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A fundamental debate in the machine learning of language has been the role of prior knowledge 
in the learning process. Purely nativist approaches, such as the Principles and Parameters model, 
build parameterized linguistic generalizations directly into the learning system. Purely empirical 
approaches use a general, domain-independent learning rule (Error Back-Propagation, Instance- 
based Generalization, Minimum Description Length) to learn linguistic generalizations directly 
from the data. 

In this paper we suggest that an alternative to the purely nativist or purely empiricist 
learning paradigms is to represent the prior knowledge of language as a set of abstract learning 
biases, which guide an empirical inductive learning algorithm. We test our idea by examining the 
machine learning of simple Sound Pattern of English ( S P E )-style phonological rules. We represent 
phonological rules as finite-state transducers that accept underlying forms as input and generate 
surface forms as output. We show that OSTIA, a general-purpose transducer induction algorithm, 
was incapable of learning simple phonological rules like flapping. We then augmented OSTIA 
with three kinds of learning biases that are specific to natural language phonology, and that are 
assumed explicitly or implicitly by every theory of phonology: faithfulness (underlying segments 
tend to be realized similarly on the surface), c o m m u n i t y  (similar segments behave similarly), 
and con tex t  (phonological rules need access to variables in their context). These biases are so 
fundamental to generative phonology that they are left implicit in many theories. But explicitly 
modifying the OSTIA algorithm with these biases allowed it to learn more compact, accurate, and 
general transducers, and our implementation successfully learns a number of rules from English 
and German. Furthermore, we show that some of the remaining errors in our augmented model are 
due to implicit biases in the traditional SPE-style rewrite system that are not similarly represented 
in the transducer formalism, suggesting that while transducers may be formally equivalent to 
SPE-style rules, they may not have identical evaluation procedures. 

Because our biases were applied to the learning of very simple SPE-style rules, and to a 
non-psychologically-motivated and nonprobabilistic theory of purely deterministic transducers, 
we do not expect that our model as implemented has any practical use as a phonological learning 
device, nor is it intended as a cognitive model of human learning. Indeed, because of the noise 
and nondeterminism inherent to linguistic data, we feel strongly that stochastic algorithms for 
language induction are much more likely to be a fruitful research direction. Our model is rather 
intended to suggest the kind of biases that may be added to other empiricist induction models, 
and the way in which they may be added, in order to build a cognitively and computationally 
plausible learning model for phonological rules. 
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1. Introduction 

A fundamental debate in the machine learning of language has been the role of prior 
knowledge in the learning process. Nativist models suggest that learning in a com- 
plex domain like natural language requires that the learning mechanism either have 
some previous knowledge about language, or some learning bias that helps direct the 
formation of correct generalizations. In linguistics, theories of such prior knowledge 
are referred to as Universal Grammar (UG); nativist linguistic models of learning as- 
sume, implicitly or explicitly, that some kind of prior knowledge that contributes to 
language learning is innate, a product of evolution. Despite sharing this assumption, 
nativist researchers disagree strongly about the exact constitution of this Universal 
Grammar. Many models, for example, assume that much of the prior knowledge that 
children bring to bear in learning language is not linguistic at all, but derives from 
constraints imposed by our general cognitive architecture. Others, such the influen- 
tial Principles and Parameters model (Chomsky 1981), assert that what is innate is 
linguistic knowledge itself, and that the learning process consists mainly of search- 
ing for the values of a relatively small number of parameters. Such nativist models 
of phonological learning include, for example, Dresher and Kaye's (1990) model of 
the acquisition of stress-assignment rules, and Tesar and Smolensky's (1993) model of 
learning in Optimality Theory. 

Other scholars have argued that a purely nativist, parameterized learning algo- 
rithm is incapable of dealing with the noise, irregularity, and great variation of human 
language data, and that a more empiricist learning paradigm is possible. Such data- 
driven models include the stress acquisition models of Daelemans, Gillis, and Durieux 
(1994) (an application of Instance-based Learning [Aha, Kibler, and Albert 1991]) and 
Gupta and Touretzky (1994) (an application of Error Back-Propagation), as well as Elli- 
son's (1992) Minimum-Description-Length-based model of the acquisition of the basic 
concepts of syllabicity and the sonority hierarchy. In each of these cases a general, 
domain-independent learning rule (BP, IBL, MDL) is used to learn directly from the 
data. 

In this paper we suggest that an alternative to the purely nativist or purely em- 
piricist learning paradigms is to represent the prior knowledge of language as a set of 
abstract learning biases, which guide an empirical inductive learning algorithm. Such 
biases are implicit, for example, in the work of Riley (1991) and Withgott and Chen 
(1993), who induced decision trees to predict the realization of a phone in its context. 
By initializing the decision-tree inducer with a set of phonological features, they es- 
sentially gave it a priori knowledge about the kind of phonological generalizations 
that the system might be expected to learn. 

Our idea is that abstract biases from the domain of phonology, whether innate (i.e., 
part of UG) or merely learned prior to the learning of rules, can be used to guide a 
domain-independent empirical induction algorithm. We test this idea by examining the 
machine learning of simple Sound Pattern of English (SPE)-style phonological rules 
(Chomsky and Halle 1968), beginning by representing phonological rules as finite- 
state transducers that accept underlying forms as input and generate surface forms 
as output. Johnson (1972) first observed that traditional phonological rewrite rules 
can be expressed as regular (finite-state) relations if one accepts the constraint that no 
rule may reapply directly to its own output. This means that finite-state transducers 
(FSTs) can be used to represent phonological rules, greatly simplifying the problem of 
parsing the output of phonological rules in order to obtain the underlying, lexical forms 
(Koskenniemi 1983; Karttunen 1993; Pulman and Hepple 1993; Bird 1995; Bird and 
Ellison 1994). The fact that the weaker generative capacity of FSTs makes them easier to 
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learn than arbitrary context-sensitive rules has allowed the development of a number 
of learning algorithms including those for deterministic finite-state automata (FSAs) 
(Freund et al. 1993), deterministic transducers (Oncina, Garcia, and Vidal 1993), as 
well as nondeterministic (stochastic) FSAs (Stolcke and Omohundro 1993; Stolcke and 
Omohundro 1994; Ron, Singer, and Tishby 1994). Like the empiricist models discussed 
above, these algorithms are all general-purpose; none include any domain knowledge 
about phonology, or indeed natural language; at most they include a bias toward 
simpler models (like the MDL-inspired algorithms of Ellison [1992]). 

Our experiments were based on the OSTIA (Oncina, Garcia, and Vidal 1993) al- 
gorithm, which learns general subsequential finite-state transducers (SFSTs; formally 
defined in Section 2). We presented pairs of underlying and surface forms to OSTIA, 
and examined the resulting transducers. Although OSTIA is capable of learning ar- 
bitrary SFSTs in the limit, large dictionaries of actual English pronunciations did not 
give enough samples to correctly induce phonological rules. 

We then augmented OSTIA with three kinds of learning biases, which are specific 
to natural language phonology, and are assumed explicitly or implicitly by every the- 
ory of phonology: faithfulness (underlying segments tend to be realized similarly on 
the surface), community (similar segments behave similarly), and context (phonolog- 
ical rules need access to variables in their context). These biases are so fundamental 
to generative phonology that they are left implicit in many theories. But explicitly 
modifying the OSTIA algorithm with these biases allowed it to learn more compact, 
accurate, and general transducers, and our implementation successfully learns a num- 
ber of rules from English and German. The algorithm is also successful in learning the 
composition of multiple rules applied in series. The more difficult problem of decom- 
posing the learned underlying/surface correspondences into simple, individual rules 
remains unsolved. 

Our transducer induction algorithm is not intended as a cognitive model of hu- 
man phonological learning. First, for reasons of simplicity, we base our model on 
simple segmental SPE-style rules; it is not clear what the formal correspondence is 
of these rules to the more recent theoretical machinery of phonology (e.g., optimality 
constraints). Second, we assume that a cognitive model of automaton induction would 
be more stochastic and hence more robust than the OSTIA algorithm underlying our 
work. 1 

Rather, our model is intended to suggest the kind of biases that may be added to 
empiricist induction models to build a learning model for phonological rules that is 
cognitively and computationally plausible. Furthermore, our model is not necessarily 
nativist; these biases may be innate, but they may also be the product of some other 
earlier learning algorithm, as the results of Ellison (1992) and Brown et al. (1992) 
suggest (see Section 5.2). So our results suggest that assuming in the system some 
very general and fundamental properties of phonological knowledge (whether innate 
or previously learned) and learning others empirically may provide a basis for future 
learning models. 

Ellison (1994), for example, has shown how to map the optimality constraints 
of Prince and Smolensky (1993) to finite-state automata; given this result, models of 

1 Although our assumption of the simultaneous presentation of surface and underlying forms to the 
learner may seem at first glance to be unnatural as well, it is quite compatible with certain theories of 
word-based morphology. For example, in the word-based morphology of Aronoff (1976), 
word-formation rules apply only to already existing words. Thus the underlying form for any 
morphological rule must  be a word of the language. Even if this word-based morphology assumption 
holds only for a subset of the language (see e.g., Orgun [1995]) it is not unreasonable to assume that a 
part of the learning process will involve previously-identified underlying/surface pairs. 
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automaton induction enriched in the way we suggest may contribute to the current 
debate on optimality learning. This may obviate the need to build in every phono- 
logical constraint, as for example nativist models of OT learning suggest (Prince and 
Smolensky 1993; Tesar and Smolensky 1993; Tesar 1995). We hope in this way to begin 
to help assess the role of computational phonology in answering the general question 
of the necessity and nature of linguistic innateness in learning. 

The next sections (2 and 3) introduce the idea of representing phonological rules 
with transducers, and describe the OSTIA algorithm for inducing such transducers. 
Section 4 shows that the unaugmented OSTIA algorithm is unable to induce the correct 
transducer for the simple flapping rule of American English. Section 5 then describes 
each of the augmentations to OSTIA, based on the faithfulness, community, and context 
principles. We conclude with some observations about computational complexity and 
the inherent bias of the context-sensitive rewrite-rule formalism. 

2. Transducer Representation 

Rule-based variation in phonology has traditionally been represented with context- 
sensitive rewrite rules. For example, in American English an underlying t is realized 
as a flap (a tap of the tongue on the alveolar ridge) after a stressed vowel and zero or 
more r's, and before an unstressed vowel. In the rewrite-rule formalism of Chomsky 
and Halle (1968), this rule would be represented as in (1). 

(1) t --~ dx / Q r* __ V 

Since Johnson's (1972) work, researchers have proposed a number of different 
ways to represent such phonological rules by transducers. The most popular method 
is the two-level formalism of Koskenniemi (1983), based on Johnson (1972) and the 
(belatedly published) work of Kaplan and Kay (1994), and various implementations 
and extensions (summarized and contrasted in Karttunen [1993]). The basic intuition 
of two-level phonology is that a rule that rewrites an underlying string as a surface 
string can be implemented as a transducer that reads from an underlying tape and 
writes to a surface tape. Figure 1 shows an example of a transducer that implements 
the flapping rule in (1). Each arc has an input symbol and an output symbol, separated 
by a colon. A single symbol (such as t or V) is a shorthand for a symbol that is the same 
in the input and output (i.e., t : t  or V:V). Either the input or the output symbols can 
be null; a null input symbol is used for an insertion of a phone; a null output symbol 
for a deletion. A transduction of an input string to an output string corresponds to a 
path through the transducer, where the input string is formed by concatenating the 
input symbols of the arcs taken, and the output string by concatenating the output 
symbols of the arcs. The transducer's input string is the phonologically underlying 
form, while the transducer's output is the surface form. A transduction is valid if there 
is a corresponding path beginning in state 0 and ending in an accepting state (indicated 
by double circles in the figure). Table 1 shows our phone set--an ASCII symbol set 
based on the ARPA-sponsored ARPAbet alphabet--with the IPA equivalents. 

More recently, Bird and Ellison (1994) show that a one-level finite-state automa- 
ton can model richer phonological structure, such as the multitier representations of 
autosegmental phonology. In their model, each tier is represented by a finite-state au- 
tomaton, and autosegmental association by the synchronization of two automata. This 
synchronized-automata-based rather than transducer-based model generalizes over 
the two-level models of Koskenniemi (1983) and Karttunen (1993) but also the three- 
level models of Lakoff (1993), Goldsmith (1993), and Touretzky and Wheeler (1990). 
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C 

VIV / ~  t:dx 

©" "(9 

Ex: batter 
Under ying 

I bJaell t [erJ 
Surface: 

[ blael dxler I 

Figure 1 
Nondeterministic transducer for English flapping. Labels on arcs are of the form (input 
symbol):(output symbol). Labels with no colon indicate identical input and output symbols. 
"V" indicates any unstressed vowel, "V" any stressed vowel, "dx" a flap, and "C" any 
consonant other than "t ' ,  "r" or "dx'.  

In order  to take advantage of recent work  in t ransducer  induction, we have chosen 
to use the transducer rather than synchronized-automata  approach,  representing rules 
as subsequential  finite-state transducers (Berstel [1979]; subsequential  t ransducers will 
be defined below). Since the focus of our  research is on adding prior knowledge to 
help guide an induction algorithm, rather than the particular au tomaton  approach 
chosen, we expect our  results to inform future work  on the induction of other types 
of automata.  

Subsequential finite-state transducers are a subtype of finite-state transducers with 
the following properties: 

. 

. 

. 

. 

The transducer is deterministic, that is, there is only one arc leaving a 
given state for each input  symbol. 

Each time a transition is made,  exactly one symbol of the input  string is 
consumed.  

A unique end-of-string symbol is introduced. At the end of each input  
string, the t ransducer  makes an additional transition on the end-of-string 
symbol. 

All states are accepting. 

The length of the output  string associated with a transition of a subsequential  
t ransducer is unconstrained. For our  purposes,  the key proper ty  is the first, because 
determinism is essential to the state-merging of the OSTIA algorithm. Subsequential  
transducers are essentially the most  general type of deterministic transducers.  The 
second proper ty  is merely a convention; any transducer with multiple input  symbols 
on an arc can easily be t ransformed into one with single arcs with one symbol each. 
The introduction of an end-of-string symbol serves to expand the range of functions 
that can be represented.  Finally, in a deterministic transducer, there is no need to 
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Table 1 
A slightly expanded ARPAbet phoneset 
(including alveolar flap, syllabic nasals and 
liquids, and reduced vowels), and the 
corresponding IPA symbols. Vowels may be 
annotated with the numbers 1 and 2 to 
indicate primary and secondary stress, 
respectively. 

IPA ARPAbet IPA ARPAbet 

b b p p 
d d t t 
g g k k 
(1 aa s s 
~e ae z z 
A ah f sh 
3 ao 3 zh 
C eh f f 
3" er v v 
I, ih 0 th 
i iy  6 dh 
o ow t f  ch 
a) uh 3 jh 
u uw h hh 

ffw aw 
(ff ay y y 
e ey r r 
3 y oy w w 
1 el 1 1 

1211 em m m 
en n n 
ax I 3 ng 
ix r dx 

axr 

distinguish between accepting and non-accepting states, as there can be no ambigui ty  
about which path is taken through the states. 

A subsequent ia l  relation is any relation between strings that can represented by 
the input to output  relation of a subsequential finite-state transducer. While subse- 
quential relations are formally a subset of regular relations, any relation over a finite 
input language is subsequential if each input  has only one possible output.  

A sample phonological  rule, the flapping rule for English shown in (1), is re- 
peated in (2a). (2b) shows a positive application of the rule; (2c) shows a case where 
the conditions for the rule are not met. The rule realizes an under ly ing t as a flap 
after a stressed vowel  and zero or more r 's ,  and before an unstressed vowel. The 
subsequential t ransducer for (2a) is shown in Figure 2. 

(2) a.t--*dx/gr*_V 

b. latter:l ael t er--* i ael dx er 

c. laughter: i ael f t er--* I ael I t er 

The most  significant difference between our  subsequential transducers and two- 
level models  is that the two-level transducers described by Kart tunen (1993) are non- 
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tc / S t a r t  state ~ _  Ex: batter 

r V b lae l l t  ler I 

c ~ T c \ ,A :,e Seen stressed 
V • dxV Vrl;;v NV¢" vowe, 
# :t k , , ~ ] .  

\ Flapping about 
to occur 

Figure 2 
Subsequential transducer for English flapping; "#" is the end-of-string symbol. 

deterministic. In addition, Kart tunen's  transducers m ay  have only zero or one symbol 
as either the input  or output  of an arc, and they have no special end-of-string symbol. 
Finally, his transducers explicitly include both  accepting and non-accepting states. All 
states of a subsequential  t ransducer are valid final states. It is possible for a transduc- 
tion to fail by finding no next  transition to make, but  this occurs only on bad input,  
for which no output  string is possible. 

These representational differences between the two formalisms lead to different 
ways of handling certain classes of phonological  rules, particularly those that depend  
on the context to the right of the affected symbol. The subsequential  t ransducer  does 
not emit any output  until enough of the r ight-hand context has been seen to determine 
how the input  symbol is to be realized. Figure 2 shows the subsequential  equivalent  
of Figure 1. This t ransducer emits no output  upon  seeing a t when  the machine is at 
state 1. Rather, the machine goes to state 2 and waits to see if the next input  symbol 
is the requisite unstressed vowel; depending on this next  input  symbol, the machine 
will emit the t or a dx along with the next input  symbol when  it makes the transition 
from state 2 to state 0. 

In contrast, the nondeterminist ic two-level-style t ransducer shown in Figure 1 has 
two possible arcs leaving state 1 upon  seeing a t ,  one with t as ou tput  and one with 
dx. If the machine takes the wrong  transition, the subsequent  transitions will leave the 
transducer in a non-accepting state, or a state will be reached with no transition on 
the current  input  symbol. Either way, the transduction will fail. 

Generat ing a surface form from an under lying form is more efficient with a subse- 
quential t ransducer than with a nondeterminist ic transducer, as no search is necessary 
in a deterministic machine. Running the transducer backwards to parse a surface form 
into possible under ly ing  forms, however,  remains nondeterminist ic  in subsequential  
transducers. In addition, a subsequential  t ransducer may  require m an y  more states 
than a nondeterminist ic t ransducer  to represent the same rule. Our  reason for choos- 
ing subsequential  transducers,  then, is solely that efficient techniques exist for learning 
them, as we will see in the next  section. In particular, the algori thm we chose is able 
to learn from only positive evidence. Other  algorithms make use of negative evidence 
in the form of transductions marked  as invalid, or questions directed at an informant.  
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Input pairs: 

bat: batter: band: 
I blaeltlerl I blaclnld[ 

I blael~erl I blaelnl d l 

M J  b:OM2./ ae:O M T . Y ~  A M ' l # : b a e d x e r M L Y  

n : 0 ~ d .. 0 - ~ ) #  : b ae n ~l Q 

Figure 3 
Initial tree transducer for bat, batter, and band with flapping applied. 

This use of positive-only evidence is significant for both cognitive reasons (children 
have been shown to make little use of negative evidence) and practical ones (positive 
examples, but not negative examples, are easily derived automatically from corpora). 

3. The OSTIA Algorithm 

Our phonological-rule induction algorithm is based on augmenting the Onward Subse- 
quential Transducer Inference Algorithm (OSTIA) of Oncina, Garcfa, and Vidal (1993). 
This section outlines the OSTIA algorithm to provide background for the modifications 
that follow; see their original paper for further details. 

OSTIA takes as input a training set of valid input-output pairs for the transduction 
to be learned. The algorithm begins by constructing a tree transducer that covers all 
the training samples according to the following procedure: for each input pair, the 
algorithm walks from the initial state taking one transition on each input symbol, as 
if doing a transduction. When there is no move on the next input symbol from the 
present state, a new branch is grown on the tree. The entire output string of each 
transduction is initially stored as the output on the last arc of the transduction, that 
is, the arc corresponding to the end-of-string symbol. An example of an initial tree 
transducer constructed by this process is shown in Figure 3. 

As the next step, the output symbols are "pushed forward" as far as possible 
towards the root of the tree. This process begins at the leaves of the tree and works 
its way to the root. At each step, the longest common prefix of the outputs on all the 
arcs leaving one state is removed from the output strings of all the arcs leaving the 
state and suffixed to the (single) arc entering the state. This process continues until 
the longest common prefix of the outputs of all arcs leaving each state is the null 
string--the definition of an onward transducer. The result of making the transducer 
of Figure 3 onward is shown in Figure 4. 

At this point, the transducer covers all and only the strings of the training set. 
OSTIA now attempts to generalize the transducer, by merging some of its states to- 
gether. For each pair of states (s, t) in the transducer, the algorithm will attempt to 
merge s with t, building a new state with all of the incoming and outgoing transitions 
of s and t. The result of the first merging operation on the transducer of Figure 4 is 
shown in Figure 5. 

A conflict arises whenever two states are merged that have outgoing arcs with the 
same input symbol. When this occurs, an attempt is made to merge the destination 
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- 

n : n d  ~ . 7 ) ~  

Figure 4 
Onward tree transducer for bat, batter, and band with flapping applied. 

Figure 5 
Result of merging states 0 and 1 of Figure 4. 

a e ~  n" d =Q 
® ae" aeKLd . 

rn : rn P ' ~ , d  

Figure 6 
Example push-back operation and state merger. Input words and and amp. 

states of the two conflicting arcs. First, all output symbols beyond the longest common 
prefix of the outputs of the two arcs are "pushed back" to arcs further down the tree. 
This operation is only allowed under certain conditions that guarantee that the trans- 
ductions accepted by the machine are preserved. The push-back operation allows the 
two arcs to be combined into one and their destination states to be merged. An exam- 
ple of a push-back operation and subsequent merger on a transducer for the words 
and and amp is shown in Figure 6. This method of resolving conflicts repeats until no 
conflicts remain, or until resolution is impossible. In the latter case, the transducer is 
restored to its configuration before the merger causing the original conflict, and the 
algorithm proceeds by attempting to merge the next pair of states. 

505 



Computational Linguistics Volume 22, Number 4 

Table 2 
Unmodified OSTIA learning 
flapping on 49,280-word test 
set. Error rates are the 
percentage of incorrect 
transductions. 

Samples States %Error 

6,250 19 2.32 
12,500 257 16.40 
25,000 141 4.46 
50,000 192 3.14 

4. Problems Using OSTIA to Learn Phonological Rules 

The OSTIA algorithm can be proven to learn any subsequential relation in the limit. 
That is, given an infinite sequence of valid input /output  pairs, it will at some point 
derive the target transducer from the samples seen so far. When trying to learn phono- 
logical rules from finite linguistic data, however, we found that the algorithm was 
unable to learn a correct, minimal transducer. 

We tested the algorithm using a synthetic corpus of 99,279 input /output  pairs. 
Each pair consisted of an underlying pronunciation of an individual word of English 
and a machine generated "surface pronunciation." The underlying string of each pair 
was taken from the phoneme-based CMU pronunciation dictionary (CMU 1993). The 
surface string was generated from each underlying form by mechanically applying 
the one or more rules we were attempting to induce in each experiment. 

In our first experiment, we applied the flapping rule (repeated again in (3)) to 
training corpora of between 6,250 and 50,000 words. Figure 7 shows the transducer 
induced from 25,000 training samples, and Table 2 shows some performance results. 
For obvious reasons we have left off the labels on the arcs in Figure 7. The only differ- 
ence between underlying and surface forms in both the training and test sets in this 
experiment is the substitution of dx for a t in words where flapping applies. Therefore, 
inaccuracies in predicting output strings represent real errors in the transducer, rather 
than manifestations of other phonological phenomena. 

(3) t--* dx / ~ ' r * _ _ V  

Figure 7 and Table 2 show OSTIA's failure to learn the simple flapping rule. Recall 
that the optimal transducer, shown in Figure 2, has only 3 states, and would have 
no error on the test set of synthetic data. OSTIA's induced transducer not only is 
much more complex (between 19 and 257 states) but has a high percentage of error. 
In addition, giving the model more training data does not seem to help it induce a 
smaller or better model; the best transducer was the one with the smallest number of 
training samples. 

Since OSTIA can learn any subsequential relation in the limit, why these difficul- 
ties with the phonological-rule induction task? The key provision here, of course, is 
"the limit"; we are clearly not giving OSTIA sufficient training data. There are two 
reasons this data may not be present in any reasonable training set. First, the neces- 
sary number of sample transductions may be several times the size of any natural 
language's vocabulary. Thus even the entire vocabulary of a language may be insuffi- 
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Figure 7 
First attempt of OSTIA to learn flapping. Transducer induced on 25,000 samples. 

b:bae 
ae : 0  
n:nd 
d ' O ~  
#'0 = t:O=t 1 ~ 

er : dx erM.J 
# : t  

Inputs: 
bat 
batter 
band 

Figure 8 
Final result of merging process on transducer from Figure 4. 

cient in size to learn an efficient or correct transducer. Second, even if the vocabulary 
were larger, the necessary sample may  require types of strings that are not  found 
in the language for phonotactic or other reasons. Systematic phonological  constraints 
such as syllable structure may  make it impossible to obtain the set of examples that 
would  be necessary for OSTIA to learn the target rule. For example,  given one training 
set of examples of English flapping, the algori thm induced a t ransducer that realizes 
an under lying t as dx either in the envi ronment  "Qr*_V or after a sequence of six 
consonants. This is possible since such a t ransducer will accurately cover the training 
set, as no English words  contain six consonants followed by a t .  The lack of natural  
language bias causes the t ransducer  to miss correct generalizations and learn incorrect 
transductions. 
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One example of an unnatural induction is shown in Figure 8, the final transducer 
induced by OSTIA on the three-word training set of Figure 4. OSTIA has a tendency 
to produce overly "clumped" transducers, as illustrated by the arcs with output b ae 
and n d in Figure 8, or even Figure 4. The transducer of Figure 8 will insert an ae 
after any b, and delete any ae from the input. OSTIA's default behavior is to emit the 
remainder of the output string for a transduction as soon as enough input symbols 
have been seen to uniquely identify the input string in the training set. This results 
in machines that may, seemingly at random, insert or delete sequences of four or 
five segments. This causes the machines to generalize in linguistically implausible 
ways, i.e., producing output strings incorrectly bearing little relation to their input. In 
addition, the incorrect distribution of output symbols prevents the optimal merging of 
states during the learning process, resulting in large and inaccurate transducers. The 
higher number of states reduces the number of training examples that pass through 
each state, making incorrect state mergers possible and introducing errors on test data. 

A second problem is OSTIA's lack of generalization. The vocabulary of a lan- 
guage is full of accidental phonological gaps. Without an ability to use knowledge 
about phonological features to generalize across phones, OSTIA's transducers have 
missing transitions for certain phones from certain states. For example, the transducer 
of Figure 8 will fail completely upon seeing any symbol other than er or end-of-string 
after a t.  Of course this transducer is only trained on three samples, but the same 
problem occurs with transducers trained on large corpora. 

As a final example, if the OSTIA algorithm is trained on cases of flapping in which 
the preceding environment is every stressed vowel but one, the algorithm has no way 
of knowing that it can generalize the environment to all stressed vowels. Again, the 
algorithm needs knowledge about classes of segments to fill in these accidental gaps 
in training data coverage. 

5. Augmenting the Learner with Phonological Knowledge 

In order to give OSTIA the prior knowledge about phonology to deal with the prob- 
lems in Section 4, we augmented it with three biases, each of which is assumed explic- 
itly or implicitly by most if not all theories of phonology. These biases are intended to 
express universal constraints about the domain of natural language phonology. 

Faithfulness: Underlying segments tend to be realized similarly on the surface. 

Community: Phonologically similar segments behave similarly. 

Context: Phonological rules need access to variables in their context. 

As discussed above, our algorithm is not intended as a direct model of human 
learning of phonology. Rather, since only by adding these biases was a general-purpose 
algorithm able to learn phonological rules, and since most theories of phonology as- 
sume these biases as part of their model, we suggest that these biases may be part of 
the prior knowledge or state of the learner. 

5.1 Faithfulness 
As we saw above, the unaugmented OSTIA algorithm often outputs long clumps of 
segments when seeing a single input phone. Although each particular clump may be 
correct for the exact input example that contained it, it is rarely the case in general 
that a certain segment is invariably followed by a string of six other specific segments. 
Thus the model will tend to produce errors when it sees this input phone in a similar 
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Figure  9 
Alignment of importance with flapping, r-deletion and t-insertion. 

left context. This behavior is caused by a paucity of training data, but even with a 
reasonably large training set, we found it was often the case that some particular 
strings of segments happened to only occur once. 

In order to resolve this problem, and the related cases of arbitrary phone-deletion 
we saw above, we need to appeal to the fact that theories of generative phonology 
have always assumed that, all things being equal, surface forms tend to resemble un- 
derlying forms. This assumption was implicit, for example, in Chomsky and Halle's 
(1968) MDL-based evaluation procedure for phonological rule systems. They ranked 
the "value" of a grammar by the inverse of the number of symbols in the system. Ac- 
cording to this metric, clearly, a grammar that does not contain "trivial" rules mapping 
an underlying phonology unit to an identical unit on the surface is preferable to an 
otherwise identical grammar that has such rules. Later work in Autosegmental Phonol- 
ogy and Feature Geometry extended this assumption by restricting the domain of in- 
dividual phonological rules to changes in an individual node in a feature-geometric 
representation. 

Recent two-level theories of Optimality Theory (e.g., McCarthy and Prince 1995) 
make the assumption of faithfulness (which is similar to Chomsky and Halle's) more 
explicit. These theories propose a constraint called FAITHFULNESS, which requires that 
the phonological output string match its input. Such a constraint is ranked below all 
other constraints in the optimality constraint ranking (since otherwise no surface form 
could be distinct from its underlying form), and is used to rule out the infinite set 
of candidates produced by GEN that bear no relation to the underlying form. Com- 
putational models of morphology have made use of a similar faithfulness bias. Ling 
(1994), for example, applied a faithfulness heuristic (called passthrough) as a default 
in a ID3-based decision-tree induction system for learning the past tense of English 
verbs. Orgun (1996) extends the two-level optimality-theoretic concept of faithfulness 
to require a kind of monotonicity from the underlying to the surface form: his MATCH 
constraint requires that every element of an output string contain all the information 
in the corresponding element of an input string. 

Our model of faithfulness preserves the insight that, barring a specific phonolog- 
ical constraint to the contrary, an underlying element will be identical to its surface 
correspondent. But like Orgun's version, our model extends this bias to suggest that, 
all things being equal, a changed surface form will also be close to its underlying 
form in phonological feature space. In order to implement such a faithfulness bias in 
OSTIA, our algorithm guesses the most probable segment-to-segment alignment be- 
tween the input and output strings, and uses this information to distribute the output 
symbols among the arcs of the initial tree transducer. This is demonstrated for the 
word importance in Figures 9 and 10. 

This new distribution of output symbols along the arcs of the initial tree transducer 
no longer guarantees the onwardness of the transducer. (Although in fact, the final 
transducers induced by our new method do tend to be onward.) Onwardness happens 
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Figure 10 
Resulting initial transducer for importance. 

Table 3 
Phonological features used in alignment. 

vocalic consonant sonorant rhotic 
advanced front high low 
back rounded tense voiced 
w-offglide y-offglide coronal anterior 
distributed nasal lateral continuant 
strident syllabic silent flap 
stress primary-stress 

to be an invariant of the unmodif ied  OSTIA algorithm, but  it is not  essential to the 
working of the algorithm. 2 

Our  modification proceeds in two stages: first, a dynamic  p rogramming  method  is 
used to compute  a correspondence be tween input  and output  segments, and second, 
the al ignment is used to distribute ou tput  symbols on the inital tree transducer. 

The al ignment is calculated using the algori thm of Wagner and Fischer (1974), 
which calculates the insertions, deletions, and substitutions that make up  the m in im u m  
edit distance between the under ly ing  and surface strings. The costs of edit  operat ions 
are based on phonological  features; we used the 26 binary art iculatory features in 
Table 3. 

This feature set was chosen merely because it was commonly  used in other speech 
recognition experiments  in our  laboratory; none of our  experiments  or results de- 
pended  in any way  on this particular choice of features, or on their binary rather 
than privative or mul t ivalued nature. For example,  the decision-tree pruning  algo- 
r i thm discussed in Section 5.2.2, which successfully generalized about  the importance 
of stressed vowels  to the flapping rule, would  have funct ioned identically with any 
feature set capable of distinguishing stressed from unstressed vowels. 

The cost function for substitutions was equal to the number  of features changed 
between the two segments. The cost of insertions and deletions was arbitrarily set at 6 
(roughly one quarter  the max imum possible substitution cost). From the sequence of 
edit operations, an al ignment be tween input  and ou tpu t  segments is calculated. Due 
to the shallow nature of the rules in question, the exact parameters  used to calculate 
al ignment are not  very  significant. 

When building the initial tree transducer, the al ignment is used to ensure that no 
output  symbol appears  on an arc further up  the tree than the corresponding input  
symbol. To resolve conflicts be tween the ou tpu t  symbols for a given arc, symbols m ay  

2 No matter what alignment is used, we are guaranteed that at least the correspondence learned will be 
some generalization that preserves the behavior of the training set. For the theoretical property of 
language identification in the limit, we must be guaranteed that the alignments used are correct: that 
is, the alignment must not show an output symbol to correspond to an input symbol that comes after 
the input symbol that, in the target transducer, generates the output symbol. This is because, while 
output symbols can be pushed back, the state-merging process cannot push the symbols forward if the 
alignment has caused them to be placed too far down the tree. For the shallow rules examined in this 
paper, finding the correct alignment is trivial. 
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® #. O'~Q 

#'0 ~ @  

Figure 11 
Initial tree transducer constructed with alignment information. Note that output symbols have 
been pushed back across state 3 during the construction. 

V + { oy2, aw2, uh2 } 

trC Q C, V-{uh2,  uhl, ayl, 0 
( ~  erl, er2, oyl } ~ 

~ V - { oy2, aw2, uh2 ~ 

V:dxV \ __ / 
r : t r  \ f -  ~ "  
# : t  ~ )  

Figure 12 
Flapping transducer induced with alignment, trained on 25,000 samples. 

be pushed back down the tree as is done when merging states. The exact process used 
to build the initial tree transducer is described below. 

When adding a new arc to the tree, all the unused output segments up to and 
including those that map to the arc's input segment become the new arc's output, 
and are now marked as having been used. When walking down branches of the tree 
to add a new input /output  sample, we calculate the longest common prefix, n, of 
the sample's unused output and the output of each arc along the path. The next n 
symbols of the transduction's output are now marked as having been used. If the 
length, 1, of the arc's output string is greater than n, it is necessary to push back the 
last I - n symbols onto arcs further down the tree. A tree transducer constructed by this 
process is shown in Figure 11, for comparison with the unaligned version in Figure 4. 

The final transducer produced with the alignment algorithm is shown in Figure 12. 
Purely to make the diagram easier to read we have used C and V to represent the set 
of consonants and of vowels on the arcs' labels. It is important to note that the learning 
algorithm did not have any knowledge of the concepts of vowel and consonant, other 
than through the features used to calculate alignment. 

The size and accuracy of the transducers produced by the alignment algorithm 
are summarized in Table 4. Note that the use of alignment information in creating 
the initial tree transducer dramatically decreases the number of states in the learned 

511 



Computational Linguistics Volume 22, Number 4 

Table 4 
Results using alignment information on English flapping. 

OSTIA without Alignment 

Samples States % Error 

OSTIA with Alignment 

States % Error 

6,250 19 2.32 3 0.34 
12,500 257 16.40 3 0.14 
25,000 141 4.46 3 0.06 
50,000 192 3.14 3 0.01 

Table 5 
Results on r-deletion using 
alignment information. 

r-deletion 

Samples States % Error 

6,250 4 0.48 
12,500 3 0.21 
25,000 6 0.18 
50,000 35 0.30 

transducer as well as the error performance on test data. The improved  algori thm 
induced a flapping t ransducer  with the min imum number  of states (3) with as few as 
6,250 samples. 

The use of al ignment information also reduced the learning time; the additional 
cost of calculating alignments is more  than compensated  for by  quicker merging of 
states. There was still a small amount  of error in the final transducer,  and in the next  
section we show how this remaining error was reduced still further. 

The algori thm also successfully induced transducers with the min imum number  
of states for the t - insert ion and t -dele t ion rules in (5) and (6), given only 6,250 sam- 
ples. For the r-delet ion rule in (4), the algori thm induced a machine that was not  
the theoretical minimal machine (3 states), as Table 5 shows. We discuss these results 
below. 

(4) r --* O/ [+vocalic] _ [+consonantal] 
(5) O ~ t / L s  

(6) t--*O/n--[ +v°calic ]-stress 

In our  second experiment,  we applied our  learning algori thm to a more  difficult 
problem: inducing multiple rules at once. One of the impor tant  propert ies  of finite-state 
phonology  is that t ransducers for two rules can be automatically combined to produce  
a t ransducer  for the two rules run  in series. With our  deterministic transducers,  the 
transducers are joined via composi t ion.  Any order ing relationships are preserved in 
this composed t ransducer - - the  order  of the rules corresponds to the order  in which 
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Table 6 
Results on three rules composed. 

OSTIA with Alignment 

Samples States % Error 

6,250 6 0.93 
12,500 5 0.20 
25,000 5 0.09 
50,000 5 0.04 

the transducers were composed.  3 
Our goal was to learn such a composed transducer directly from the original 

under lying and ultimate surface forms. The simple rules we used in our  exper iment  
contain no feeding (the output  of one rule creating the necessary envi ronment  for 
another  rule) or bleeding (a rule deleting the necessary environment ,  causing another  
rule not to apply) relationships among rules. Thus the order  of their application is not  
significant. Howeve r  the learning problem remains unchanged if the rules are required 
to apply  in some particular order. 

Setting r-delet ion aside for the present, a data set was constructed by  applying 
the t- insert ion rule in (5), the t -dele t ion rule in (6), and the flapping rule already 
seen in (3) one after another. The min imum number  of states for a subsequential  
t ransducer per forming the composit ion of the three rules is five. As is seen in Table 6, 
our  algori thm successfully induces a t ransducer of min imum size given 12,500 or more  
sample transductions. 

5.2 Communi ty  
5.2.1 Decision-Tree Induct ion.  A second class of problems with our  baseline OSTIA 
resulted from a lack of generalization across segments. Any training set of words  
from a language is likely to be full of accidental phonological  gaps. Without an ability 
to use knowledge about  phonological  features to generalize across phones,  OSTIA's 
transducers have missing transitions for certain phones  from certain states. This causes 
errors when  transducing previously unseen words  after training is complete. Consider  
the t ransducer  in Figure 12, reproduced  below as Figure 13. 

One class of errors in this t ransducer is caused by  the input  "falling off" the model.  
That is, a t ransduction may  fail because the model  has no transition specified from a 
given state for some phone.  This is the case with (7), where there is no transition from 
state 1 on phone  uh2. 

(7) showroom: sh owl r uh2 m--* sh owl r 

A second class of errors is caused by  an incorrect transition; with (8), for example,  
the t ransducer  incorrectly fails to flap after oy2 because, upon  seeing oy2 in state 0, 
the machine stays in state 0, rather than making the transition to state 1. 

3 When using nondeterministic transducers, for example, those of Karttunen described in Section 2, 
multiple rules are represented by intersecting, rather than composing, transducers. In such a system, 
for two rules to apply correctly, the output must lie in the intersection of the outputs accepted by the 
transducers for each rule on the input in question. We have not attempted to create an OSTIA-like 
induction algorithm for nondeterministic transducers. 
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V + { oy2, aw2, uh2 } 

r~ Q C, V - {  uh2, uhl, ayl, ~ 
(d~ ~"~  er 1, er2, o y l}  _ ~  

- { oy2, aw2, uh 

~ :: ttVcNNN /:$ 

\ . _ _ /  
r :tr x f  ~¢" 
# : t  ~ , )  

Figure 13 
Flapping transducer induced with alignment. For simplicity, some of the phones missing from 
the transitions from state 2 to 0 and from 1 to 0 have been omitted. For clarity of explication, 
set-subtraction notation is used to show which vowels do not cause transitions between states 
0 and 1. 

(8) exploiting: ehl k s p 1 oy2 t ih ng-~ ehl k s p 1 oy2 t ih ng 

Both of these problems are caused by insufficiently general labels on the transition 
arcs in Figure 13. Compare Figure 13 with the correct transducer in Figure 2. We have 
used set-subtraction notation in Figure 13 to highlight the differences. Notice that in 
the correct transducer, the arc from state 1 to state 0 is labeled with C and V, while in 
the incorrect transducer the transition is missing six of the vowels. These vowels were 
simply never seen at this position in the input. 

The intuition that OSTIA is missing, then, is the idea that phonological constraints 
are sensitive to phonological features that pick out certain equivalence classes of seg- 
ments. Since the beginning of generative grammar, and based on Jakobson's early 
insistence on the importance of binary oppositions (Jakobson 1968; Jakobson, Fant, 
and Halle 1952), phonological features, and not the segment, have generally formed 
the vocabulary over which linguistic rules are formed. Giving such knowledge to 
OSTIA would allow it to hypothesize that if every vowel it has seen has acted a 
certain way, that the rest of them might act similarly. 

This phonological feature knowledge may be innate or may merely be learned 
extremely early. There is a significant body of psychological results, for example, indi- 
cating that infants one to four months of age are already sensitive to the phonological 
oppositions which characterize phonemic contrasts; Eimas et al. (1971), for example, 
showed that infants were able to distinguish the syllables / b a /  and / p a / ,  but were 
unable to distinguish acoustic differences that were of a similar magnitude but that 
do not form phonemic contrast in any language. Similar studies have shown that this 
sensitivity appears to be cross-linguistic. But it is by no means necessary to assume 
that this knowledge is innate. Ellison (1992) showed that a purely empiricist induction 
algorithm, based on the information-theoretic metric of choosing a minimum-length 
representation, was able to induce the concepts "V" and "C" in a number of different 
languages. Promising results from another field of linguistic learning, syntactic part- 
of-speech induction, suggest that an empiricist approach may be feasible. Brown et al. 
(1992) used a purely data-driven greedy, incremental clustering algorithm to derive 
word-classes for n-gram grammars; their algorithm successfully induced classes like 
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V ( ~ t  ..- r ( , ~  
r ~ , . ~ C  V 

V c V  

C : tC " ~ J ' " ~  / t : ~ 
r :tr ~ 9. V 

Figure 14 
Flapping transducer induced from 50,000 samples. 

"days of the week," "male personal name," "body-part noun," and "auxiliary." Only 
future research will determine whether phonological constraints are innate, or merely 
learned extremely early, and whether empiricist algorithms like Ellison's will be able 
to induce a full phonological ontology without them. 

Whether phonological features may be innately guided or derived from earlier 
induction, then, the community bias suggests adding knowledge of them to OSTIA. 
We did this by augmenting OSTIA to use phonological feature knowledge to generalize 
the arcs of the transducer, producing transducers that are slightly more general than the 
ones OSTIA produced in our previous experiments. Our intuition was that these more 
general transducers would correctly classify stressed vowels together as environments 
for flapping, and similarly solve other problems caused by gaps in training data. 

In the rest of this section we will describe how these generalized transducers are 
produced and tested. To peek ahead at the results of the algorithm, however, consider 
Figure 14. The algorithm produced the arcs of Figure 14 by generalizing the arcs from 
Figure 13 above. The difference is that the arcs in Figure 13 have more general labels. 

The mechanism works by applying the standard data-driven decision-tree induc- 
tion algorithm (based on Quinlan's [1986] ID3 algorithm) to learn a decision tree over 
the arcs of the transducer. We add prior knowledge to the induction by adding lan- 
guage bias; that is, the induction language will use phonological features as a language 
for making decisions. The resulting decision trees describe the behavior of the machine 
at a given state in terms of the next input symbol by generalizing from the arcs leaving 
the state. Since we are generalizing over arcs at a given state of an induced transducer, 
rather than directly from the original training set of transductions, the input to the 
ID3 algorithm is limited to the number of phonemes, and is not proportional to the 
size of the original training set. 

We begin by briefly summarizing the decision-tree induction algorithm. A decision 
tree takes a set of properties that describe an object and outputs a decision about that 
object. It represents the process of making a decision as a rooted tree, in which each 
internal node represents a test of the value of a given property, and each leaf node 
represents a decision. A decision about an object is reached by descending the tree, at 
each node taking the branch indicated by the object's value for the property at that 
node. The decision is then read off from the leaf node reached. We will use decision 
trees to decide what actions and outputs a transducer should produce given certain 
phonological inputs. Thus the internal nodes of the tree will correspond to tests of the 
values of phonological features, while the leaf nodes will correspond to state transitions 
and outputs from the transducer. 

The ID3 algorithm is given a set of objects, each labeled with feature values and a 
decision, and builds a decision tree for a problem given. It does this by iteratively 
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choosing the single feature that best splits the data, i.e., that is the information- 
theoretically best single predictor of the decision for the samples. A node is built for 
this feature, and examples are divided into subsets based on their values for it. These 
values are attached to the new node's children, and the algorithm is run again on the 
children's subsets, until each leaf node has a set of samples that are all of the same cat- 
egory. Thus for each state in a transducer, we gave the algorithm the set of arcs leaving 
the state (the samples), the phonological features of the next input symbol (the fea- 
tures), and the output/transition behaviors of the automaton (the decisions). Because 
we used binary phonological features, we obtained binary decision trees (although 
we could just as easily have used multivalued features). The alignment information 
previously calculated between input and output strings is used again in determining 
which arcs have the same behavior. Two arcs are considered to have the same behav- 
ior if the same phonological features have changed between the input segment and 
the output segment that corresponds to it, and if the preceding and following output 
segments of the two arcs are identical. The same 26 binary phonological features used 
in calculating edit distance were used to classify segments in the decision trees. It is 
worth noting that conflicts in the input to the ID3 algorithm (where the same path 
to a leaf covers examples that behave differently) are impossible: no two phonemes 
agree in every feature, and because our transducers are deterministic, there is at most 
one arc leaving a state labeled with a given input phoneme. 

Figure 15 shows a resulting decision tree that generalized the transducer in Fig- 
ure 13 to avoid the problem of certain inputs "falling off" the transducer. We auto- 
matically induced this decision tree from the arcs leaving state 1 in the machine of 
Figure 13. The outcomes at the leaves of the decision tree specify the output of the 
next transition to be taken in terms of the input segment, as well as as the transition's 
destination state. We use square brackets to indicate which phonological features of 
the input segment are changed in the output; the empty brackets in Figure 15 simply 
indicate that the output segment is identical to the input segment. Note that if the un- 
derlying phone is a t ([-rhotic,-voice,-continuant,-high,+coronal]), the machine jumps 
to state 2. If the underlying phone is an r, the machine outputs r and goes to state 1. 
Otherwise, the machine outputs its input and moves to state 0. 

Because the decision tree specifies a state transition and an output string for every 
possible combination of phonological features, one can no longer "fall off" the ma- 
chine, no matter what the next input segment is. Thus in a transducer built using the 
newly induced decision tree for state 1, such as the machine in Figure 18, the arc from 
state 1 to state 0 is taken on seeing any vowel, including the six vowels missing from 
the arc of the machine in Figure 13. 

Our decision trees superficially resemble the organization of phonological fea- 
tures into functionally related classes proposed in the Feature Geometry paradigm 
(see McCarthy [1988] for a review). Feature-geometric theories traditionally proposed 
a unique, language-universal grouping of distinctive features to explain the fact that 
phonological processes often operate on coherent subclasses of the phonological fea- 
tures. For example, facts such as the common cross-linguistic occurrence of rules of 
nasal assimilation, which assimilate the place of articulation of nasals to the place of 
the following consonant, suggest a natural class place that groups together (at least) 
the labial and coronal features. The main difference between decision trees and fea- 
ture geometry trees is the scope of the proposed generalizations; where a decision 
tree is derived empirically from the environment of a single state of a transducer, fea- 
ture geometry is often assumed to be unique and universal (although recent work has 
questioned this assumption; see, for example, Padgett [1995a, b]). Information-theoretic 
distance metrics similar to those in the ID3 algorithm were used by McCarthy (1988, 
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rhotic 

voiced consonant 

/ \  / \  
continuant 1 1 3 

/ \  
high 

/ \  
coronal I 

/ \  
1 2 

Outcomes: 
1: Output: [ ], Destination State: 0 
2: Output: nil, Destination State: 2 
3: Output: [ ], Destination State: 1 
On end of string: Output: nil, Destination State: 0 

Figure 15 
Example decision tree. This tree describes the behavior of state 1 of the transducer in Figure 2. 
[ ] in the output string indicates the arc's input symbol (with no features changed). 

101), who  used a cluster analysis on a dictionary of Arabic to argue for a particular 
feature-geometric grouping; the relationship between feature geometries and empirical 
classification algorithms like decision trees clearly bears further investigation. 

To recapitulate, the transducers induced by  OSTIA suffered from undergeneral-  
ization in a number  of ways. Because OSTIA had no knowledge of similarities among  
phones,  the induced transducer often had no transition specified for a given phone,  
or had an incorrect one specified. We took the arcs leaving each state of our  trans- 
ducers and used a decision-tree induction algori thm to replace them by a smoother  
and more general set of arcs. In the next  section we show how these arcs were further 
generalized. 

5.2.2 Further G e n e r a l i z a t i o n :  D e c i s i o n  Tree Pruning .  Although inducing decision 
trees on the arcs of the transducer improved  the generalization behavior  of our  trans- 
ducers, we found that some transducers needed  to be generalized even further. Con- 
sider again the English flapping rule, which applies in the context of a preceding 
stressed vowel. Our algori thm first learned an incorrect t ransducer whose  decision 
tree for state 0 is shown in Figure 16. In this t ransducer all arcs leaving state 0 cor- 
rectly lead to the flapping state on stressed vowels, except for those stressed vowels  
that happen  not to have occurred before an instance of flapping in the training set. For 
these unseen vowels (which consisted of the vowel  uh and the diphthongs oy and ow 
all with secondary stress), the t ransducer incorrectly returns to state 0. In this case, we 
wish the algori thm to make the generalization that the rule applies after all stressed 
vowels. 

Again, this correct generalization (all stressed vowels) is expressible as a (single 
node) decision tree over  the phonological  features of the input  phones.  But the key 
insight is that the current  t ransducer  is incorrect because the absence of particular 
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stress j - - - < . .  
prim-stress / --..<. 

tense 

w-offglide / ' x  
rounded 1 

2 high 

y-offglide 1 

2 1 

2 

Outcomes: 
1: Output: [ ], Destination State: 0 
2: Output: [ ], Destination State: 1 
On end of string: Output: nil, Destination State: 0 

Figure 16 
Decision tree before pruning. The initial state of the flapping transducer. 

training patterns (the three particular stressed vowels) caused the decision tree to 
make a number of complex unnecessary decisions. This problem can be solved by 
pruning the decision trees at each state of the machine. Pruning is done by stepping 
through each state of the machine and pruning as many branches as possible from 
the fringe of the current state's decision tree. Each time a branch is pruned, one of the 
children's outcomes is picked arbitrarily for the new leaf, and the entire training set 
of transductions is tested to see if the new transducer still produces the right output. 
As discussed in Section 6, this is computationally quite expensive. If any errors are 
found, testing is repeated using the outcome of the pruned node's other child (e.g., 
the leaf with the positive rather than negative value for the feature being tested at the 
pruned node). If errors are still found, the pruning operation is undone. This process 
continues at the fringe of the decision tree until no more pruning is possible. Figure 17 
shows the correct decision tree for flapping, obtained by pruning the tree in Figure 16. 

The process of pruning the decision trees is complicated by the fact that the prun- 
ing operations allowed at one state depend on the status of the trees at each other 
state. Thus it is necessary to make several passes through the states, attempting ad- 
ditional pruning at each pass, until no more improvement is possible. Testing each 
pruning operation against the entire training set is expensive, but in the case of syn- 
thetic data it gives the best results. For other applications it may be desirable to keep 
a cross-validation set for this purpose. 
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stress 

1 2 

Figure 17 
The same decision tree after pruning. 

V ~  t ~, r ~  

V c V  

c : t c  
r : t r  ~ ,~ ~" 
V:dxv \ - y  
# : t  v 

Figure 18 
Flapping transducer induced from 50,000 samples (same as Figure 14). 

Table 7 
Results on three rules composed; 
12,500 training size, 49,280 test size. 

Method States % Error 

OSTIA 329 22.09 
Alignment 5 0.20 
Add D-trees 5 0.04 
Prune D-trees 5 0.01 

The transducer obtained for the flapping rule after pruning decision trees is shown 
in Figure 18. In contrast to Figure 13, the arcs now correspond to the natural classes 
of consonants, stressed vowels, and unstressed vowels. The only difference between 
our result and the hand-drawn transducer in Figure 2 is the transition from state 1 
upon seeing a stressed vowel--this will be discussed in Section 7. 

The effects of adding decision trees at each state of the machine for the composition 
of t-insertion, t-deletion, and flapping are shown in Table 7. 

Figure 19 shows the final transducer induced from this corpus of 12,500 words 
with pruned decision trees. We will discuss the remaining 0.01% error in Section 7 
below. 

We conclude our discussion of the community bias by seeing how a more on-line 
implementation of the bias might have helped our algorithm induce a transducer for 
r-deletion. Recall that the failure of the algorithm on r-deletion shown in Table 5 was 
not due to the difficulty of deletion per se, since our algorithm successfully learns 
the t-deletion rule. Rather, we believe that the difficulty with r-deletion is the broad 
context in which the rule applies: after any vowel and before any consonant. Since our 
segment set distinguishes three degrees of stress for each vowel, the alphabet size is 72; 
we believe this was simply too large for the algorithm without some prior concept of 
"vowel" and "consonant." While our decision tree augmentation adds these concepts 
to the algorithm, it only does so only after the initial transducer has been induced, and 
so cannot help in building the initial transducer. We need some method of interleaving 
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vF-'V," 
r C s S e e n  s t ressed 

v 

Initial ~ - -  

state c, v, v 
t: 

c:'E]t 7',, "I \ 

V : t [ l  

T-inset ion about 
T-deletion about \ to occur 
to occur F'~apping about 

to occur 

Figure 19 
Three-rule transducer induced from 12,500 samples. [] indicates that the input symbol is 
emitted with no features changed. 

the generalization of  segments into classes, performed by the decision trees, and the 
induction of the structure of the transducer by merging states. Making generalizations 
about input segments would in effect reduce the alphabet size on the fly, making the 
learning of structure easier. 

5.3 The Context Principle 
Our final problem with the unaugmented OSTIA algorithm concerns phonological 
rules that are both very general and also contain rightward context effects. In these 
rules, the transducer must wait to see the right-hand context of a rule before emitting 
the rule's output, and the rule applies to a general enough set of phones that additional 
states are necessary to store information about the pending output. In such cases, a 
separate state is necessary for each phone to which the rule applies. Thus, because 
subsequential transducers are an inefficient model of these sorts of rules, representing 
them leads to an explosion in the number of states of the machine, and an inability to 
represent certain generalizations. One example of such state explosion is the German 
rule to devoice word-final stops: 

-sonorant ] 
(9) -continuant --* [ -voiced ] / _  # 

In this case, a separate state must be created for each stop subject to devoicing, as 
in Figure 20. Upon seeing a voiced stop, the transducer jumps to the appropriate state, 
without emitting any output. If the end-of-word symbol follows, the corresponding 
unvoiced stop will be emitted. If any other symbol follows, however, the original 
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b : b  
b : g  # : p  

~ , ~ -  []:g[] " K , ~  N . _ d : d  d : b ) ) b  

g : d  

:d 

Figure 20 
Transducer for word-final stop devoicing. [] indicates that the input symbol is emitted with no 
features changed. 

voiced stop will be emitted, along with the current input symbol. In essence, the 
algorithm has learned three distinct rules: 

(10) b --, p / _ # 

(11) d ---* t / _ # 

(12) g ---+ k / _ # 

Because of the inability to refer to previous input symbols, it is impossible to make 
a subsequential transducer that captures the generalization of the rule in (9). While 
the larger transducer of Figure 20 is accurate, the smaller transducer is desirable for 
a number of reasons. First, rules applying to larger classes of phones will lead to an 
even greater explosion in the number of states. Second, depending on the particular 
training data, this lack of generalization can cause the transducer to make mistakes 
on learning such rules. As mentioned in Section 4, smaller transducers significantly 
improve the general accuracy of the learning algorithm. 

We turn to the context principle for an intuition about how to solve this problem. 
The context principle suggests that phonological rules refer to variables in their context. 
We found that subsequential transducers tend to handle leftward context much better 
than rightward context. This is because a separate state is only necessary for each 
distinct context in which segments behave differently. The behavior of different phones 
within each context is represented by the different arcs, without making separate states 
necessary. Thus our transducers only needed to be modified to deal with rightward 
context. 4 Our solution is to add a simple kind of memory to the model of transduction. 
The transducer keeps track of the input symbols seen so far. Just as the generalized 
arcs can now specify one of their output symbols as being the current input symbol 
with certain phonological features changed, they are now able to reference previous 

4 The rules previously discussed in this paper avoid this problem because they apply to only one phone. 
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b : -1[]  
d : -1[]  
g : -1[]  

[] : 0[] # : - 1 [  -voiced +tense ] 

~ b : O  ~ 1  d : O  
g : O  

[1 :-1[1 0[] 

Figure 21 
Word-final stop devoicing with variables. Variables are denoted by a number indicating the 
position of the input segment being referred to and a set of phonological features to change. 
Thus 0[] simply denotes the current input segment, while -1[-voiced -}-tense] means the 
unvoiced, tense version of the previous input segment. -1[] -0[] indicates that the machine 
outputs a string consisting of the previous input segment followed by the current segment. 

input symbols. The transducer for word-final stop devoicing using variables is shown 
in Figure 21. 

It is important to note that while we are changing the model of transduction, 
we are not increasing its formal power. As long as the alphabet is of finite size, any 
machine using variables can be translated into a potentially much larger machine with 
separate states for each possible value the variables can take. 

When constructing the algorithm's original tree transducer, variables can be in- 
cluded in the output strings of the transducer's arcs. When performing a transduc- 
tion, variables are interpreted as referring to a certain symbol in the input string with 
specific phonological features changed. The variables contain two pieces of informa- 
tion: an index of the input segment referenced by the variable relative to the current 
position in the index string, and a (possibly empty) list of phonological feature values 
to change in the input segment. 

After calculating alignment information for each input /output  pair, all output 
symbols determined to have arisen from substitutions (that is, all output segments 
other than those arising from insertions) are rewritten in variable notation. The vari- 
able's index is the relative index of the corresponding input segment as calculated by 
the alignment; the features specified by the variable are only those that have changed 
from the input segment. Thus rewriting each output symbol in variable notation is 
done in constant time and adds nothing to the algorithm's computational complexity. 

When performing the state mergers of the OSTIA algorithm, two variables are 
considered to be the same symbol if they agree in both components: the index and list 
of phonological features. This allows arcs that previously had different output strings 
to merge, as for example in the arc from state 1 to state 0 of Figure 21, which is a 
generalization over the arcs into state 0 in Figure 20. 

We applied the modified algorithm with variables in the output strings to the 
problem of the German rule that devoices word-final stops. Our data set was con- 
structed from the CELEX lexical database (Celex 1993), which contains pronunciations 
for 359,611 word forms--including various inflected forms of the same lexeme. For 
our experiments we used the CELEX pronunciations as the surface forms, and gener- 
ated underlying forms by revoicing the (devoiced) final stop for the appropriate forms 
(those for which the word's orthography ends in a voiced stop). Although the segment 
set used was slightly different from that of the English data, the same set of 26 binary 
articulatory features was used. Results are shown in Table 8. 
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Table 8 
Results on German word-final stop devoicing; 
50,000-word test set. 

No variables Using variables 

Samples States % Error States % Error 

700 8 0.218 8 7.996 
10,000 11 0.240 11 0.568 
20,000 24 0.392 2 0.000 
50,000 19 0.098 2 0.000 

[1 : 011 b0 Q 
d: l~  
g : O  

[] : -111 011 
# : - 1 [  -vo iced  +tense ] 

Figure 22 
Transducer induced for word-final stop devoicing. [] indicates that the input symbol is emitted 
with no features changed. 

Using the model  of transduction augmented  with variables, a machine with the 
min imum two states and perfect  performance on test data was induced with 20,000 
samples and greater. This machine is shown in Figure 22. The only difference between 
this t ransducer  and the hand-drawn transducer of Figure 21 is that the arcs leaving 
state 1 go to state 0 rather than looping back to state 1. Thus the transducer will fail to 
perform devoicing when  two voiced stops occur at the end of a word.  As the corpus 
contains no such cases, no errors were produced.  As we will discuss in Section 7, this 
is similar to what  occurred in the machine induced for flapping. 

5.3.1 Search Over  Sequences  of State Mergers.  The results quoted in the previous 
section were achieved with a slightly different method  than those for the English data. 
The difference lies in the order  in which state mergers  are at tempted,  and can have 
significant effects in the results. 

We per formed experiments using two versions of the algorithm, varying the order  
in which the algori thm tries to merge pairs of states. The mergers are per formed in 
a nested loop over the states of the initial tree transducer. The ordering of states for 
this loop in the original OSTIA algori thm as described in Oncina, Garcia, and Vidal 
(1993) is the lexicographic ordering of the string of input  symbols as one walks from 
the root of the tree to the state in question. This is the me thod  used in the first column 
of results in Table 9. In the second column of results, the ordering of the states was 
simply the order  of their creation as the sample transductions were read as input. This 
is also the me thod  used in the results previously described for the various English 
rules. 

The correctness of the algori thm requires that the states be ordered such that state 
numbers  always increase as one walks outward  from the root of the tree. This still 
leaves a large space of permissible orderings, and, as can be seen from our  results, 
the ordering chosen can have a significant effect on the algorithm's outcome. While 
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Table 9 
Results on German word-final stop devoicing; 50,000-word test set. 

Lexicographic ordering of states Input-based ordering of states 

Samples States % Error States % Error 

700 8 7.996 6 0.004 
10,000 11 0.568 8 0.288 
20,000 2 0.000 12 0.296 
50,000 2 0.000 9 0.034 

neither method is consistently better in the German experiments, we found that lexico- 
graphic orderings performed more poorly than the input-based ordering of the input 
samples for the English experiments, s The lexicographic ordering of the original algo- 
rithm is not always optimal. Furthermore, results with lexicographic orderings vary 
with the ordering of segments used. The segment ordering used for the results in 
Table 9 grouped similar segments together, and performed better than a randomized 
segment ordering. Presumably this is because the ordering grouping similar segments 
together causes states reached on similar input symbols to be merged, which is both 
linguistically reasonable and necessary in order to generate the correct transducer. 

The underlying principle of the algorithm is to generalize by reducing the number 
of states in the transducer. Because the OSTIA algorithm tends to settle in local minima 
when merging states, the problem becomes one of searching the space of permissible 
orderings of state mergers. Some linguistically based heuristic for ordering states might 
produce more consistent results on different types of phonological rules, perhaps by 
reordering the remaining states as the initial states are merged. 

6. Complexity 

The OSTIA algorithm as described by Oncina, Garcfa, and Vidal (1993) had a worst- 
case complexity of O(nB(m + k) + nmk), where n is the sum of all the input strings' 
lengths, m is the length of the longest output string, and k is the size of the input 
alphabet; Oncina, Garcfa, and Vidal's (1993) experiments showed the average case 
time to grow more slowly. We will discuss the complexity implication of each of our 
enhancements to the algorithm. 

The calculation of alignment information adds a preprocessing step to the al- 
gorithm that requires O(nm) time for the dynamic programming string-alignment 
algorithm. After the initial tree is constructed using the alignment information, the 
above-mentioned worst-case bound still applies for the process of merging states; it 
does not require that the initial tree be onward. Since this modification only alters the 
initial tree transducer, the behavior of the main state-merging loop of the OSTIA algo- 
rithm is essentially unchanged. In practice, we found the use of alignment information 
significantly sped up the algorithm by allowing states to collapse more quickly. In any 
case, the O(nm) complexity of the preprocessing step is subsumed by the O(nmk) term 
of OSTIA's complexity. 

5 The behavior  of the input -based  order ing d e p e n d s  on  the order ing of the t ra ining set. We used  a 
r a n d o m  order ing of our  t raining set, bu t  a corpus-based  order ing wou ld  not  be significantly different. 
While  more  f requent  words  tend to be  seen earlier in a corpus,  there is no reason to th ink that  more  
f requent  words  provide  better chances  of successful  state mergers .  
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The induction of decision trees adds a new stage after the OSTIA algorithm com- 
pletes. The number of nodes in each decision tree is bounded by O(k), since there are at 
most k arcs out of a given state. Calculating information content of a given feature can 
be done in O(k) time because k is an upper bound on the number of possible outcomes 
of the decision tree. Therefore, choosing the feature with the maximum information 
content can be done in O(fk) time, where f is the number of features, and the entire 
decision tree can be learned in O(/k 2) time. Since there are at most n states, this stage 
of the algorithm is O(nfk2). However, because k is relatively small and because deci- 
sion trees are induced only after merging states down to a small number, decision-tree 
induction in fact takes only a fraction the time of any other step of computation. The 
process of pruning the trees, however, is very expensive, as the entire training set is 
verified after each pruning operation. Since each verification of the input is O(nk), and 
there are O(k) nodes at each of O(n) states to attempt to prune, one iteration through 
the set of states attempting pruning at each state is therefore O(n2k2). There are at 
most O(nk) iterations through the states, since at least one node of one state's decision 
tree must be pruned in each iteration. Therefore, the entire pruning process is O(n3k3). 
This is a rather pessimistic bound since pruning occurs after state merger, and there 
are generally far less than nk states left. In fact, adding input pairs makes finding the 
smallest possible automaton more likely, and reduces the number of states at which 
pruning is necessary. Nevertheless the verification of pruning operations dominates 
all other steps of computation. 

Once alignment information for each input /output  pair has been computed, an 
output symbol can be rewritten in variable notation in constant time. Using vari- 
ables can increase the size of the output alphabet, but none of the complexity cal- 
culations depend on this size. Therefore using variables is essentially free and con- 
tributes nothing to overall complexity. After adding all the steps together, we ge t  
o(ng(m + k) + nmk + r//'k 2 ÷ n3k 3) time. Thus, even using the expensive method of 
verifying the entire training set after each pruning operation, the entire algorithm is 
still polynomial. Furthermore, our additions have not worsened the complexity of the 
algorithm with respect to n, the total number of input string symbols. 

On a typical run on 10,000 German words with final stop devoicing applied using a 
SPARC 10, calculating alignment information, rewriting each output string in variable 
notation and building the initial tree transducer took 19 seconds, the state merging 
took 5 seconds, inducing the decision trees took under I second, and the pruning took 
16 minutes and 1 second. When running on 50,000 words from the same data set, 
alignment, variable notation, and building the initial tree took 1 minute 37 seconds, 
the state merging took 4 minutes 44 seconds, inducing decision trees took 2 seconds 
and pruning decision trees took 2 hours, 9 minutes and 9 seconds. 

7. Another Implicit Bias 

An examination of the final few errors (three samples) in the induced flapping and 
three-rule transducers in Section 5.2.2 turned out to demonstrate a significant problem 
in the assumption that an SPE-style rule is isomorphic to a regular relation. 

While the learned transducer correctly makes the generalization that flapping oc- 
curs after any stressed vowel, it does not flap after two stressed vowels in a row: 

sky-writing: s k ayl r ay2 t ih ng ~ s k ayl r ay2 t ih ng 

sky-writers: s k ayl r ay2 t er z --~ s k ayl r ay2 t er z 

gyrat ing: jh  ayl r ey2 t ih ng --+ jh ayl r ey2 t ih ng 
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This is possible because no samples containing two stressed vowels in a row (or 
separated by an r as here) immediately followed by a flap were in the training data. 
This transducer will flap a t after any odd number of stressed vowels, rather than 
simply after any stressed vowel. Such a rule seems quite unnatural phonologically, 
and makes for an odd SPE-style context-sensitive rewrite rule. The SPE framework 
assumed (Chomsky and Halle 1968, 330) that the well-known Minimum Description 
Length (MDL) criterion be applied as an evaluation metric for phonological systems. 
Any sort of MDL criterion applied to a system of rewrite rules would prefer a rule 
such as 

(13) t--*dx/V__V 

to a rule such as 

(14) t --* dx / 9 ( "V 9 )* _ V 

which is the equivalent of the transducer learned from the training data. Similarly, 
the transducer learned for word-final stop devoicing would fail to perform devoicing 
when a word ends in two voiced stops, as it too returns to its state 0 upon seeing a 
second voiced stop, rather than staying in state 1. 

These kinds of errors suggest that while a phonological rewrite rule can be ex- 
pressed as a regular relation, the evaluation procedures for the two mechanisms 
(rewrite rules and transducers) must be different; the correct flapping transducer is in 
no way smaller than the incorrect one. In other words, the traditional formalism of 
context-sensitive rewrite rules contains implicit biases about how phonological rules 
usually work that are not present in the transducer system. 

8. Related Work 

Recent work in the machine learning of phonology includes algorithms for learning 
both segmental and nonsegmental information. Nonsegmental approaches include 
those of Daelemans, Gillis, and Durieux (1994) for learning stress systems, as well 
as approaches to learning morphology such as Gasser's (1993) system for inducing 
Semitic morphology, and Ellison's (1992) extensive work on syllabicity, sonority, and 
harmony. Since our approach learns only segmental structure, a more relevant com- 
parison is with other algorithms for inducing segmental structure. 

Johnson (1984) gives one of the first computational algorithms for phonological 
rule induction. His algorithm works for rules of the form 

(15) a --* b/C 

where C is the feature matrix of the segments around a. Johnson's algorithm sets up 
a system of constraint equations that C must satisfy, by considering both the positive 
contexts, i.e., all the contexts Ci in which a b occurs on the surface, as well as all the 
negative contexts Cj in which an a occurs on the surface. The set of all positive and 
negative contexts will not generally determine a unique rule, but will determine a 
set of possible rules. Johnson then proposes that principles from Universal Grammar 
might be used to choose between candidate rules, although he does not suggest any 
particular principles. 

Johnson's system, while embodying an important insight about the use of positive 
and negative contexts for learning, did not generalize to insertion and deletion rules, 
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and it is not clear how to extend his system to modern autosegmental phonological 
systems. Touretzky, Elvgren, and Wheeler (1990) extended Johnson's insight by using 
the version spaces algorithm of Mitchell (1981) to induce phonological rules in their 
Many Maps architecture. Like Johnson's, their system looks at the underlying and 
surface realizations of single segments. For each segment, the system uses the version 
space algorithm to search for the proper statement of the context. The model also has 
a separate algorithm that handles harmonic effects by looking for multiple segmental 
changes in the same word, and has separate processes to deal with epenthesis and 
deletion rules. Touretzky, Elvgren, and Wheeler's approach seems quite promising; 
our use of decision trees to generalize each state is a similar use of phonological 
feature information to form generalizations. 

Riley (1991) and Withgott and Chen (1993) first proposed a decision-tree approach 
to segmental mapping. A decision tree is induced for each segment, classifying pos- 
sible realizations of the segment in terms of contextual factors such as stress and the 
surrounding segments. One problem with these particular approaches is that since 
the decision tree for each segment is learned separately, the technique has difficulty 
forming generalizations about the behavior of similar segments. In addition, no gener- 
alizations are made about segments in similar contexts, or about long-distance depen- 
dencies. In a transducer-based formalism, generalizations about segments in similar 
contexts follow naturally from generalizations about the behavior of individual seg- 
ments. The context is represented by the current state of the machine, which in turn 
depends on the behavior of the machine on the previous segments. A possible adjust- 
ment to the decision-tree approach to capture some of these generalizations would 
be to augment the decision tree with information about the features of the output 
segment, or about features of more distant phones, perhaps about nearby syllables. 

9. C o n c l u s i o n  

Our goal in this paper has been to explore the role of prior knowledge in phonologi- 
cal learning. We showed that a domain-independent, empiricist induction algorithm, 
OSTIA, failed to induce minimal transducers even for very simple rules like flapping. 
But adding three domain-specific learning biases to OSTIA allowed it to successfully 
learn transducers implementing simple phonological rules of English and German: 
faithfulness (underlying segments tend to be realized similarly on the surface), commu- 
nity (similar segments behave similarly), and context (phonological rules need access 
to variables in their context). These biases are so fundamental to generative phonology 
that, although they are present in some respect in every phonological theory, they are 
left implicit in most. Furthermore, we have shown that some of the remaining errors 
in our augmented model are due to implicit biases in the traditional SPE-style rewrite 
system that are not similarly represented in the transducer formalism, suggesting that 
while transducers may be formally equivalent to rewrite rules, they may not have 
identical evaluation procedures. 

Because our biases were applied to the learning of very simple SPE-style rules, and 
to a nonprobabilistic theory of purely deterministic transducers, we do not expect that 
our model as implemented has any practical use as a phonological learning device. 
Indeed, because of the noise and nondeterminism inherent to linguistic data, we feel 
strongly that stochastic algorithms for language induction are much more likely to be 
a fruitful research direction (e.g., Kupiec 1992; Lucke 1993; Stolcke and Omohundro 
1993, 1994; Ron, Singer, and Tishby 1994). But we believe that the biases we have 
relied on to improve the OSTIA algorithm may also prove useful when applied to 
such stochastic linguistic-rule induction algorithms. For example Wooters and Stolcke 
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(1994) used the Stolcke and Omohundro  model-merging algori thm to induce word-  
pronunciat ion HMMs for a speech recognition system. This algori thm has no domain  
knowledge about  phonology, and so is unable to classify together similar phones,  or 
generalize across phones  that were missing in the input  data. Adding phonological  
feature biases to such a model  could improve its generalization performance just as it 
improved OSTIA. 

In summary,  we believe that augment ing an empirical learning element  with rela- 
tively abstract learning biases is a very  fruitful g round for research be tween the often 
restated strict nativist and strict empiricist language learning paradigms. 
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