
Learning Bias and Phonological-Rule
Induction

Daniel Gildea*
International Computer Science Institute
& U n i v e r s i t y of Ca l i fo rn i a at Berkeley

Daniel Jurafsky t
International Computer Science Institute
& U n i v e r s i t y of C o l o r a d o at Boulder

A fundamental debate in the machine learning of language has been the role of prior knowledge
in the learning process. Purely nativist approaches, such as the Principles and Parameters model,
build parameterized linguistic generalizations directly into the learning system. Purely empirical
approaches use a general, domain-independent learning rule (Error Back-Propagation, Instance-
based Generalization, Minimum Description Length) to learn linguistic generalizations directly
from the data.

In this paper we suggest that an alternative to the purely nativist or purely empiricist
learning paradigms is to represent the prior knowledge of language as a set of abstract learning
biases, which guide an empirical inductive learning algorithm. We test our idea by examining the
machine learning of simple Sound Pattern of English (S P E)-style phonological rules. We represent
phonological rules as finite-state transducers that accept underlying forms as input and generate
surface forms as output. We show that OSTIA, a general-purpose transducer induction algorithm,
was incapable of learning simple phonological rules like flapping. We then augmented OSTIA
with three kinds of learning biases that are specific to natural language phonology, and that are
assumed explicitly or implicitly by every theory of phonology: faithfulness (underlying segments
tend to be realized similarly on the surface), c o m m u n i t y (similar segments behave similarly),
and con tex t (phonological rules need access to variables in their context). These biases are so
fundamental to generative phonology that they are left implicit in many theories. But explicitly
modifying the OSTIA algorithm with these biases allowed it to learn more compact, accurate, and
general transducers, and our implementation successfully learns a number of rules from English
and German. Furthermore, we show that some of the remaining errors in our augmented model are
due to implicit biases in the traditional SPE-style rewrite system that are not similarly represented
in the transducer formalism, suggesting that while transducers may be formally equivalent to
SPE-style rules, they may not have identical evaluation procedures.

Because our biases were applied to the learning of very simple SPE-style rules, and to a
non-psychologically-motivated and nonprobabilistic theory of purely deterministic transducers,
we do not expect that our model as implemented has any practical use as a phonological learning
device, nor is it intended as a cognitive model of human learning. Indeed, because of the noise
and nondeterminism inherent to linguistic data, we feel strongly that stochastic algorithms for
language induction are much more likely to be a fruitful research direction. Our model is rather
intended to suggest the kind of biases that may be added to other empiricist induction models,
and the way in which they may be added, in order to build a cognitively and computationally
plausible learning model for phonological rules.

* 1947 Center Street, Berkeley, CA 94704. E-mail: gildea@cs.berkeley.edu
t Department of Linguistics, Boulder, CO 80302

@ 1996 Association for Computational Linguistics

Computational Linguistics Volume 22, Number 4

1. Introduction

A fundamental debate in the machine learning of language has been the role of prior
knowledge in the learning process. Nativist models suggest that learning in a com-
plex domain like natural language requires that the learning mechanism either have
some previous knowledge about language, or some learning bias that helps direct the
formation of correct generalizations. In linguistics, theories of such prior knowledge
are referred to as Universal Grammar (UG); nativist linguistic models of learning as-
sume, implicitly or explicitly, that some kind of prior knowledge that contributes to
language learning is innate, a product of evolution. Despite sharing this assumption,
nativist researchers disagree strongly about the exact constitution of this Universal
Grammar. Many models, for example, assume that much of the prior knowledge that
children bring to bear in learning language is not linguistic at all, but derives from
constraints imposed by our general cognitive architecture. Others, such the influen-
tial Principles and Parameters model (Chomsky 1981), assert that what is innate is
linguistic knowledge itself, and that the learning process consists mainly of search-
ing for the values of a relatively small number of parameters. Such nativist models
of phonological learning include, for example, Dresher and Kaye's (1990) model of
the acquisition of stress-assignment rules, and Tesar and Smolensky's (1993) model of
learning in Optimality Theory.

Other scholars have argued that a purely nativist, parameterized learning algo-
rithm is incapable of dealing with the noise, irregularity, and great variation of human
language data, and that a more empiricist learning paradigm is possible. Such data-
driven models include the stress acquisition models of Daelemans, Gillis, and Durieux
(1994) (an application of Instance-based Learning [Aha, Kibler, and Albert 1991]) and
Gupta and Touretzky (1994) (an application of Error Back-Propagation), as well as Elli-
son's (1992) Minimum-Description-Length-based model of the acquisition of the basic
concepts of syllabicity and the sonority hierarchy. In each of these cases a general,
domain-independent learning rule (BP, IBL, MDL) is used to learn directly from the
data.

In this paper we suggest that an alternative to the purely nativist or purely em-
piricist learning paradigms is to represent the prior knowledge of language as a set of
abstract learning biases, which guide an empirical inductive learning algorithm. Such
biases are implicit, for example, in the work of Riley (1991) and Withgott and Chen
(1993), who induced decision trees to predict the realization of a phone in its context.
By initializing the decision-tree inducer with a set of phonological features, they es-
sentially gave it a priori knowledge about the kind of phonological generalizations
that the system might be expected to learn.

Our idea is that abstract biases from the domain of phonology, whether innate (i.e.,
part of UG) or merely learned prior to the learning of rules, can be used to guide a
domain-independent empirical induction algorithm. We test this idea by examining the
machine learning of simple Sound Pattern of English (SPE)-style phonological rules
(Chomsky and Halle 1968), beginning by representing phonological rules as finite-
state transducers that accept underlying forms as input and generate surface forms
as output. Johnson (1972) first observed that traditional phonological rewrite rules
can be expressed as regular (finite-state) relations if one accepts the constraint that no
rule may reapply directly to its own output. This means that finite-state transducers
(FSTs) can be used to represent phonological rules, greatly simplifying the problem of
parsing the output of phonological rules in order to obtain the underlying, lexical forms
(Koskenniemi 1983; Karttunen 1993; Pulman and Hepple 1993; Bird 1995; Bird and
Ellison 1994). The fact that the weaker generative capacity of FSTs makes them easier to

498

Gildea and Jurafsky Learning Bias and Phonological-Rule Induction

learn than arbitrary context-sensitive rules has allowed the development of a number
of learning algorithms including those for deterministic finite-state automata (FSAs)
(Freund et al. 1993), deterministic transducers (Oncina, Garcia, and Vidal 1993), as
well as nondeterministic (stochastic) FSAs (Stolcke and Omohundro 1993; Stolcke and
Omohundro 1994; Ron, Singer, and Tishby 1994). Like the empiricist models discussed
above, these algorithms are all general-purpose; none include any domain knowledge
about phonology, or indeed natural language; at most they include a bias toward
simpler models (like the MDL-inspired algorithms of Ellison [1992]).

Our experiments were based on the OSTIA (Oncina, Garcia, and Vidal 1993) al-
gorithm, which learns general subsequential finite-state transducers (SFSTs; formally
defined in Section 2). We presented pairs of underlying and surface forms to OSTIA,
and examined the resulting transducers. Although OSTIA is capable of learning ar-
bitrary SFSTs in the limit, large dictionaries of actual English pronunciations did not
give enough samples to correctly induce phonological rules.

We then augmented OSTIA with three kinds of learning biases, which are specific
to natural language phonology, and are assumed explicitly or implicitly by every the-
ory of phonology: faithfulness (underlying segments tend to be realized similarly on
the surface), community (similar segments behave similarly), and context (phonolog-
ical rules need access to variables in their context). These biases are so fundamental
to generative phonology that they are left implicit in many theories. But explicitly
modifying the OSTIA algorithm with these biases allowed it to learn more compact,
accurate, and general transducers, and our implementation successfully learns a num-
ber of rules from English and German. The algorithm is also successful in learning the
composition of multiple rules applied in series. The more difficult problem of decom-
posing the learned underlying/surface correspondences into simple, individual rules
remains unsolved.

Our transducer induction algorithm is not intended as a cognitive model of hu-
man phonological learning. First, for reasons of simplicity, we base our model on
simple segmental SPE-style rules; it is not clear what the formal correspondence is
of these rules to the more recent theoretical machinery of phonology (e.g., optimality
constraints). Second, we assume that a cognitive model of automaton induction would
be more stochastic and hence more robust than the OSTIA algorithm underlying our
work. 1

Rather, our model is intended to suggest the kind of biases that may be added to
empiricist induction models to build a learning model for phonological rules that is
cognitively and computationally plausible. Furthermore, our model is not necessarily
nativist; these biases may be innate, but they may also be the product of some other
earlier learning algorithm, as the results of Ellison (1992) and Brown et al. (1992)
suggest (see Section 5.2). So our results suggest that assuming in the system some
very general and fundamental properties of phonological knowledge (whether innate
or previously learned) and learning others empirically may provide a basis for future
learning models.

Ellison (1994), for example, has shown how to map the optimality constraints
of Prince and Smolensky (1993) to finite-state automata; given this result, models of

1 Although our assumption of the simultaneous presentation of surface and underlying forms to the
learner may seem at first glance to be unnatural as well, it is quite compatible with certain theories of
word-based morphology. For example, in the word-based morphology of Aronoff (1976),
word-formation rules apply only to already existing words. Thus the underlying form for any
morphological rule must be a word of the language. Even if this word-based morphology assumption
holds only for a subset of the language (see e.g., Orgun [1995]) it is not unreasonable to assume that a
part of the learning process will involve previously-identified underlying/surface pairs.

499

Computational Linguistics Volume 22, Number 4

automaton induction enriched in the way we suggest may contribute to the current
debate on optimality learning. This may obviate the need to build in every phono-
logical constraint, as for example nativist models of OT learning suggest (Prince and
Smolensky 1993; Tesar and Smolensky 1993; Tesar 1995). We hope in this way to begin
to help assess the role of computational phonology in answering the general question
of the necessity and nature of linguistic innateness in learning.

The next sections (2 and 3) introduce the idea of representing phonological rules
with transducers, and describe the OSTIA algorithm for inducing such transducers.
Section 4 shows that the unaugmented OSTIA algorithm is unable to induce the correct
transducer for the simple flapping rule of American English. Section 5 then describes
each of the augmentations to OSTIA, based on the faithfulness, community, and context
principles. We conclude with some observations about computational complexity and
the inherent bias of the context-sensitive rewrite-rule formalism.

2. Transducer Representation

Rule-based variation in phonology has traditionally been represented with context-
sensitive rewrite rules. For example, in American English an underlying t is realized
as a flap (a tap of the tongue on the alveolar ridge) after a stressed vowel and zero or
more r's, and before an unstressed vowel. In the rewrite-rule formalism of Chomsky
and Halle (1968), this rule would be represented as in (1).

(1) t --~ dx / Q r* __ V

Since Johnson's (1972) work, researchers have proposed a number of different
ways to represent such phonological rules by transducers. The most popular method
is the two-level formalism of Koskenniemi (1983), based on Johnson (1972) and the
(belatedly published) work of Kaplan and Kay (1994), and various implementations
and extensions (summarized and contrasted in Karttunen [1993]). The basic intuition
of two-level phonology is that a rule that rewrites an underlying string as a surface
string can be implemented as a transducer that reads from an underlying tape and
writes to a surface tape. Figure 1 shows an example of a transducer that implements
the flapping rule in (1). Each arc has an input symbol and an output symbol, separated
by a colon. A single symbol (such as t or V) is a shorthand for a symbol that is the same
in the input and output (i.e., t : t or V:V). Either the input or the output symbols can
be null; a null input symbol is used for an insertion of a phone; a null output symbol
for a deletion. A transduction of an input string to an output string corresponds to a
path through the transducer, where the input string is formed by concatenating the
input symbols of the arcs taken, and the output string by concatenating the output
symbols of the arcs. The transducer's input string is the phonologically underlying
form, while the transducer's output is the surface form. A transduction is valid if there
is a corresponding path beginning in state 0 and ending in an accepting state (indicated
by double circles in the figure). Table 1 shows our phone set--an ASCII symbol set
based on the ARPA-sponsored ARPAbet alphabet--with the IPA equivalents.

More recently, Bird and Ellison (1994) show that a one-level finite-state automa-
ton can model richer phonological structure, such as the multitier representations of
autosegmental phonology. In their model, each tier is represented by a finite-state au-
tomaton, and autosegmental association by the synchronization of two automata. This
synchronized-automata-based rather than transducer-based model generalizes over
the two-level models of Koskenniemi (1983) and Karttunen (1993) but also the three-
level models of Lakoff (1993), Goldsmith (1993), and Touretzky and Wheeler (1990).

500

Gildea and Jurafsky Learning Bias and Phonological-Rule Induction

C

VIV / ~ t:dx

©" "(9

Ex: batter
Under ying

I bJaell t [erJ
Surface:

[blael dxler I

Figure 1
Nondeterministic transducer for English flapping. Labels on arcs are of the form (input
symbol):(output symbol). Labels with no colon indicate identical input and output symbols.
"V" indicates any unstressed vowel, "V" any stressed vowel, "dx" a flap, and "C" any
consonant other than "t ' , "r" or "dx'.

In order to take advantage of recent work in t ransducer induction, we have chosen
to use the transducer rather than synchronized-automata approach, representing rules
as subsequential finite-state transducers (Berstel [1979]; subsequential t ransducers will
be defined below). Since the focus of our research is on adding prior knowledge to
help guide an induction algorithm, rather than the particular au tomaton approach
chosen, we expect our results to inform future work on the induction of other types
of automata.

Subsequential finite-state transducers are a subtype of finite-state transducers with
the following properties:

.

.

.

.

The transducer is deterministic, that is, there is only one arc leaving a
given state for each input symbol.

Each time a transition is made, exactly one symbol of the input string is
consumed.

A unique end-of-string symbol is introduced. At the end of each input
string, the t ransducer makes an additional transition on the end-of-string
symbol.

All states are accepting.

The length of the output string associated with a transition of a subsequential
t ransducer is unconstrained. For our purposes, the key proper ty is the first, because
determinism is essential to the state-merging of the OSTIA algorithm. Subsequential
transducers are essentially the most general type of deterministic transducers. The
second proper ty is merely a convention; any transducer with multiple input symbols
on an arc can easily be t ransformed into one with single arcs with one symbol each.
The introduction of an end-of-string symbol serves to expand the range of functions
that can be represented. Finally, in a deterministic transducer, there is no need to

501

Computational Linguistics Volume 22, Number 4

Table 1
A slightly expanded ARPAbet phoneset
(including alveolar flap, syllabic nasals and
liquids, and reduced vowels), and the
corresponding IPA symbols. Vowels may be
annotated with the numbers 1 and 2 to
indicate primary and secondary stress,
respectively.

IPA ARPAbet IPA ARPAbet

b b p p
d d t t
g g k k
(1 aa s s
~e ae z z
A ah f sh
3 ao 3 zh
C eh f f
3" er v v
I, ih 0 th
i iy 6 dh
o ow t f ch
a) uh 3 jh
u uw h hh

ffw aw
(ff ay y y
e ey r r
3 y oy w w
1 el 1 1

1211 em m m
en n n
ax I 3 ng
ix r dx

axr

distinguish between accepting and non-accepting states, as there can be no ambigui ty
about which path is taken through the states.

A subsequent ia l relation is any relation between strings that can represented by
the input to output relation of a subsequential finite-state transducer. While subse-
quential relations are formally a subset of regular relations, any relation over a finite
input language is subsequential if each input has only one possible output.

A sample phonological rule, the flapping rule for English shown in (1), is re-
peated in (2a). (2b) shows a positive application of the rule; (2c) shows a case where
the conditions for the rule are not met. The rule realizes an under ly ing t as a flap
after a stressed vowel and zero or more r 's , and before an unstressed vowel. The
subsequential t ransducer for (2a) is shown in Figure 2.

(2) a.t--*dx/gr*_V

b. latter:l ael t er--* i ael dx er

c. laughter: i ael f t er--* I ael I t er

The most significant difference between our subsequential transducers and two-
level models is that the two-level transducers described by Kart tunen (1993) are non-

502

Gildea and Jurafsky Learning Bias and Phonological-Rule Induction

tc / S t a r t state ~ _ Ex: batter

r V b lae l l t ler I

c ~ T c \ ,A :,e Seen stressed
V • dxV Vrl;;v NV¢" vowe,
:t k , , ~] .

\ Flapping about
to occur

Figure 2
Subsequential transducer for English flapping; "#" is the end-of-string symbol.

deterministic. In addition, Kart tunen's transducers m ay have only zero or one symbol
as either the input or output of an arc, and they have no special end-of-string symbol.
Finally, his transducers explicitly include both accepting and non-accepting states. All
states of a subsequential t ransducer are valid final states. It is possible for a transduc-
tion to fail by finding no next transition to make, but this occurs only on bad input,
for which no output string is possible.

These representational differences between the two formalisms lead to different
ways of handling certain classes of phonological rules, particularly those that depend
on the context to the right of the affected symbol. The subsequential t ransducer does
not emit any output until enough of the r ight-hand context has been seen to determine
how the input symbol is to be realized. Figure 2 shows the subsequential equivalent
of Figure 1. This t ransducer emits no output upon seeing a t when the machine is at
state 1. Rather, the machine goes to state 2 and waits to see if the next input symbol
is the requisite unstressed vowel; depending on this next input symbol, the machine
will emit the t or a dx along with the next input symbol when it makes the transition
from state 2 to state 0.

In contrast, the nondeterminist ic two-level-style t ransducer shown in Figure 1 has
two possible arcs leaving state 1 upon seeing a t , one with t as ou tput and one with
dx. If the machine takes the wrong transition, the subsequent transitions will leave the
transducer in a non-accepting state, or a state will be reached with no transition on
the current input symbol. Either way, the transduction will fail.

Generat ing a surface form from an under lying form is more efficient with a subse-
quential t ransducer than with a nondeterminist ic transducer, as no search is necessary
in a deterministic machine. Running the transducer backwards to parse a surface form
into possible under ly ing forms, however, remains nondeterminist ic in subsequential
transducers. In addition, a subsequential t ransducer may require m an y more states
than a nondeterminist ic t ransducer to represent the same rule. Our reason for choos-
ing subsequential transducers, then, is solely that efficient techniques exist for learning
them, as we will see in the next section. In particular, the algori thm we chose is able
to learn from only positive evidence. Other algorithms make use of negative evidence
in the form of transductions marked as invalid, or questions directed at an informant.

503

Computational Linguistics Volume 22, Number 4

Input pairs:

bat: batter: band:
I blaeltlerl I blaclnld[

I blael~erl I blaelnl d l

M J b:OM2./ ae:O M T . Y ~ A M ' l # : b a e d x e r M L Y

n : 0 ~ d .. 0 - ~) # : b ae n ~l Q

Figure 3
Initial tree transducer for bat, batter, and band with flapping applied.

This use of positive-only evidence is significant for both cognitive reasons (children
have been shown to make little use of negative evidence) and practical ones (positive
examples, but not negative examples, are easily derived automatically from corpora).

3. The OSTIA Algorithm

Our phonological-rule induction algorithm is based on augmenting the Onward Subse-
quential Transducer Inference Algorithm (OSTIA) of Oncina, Garcfa, and Vidal (1993).
This section outlines the OSTIA algorithm to provide background for the modifications
that follow; see their original paper for further details.

OSTIA takes as input a training set of valid input-output pairs for the transduction
to be learned. The algorithm begins by constructing a tree transducer that covers all
the training samples according to the following procedure: for each input pair, the
algorithm walks from the initial state taking one transition on each input symbol, as
if doing a transduction. When there is no move on the next input symbol from the
present state, a new branch is grown on the tree. The entire output string of each
transduction is initially stored as the output on the last arc of the transduction, that
is, the arc corresponding to the end-of-string symbol. An example of an initial tree
transducer constructed by this process is shown in Figure 3.

As the next step, the output symbols are "pushed forward" as far as possible
towards the root of the tree. This process begins at the leaves of the tree and works
its way to the root. At each step, the longest common prefix of the outputs on all the
arcs leaving one state is removed from the output strings of all the arcs leaving the
state and suffixed to the (single) arc entering the state. This process continues until
the longest common prefix of the outputs of all arcs leaving each state is the null
string--the definition of an onward transducer. The result of making the transducer
of Figure 3 onward is shown in Figure 4.

At this point, the transducer covers all and only the strings of the training set.
OSTIA now attempts to generalize the transducer, by merging some of its states to-
gether. For each pair of states (s, t) in the transducer, the algorithm will attempt to
merge s with t, building a new state with all of the incoming and outgoing transitions
of s and t. The result of the first merging operation on the transducer of Figure 4 is
shown in Figure 5.

A conflict arises whenever two states are merged that have outgoing arcs with the
same input symbol. When this occurs, an attempt is made to merge the destination

504

Gildea and Jurafsky Learning Bias and Phonological-Rule Induction

-

n : n d ~ . 7) ~

Figure 4
Onward tree transducer for bat, batter, and band with flapping applied.

Figure 5
Result of merging states 0 and 1 of Figure 4.

a e ~ n" d =Q
® ae" aeKLd .

rn : rn P ' ~ , d

Figure 6
Example push-back operation and state merger. Input words and and amp.

states of the two conflicting arcs. First, all output symbols beyond the longest common
prefix of the outputs of the two arcs are "pushed back" to arcs further down the tree.
This operation is only allowed under certain conditions that guarantee that the trans-
ductions accepted by the machine are preserved. The push-back operation allows the
two arcs to be combined into one and their destination states to be merged. An exam-
ple of a push-back operation and subsequent merger on a transducer for the words
and and amp is shown in Figure 6. This method of resolving conflicts repeats until no
conflicts remain, or until resolution is impossible. In the latter case, the transducer is
restored to its configuration before the merger causing the original conflict, and the
algorithm proceeds by attempting to merge the next pair of states.

505

Computational Linguistics Volume 22, Number 4

Table 2
Unmodified OSTIA learning
flapping on 49,280-word test
set. Error rates are the
percentage of incorrect
transductions.

Samples States %Error

6,250 19 2.32
12,500 257 16.40
25,000 141 4.46
50,000 192 3.14

4. Problems Using OSTIA to Learn Phonological Rules

The OSTIA algorithm can be proven to learn any subsequential relation in the limit.
That is, given an infinite sequence of valid input /output pairs, it will at some point
derive the target transducer from the samples seen so far. When trying to learn phono-
logical rules from finite linguistic data, however, we found that the algorithm was
unable to learn a correct, minimal transducer.

We tested the algorithm using a synthetic corpus of 99,279 input /output pairs.
Each pair consisted of an underlying pronunciation of an individual word of English
and a machine generated "surface pronunciation." The underlying string of each pair
was taken from the phoneme-based CMU pronunciation dictionary (CMU 1993). The
surface string was generated from each underlying form by mechanically applying
the one or more rules we were attempting to induce in each experiment.

In our first experiment, we applied the flapping rule (repeated again in (3)) to
training corpora of between 6,250 and 50,000 words. Figure 7 shows the transducer
induced from 25,000 training samples, and Table 2 shows some performance results.
For obvious reasons we have left off the labels on the arcs in Figure 7. The only differ-
ence between underlying and surface forms in both the training and test sets in this
experiment is the substitution of dx for a t in words where flapping applies. Therefore,
inaccuracies in predicting output strings represent real errors in the transducer, rather
than manifestations of other phonological phenomena.

(3) t--* dx / ~ ' r * _ _ V

Figure 7 and Table 2 show OSTIA's failure to learn the simple flapping rule. Recall
that the optimal transducer, shown in Figure 2, has only 3 states, and would have
no error on the test set of synthetic data. OSTIA's induced transducer not only is
much more complex (between 19 and 257 states) but has a high percentage of error.
In addition, giving the model more training data does not seem to help it induce a
smaller or better model; the best transducer was the one with the smallest number of
training samples.

Since OSTIA can learn any subsequential relation in the limit, why these difficul-
ties with the phonological-rule induction task? The key provision here, of course, is
"the limit"; we are clearly not giving OSTIA sufficient training data. There are two
reasons this data may not be present in any reasonable training set. First, the neces-
sary number of sample transductions may be several times the size of any natural
language's vocabulary. Thus even the entire vocabulary of a language may be insuffi-

506

Gildea and Jurafsky Learning Bias and Phonological-Rule Induction

Figure 7
First attempt of OSTIA to learn flapping. Transducer induced on 25,000 samples.

b:bae
ae : 0
n:nd
d ' O ~
#'0 = t:O=t 1 ~

er : dx erM.J
: t

Inputs:
bat
batter
band

Figure 8
Final result of merging process on transducer from Figure 4.

cient in size to learn an efficient or correct transducer. Second, even if the vocabulary
were larger, the necessary sample may require types of strings that are not found
in the language for phonotactic or other reasons. Systematic phonological constraints
such as syllable structure may make it impossible to obtain the set of examples that
would be necessary for OSTIA to learn the target rule. For example, given one training
set of examples of English flapping, the algori thm induced a t ransducer that realizes
an under lying t as dx either in the envi ronment "Qr*_V or after a sequence of six
consonants. This is possible since such a t ransducer will accurately cover the training
set, as no English words contain six consonants followed by a t . The lack of natural
language bias causes the t ransducer to miss correct generalizations and learn incorrect
transductions.

507

Computational Linguistics Volume 22, Number 4

One example of an unnatural induction is shown in Figure 8, the final transducer
induced by OSTIA on the three-word training set of Figure 4. OSTIA has a tendency
to produce overly "clumped" transducers, as illustrated by the arcs with output b ae
and n d in Figure 8, or even Figure 4. The transducer of Figure 8 will insert an ae
after any b, and delete any ae from the input. OSTIA's default behavior is to emit the
remainder of the output string for a transduction as soon as enough input symbols
have been seen to uniquely identify the input string in the training set. This results
in machines that may, seemingly at random, insert or delete sequences of four or
five segments. This causes the machines to generalize in linguistically implausible
ways, i.e., producing output strings incorrectly bearing little relation to their input. In
addition, the incorrect distribution of output symbols prevents the optimal merging of
states during the learning process, resulting in large and inaccurate transducers. The
higher number of states reduces the number of training examples that pass through
each state, making incorrect state mergers possible and introducing errors on test data.

A second problem is OSTIA's lack of generalization. The vocabulary of a lan-
guage is full of accidental phonological gaps. Without an ability to use knowledge
about phonological features to generalize across phones, OSTIA's transducers have
missing transitions for certain phones from certain states. For example, the transducer
of Figure 8 will fail completely upon seeing any symbol other than er or end-of-string
after a t. Of course this transducer is only trained on three samples, but the same
problem occurs with transducers trained on large corpora.

As a final example, if the OSTIA algorithm is trained on cases of flapping in which
the preceding environment is every stressed vowel but one, the algorithm has no way
of knowing that it can generalize the environment to all stressed vowels. Again, the
algorithm needs knowledge about classes of segments to fill in these accidental gaps
in training data coverage.

5. Augmenting the Learner with Phonological Knowledge

In order to give OSTIA the prior knowledge about phonology to deal with the prob-
lems in Section 4, we augmented it with three biases, each of which is assumed explic-
itly or implicitly by most if not all theories of phonology. These biases are intended to
express universal constraints about the domain of natural language phonology.

Faithfulness: Underlying segments tend to be realized similarly on the surface.

Community: Phonologically similar segments behave similarly.

Context: Phonological rules need access to variables in their context.

As discussed above, our algorithm is not intended as a direct model of human
learning of phonology. Rather, since only by adding these biases was a general-purpose
algorithm able to learn phonological rules, and since most theories of phonology as-
sume these biases as part of their model, we suggest that these biases may be part of
the prior knowledge or state of the learner.

5.1 Faithfulness
As we saw above, the unaugmented OSTIA algorithm often outputs long clumps of
segments when seeing a single input phone. Although each particular clump may be
correct for the exact input example that contained it, it is rarely the case in general
that a certain segment is invariably followed by a string of six other specific segments.
Thus the model will tend to produce errors when it sees this input phone in a similar

508

Gildea and Jurafsky Learning Bias and Phonological-Rule Induction

ih m p o a l r t ah n s

I I I I //11
ih m p oal dx all n t s

Figure 9
Alignment of importance with flapping, r-deletion and t-insertion.

left context. This behavior is caused by a paucity of training data, but even with a
reasonably large training set, we found it was often the case that some particular
strings of segments happened to only occur once.

In order to resolve this problem, and the related cases of arbitrary phone-deletion
we saw above, we need to appeal to the fact that theories of generative phonology
have always assumed that, all things being equal, surface forms tend to resemble un-
derlying forms. This assumption was implicit, for example, in Chomsky and Halle's
(1968) MDL-based evaluation procedure for phonological rule systems. They ranked
the "value" of a grammar by the inverse of the number of symbols in the system. Ac-
cording to this metric, clearly, a grammar that does not contain "trivial" rules mapping
an underlying phonology unit to an identical unit on the surface is preferable to an
otherwise identical grammar that has such rules. Later work in Autosegmental Phonol-
ogy and Feature Geometry extended this assumption by restricting the domain of in-
dividual phonological rules to changes in an individual node in a feature-geometric
representation.

Recent two-level theories of Optimality Theory (e.g., McCarthy and Prince 1995)
make the assumption of faithfulness (which is similar to Chomsky and Halle's) more
explicit. These theories propose a constraint called FAITHFULNESS, which requires that
the phonological output string match its input. Such a constraint is ranked below all
other constraints in the optimality constraint ranking (since otherwise no surface form
could be distinct from its underlying form), and is used to rule out the infinite set
of candidates produced by GEN that bear no relation to the underlying form. Com-
putational models of morphology have made use of a similar faithfulness bias. Ling
(1994), for example, applied a faithfulness heuristic (called passthrough) as a default
in a ID3-based decision-tree induction system for learning the past tense of English
verbs. Orgun (1996) extends the two-level optimality-theoretic concept of faithfulness
to require a kind of monotonicity from the underlying to the surface form: his MATCH
constraint requires that every element of an output string contain all the information
in the corresponding element of an input string.

Our model of faithfulness preserves the insight that, barring a specific phonolog-
ical constraint to the contrary, an underlying element will be identical to its surface
correspondent. But like Orgun's version, our model extends this bias to suggest that,
all things being equal, a changed surface form will also be close to its underlying
form in phonological feature space. In order to implement such a faithfulness bias in
OSTIA, our algorithm guesses the most probable segment-to-segment alignment be-
tween the input and output strings, and uses this information to distribute the output
symbols among the arcs of the initial tree transducer. This is demonstrated for the
word importance in Figures 9 and 10.

This new distribution of output symbols along the arcs of the initial tree transducer
no longer guarantees the onwardness of the transducer. (Although in fact, the final
transducers induced by our new method do tend to be onward.) Onwardness happens

509

Computational Linguistics Volume 22, Number 4

Figure 10
Resulting initial transducer for importance.

Table 3
Phonological features used in alignment.

vocalic consonant sonorant rhotic
advanced front high low
back rounded tense voiced
w-offglide y-offglide coronal anterior
distributed nasal lateral continuant
strident syllabic silent flap
stress primary-stress

to be an invariant of the unmodif ied OSTIA algorithm, but it is not essential to the
working of the algorithm. 2

Our modification proceeds in two stages: first, a dynamic p rogramming method is
used to compute a correspondence be tween input and output segments, and second,
the al ignment is used to distribute ou tput symbols on the inital tree transducer.

The al ignment is calculated using the algori thm of Wagner and Fischer (1974),
which calculates the insertions, deletions, and substitutions that make up the m in im u m
edit distance between the under ly ing and surface strings. The costs of edit operat ions
are based on phonological features; we used the 26 binary art iculatory features in
Table 3.

This feature set was chosen merely because it was commonly used in other speech
recognition experiments in our laboratory; none of our experiments or results de-
pended in any way on this particular choice of features, or on their binary rather
than privative or mul t ivalued nature. For example, the decision-tree pruning algo-
r i thm discussed in Section 5.2.2, which successfully generalized about the importance
of stressed vowels to the flapping rule, would have funct ioned identically with any
feature set capable of distinguishing stressed from unstressed vowels.

The cost function for substitutions was equal to the number of features changed
between the two segments. The cost of insertions and deletions was arbitrarily set at 6
(roughly one quarter the max imum possible substitution cost). From the sequence of
edit operations, an al ignment be tween input and ou tpu t segments is calculated. Due
to the shallow nature of the rules in question, the exact parameters used to calculate
al ignment are not very significant.

When building the initial tree transducer, the al ignment is used to ensure that no
output symbol appears on an arc further up the tree than the corresponding input
symbol. To resolve conflicts be tween the ou tpu t symbols for a given arc, symbols m ay

2 No matter what alignment is used, we are guaranteed that at least the correspondence learned will be
some generalization that preserves the behavior of the training set. For the theoretical property of
language identification in the limit, we must be guaranteed that the alignments used are correct: that
is, the alignment must not show an output symbol to correspond to an input symbol that comes after
the input symbol that, in the target transducer, generates the output symbol. This is because, while
output symbols can be pushed back, the state-merging process cannot push the symbols forward if the
alignment has caused them to be placed too far down the tree. For the shallow rules examined in this
paper, finding the correct alignment is trivial.

510

Gildea and Jurafsky Learning Bias and Phonological-Rule Induction

® #. O'~Q

#'0 ~ @

Figure 11
Initial tree transducer constructed with alignment information. Note that output symbols have
been pushed back across state 3 during the construction.

V + { oy2, aw2, uh2 }

trC Q C, V-{uh2, uhl, ayl, 0
(~ erl, er2, oyl } ~

~ V - { oy2, aw2, uh2 ~

V:dxV \ __ /
r : t r \ f - ~ "
: t ~)

Figure 12
Flapping transducer induced with alignment, trained on 25,000 samples.

be pushed back down the tree as is done when merging states. The exact process used
to build the initial tree transducer is described below.

When adding a new arc to the tree, all the unused output segments up to and
including those that map to the arc's input segment become the new arc's output,
and are now marked as having been used. When walking down branches of the tree
to add a new input /output sample, we calculate the longest common prefix, n, of
the sample's unused output and the output of each arc along the path. The next n
symbols of the transduction's output are now marked as having been used. If the
length, 1, of the arc's output string is greater than n, it is necessary to push back the
last I - n symbols onto arcs further down the tree. A tree transducer constructed by this
process is shown in Figure 11, for comparison with the unaligned version in Figure 4.

The final transducer produced with the alignment algorithm is shown in Figure 12.
Purely to make the diagram easier to read we have used C and V to represent the set
of consonants and of vowels on the arcs' labels. It is important to note that the learning
algorithm did not have any knowledge of the concepts of vowel and consonant, other
than through the features used to calculate alignment.

The size and accuracy of the transducers produced by the alignment algorithm
are summarized in Table 4. Note that the use of alignment information in creating
the initial tree transducer dramatically decreases the number of states in the learned

511

Computational Linguistics Volume 22, Number 4

Table 4
Results using alignment information on English flapping.

OSTIA without Alignment

Samples States % Error

OSTIA with Alignment

States % Error

6,250 19 2.32 3 0.34
12,500 257 16.40 3 0.14
25,000 141 4.46 3 0.06
50,000 192 3.14 3 0.01

Table 5
Results on r-deletion using
alignment information.

r-deletion

Samples States % Error

6,250 4 0.48
12,500 3 0.21
25,000 6 0.18
50,000 35 0.30

transducer as well as the error performance on test data. The improved algori thm
induced a flapping t ransducer with the min imum number of states (3) with as few as
6,250 samples.

The use of al ignment information also reduced the learning time; the additional
cost of calculating alignments is more than compensated for by quicker merging of
states. There was still a small amount of error in the final transducer, and in the next
section we show how this remaining error was reduced still further.

The algori thm also successfully induced transducers with the min imum number
of states for the t - insert ion and t -dele t ion rules in (5) and (6), given only 6,250 sam-
ples. For the r-delet ion rule in (4), the algori thm induced a machine that was not
the theoretical minimal machine (3 states), as Table 5 shows. We discuss these results
below.

(4) r --* O/ [+vocalic] _ [+consonantal]
(5) O ~ t / L s

(6) t--*O/n--[+v°calic]-stress

In our second experiment, we applied our learning algori thm to a more difficult
problem: inducing multiple rules at once. One of the impor tant propert ies of finite-state
phonology is that t ransducers for two rules can be automatically combined to produce
a t ransducer for the two rules run in series. With our deterministic transducers, the
transducers are joined via composi t ion. Any order ing relationships are preserved in
this composed t ransducer - - the order of the rules corresponds to the order in which

512

Gildea and Jurafsky Learning Bias and Phonological-Rule Induction

Table 6
Results on three rules composed.

OSTIA with Alignment

Samples States % Error

6,250 6 0.93
12,500 5 0.20
25,000 5 0.09
50,000 5 0.04

the transducers were composed. 3
Our goal was to learn such a composed transducer directly from the original

under lying and ultimate surface forms. The simple rules we used in our exper iment
contain no feeding (the output of one rule creating the necessary envi ronment for
another rule) or bleeding (a rule deleting the necessary environment , causing another
rule not to apply) relationships among rules. Thus the order of their application is not
significant. Howeve r the learning problem remains unchanged if the rules are required
to apply in some particular order.

Setting r-delet ion aside for the present, a data set was constructed by applying
the t- insert ion rule in (5), the t -dele t ion rule in (6), and the flapping rule already
seen in (3) one after another. The min imum number of states for a subsequential
t ransducer per forming the composit ion of the three rules is five. As is seen in Table 6,
our algori thm successfully induces a t ransducer of min imum size given 12,500 or more
sample transductions.

5.2 Communi ty
5.2.1 Decision-Tree Induct ion. A second class of problems with our baseline OSTIA
resulted from a lack of generalization across segments. Any training set of words
from a language is likely to be full of accidental phonological gaps. Without an ability
to use knowledge about phonological features to generalize across phones, OSTIA's
transducers have missing transitions for certain phones from certain states. This causes
errors when transducing previously unseen words after training is complete. Consider
the t ransducer in Figure 12, reproduced below as Figure 13.

One class of errors in this t ransducer is caused by the input "falling off" the model.
That is, a t ransduction may fail because the model has no transition specified from a
given state for some phone. This is the case with (7), where there is no transition from
state 1 on phone uh2.

(7) showroom: sh owl r uh2 m--* sh owl r

A second class of errors is caused by an incorrect transition; with (8), for example,
the t ransducer incorrectly fails to flap after oy2 because, upon seeing oy2 in state 0,
the machine stays in state 0, rather than making the transition to state 1.

3 When using nondeterministic transducers, for example, those of Karttunen described in Section 2,
multiple rules are represented by intersecting, rather than composing, transducers. In such a system,
for two rules to apply correctly, the output must lie in the intersection of the outputs accepted by the
transducers for each rule on the input in question. We have not attempted to create an OSTIA-like
induction algorithm for nondeterministic transducers.

513

Computational Linguistics Volume 22, Number 4

V + { oy2, aw2, uh2 }

r~ Q C, V - { uh2, uhl, ayl, ~
(d~ ~"~ er 1, er2, o y l} _ ~

- { oy2, aw2, uh

~ :: ttVcNNN /:$

\ . _ _ /
r :tr x f ~¢"
: t ~ ,)

Figure 13
Flapping transducer induced with alignment. For simplicity, some of the phones missing from
the transitions from state 2 to 0 and from 1 to 0 have been omitted. For clarity of explication,
set-subtraction notation is used to show which vowels do not cause transitions between states
0 and 1.

(8) exploiting: ehl k s p 1 oy2 t ih ng-~ ehl k s p 1 oy2 t ih ng

Both of these problems are caused by insufficiently general labels on the transition
arcs in Figure 13. Compare Figure 13 with the correct transducer in Figure 2. We have
used set-subtraction notation in Figure 13 to highlight the differences. Notice that in
the correct transducer, the arc from state 1 to state 0 is labeled with C and V, while in
the incorrect transducer the transition is missing six of the vowels. These vowels were
simply never seen at this position in the input.

The intuition that OSTIA is missing, then, is the idea that phonological constraints
are sensitive to phonological features that pick out certain equivalence classes of seg-
ments. Since the beginning of generative grammar, and based on Jakobson's early
insistence on the importance of binary oppositions (Jakobson 1968; Jakobson, Fant,
and Halle 1952), phonological features, and not the segment, have generally formed
the vocabulary over which linguistic rules are formed. Giving such knowledge to
OSTIA would allow it to hypothesize that if every vowel it has seen has acted a
certain way, that the rest of them might act similarly.

This phonological feature knowledge may be innate or may merely be learned
extremely early. There is a significant body of psychological results, for example, indi-
cating that infants one to four months of age are already sensitive to the phonological
oppositions which characterize phonemic contrasts; Eimas et al. (1971), for example,
showed that infants were able to distinguish the syllables / b a / and / p a / , but were
unable to distinguish acoustic differences that were of a similar magnitude but that
do not form phonemic contrast in any language. Similar studies have shown that this
sensitivity appears to be cross-linguistic. But it is by no means necessary to assume
that this knowledge is innate. Ellison (1992) showed that a purely empiricist induction
algorithm, based on the information-theoretic metric of choosing a minimum-length
representation, was able to induce the concepts "V" and "C" in a number of different
languages. Promising results from another field of linguistic learning, syntactic part-
of-speech induction, suggest that an empiricist approach may be feasible. Brown et al.
(1992) used a purely data-driven greedy, incremental clustering algorithm to derive
word-classes for n-gram grammars; their algorithm successfully induced classes like

514

Gildea and Jurafsky Learning Bias and Phonological-Rule Induction

V (~ t ..- r (, ~
r ~ , . ~ C V

V c V

C : tC " ~ J ' " ~ / t : ~
r :tr ~ 9. V

Figure 14
Flapping transducer induced from 50,000 samples.

"days of the week," "male personal name," "body-part noun," and "auxiliary." Only
future research will determine whether phonological constraints are innate, or merely
learned extremely early, and whether empiricist algorithms like Ellison's will be able
to induce a full phonological ontology without them.

Whether phonological features may be innately guided or derived from earlier
induction, then, the community bias suggests adding knowledge of them to OSTIA.
We did this by augmenting OSTIA to use phonological feature knowledge to generalize
the arcs of the transducer, producing transducers that are slightly more general than the
ones OSTIA produced in our previous experiments. Our intuition was that these more
general transducers would correctly classify stressed vowels together as environments
for flapping, and similarly solve other problems caused by gaps in training data.

In the rest of this section we will describe how these generalized transducers are
produced and tested. To peek ahead at the results of the algorithm, however, consider
Figure 14. The algorithm produced the arcs of Figure 14 by generalizing the arcs from
Figure 13 above. The difference is that the arcs in Figure 13 have more general labels.

The mechanism works by applying the standard data-driven decision-tree induc-
tion algorithm (based on Quinlan's [1986] ID3 algorithm) to learn a decision tree over
the arcs of the transducer. We add prior knowledge to the induction by adding lan-
guage bias; that is, the induction language will use phonological features as a language
for making decisions. The resulting decision trees describe the behavior of the machine
at a given state in terms of the next input symbol by generalizing from the arcs leaving
the state. Since we are generalizing over arcs at a given state of an induced transducer,
rather than directly from the original training set of transductions, the input to the
ID3 algorithm is limited to the number of phonemes, and is not proportional to the
size of the original training set.

We begin by briefly summarizing the decision-tree induction algorithm. A decision
tree takes a set of properties that describe an object and outputs a decision about that
object. It represents the process of making a decision as a rooted tree, in which each
internal node represents a test of the value of a given property, and each leaf node
represents a decision. A decision about an object is reached by descending the tree, at
each node taking the branch indicated by the object's value for the property at that
node. The decision is then read off from the leaf node reached. We will use decision
trees to decide what actions and outputs a transducer should produce given certain
phonological inputs. Thus the internal nodes of the tree will correspond to tests of the
values of phonological features, while the leaf nodes will correspond to state transitions
and outputs from the transducer.

The ID3 algorithm is given a set of objects, each labeled with feature values and a
decision, and builds a decision tree for a problem given. It does this by iteratively

515

Computational Linguistics Volume 22, Number 4

choosing the single feature that best splits the data, i.e., that is the information-
theoretically best single predictor of the decision for the samples. A node is built for
this feature, and examples are divided into subsets based on their values for it. These
values are attached to the new node's children, and the algorithm is run again on the
children's subsets, until each leaf node has a set of samples that are all of the same cat-
egory. Thus for each state in a transducer, we gave the algorithm the set of arcs leaving
the state (the samples), the phonological features of the next input symbol (the fea-
tures), and the output/transition behaviors of the automaton (the decisions). Because
we used binary phonological features, we obtained binary decision trees (although
we could just as easily have used multivalued features). The alignment information
previously calculated between input and output strings is used again in determining
which arcs have the same behavior. Two arcs are considered to have the same behav-
ior if the same phonological features have changed between the input segment and
the output segment that corresponds to it, and if the preceding and following output
segments of the two arcs are identical. The same 26 binary phonological features used
in calculating edit distance were used to classify segments in the decision trees. It is
worth noting that conflicts in the input to the ID3 algorithm (where the same path
to a leaf covers examples that behave differently) are impossible: no two phonemes
agree in every feature, and because our transducers are deterministic, there is at most
one arc leaving a state labeled with a given input phoneme.

Figure 15 shows a resulting decision tree that generalized the transducer in Fig-
ure 13 to avoid the problem of certain inputs "falling off" the transducer. We auto-
matically induced this decision tree from the arcs leaving state 1 in the machine of
Figure 13. The outcomes at the leaves of the decision tree specify the output of the
next transition to be taken in terms of the input segment, as well as as the transition's
destination state. We use square brackets to indicate which phonological features of
the input segment are changed in the output; the empty brackets in Figure 15 simply
indicate that the output segment is identical to the input segment. Note that if the un-
derlying phone is a t ([-rhotic,-voice,-continuant,-high,+coronal]), the machine jumps
to state 2. If the underlying phone is an r, the machine outputs r and goes to state 1.
Otherwise, the machine outputs its input and moves to state 0.

Because the decision tree specifies a state transition and an output string for every
possible combination of phonological features, one can no longer "fall off" the ma-
chine, no matter what the next input segment is. Thus in a transducer built using the
newly induced decision tree for state 1, such as the machine in Figure 18, the arc from
state 1 to state 0 is taken on seeing any vowel, including the six vowels missing from
the arc of the machine in Figure 13.

Our decision trees superficially resemble the organization of phonological fea-
tures into functionally related classes proposed in the Feature Geometry paradigm
(see McCarthy [1988] for a review). Feature-geometric theories traditionally proposed
a unique, language-universal grouping of distinctive features to explain the fact that
phonological processes often operate on coherent subclasses of the phonological fea-
tures. For example, facts such as the common cross-linguistic occurrence of rules of
nasal assimilation, which assimilate the place of articulation of nasals to the place of
the following consonant, suggest a natural class place that groups together (at least)
the labial and coronal features. The main difference between decision trees and fea-
ture geometry trees is the scope of the proposed generalizations; where a decision
tree is derived empirically from the environment of a single state of a transducer, fea-
ture geometry is often assumed to be unique and universal (although recent work has
questioned this assumption; see, for example, Padgett [1995a, b]). Information-theoretic
distance metrics similar to those in the ID3 algorithm were used by McCarthy (1988,

516

Gildea and Jurafsky Learning Bias and Phonological-Rule Induction

rhotic

voiced consonant

/ \ / \
continuant 1 1 3

/ \
high

/ \
coronal I

/ \
1 2

Outcomes:
1: Output: [], Destination State: 0
2: Output: nil, Destination State: 2
3: Output: [], Destination State: 1
On end of string: Output: nil, Destination State: 0

Figure 15
Example decision tree. This tree describes the behavior of state 1 of the transducer in Figure 2.
[] in the output string indicates the arc's input symbol (with no features changed).

101), who used a cluster analysis on a dictionary of Arabic to argue for a particular
feature-geometric grouping; the relationship between feature geometries and empirical
classification algorithms like decision trees clearly bears further investigation.

To recapitulate, the transducers induced by OSTIA suffered from undergeneral-
ization in a number of ways. Because OSTIA had no knowledge of similarities among
phones, the induced transducer often had no transition specified for a given phone,
or had an incorrect one specified. We took the arcs leaving each state of our trans-
ducers and used a decision-tree induction algori thm to replace them by a smoother
and more general set of arcs. In the next section we show how these arcs were further
generalized.

5.2.2 Further G e n e r a l i z a t i o n : D e c i s i o n Tree Pruning . Although inducing decision
trees on the arcs of the transducer improved the generalization behavior of our trans-
ducers, we found that some transducers needed to be generalized even further. Con-
sider again the English flapping rule, which applies in the context of a preceding
stressed vowel. Our algori thm first learned an incorrect t ransducer whose decision
tree for state 0 is shown in Figure 16. In this t ransducer all arcs leaving state 0 cor-
rectly lead to the flapping state on stressed vowels, except for those stressed vowels
that happen not to have occurred before an instance of flapping in the training set. For
these unseen vowels (which consisted of the vowel uh and the diphthongs oy and ow
all with secondary stress), the t ransducer incorrectly returns to state 0. In this case, we
wish the algori thm to make the generalization that the rule applies after all stressed
vowels.

Again, this correct generalization (all stressed vowels) is expressible as a (single
node) decision tree over the phonological features of the input phones. But the key
insight is that the current t ransducer is incorrect because the absence of particular

517

Computational Linguistics Volume 22, Number 4

stress j - - - < . .
prim-stress / --..<.

tense

w-offglide / ' x
rounded 1

2 high

y-offglide 1

2 1

2

Outcomes:
1: Output: [], Destination State: 0
2: Output: [], Destination State: 1
On end of string: Output: nil, Destination State: 0

Figure 16
Decision tree before pruning. The initial state of the flapping transducer.

training patterns (the three particular stressed vowels) caused the decision tree to
make a number of complex unnecessary decisions. This problem can be solved by
pruning the decision trees at each state of the machine. Pruning is done by stepping
through each state of the machine and pruning as many branches as possible from
the fringe of the current state's decision tree. Each time a branch is pruned, one of the
children's outcomes is picked arbitrarily for the new leaf, and the entire training set
of transductions is tested to see if the new transducer still produces the right output.
As discussed in Section 6, this is computationally quite expensive. If any errors are
found, testing is repeated using the outcome of the pruned node's other child (e.g.,
the leaf with the positive rather than negative value for the feature being tested at the
pruned node). If errors are still found, the pruning operation is undone. This process
continues at the fringe of the decision tree until no more pruning is possible. Figure 17
shows the correct decision tree for flapping, obtained by pruning the tree in Figure 16.

The process of pruning the decision trees is complicated by the fact that the prun-
ing operations allowed at one state depend on the status of the trees at each other
state. Thus it is necessary to make several passes through the states, attempting ad-
ditional pruning at each pass, until no more improvement is possible. Testing each
pruning operation against the entire training set is expensive, but in the case of syn-
thetic data it gives the best results. For other applications it may be desirable to keep
a cross-validation set for this purpose.

518

Gildea and Jurafsky Learning Bias and Phonological-Rule Induction

stress

1 2

Figure 17
The same decision tree after pruning.

V ~ t ~, r ~

V c V

c : t c
r : t r ~ ,~ ~"
V:dxv \ - y
: t v

Figure 18
Flapping transducer induced from 50,000 samples (same as Figure 14).

Table 7
Results on three rules composed;
12,500 training size, 49,280 test size.

Method States % Error

OSTIA 329 22.09
Alignment 5 0.20
Add D-trees 5 0.04
Prune D-trees 5 0.01

The transducer obtained for the flapping rule after pruning decision trees is shown
in Figure 18. In contrast to Figure 13, the arcs now correspond to the natural classes
of consonants, stressed vowels, and unstressed vowels. The only difference between
our result and the hand-drawn transducer in Figure 2 is the transition from state 1
upon seeing a stressed vowel--this will be discussed in Section 7.

The effects of adding decision trees at each state of the machine for the composition
of t-insertion, t-deletion, and flapping are shown in Table 7.

Figure 19 shows the final transducer induced from this corpus of 12,500 words
with pruned decision trees. We will discuss the remaining 0.01% error in Section 7
below.

We conclude our discussion of the community bias by seeing how a more on-line
implementation of the bias might have helped our algorithm induce a transducer for
r-deletion. Recall that the failure of the algorithm on r-deletion shown in Table 5 was
not due to the difficulty of deletion per se, since our algorithm successfully learns
the t-deletion rule. Rather, we believe that the difficulty with r-deletion is the broad
context in which the rule applies: after any vowel and before any consonant. Since our
segment set distinguishes three degrees of stress for each vowel, the alphabet size is 72;
we believe this was simply too large for the algorithm without some prior concept of
"vowel" and "consonant." While our decision tree augmentation adds these concepts
to the algorithm, it only does so only after the initial transducer has been induced, and
so cannot help in building the initial transducer. We need some method of interleaving

519

Computational Linguistics Volume 22, Number 4

vF-'V,"
r C s S e e n s t ressed

v

Initial ~ - -

state c, v, v
t:

c:'E]t 7',, "I \

V : t [l

T-inset ion about
T-deletion about \ to occur
to occur F'~apping about

to occur

Figure 19
Three-rule transducer induced from 12,500 samples. [] indicates that the input symbol is
emitted with no features changed.

the generalization of segments into classes, performed by the decision trees, and the
induction of the structure of the transducer by merging states. Making generalizations
about input segments would in effect reduce the alphabet size on the fly, making the
learning of structure easier.

5.3 The Context Principle
Our final problem with the unaugmented OSTIA algorithm concerns phonological
rules that are both very general and also contain rightward context effects. In these
rules, the transducer must wait to see the right-hand context of a rule before emitting
the rule's output, and the rule applies to a general enough set of phones that additional
states are necessary to store information about the pending output. In such cases, a
separate state is necessary for each phone to which the rule applies. Thus, because
subsequential transducers are an inefficient model of these sorts of rules, representing
them leads to an explosion in the number of states of the machine, and an inability to
represent certain generalizations. One example of such state explosion is the German
rule to devoice word-final stops:

-sonorant]
(9) -continuant --* [-voiced] / _ #

In this case, a separate state must be created for each stop subject to devoicing, as
in Figure 20. Upon seeing a voiced stop, the transducer jumps to the appropriate state,
without emitting any output. If the end-of-word symbol follows, the corresponding
unvoiced stop will be emitted. If any other symbol follows, however, the original

520

Gildea and Jurafsky Learning Bias and Phonological-Rule Induction

b : b
b : g # : p

~ , ~ - []:g[] " K , ~ N . _ d : d d : b)) b

g : d

:d

Figure 20
Transducer for word-final stop devoicing. [] indicates that the input symbol is emitted with no
features changed.

voiced stop will be emitted, along with the current input symbol. In essence, the
algorithm has learned three distinct rules:

(10) b --, p / _ #

(11) d ---* t / _ #

(12) g ---+ k / _ #

Because of the inability to refer to previous input symbols, it is impossible to make
a subsequential transducer that captures the generalization of the rule in (9). While
the larger transducer of Figure 20 is accurate, the smaller transducer is desirable for
a number of reasons. First, rules applying to larger classes of phones will lead to an
even greater explosion in the number of states. Second, depending on the particular
training data, this lack of generalization can cause the transducer to make mistakes
on learning such rules. As mentioned in Section 4, smaller transducers significantly
improve the general accuracy of the learning algorithm.

We turn to the context principle for an intuition about how to solve this problem.
The context principle suggests that phonological rules refer to variables in their context.
We found that subsequential transducers tend to handle leftward context much better
than rightward context. This is because a separate state is only necessary for each
distinct context in which segments behave differently. The behavior of different phones
within each context is represented by the different arcs, without making separate states
necessary. Thus our transducers only needed to be modified to deal with rightward
context. 4 Our solution is to add a simple kind of memory to the model of transduction.
The transducer keeps track of the input symbols seen so far. Just as the generalized
arcs can now specify one of their output symbols as being the current input symbol
with certain phonological features changed, they are now able to reference previous

4 The rules previously discussed in this paper avoid this problem because they apply to only one phone.

521

Computational Linguistics Volume 22, Number 4

b : -1[]
d : -1[]
g : -1[]

[] : 0[] # : - 1 [-voiced +tense]

~ b : O ~ 1 d : O
g : O

[1 :-1[1 0[]

Figure 21
Word-final stop devoicing with variables. Variables are denoted by a number indicating the
position of the input segment being referred to and a set of phonological features to change.
Thus 0[] simply denotes the current input segment, while -1[-voiced -}-tense] means the
unvoiced, tense version of the previous input segment. -1[] -0[] indicates that the machine
outputs a string consisting of the previous input segment followed by the current segment.

input symbols. The transducer for word-final stop devoicing using variables is shown
in Figure 21.

It is important to note that while we are changing the model of transduction,
we are not increasing its formal power. As long as the alphabet is of finite size, any
machine using variables can be translated into a potentially much larger machine with
separate states for each possible value the variables can take.

When constructing the algorithm's original tree transducer, variables can be in-
cluded in the output strings of the transducer's arcs. When performing a transduc-
tion, variables are interpreted as referring to a certain symbol in the input string with
specific phonological features changed. The variables contain two pieces of informa-
tion: an index of the input segment referenced by the variable relative to the current
position in the index string, and a (possibly empty) list of phonological feature values
to change in the input segment.

After calculating alignment information for each input /output pair, all output
symbols determined to have arisen from substitutions (that is, all output segments
other than those arising from insertions) are rewritten in variable notation. The vari-
able's index is the relative index of the corresponding input segment as calculated by
the alignment; the features specified by the variable are only those that have changed
from the input segment. Thus rewriting each output symbol in variable notation is
done in constant time and adds nothing to the algorithm's computational complexity.

When performing the state mergers of the OSTIA algorithm, two variables are
considered to be the same symbol if they agree in both components: the index and list
of phonological features. This allows arcs that previously had different output strings
to merge, as for example in the arc from state 1 to state 0 of Figure 21, which is a
generalization over the arcs into state 0 in Figure 20.

We applied the modified algorithm with variables in the output strings to the
problem of the German rule that devoices word-final stops. Our data set was con-
structed from the CELEX lexical database (Celex 1993), which contains pronunciations
for 359,611 word forms--including various inflected forms of the same lexeme. For
our experiments we used the CELEX pronunciations as the surface forms, and gener-
ated underlying forms by revoicing the (devoiced) final stop for the appropriate forms
(those for which the word's orthography ends in a voiced stop). Although the segment
set used was slightly different from that of the English data, the same set of 26 binary
articulatory features was used. Results are shown in Table 8.

522

Gildea and Jurafsky Learning Bias and Phonological-Rule Induction

Table 8
Results on German word-final stop devoicing;
50,000-word test set.

No variables Using variables

Samples States % Error States % Error

700 8 0.218 8 7.996
10,000 11 0.240 11 0.568
20,000 24 0.392 2 0.000
50,000 19 0.098 2 0.000

[1 : 011 b0 Q
d: l~
g : O

[] : -111 011
: - 1 [-vo iced +tense]

Figure 22
Transducer induced for word-final stop devoicing. [] indicates that the input symbol is emitted
with no features changed.

Using the model of transduction augmented with variables, a machine with the
min imum two states and perfect performance on test data was induced with 20,000
samples and greater. This machine is shown in Figure 22. The only difference between
this t ransducer and the hand-drawn transducer of Figure 21 is that the arcs leaving
state 1 go to state 0 rather than looping back to state 1. Thus the transducer will fail to
perform devoicing when two voiced stops occur at the end of a word. As the corpus
contains no such cases, no errors were produced. As we will discuss in Section 7, this
is similar to what occurred in the machine induced for flapping.

5.3.1 Search Over Sequences of State Mergers. The results quoted in the previous
section were achieved with a slightly different method than those for the English data.
The difference lies in the order in which state mergers are at tempted, and can have
significant effects in the results.

We per formed experiments using two versions of the algorithm, varying the order
in which the algori thm tries to merge pairs of states. The mergers are per formed in
a nested loop over the states of the initial tree transducer. The ordering of states for
this loop in the original OSTIA algori thm as described in Oncina, Garcia, and Vidal
(1993) is the lexicographic ordering of the string of input symbols as one walks from
the root of the tree to the state in question. This is the me thod used in the first column
of results in Table 9. In the second column of results, the ordering of the states was
simply the order of their creation as the sample transductions were read as input. This
is also the me thod used in the results previously described for the various English
rules.

The correctness of the algori thm requires that the states be ordered such that state
numbers always increase as one walks outward from the root of the tree. This still
leaves a large space of permissible orderings, and, as can be seen from our results,
the ordering chosen can have a significant effect on the algorithm's outcome. While

523

Computational Linguistics Volume 22, Number 4

Table 9
Results on German word-final stop devoicing; 50,000-word test set.

Lexicographic ordering of states Input-based ordering of states

Samples States % Error States % Error

700 8 7.996 6 0.004
10,000 11 0.568 8 0.288
20,000 2 0.000 12 0.296
50,000 2 0.000 9 0.034

neither method is consistently better in the German experiments, we found that lexico-
graphic orderings performed more poorly than the input-based ordering of the input
samples for the English experiments, s The lexicographic ordering of the original algo-
rithm is not always optimal. Furthermore, results with lexicographic orderings vary
with the ordering of segments used. The segment ordering used for the results in
Table 9 grouped similar segments together, and performed better than a randomized
segment ordering. Presumably this is because the ordering grouping similar segments
together causes states reached on similar input symbols to be merged, which is both
linguistically reasonable and necessary in order to generate the correct transducer.

The underlying principle of the algorithm is to generalize by reducing the number
of states in the transducer. Because the OSTIA algorithm tends to settle in local minima
when merging states, the problem becomes one of searching the space of permissible
orderings of state mergers. Some linguistically based heuristic for ordering states might
produce more consistent results on different types of phonological rules, perhaps by
reordering the remaining states as the initial states are merged.

6. Complexity

The OSTIA algorithm as described by Oncina, Garcfa, and Vidal (1993) had a worst-
case complexity of O(nB(m + k) + nmk), where n is the sum of all the input strings'
lengths, m is the length of the longest output string, and k is the size of the input
alphabet; Oncina, Garcfa, and Vidal's (1993) experiments showed the average case
time to grow more slowly. We will discuss the complexity implication of each of our
enhancements to the algorithm.

The calculation of alignment information adds a preprocessing step to the al-
gorithm that requires O(nm) time for the dynamic programming string-alignment
algorithm. After the initial tree is constructed using the alignment information, the
above-mentioned worst-case bound still applies for the process of merging states; it
does not require that the initial tree be onward. Since this modification only alters the
initial tree transducer, the behavior of the main state-merging loop of the OSTIA algo-
rithm is essentially unchanged. In practice, we found the use of alignment information
significantly sped up the algorithm by allowing states to collapse more quickly. In any
case, the O(nm) complexity of the preprocessing step is subsumed by the O(nmk) term
of OSTIA's complexity.

5 The behavior of the input -based order ing d e p e n d s on the order ing of the t ra ining set. We used a
r a n d o m order ing of our t raining set, bu t a corpus-based order ing wou ld not be significantly different.
While more f requent words tend to be seen earlier in a corpus, there is no reason to th ink that more
f requent words provide better chances of successful state mergers .

524

Gildea and Jurafsky Learning Bias and Phonological-Rule Induction

The induction of decision trees adds a new stage after the OSTIA algorithm com-
pletes. The number of nodes in each decision tree is bounded by O(k), since there are at
most k arcs out of a given state. Calculating information content of a given feature can
be done in O(k) time because k is an upper bound on the number of possible outcomes
of the decision tree. Therefore, choosing the feature with the maximum information
content can be done in O(fk) time, where f is the number of features, and the entire
decision tree can be learned in O(/k 2) time. Since there are at most n states, this stage
of the algorithm is O(nfk2). However, because k is relatively small and because deci-
sion trees are induced only after merging states down to a small number, decision-tree
induction in fact takes only a fraction the time of any other step of computation. The
process of pruning the trees, however, is very expensive, as the entire training set is
verified after each pruning operation. Since each verification of the input is O(nk), and
there are O(k) nodes at each of O(n) states to attempt to prune, one iteration through
the set of states attempting pruning at each state is therefore O(n2k2). There are at
most O(nk) iterations through the states, since at least one node of one state's decision
tree must be pruned in each iteration. Therefore, the entire pruning process is O(n3k3).
This is a rather pessimistic bound since pruning occurs after state merger, and there
are generally far less than nk states left. In fact, adding input pairs makes finding the
smallest possible automaton more likely, and reduces the number of states at which
pruning is necessary. Nevertheless the verification of pruning operations dominates
all other steps of computation.

Once alignment information for each input /output pair has been computed, an
output symbol can be rewritten in variable notation in constant time. Using vari-
ables can increase the size of the output alphabet, but none of the complexity cal-
culations depend on this size. Therefore using variables is essentially free and con-
tributes nothing to overall complexity. After adding all the steps together, we ge t
o(ng(m + k) + nmk + r//'k 2 ÷ n3k 3) time. Thus, even using the expensive method of
verifying the entire training set after each pruning operation, the entire algorithm is
still polynomial. Furthermore, our additions have not worsened the complexity of the
algorithm with respect to n, the total number of input string symbols.

On a typical run on 10,000 German words with final stop devoicing applied using a
SPARC 10, calculating alignment information, rewriting each output string in variable
notation and building the initial tree transducer took 19 seconds, the state merging
took 5 seconds, inducing the decision trees took under I second, and the pruning took
16 minutes and 1 second. When running on 50,000 words from the same data set,
alignment, variable notation, and building the initial tree took 1 minute 37 seconds,
the state merging took 4 minutes 44 seconds, inducing decision trees took 2 seconds
and pruning decision trees took 2 hours, 9 minutes and 9 seconds.

7. Another Implicit Bias

An examination of the final few errors (three samples) in the induced flapping and
three-rule transducers in Section 5.2.2 turned out to demonstrate a significant problem
in the assumption that an SPE-style rule is isomorphic to a regular relation.

While the learned transducer correctly makes the generalization that flapping oc-
curs after any stressed vowel, it does not flap after two stressed vowels in a row:

sky-writing: s k ayl r ay2 t ih ng ~ s k ayl r ay2 t ih ng

sky-writers: s k ayl r ay2 t er z --~ s k ayl r ay2 t er z

gyrat ing: jh ayl r ey2 t ih ng --+ jh ayl r ey2 t ih ng

525

Computational Linguistics Volume 22, Number 4

This is possible because no samples containing two stressed vowels in a row (or
separated by an r as here) immediately followed by a flap were in the training data.
This transducer will flap a t after any odd number of stressed vowels, rather than
simply after any stressed vowel. Such a rule seems quite unnatural phonologically,
and makes for an odd SPE-style context-sensitive rewrite rule. The SPE framework
assumed (Chomsky and Halle 1968, 330) that the well-known Minimum Description
Length (MDL) criterion be applied as an evaluation metric for phonological systems.
Any sort of MDL criterion applied to a system of rewrite rules would prefer a rule
such as

(13) t--*dx/V__V

to a rule such as

(14) t --* dx / 9 ("V 9)* _ V

which is the equivalent of the transducer learned from the training data. Similarly,
the transducer learned for word-final stop devoicing would fail to perform devoicing
when a word ends in two voiced stops, as it too returns to its state 0 upon seeing a
second voiced stop, rather than staying in state 1.

These kinds of errors suggest that while a phonological rewrite rule can be ex-
pressed as a regular relation, the evaluation procedures for the two mechanisms
(rewrite rules and transducers) must be different; the correct flapping transducer is in
no way smaller than the incorrect one. In other words, the traditional formalism of
context-sensitive rewrite rules contains implicit biases about how phonological rules
usually work that are not present in the transducer system.

8. Related Work

Recent work in the machine learning of phonology includes algorithms for learning
both segmental and nonsegmental information. Nonsegmental approaches include
those of Daelemans, Gillis, and Durieux (1994) for learning stress systems, as well
as approaches to learning morphology such as Gasser's (1993) system for inducing
Semitic morphology, and Ellison's (1992) extensive work on syllabicity, sonority, and
harmony. Since our approach learns only segmental structure, a more relevant com-
parison is with other algorithms for inducing segmental structure.

Johnson (1984) gives one of the first computational algorithms for phonological
rule induction. His algorithm works for rules of the form

(15) a --* b/C

where C is the feature matrix of the segments around a. Johnson's algorithm sets up
a system of constraint equations that C must satisfy, by considering both the positive
contexts, i.e., all the contexts Ci in which a b occurs on the surface, as well as all the
negative contexts Cj in which an a occurs on the surface. The set of all positive and
negative contexts will not generally determine a unique rule, but will determine a
set of possible rules. Johnson then proposes that principles from Universal Grammar
might be used to choose between candidate rules, although he does not suggest any
particular principles.

Johnson's system, while embodying an important insight about the use of positive
and negative contexts for learning, did not generalize to insertion and deletion rules,

526

Gildea and Jurafsky Learning Bias and Phonological-Rule Induction

and it is not clear how to extend his system to modern autosegmental phonological
systems. Touretzky, Elvgren, and Wheeler (1990) extended Johnson's insight by using
the version spaces algorithm of Mitchell (1981) to induce phonological rules in their
Many Maps architecture. Like Johnson's, their system looks at the underlying and
surface realizations of single segments. For each segment, the system uses the version
space algorithm to search for the proper statement of the context. The model also has
a separate algorithm that handles harmonic effects by looking for multiple segmental
changes in the same word, and has separate processes to deal with epenthesis and
deletion rules. Touretzky, Elvgren, and Wheeler's approach seems quite promising;
our use of decision trees to generalize each state is a similar use of phonological
feature information to form generalizations.

Riley (1991) and Withgott and Chen (1993) first proposed a decision-tree approach
to segmental mapping. A decision tree is induced for each segment, classifying pos-
sible realizations of the segment in terms of contextual factors such as stress and the
surrounding segments. One problem with these particular approaches is that since
the decision tree for each segment is learned separately, the technique has difficulty
forming generalizations about the behavior of similar segments. In addition, no gener-
alizations are made about segments in similar contexts, or about long-distance depen-
dencies. In a transducer-based formalism, generalizations about segments in similar
contexts follow naturally from generalizations about the behavior of individual seg-
ments. The context is represented by the current state of the machine, which in turn
depends on the behavior of the machine on the previous segments. A possible adjust-
ment to the decision-tree approach to capture some of these generalizations would
be to augment the decision tree with information about the features of the output
segment, or about features of more distant phones, perhaps about nearby syllables.

9. C o n c l u s i o n

Our goal in this paper has been to explore the role of prior knowledge in phonologi-
cal learning. We showed that a domain-independent, empiricist induction algorithm,
OSTIA, failed to induce minimal transducers even for very simple rules like flapping.
But adding three domain-specific learning biases to OSTIA allowed it to successfully
learn transducers implementing simple phonological rules of English and German:
faithfulness (underlying segments tend to be realized similarly on the surface), commu-
nity (similar segments behave similarly), and context (phonological rules need access
to variables in their context). These biases are so fundamental to generative phonology
that, although they are present in some respect in every phonological theory, they are
left implicit in most. Furthermore, we have shown that some of the remaining errors
in our augmented model are due to implicit biases in the traditional SPE-style rewrite
system that are not similarly represented in the transducer formalism, suggesting that
while transducers may be formally equivalent to rewrite rules, they may not have
identical evaluation procedures.

Because our biases were applied to the learning of very simple SPE-style rules, and
to a nonprobabilistic theory of purely deterministic transducers, we do not expect that
our model as implemented has any practical use as a phonological learning device.
Indeed, because of the noise and nondeterminism inherent to linguistic data, we feel
strongly that stochastic algorithms for language induction are much more likely to be
a fruitful research direction (e.g., Kupiec 1992; Lucke 1993; Stolcke and Omohundro
1993, 1994; Ron, Singer, and Tishby 1994). But we believe that the biases we have
relied on to improve the OSTIA algorithm may also prove useful when applied to
such stochastic linguistic-rule induction algorithms. For example Wooters and Stolcke

527

Computational Linguistics Volume 22, Number 4

(1994) used the Stolcke and Omohundro model-merging algori thm to induce word-
pronunciat ion HMMs for a speech recognition system. This algori thm has no domain
knowledge about phonology, and so is unable to classify together similar phones, or
generalize across phones that were missing in the input data. Adding phonological
feature biases to such a model could improve its generalization performance just as it
improved OSTIA.

In summary, we believe that augment ing an empirical learning element with rela-
tively abstract learning biases is a very fruitful g round for research be tween the often
restated strict nativist and strict empiricist language learning paradigms.

Acknowledgments
Many thanks to Jerry Feldman for advice
and encouragement, to Isabel
Galiano-Ronda for her help with the OSTIA
algorithm, and to Eric Fosler, Sharon
Inkelas, Lauri Karttunen, Jos60ncina,
Orhan Orgun, Ronitt Rubinfeld, Stuart
Russell, Andreas Stolcke, Gary Tajchman,
four anonymous COLI reviewers, and an
anonymous reviewer for ACL-95. This work
was partially funded by ICSI.

References
Aha, David W., Dennis Kibler, and Marc K.

Albert. 1991. Instance-based learning
algorithms. Machine Learning, 6:37-66.

Aronoff, Mark. 1976. Word-Formation in
Generative Grammar. Linguistic Inquiry
Monograph no. 1. MIT Press, Cambridge,
MA.

Berstel, Jean. 1979. Transductions and
Context-free Languages. Teubner, Stuttgart.

Bird, Steven. 1995. Computational Phonology:
A Constraint-based Approach. Cambridge
University Press, Cambridge.

Bird, Steven and T. Mark Ellison. 1994.
One-level phonology: Autosegmental
representations and rules as finite
automata. Computational Linguistics, 20(1).

Brown, Peter E, Vincent J. Della Pietra,
Peter V. deSouza, Jennifer C. Lai, and
Robert L. Mercer. 1992. Class-based
n-gram models of natural language.
Computational Linguistics, 18(4):467-479.

Celex. 1993. The CELEX lexical database.
Centre for Lexical Information, Max
Planck Institute for Psycholinguistics.

Chomsky, Noam. 1981. Lectures on
Government and Binding. Foris, Dordrecht.

Chomsky, Noam and Morris Halle. 1968.
The Sound Pattern of English. Harper and
Row, New York.

CMU. 1993. The Camegie Mellon
Pronouncing Dictionary v0.1. Carnegie
Mellon University.

Daelemans, Walter, Steven Gillis, and Gert
Durieux. 1994. The acquisition of stress: A
data-oriented approach. Computational

Linguistics, 20(3):421-451.
Dresher, Elan and Jonathan Kaye. 1990. A

computational learning model for
metrical phonology. Cognition, 34:137-195.

Eimas, P. D., E. R. Siqueland, P. Jusczyk,
and J. Vigorito. 1971. Speech perception in
infants. Science, 171:303-306.

Ellison, T. Mark. 1992. The Machine Learning
of Phonological Structure. Ph.D. thesis,
University of Western Australia.

Ellison, T. Mark. 1994. Phonological
derivation in optimality theory. In
COLING-94.

Freund, Y., M. Kearns, D. Ron, R. Rubinfeld,
R. Schapire, and L. Sellie. 1993. Efficient
learning of typical finite automata from
random walks. In Proceedings of the 25th
ACM Symposium on Theory of Computing,
pages 315-324.

Gasser, Michael. 1993. Learning words in
time: Towards a modular connectionist
account of the acquisition of receptive
morphology. Unpublished manuscript.

Goldsmith, John. 1993. Harmonic
phonology. In John Goldsmith, editor, The
Last Phonological Rule. University of
Chicago Press, Chicago, pages 21-60.

Gupta, Prahlad and David S. Touretzky.
1994. Connectionist models and linguistic
theory: Investigations of stress systems in
language. Cognitive Science, 18:1-50.

Jakobson, Roman. 1968. Child Language,
Aphasia, and Phonological Universals.
Mouton, The Hague.

Jakobson, Roman, Gunnar Fant, and Morris
Halle. 1952. Preliminaries to Speech Analysis.
MIT Press, Cambridge, MA.

Johnson, C. Douglas. 1972. Formal Aspects of
Phonological Description. Mouton, The
Hague.

Johnson, Mark. 1984. A discovery procedure
for certain phonological rules. In
Proceedings of the Tenth International
Conference on Computational Linguistics,
pages 344-347, Stanford.

Kaplan, Ronald M. and Martin Kay. 1994.
Regular models of phonological rule
systems. Computational Linguistics,

528

Gildea and Jurafsky Learning Bias and Phonological-Rule Induction

20(3):331-378.
Karttunen, Lauri. 1993. Finite-state

constraints. In John Goldsmith, editor, The
Last Phonological Rule. University of
Chicago Press, Chicago.

Koskenniemi, Kimmo. 1983. Two-level
morphology: A general computational
model of word-form recognition and
production. Publication No. 11,
Department of General Linguistics,
University of Helsinki.

Kupiec, Julian. 1992. Hidden Markov
estimation for unrestricted stochastic
context-free grammars. In Proceedings of
ICASSP-92, pages 177-180, San Francisco.

Lakoff, George. 1993. Cognitive phonology.
In John Goldsmith, editor, The Last
Phonological Rule. University of Chicago
Press, Chicago.

Ling, Charles X. 1994. Learning the past
tense of English verbs: The symbolic
patter associator vs. connectionist models.
Journal of Artificial Intelligence Research,
1:209-229.

Lucke, Helmut. 1993. Inference of stochastic
context-free grammar rules from example
data using the theory of Bayesian belief
propagation. In Eurospeech 93, pages
1195-1198, Berlin.

McCarthy, John J. 1988. Feature geometry
and dependency: A review. Phonetica,
45:84-108.

McCarthy, John J. and Alan Prince. 1995.
Prosodic morphology. In J. Goldsmith,
editor, Handbook of Phonological Theory.
Basil Blackwell Ltd., pages 318-366.

Mitchell, Tom M. 1981. Generalization as
search. In Bonnie Lynn Webber and
Nils J. Nilsson, editors, Readings in
Arti~'cial Intelligence. Morgan Kaufmann,
Los Altos, pages 517-542.

Oncina, JosG Pedro Garcfa, and Enrique
Vidal. 1993. Learning subsequential
transducers for pattern recognition tasks.
IEEE Transactions on Pattern Analysis and
Machine Intelligence, 15:448-458, May.

Orgun, Orhan. 1995. A declaritive theory of
phonology-morphology interleaving.
Unpublished manuscript, University of
California-Berkeley, Department of
Linguistics, October.

Orgun, Orhan. 1996. Correspondence and
identity constraints in two-level
optimality theory. In Proceedings of the 14th
West Coast Conference on Formal Linguistics
(WCCFL-95).

Padgett, Jaye. 1995a. Feature classes. In
Papers in Optimality Theory. GLSA, UMass,
Amherst. University of Massachusetts
Occasional Papers (UMOP) 18.

Padgett, Jaye. 1995b. Partial class behavior

and nasal place assimilation. In
Proceedings of the Arizona Phonology
Conference: Workshop on Features in
Optimality Theory, Coyote Working Papers,
University of Arizona, Tucson. To appear.

Prince, Alan and Paul Smolensky. 1993.
Optimality theory: Constraint interaction
in generative grammar. Unpublished
manuscript, Rutgers University.

Pulman, Stephen G. and Mark R. Hepple.
1993. A feature-based formalism for
two-level phonology: A description and
implementation. Computer Speech and
Language, 7:333-358.

Quinlan, J. R. 1986. Induction of decision
trees. Machine Learning, 1:81-106.

Riley, Michael D. 1991. A statistical model
for generating pronunciation networks. In
IEEE ICASSP-91, pages 737-740.

Ron, Dana, Yoram Singer, and Naftali
Tishby. 1994. The power of amnesia. In
Jack Cowan, Gerald Tesauro, and Joshua
Alspector, editors, Advances in Neural
Information Processing Systems 6. Morgan
Kaufmann, San Mateo, CA.

Stolcke, Andreas and Stephen Omohundro.
1993. Hidden Markov model induction by
Bayesian model merging. In Advances in
Neural Information Processing Systems 5.
Morgan Kaufman, San Mateo, CA.

Stolcke, Andreas and Stephen Omohundro.
1994. Best-first model merging for hidden
Markov model induction. Technical
Report TR-94-003, ICSI, Berkeley, CA,
January.

Tesar, Bruce. 1995. Computational Optimality
Theory. Ph.D. thesis, University of
Colorado, Boulder.

Tesar, Bruce and Paul Smolensky. 1993. The
learnability of optimality theory: An
algorithm and some basic complexity
results. Technical Report CU-CS-678-93,
University of Colorado at Boulder,
Department of Computer Science.

Touretzky, David S., Gillette Elvgren, III,
and Deirdre W. Wheeler. 1990.
Phonological rule induction: An
architectural solution. In Proceedings of the
12th Annual Conference of the Cognitive
Science Society (COGSCI-90), pages
348-355.

Touretzky, David S. and Deirdre W.
Wheeler. 1990. A computational basis for
phonology. In Advances in Neural
Information Processing Systems 2, pages
372-379.

Wagner, R. A. and M. J. Fischer. 1974. The
string-to-string correction problem.
Journal of the Association for Computation
Machinery, 21:168-173.

Withgott, M. M. and E R. Chen. 1993.

529

Computational Linguistics Volume 22, Number 4

Computation Models of American Speech.
Center for the Study of Language and
Information.

Wooters, Chuck and Andreas Stolcke. 1994.

Multiple-pronunciation lexical modeling
in a speaker-independent speech
understanding system. In ICSLP-94.

530

