustrates the inherent fallibility of testing against reader judgments, although in part 
this is because the judges were given loose constraints. 

6.4 Results: Quantitative Analysis 
To assess the results of the algorithm quantitatively, I follow the advice of Gale, Church, 
and Yarowsky (1992a), and compare the algorithm against both upper and lower 
bounds. The upper bound in this case is the reader judgment data. The lower bound 
is a baseline algorithm that is a simple, reasonable approach to the problem, which 
can be automated. A simple way to segment the texts is to place boundaries randomly 
in the document, constraining the number of boundaries to equal that of the average 
number of paragraph gaps per document assigned as boundaries by judges. In the 
test data, boundaries are placed in about 39% of the paragraph gaps. A program was 
written that places a boundary at each potential gap 39% of the time (using a random 
number generator), and run 10,000 times for each text, and the average of the scores 
of these runs was found. These scores appear in Table 1. 

The algorithms are evaluated according to the proportion of "true" or majority 
boundaries they select out of the total selected (precision) and the proportion of "true" 
boundaries found out of the total possible (recall) (Salton 1989). Precision also implies 
the number of extraneous boundaries (or false positives, or insertion errors), and recall 
implies the number of missed boundaries (or false negatives, or deletion errors). 

Table 1 shows that both the blocks algorithm for lexical score assignment and the 
vocabulary introduction algorithm fall between the upper and lower bounds. The re- 
sults are shown for making both a liberal (LC) and a conservative (HC) number of 
boundary assignments (see Section 5.5). As is to be expected, when more boundaries 
can be assigned, recall becomes higher at the expense of precision, and conversely, 
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T a b l e  2 

Precision for various parameter settings at the recall level obtained on average by the judges 
for 12 texts. NP: number of paragraphs; NB: number of boundaries according to judges' 
consensus; JP: judges' average precision; JR: judges' average recall; K: kappa for the judges for 
each text; Bk: precision for the blocks algorithm with block size k and w = 20; Vw: precision for 
the vocabulary introduction algorithm with token sequence size w. Dashes occur in cases in 
which the algorithm does not produce a recall level equivalent to that of the judges' average. 

NP NB JP JR B9 B10 B12 V10 V16 V20 V24 

1 18 8 
2 30 10 
3 21 9 
4 41 14 
5 30 9 
6 25 16 
7 39 8 
8 28 10 
9 27 11 
10 24 8 
11 17 8 
12 21 9 

.809 .696 

.897 .714 

.907 .778 

.892 .684 

.716 .619 

.932 .688 

.736 .732 

.793 .657 

.917 .649 

.743 .857 

.812 .768 

.839 .651 

K B7 

.56 .580 

.74 .877 

.72 .875 

.68 .593 

.72 .480 

.52 

.75 

.63 1.0 

.65 .682 

.67 .695 

.61 - -  

.58 .673 

.580 .611 .524 
- -  . 781  

.875 . 8 7 5  .788 

.577 . 6 1 4  .790 

.687 .687 - -  

1.0 .766 .766 
.854 . 781  .683 

.707 .707 
.605 .544 - -  
.673 . 7 4 5  .745 

.480 .500 . 4 4 2  .442 

.505 .617 .633 - -  

.583 . 5 0 0  . 7 7 8  .636 

.528 . 5 5 8  .633 - -  

.478 . 6 4 9  . 5 0 0  .581 

.785 .785 - -  - -  

.422 . 6 3 4  . 4 0 2  .467 

.522 .464 . 541  .450 

.460 . 4 1 6  . 7 0 4  .588 

.478 - -  .471 

.380 . 4 5 8  . 591  .662 

.500 . 6 0 4  . 5 3 9  .455 

w h e n  bounda ry  ass ignment  is conservative,  bet ter  precision is obta ined at the ex- 
pense  of recall. This table also shows the average  K scores for the agreement  be tween  
the a lgor i thm and the judges. The scores for the blocks version of the a lgor i thm are 
stronger than those for the vocabula ry  introduction version. 

Table 2 shows results in more  detail, va ry ing  some of the pa rame te r  settings. To 
al low for a more  direct compar ison,  the precision for each version of the a lgor i thm 
is shown  at the recall level obta ined by  the judges,  on average.  This is c o m p u t e d  as 
follows for each version of the algorithm: The dep th  scores are examined  in order  of 
their strength. For each dep th  score, if it corresponds  to a true boundary,  the count  
of correct boundar ies  is incremented,  otherwise the count  of incorrect boundar ies  is 
incremented.  Precision and  recall are compu ted  after each correct bounda ry  encoun- 
tered. When  the recall equals that  of the judges '  average  recall, the cor responding  
precision of the a lgor i thm is returned.  If the recall level exceeds that  of the judges ' ,  
then the value of the precision is es t imated as a linear interpolat ion be tween  the two 
precision scores whose  recall scores mos t  closely su r round  that of the judges '  average  
recall. (This a s sumpt ion  of a linear interpolat ion is justified because in mos t  cases, 
a l though not  all, precision changes monotonically.) In some cases the a lgor i thm does 
not  p roduce  a recall level as high as that found by  the judges,  since pa rag raphs  wi th  
a nonposi t ive  dep th  score are not  eligible for b o u n d a r y  ass ignment ,  and these cases 
are ma rked  with a dash. Note  that this evaluat ion does a w a y  with  the need  for LC 
and HC cutoff levels. 

From Table 2 we  can see that vary ing  the pa rame te r  settings improves  the scores for 
some texts while detract ing f rom others. We can also see that  the blocks a lgor i thm for 
lexical score determinat ion produces  stronger results in mos t  cases than the vocabula ry  
introduction method,  a l though the latter seems to do better  on the cases where  the 
blocks a lgor i thm finds few boundar ies  (e.g., texts 6, 7, and  11). In a lmost  all cases the 
a lgori thms are not  as accurate as the judges,  bu t  the scores for the blocks version of 
the a lgor i thm are very  strong in m a n y  cases. 

In looking at the results in more  detail, one migh t  w o n d e r  w h y  the a lgor i thm 
per fo rms  better  on some texts than on others. Text 7, for example ,  scores especially 

57 



Computational Linguistics Volume 23, Number 1 

poorly. This may be caused by the fact that this text has a markedly different style 
from the others. It is a chatty article (about how to survive office politics), and con- 
sists of a series of anecdotes about particular individuals. The article is interspersed 
throughout with spoken quotations, and these tend to throw the algorithm off because 
spoken statements usually contain different vocabulary than the surrounding prose. 
This phenomenon occurs in some of the other texts as well, but to a much lesser 
extent. It suggests a need for recognizing and accommodating very short digressions 
more effectively. Another interesting property of this text is that most of the subtopic 
switches occur when switching from one anecdote to another, and by inspection it 
appears that the best cues for these switches are pronouns that appear on the stop list 
and are discarded (for example, the anecdotes alternate between men and women's 
experiences, and correspondingly alternate between using she and her and using he 
and him). However, in most cases, use of the stop list improves results. 

It should also be noted that the texts used in this study were not chosen to have 
well-defined boundaries, and so pose a difficult test for the algorithm. Perhaps some 
tests against texts with more obvious subtopic boundaries (for which the kappa coef- 
ficient for interjudge agreement is larger) would be illuminating. 

6.5 Detecting Breaks between Consecutive Documents 
One way to evaluate the algorithm is in terms of how well it distinguishes entire 
articles from one another when they are concatenated into one file. Nomoto and Nitta 
(1994) implement the tf.idf version of TextTiling from Hearst (1993) and Hearst and 
Plaunt (1993) and evaluate it this way on Japanese newswire text. 13 Also, as discussed 
in Section 4, Reynar (1994) uses this form of evaluation on a greedy version of the 
blocks algorithm. 

This task violates a major assumption of the TextTiling algorithm. TextTiling as- 
sumes that the similarity comparisons are done within the vocabulary patterns of 
one text, and so a relatively large shift in vocabulary indicates a change in subtopic. 
Because this evaluation method assumes that article boundary changes are more im- 
portant than subtopic boundary changes, it penalizes the algorithm for marking very 
strong subtopic changes that occur within a very cohesive document before relatively 
weaker changes in vocabulary between similar articles. For example, for hypothetical 
articles dl, d2, and d3, assume dl has very strong internal coherence indicators, d2 has 
relatively weak ones, and d3 is in the midrange. The interidr subtopic transition scores 
for dl can swamp out the score for the transition between d2 and d3. 

Nevertheless, because others have used this evaluation method, one such evalu- 
ation is shown here as well. The evaluation set consisted of 44 articles from the Wall 
Street Journal from 1989. Consecutive articles were used, except any article fewer than 
10 sentences was removed. The data consisted of 691 paragraphs, most of which con- 
tained between 1 and 3 sentences, some of which were very short, e.g., article bylines 
(thus making exact assignment of boundary locations more difficult). The text was not 
"clean": several articles consisted of a sequence of stories, several had tabular data, 
and one article was just a listing of interest rates. 

The blocks version of TextTiling was run over this data using the default param- 
eter settings. The depth scores were sorted and the number of assignments to article 
boundaries that were within three sentences of the correct location were recorded at 
several cutoff levels and are shown in Table 3. B corresponds to the number of bound- 

13 Instead of using fixed-sized blocks, Nomoto and Nitta (1994) take advantage of the fact that Japanese 
provides discourse markers indicating multi-sentence units that participate in a topic/comment 
relationship, and find these motivated units can work slightly better. 
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Table 3 
Performance for blocks algorithm 
with default settings distinguishing 
between article boundaries in 
newspaper text consisting of 44 
articles. B: number of boundaries 
chosen; C: number of correct 
boundaries; P: precision; R: recall. 

B C P R 

10 8 .80 .19 
20 16 .80 .37 
30 22 .73 .51 
40 27 .68 .63 
43* 29 .67 .67 
50 31 .62 .72 
60 36 .60 .83 
70 41 .59 .95 

aries assigned, in sorted order (i.e., the first row shows the precision and recall after 
the first 10 boundaries are assigned), C corresponds to the number of correctly placed 
boundaries, P the precision, R the recall, and the asterisk shows the precision/recall 
break-even point. 

The higher-scoring boundaries are almost always exact hits, but those farther down 
are more likely to be off by one to three sentences. Only one transition is missed 
entirely, and it occurs after a sequence of five isolated sentences and a byline (a weak 
boundary is marked preceding these isolated sentences). The high-scoring boundaries 
that do not correspond to shifts between articles almost always correspond to strong 
subtopic shifts. One exception occurs in the article consisting only of interest rate 
listings. Another occurs in an article associating numerical information with names. 

Overall the scores are much stronger than those reported in Reynar (1994), and are 
comparable to those of Nomoto and Nitta (1994) whose best precision/recall trade-off 
on a collection of approximately 80 articles is approximately .50 precision and .81 recall. 
However, all three studies are done on different test collections and so comparisons 
are at best suggestive. 

7. Summary  and Future Work 

This article has described an algorithm that uses changes in patterns of lexical repeti- 
tion as the cue for the segmentation of expository texts into multi-paragraph subtopic 
structure. It has also advocated the investigation and use of the multi-paragraph dis- 
course unit, something that had not been explored .in the computational literature 
until this work was introduced. The algorithms described here are fully implemented, 
and use term repetition alone, without requiring thesaural relations, knowledge bases, 
or inference mechanisms. Evaluation reveals acceptable performance when compared 
against human judgments of segmentation, although there is room for improvement. 

TextTiles have already been integrated into a user interface in an information re- 
trieval system (Hearst 1995) and have been used successfully for segmenting Arabic 
newspaper texts, which have no paragraph breaks, for information retrieval (Has- 
nah 1996). With the increase in importance of multimedia information, especially in 
the context of Digital Library projects, the need for segmentation and summarization 
of alternative media types is becoming increasingly important. For example, the al- 
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gorithms described here should prove useful for topic-based segmentation of video 
transcripts (Christel et al. 1995). In a line of work we call Mixed-Media access (Chen 
et al. 1994), textual subtopic structure is being integrated with other media types, such 
as images and speech. 

TextTiling has been used in innovative ways by other researchers. Karlgren (1996), 
in a study of the effects of stylistic variation in texts on information retrieval results, 
uses TextTiling as one of several ways of characterizing newspaper texts. Overall, he 
finds that relevant documents tend to be more complex than nonrelevant ones in terms 
of length, sentence structure, and other metrics. When examining documents of all 
lengths, he finds that relevant documents tend to have more TextTiles than nonrelevant 
ones (95% significant by a Mann Whitney test). As another example of an innovative 
application, van der Eijk (1994) suggests using TextTiles to align parallel multilingual 
text corpora according to the overlap in their subtopic structure for English, German, 
and French text. This work, along with that of Nomoto and Nitta (1994), on Japanese, 
and Hasnah (1996), on Arabic, also provides evidence that TextTiling is applicable to 
a wide range of natural languages. 

There are several ways that the algorithms could be modified to attempt to im- 
prove the results. One way is to use thesaural relations in addition to term repetition to 
make better estimates about the cohesiveness of the discussion. Earlier work (Hearst 
1993) incorporated thesaural information into the ' algorithms, but later experiments 
found that this information degrades the performance. This could very well be due to 
problems with the thesaurus and assignment algorithm used. A simpler algorithm that 
just posits relations among terms that are a small distance apart according to Word- 
Net (Miller et al. 1990), modeled after Morris and Hirst's heuristics, might work better. 
Therefore, the issue should not be considered closed, but rather as an area for future 
exploration, with this work as a baseline for comparison. The approach to similarity 
comparison suggested by Kozima (1993), while very expensive to compute, might also 
prove able to improve results. Other ways of computing semantic similarity, such as 
those of Sch~itze (1993) or Resnik (1995), may also prove useful. As a related point, ex- 
perimentation should be done with variations in tokenization strategies, and it may be 
especially interesting to incorporate phrase or bigram information into the similarity 
computation. 

The methods for computing lexical score also have the potential to be improved. 
Some possibilities are weighting terms according to their prior probabilities, weight- 
ing terms according to the distance from the location under scrutiny according to a 
Gaussian distribution, or treating the plot as a probabilistic time series and detecting 
the boundaries based on the likelihood of a transition from nontopic to topic. Another 
alternative is to devise a good normalization strategy that would allow for meaningful 
comparisons of "real" paragraphs, rather than regular-sized windows of text. 

The question arises as to how to extend the algorithm to capture hierarchical struc- 
ture. One solution is to use the coarse subtopic structure to guide the more fine-grained 
methods. Another is to make several passes through the text, using the results of one 
round as the input, in terms of which blocks of text are compared, in the next round. 

Finally, it may prove fruitful to use localized discourse cue information or other 
specialized processing around potential boundary locations to help better determine 
exactly where segmentation should take place. The use of discourse cues for detection 
of segment boundaries and other discourse purposes has been extensively researched, 
although predominantly on spoken text (see Hirschberg and Litman [1993] for a sum- 
mary of six research groups' treatments of 64 cue words). It is possible that incorpo- 
ration of such information may improve the cases where the algorithm is off by one 
paragraph. 
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