
The Effects of Lexical Specialization on 
the Growth Curve of the Vocabulary 

R. H a r a l d  Baayen*  
Max Planck Institute for 
Psycholinguistics 

The number of different words expected on the basis of the urn model to appear in, for example, 
the first half of a text, is known to overestimate the observed number of different words. This 
paper examines the source of this overestimation bias. It is shown that this bias does not arise 
due to sentence-bound syntactic constraints, but that it is a direct consequence of topic cohesion 
in discourse. The nonrandom, clustered appearance of lexically specialized words, often the key 
words of the text, explains the main trends in the overestimation bias both quantitatively and 
qualitatively. The effects of nonrandomness are so strong that they introduce an overestimation 
bias in distributions of units derived from words, such as syllables and digrams. Nonrandom 
word usage also affects the accuracy of the Good-Turing frequency estimates which,for the lowest 
frequencies, reveal a strong underestimation bias. A heuristic adjusted frequency estimate is 
proposed that, at least for novel-sized texts, is considerably more accurate. 

1. Introduct ion 

When reading through a text, word token by word token, the number of different word 
types encountered increases, quickly at first, and ever more slowly as one progresses 
through the text. The number of different word types encountered after reading N 
tokens, the vocabulary size V(N), is a function of N. Analytical expressions for V(N) 
based on the urn model are available. A classic problem in word frequency stud- 
ies is, however, that these analytical expressions tend to overestimate the observed 
vocabulary size, irrespective of whether these expressions are nonparametric (Good 
1953; Good and Toulmin 1956; Muller 1979; Brunet 1978) or parametric (Sichel 1986; 
Khmaladze and Chitashvili 1989; Chitashvili and Baayen 1993) in nature. 

Although the theoretical or expected vocabulary size E[V(N)] generally is of the 
same order of magnitude as the observed vocabulary size, the lack of precision one 
observes time and again casts serious doubt on the reliability of a number of mea- 
sures in word frequency statistics. For instance, Baayen (1989, 1992) and Baayen and 
Renouf (1996) exploit the Good-Turing estimate for the probability of sampling un- 
seen types (Good 1953) to develop measures for the degree of productivity of affixes, 
Baayen and Sproat (to appear) apply this Good-Turing estimate to obtain enhanced 
estimates of lexical priors for unseen words, and the Good-Turing estimates also play 
an important role for estimating population probabilities (Church and Gale 1991). If a 
simple random variable such as the vocabulary size reveals consistent and significant 
deviation from its expectation, the accuracy of the Good-Turing estimates is also called 
into question. The aim of this paper is to understand why this deviation between the- 
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ory and observation arises in word frequency distributions, and in this light evaluate 
applications of the Good-Turing results. 

The remainder of this paper is structured as follows. In Section 2, I introduce some 
basic notation and the expressions for the growth curve of the vocabulary with which 
we will be concerned throughout, including a model proposed by Hubert and Labbe 
(1988), which, by introducing a smoothing parameter, leads to much-improved fits. Un- 
fortunately, this model is based on a series of unrealistic simplifications, and cannot 
serve as an explanation for the divergence between the observed and expected vocab- 
ulary size. In Section 3, therefore, I consider a number of possible sources for the misfit 
in greater detail: nonrandomness at the sentence level due to syntactic structure, non- 
randomness due to the discourse structure of the text as a whole, and nonrandomness 
due to thematic cohesion in restricted sequences of sentences (paragraphs). Section 4 
traces the implications of the results obtained for distributions of units derived from 
words, such as syllables and digrams, and examines the accuracy of the Good-Turing 
frequency estimates. A list of symbols is provided at the end of the paper. 

2. The Growth Curve of the Vocabulary 

Let N be the size of a text in word tokens, and let V denote the total number of different 
word types observed among the N word tokens. Roughly half of the word types occur 
only once, the so-called hapax legomena, others occur with higher frequencies) Let 
V(N, 1) denote the number of once-occurring types among N tokens, and, similarly, 
let V(N,f) denote the number of types occurringf times after sampling N tokens. The 
expected number of different types E[V(M)] for M < N conditional on the frequency 
spectrum {V(N,f)},f -- 1, 2, 3, . . .  can be estimated by 

F.[V(M)] = V- (1- M) s. 
f 

(1) 

A proof for (1) is presented in the appendix. 
Figure 1 illustrates the problems that arise when (1) is applied to three texts, Alice 

in Wonderland, by Lewis Carroll (upper panels), Moby Dick by Herman Melville (middle 
panels), and Max Havelaar by Multatuli (the pseudonym of Eduard Douwes Dekker, 
bottom panels). 2 All panels show the sample size N on the horizontal axis. Thus the 
horizontal axis can be viewed as displaying the "text time" measured in word tokens. 
The vertical axis of the left-hand panels shows the number of observed word types 
(dotted line) and the number of types predicted by the model (solid line) obtained 
using (1). These panels reveal that the expected vocabulary size overestimates the 
observed vocabulary size for almost all of the 40 equidistant measurement points. To 
the eye, the overestimation seems fairly small. Nevertheless, in absolute terms the 
expectation may be several hundreds of types too high, and may run up to 5% of the 
total vocabulary size. 

1 The type definition I have used throughout is based on the orthographic word form: house and houses 
are counted as two different types, houses and houses as two tokens of the same type. No lemmatization 
has been attempted, first, because the probabilistic aspects of the problem considered here are not 
affected by whether or not lemmatization is carried out, and second, because it is of interest to 
ascertain how much information can be extracted from texts with minimal preprocessing. 

2 These texts were obtained by anonymous ftp from the Project Gutenberg at obi.std.com. The header of 
the electronic version of Moby Dick requires mention of E.F. Tray at the University of Colorado, 
Boulder, who prepared the text on the basis of the Hendricks House Edition. 
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Figure 1 
The growth curve of the vocabulary. Observed vocabulary size V(N) (dotted lines) and 
expected vocabulary size E[V(N)] (solid lines) for three novels (left-hand panels) and the 
corresponding overstimation errors E[V(N)] - V(N) (dotted lines) and their 
sentence-randomized versions ("+"-lines, see Section 3.1) (right-hand panels). 

The right-hand panels of Figure I show the overestimation error functions E[V(N)] 
- V(N) corresponding to the left-hand panels using dot ted lines. For the first 20 mea- 
surement  points, the instances for which E[V(N)] diverges significantly from V(N) 
are shown in bold. 3 Clearly, the divergence is significant for almost all of the first 20 
measurement  points. This suggests informally that the discrepancy between E[V(N)] 
and V(N) is significant over  a wide range of sample sizes. 

2.1 The  M o d e l  Proposed  by  Hubert  and Labbe 
The problem of the systematic estimation error of E[V(N)] has been pointed out  by  
Muller (1979) and Brunet (1978), who  hypothesize  that lexical specialization is at issue. 
In any text, there are words  the use of which is mainly or even exclusively restricted 
to a given subsection of that text. Such locally concentrated clusters of words  are at 
odds with the randomness  assumption under lying the derivation of (1), and m ay  be 
the cause of the divergence illustrated in Figure 1. Following this line of reasoning, 
Huber t  and Labbe (1988) propose  a model  according to which (1) should be modif ied 

3 Since the expression for an estimate of the variance of V(N) figuring in the Z-scores used here requires 
knowledge of E[V(2N)], the significance of the divergence for the second 20 measurement points is not 
available. For technical details, see Chitashvili and Baayen (1993). 
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as follows (see the appendix for further details): 

M (1 p ) V -  (1 - p) ~ V ( N , f )  1 - . EHL[V(M)] = p--~V + - f (2) 

Hubert and Labbe's model contains one free parameter, the coefficient of vocabu- 
lary partition p, an estimate of the proportion of specialized words in the vocabulary. 
Given K different text sizes for which the observed and expected vocabulary sizes are 
known, p can be estimated by minimizing the mean squared error (MSE) 

K V - ~ k = l ( ( M k )  E[V(Mk)]) 2 

K 
(3) 

or the chi-square statistic 

K (V(Mk) - E[V(Mk)]) 2 
~ ~-~-~-~ (4) 

k=l 

(conveniently ignoring that the variance of V(M) increases with M, see Chitashvili 
and Baayen [1993]). For Alice in Wonderland, minimalization of (4) for K = 40 leads to 
p = 0.16, and according to this rough estimate of goodness-of-fit the revised model 
fits the data very well i n d e e d  (X~39) 7- 3.58, p > 0.5). For Moby Dick, however, the chi- 
squared statistic suggests a significant difference between the observed and expected 
vocabulary sizes (X~39) = 172.93,p < 0.001), even though the value of the p parame- 
ter (0.12) leads to a fit that is much improved with respect to the unadjusted growth 
c u r v e  (X~39) = 730.47). Closer inspection of the error pattern of the adjusted estimate 
reveals the source of the misfit: for the first 12 measurement points, the observed 
vocabulary size is consistently overestimated. From the 14th observation onwards, 
the Hubert-Labbe model consistently underestimates the real vocabulary size. Appar- 
ently, the development of the vocabulary in Moby Dick can be modeled globally, but 
local fluctuations introducing additional points of inflection into the growth curve are 
outside its scope--a more detailed study of the development of lexical specialization 
in the narrative is required if the appearance of these points of inflection are to be 
understood. 

In spite of this deficiency, the Hubert-Labbe curve appears to be an optimal 
smoother, and this suggests that the value obtained for the coefficient of vocabulary 
partition p is a fairly reliable estimate of the extent to which a text is characterized by 
lexical specialization. In this light, the evaluation by Holmes (1994), who suggests that 
p might be a useful discriminant for authorship attribution studies, is understandable. 
Unfortunately, the assumptions underlying (2) are overly simplistic, and seriously call 
into question the reliability of p as a measure of lexical specialization, and the same 
holds for the explanatory value of this model for the inaccuracy of E[V(N)]. 

2.2 Problems with the Hubert and Labbe Model 
One highly questionable simplification underlying the derivation of (2) spelled out in 
the appendix is that specialized words are assumed to occur in a single text slice only. 
Consider Figure 2, which plots the number of times Ahab appears in 40 successive, 
equally sized text slices that jointly constitute the full text of Moby Dick. The dotted 
line reveals the main developmental pattern (time-series smoothing using running 
medians). Even though Ahab is one of the main characters in Moby Dick, and even 
though his name certainly belongs to the specialized vocabulary of the novel, Ahab is 
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Figure 2 
Nonrandom word usage illustrated for Ahab in Moby Dick. The horizontal axis plots the 40 
equally sized text slices, the vertical axis the frequency of Ahab in these text slices. The dotted 
line represents a time-series smoother using running medians (Tukey 1977). 

not mentioned by name in one text slice only, as the Hubert-Labbe model would have. 
What we find is that he is not mentioned at all in the first five text slices. Following 
this we observe a series of text slices in which he appears frequently. These are in turn 
succeeded by slices in which Ahab is hardly mentioned, but he reappears in the last 
part of the book, and as the book draws to its dramatic close, the frequency of Ahab 
increases to its maximum. This is an illustration of what Indefrey and Baayen (1994) 
refer to as inter-textual cohesion: the word Ahab enjoys specialized use, but it occurs 
in a series of subtexts within the novel as a whole, contributing to its overall cohesion. 
Within text slices where Ahab is frequently mentioned, the intra-textual cohesion may 
similarly be strengthened. For instance, Ahab appears to be a specialized word in text 
slice 23, but he is mentioned only in passing in text slice 25. His appearance in the two 
text slices strengthens the intertextual cohesion of the whole novel, but it is only the 
intra-textual cohesion of slice 23 that is raised. The presence of inter-textual cohesion in 
addition to intra-textual cohesion and the concomitant phenomenon of global lexical 
specialization suggest that in order to understand the discrepancy between V(N) and 
its expectation, a more fine-grained approach is required. 

A second question concerns how lexical specialization affects the empirical growth 
curve of the vocabulary. Inspection of plots such as those presented in Figure 1 for Al- 
ice in Wonderland suggests that the effects of lexical specialization appear in the central 
sections of the text, as it is there that the largest differences between the expected and 
the observed vocabulary are to be observed--differences that are highly penalized by 
the MSE and chi-squared techniques used to estimate the proportion of specialized 
words in the vocabulary. Unfortunately, the central sections are not necessarily the 
ones characterized by the highest degree of lexical specialization. To see this, consider 
Figure 3, which plots the difference between the expected number of new types using 
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Figure 3 
Error scores for the influx of new types in Alice in Wonderland. The k -- 1, 2 . . . . .  40 text slices 
are displayed on the horizontal axis, the progressive difference scores D(k) are shown on the 
vertical axis. The dashed line represents a nonparametric scatterplot smoother (Cleveland 
1979), the dotted line a least squares regression line (the negative slope is significant, 
F(1,38) = 11.07,p < .002). 

(1) and the observed number  of new types for the successive text slices of Alice in Won- 
derland. More precisely, for each text slice k, k = 1 . . . . .  40, we calculate the progress ive  
difference error scores D(k), k = 1 . . .  40: 

D(k)  = {E[V(Mk)]  - E [ V ( M k _ I ) ] }  - { V ( M k )  - V ( M k _ , ) } .  (5) 

Note that in addit ion to positive difference scores, which should be present  given that 
E[V(Mk)] > V(Mk) for most, or, as in Alice in Wonderland, for all values of k, we also 
have negative difference scores. Text slices containing more  types than expected under  
chance conditions are necessarily present  given the existence of text slices k for which 
E[V(Mk)] - V(Mk) > 0: the total number  of types accumulated over  the 40 text slices has 
to sum up to V(N). Figure 3 shows that the expected numbers  of new word  types are 
overest imated for the initial part  of the novel,  that the theoretical estimates are fairly 
reliable for the middle  section of the novel,  while the final chapters show a slightly 
greater increase in the number  of new types than expected under  chance conditions. 
If lexical specialization affects the influx of new types, its effects appear  not  in the 
central sections of the novel  as suggested by  Figure 1, but  rather  in the beginning and 
perhaps  at the end. This finding seriously questions the appropriateness  of using the 
growth curve of the vocabulary for deriving a measure  of lexical specialization. 

A third question arises with respect to how  one's  measure  of lexical concentrat ion 
is affected by  the number  of text slices K. In Huber t  and Labbe's model ,  the optimal 
value of the p parameter  is independent  of the number  of text slices K for not-too- 
small K (K > 10). Since the expected growth curve and the observed growth  curve 
are completely fixed and independent  of K- - the  former is fully de termined  by  the fre- 
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quency spectrum of the complete text, the latter is determined by the text itself--the 
choice of K influences only the number of points at which the divergence between 
the two curves is measured. Increasing the number of measurement points increases 
the degrees of freedom along with the deviance, and the optimal value of the p pa- 
rameter remains virtually unchanged. But is this a desirable property for a measure 
of lexical specialization? Even without taking the effects of inter-textual cohesion into 
account, and concentrating solely on local specialization and intra-textual cohesion, 
formulating lexical specialization in terms of concentration at a particular point in the 
text is unrealistic: it is absurd to assume that all tokens of a specialized word appear in 
one chunk without any other intervening words. A more realistic definition of (local) 
lexical specialization is the concentration of the tokens of a given word within a par- 
ticular text slice. In such an approach, however, the size of the text slice is of crucial 
importance. A word appearing only in the first half of a book enjoys some specialized 
use, but to a far lesser extent than a word with the same frequency that occurs in the 
first half of the first chapter only. In other words, an approach to lexical specialization 
in terms of concentration of use is incomplete without a specification of the unit of 
concentration itself. 

3. Sources of Nonrandomness 

To avoid these problems, I will now sketch a somewhat more fine-grained approach to 
understanding why V ( N )  and its expectation diverge, adopting Hubert and Labbe's 
central insight that lexical specialization can be modeled in terms of local concentra- 
tion. Consider again the potential sources for violation of the randomness assumption 
underlying the derivation of E[V(N)]. At least three possibilities suggest themselves: 
syntactic constraints on word usage within sentences, global discourse organization, 
and local repetition. I will consider these possibilities in turn. 

3.1 Syntactic Constraints 
Syntactic constraints at the level of the sentence introduce many restrictions on the 
occurrence of words. For instance, in normal written English, following the determiner 
the the appearance of a second instance of the same determiner (as in this sentence), is 
extremely unlikely. According to the urn model, however, such a sequence is likely to 
occur once every 278 words (the relative frequency of the in English is approximately 
0.06), say once every two pages. This is not what we normally find. Clearly, syntax 
imposes severe constraints on the occurrence of words. Does this imply that the urn 
model is wrong? For individual sentences, the answer is undoubtedly yes. But for more 
global textual properties such as vocabulary size, a motivated answer is less easy to 
give. According to Herdan (1960, 40), reacting to Halle's criticism of the urn model as 
a realistic model for language, there is no problem, since statistics is concerned with 
form, not content) Whatever the force of this argument may be, Figure 1 demonstrates 
clearly that the urn model lacks precision for our data. 

In order to ascertain the potential relevance of syntactic constraints referred to by 
Halle, we may proceed as follows: If sentence-level syntax underlies the misfit between 
the observed and the expected vocabulary size, then this misfit should remain visible 
for randomized versions of the text in which the sentences have been left unchanged, 
but in which the order of the sentences has been permuted. If the misfit disappears, 

4 M. Halle, "In defence of the number two," in Studies Presented to J. Whatmough, The Hague, 1957, quoted 
in Herdan, 1960, page 40. 
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we know that constraints the domain of which are restricted to the sentence can be 
ruled out. 

The results of this randomization test applied to Alice in Wonderland, Moby Dick, 
and Max Havelaar are shown in the right-hand panels of Figure 1 by means of "+" 
symbols. What we find is that following sentence randomization, all traces of a sig- 
nificant divergence between the observed and expected vocabulary size disappear. 
The differences between E[V(N)] and V(N) are substantially reduced and may remain 
slightly negative, as in Alice in Wonderland, or slightly positive, as for Moby Dick, or 
they may fluctuate around zero in an unpredictable way, as in Max Havelaar. Since 
we are left with variation that is probably to be attributed to the particularities of the 
individual randomization orders, we may conclude that at the global level of the text 
as an (unordered) aggregate of sentences, the randomness assumption remains rea- 
sonable. The nonrandomness at the level of sentence structure does not influence the 
expected vocabulary size. As a global text characteristic, it is probably insensitive to 
the strictly local constraints imposed by syntax. Apparently, it is the sequential order 
in which sentences actually appear that crucially determines the bias of our theoretical 
estimates. There are at least two domains where this sequential order might be rele- 
vant: the global domain of the discourse structure of the text as a whole, and the more 
local domain of relatively small sequences of sentences sharing a particular topic. 

To explore these two potential explanatory domains in detail, we need a method 
for linking topical discourse structure and local topic continuity with word usage. 
Lexical specialization, informally defined as topic-linked concentrated word usage, 
and formalized in terms of underdispersion, provides us with the required tool. 

3.2 Lexical Specialization 
Recall that the word Ahab is unevenly distributed in Moby Dick. Given its high fre- 
quency (510), one would expect it to occur in all 40 text slices, but it does not. In fact, 
there are 11 text slices where Ahab is not mentioned at all. Technically speaking, Ahab 
is underdispersed. If there are many such words, and if these underdispersed words 
cluster together, the resulting deviations from randomness may be substantial enough 
to become visible as a divergence between the observed and theoretical growth curves 
of the vocabulary. 

In order to explore this intuition, we need a reliable way to ascertain whether a 
word is underdispersed. Let the dispersion di of a word ~d i be the number of different 
text slices in which Od i appears. Analytical expressions for E[di] and VAR[di] are avail- 
able (Johnson and Kotz 1977, 113-114), so that In principle Z-scores can be calculated. 
These Z-scores can then be used to ascertaIn which words are significantly underdis- 
persed in that they occur in significantly too few text slices given the urn model (cf. 
Baayen, 1996). Unfortunately, dispersions deviate substantially from normality, so that 
Z-scores remain somewhat impressionistic. I have therefore used a randomization test 
to ascertain which words are significantly underdispersed. 

The randomization test proceeded as follows: The sequence of words of a text was 
randomized 1,000 times. For each permutation, the dispersion of each word type in 
that particular permutation was obtained. For each word, we calculated the propor- 
tion of permutations for which the dispersion was lower than or equal to the empirical 
dispersion. For Ahab, all 1,000 permutations revealed full dispersion (d -- 40), which 
suggests that the probability that the low empirical dispersion of Ahab (d = 28) is due 
to chance is (much) less than .001. 5 The content words singled out as being signifi- 

5 I a m  i n d e b t e d  to  a n  a n o n y m o u s  r e f e r ee  fo r  p o i n t i n g  o u t  to  m e  t h a t  Z - s c o r e s  a r e  i m p r e c i s e .  I a m  
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cantly underdispersed at the 1% level (the significance level I will use throughout this 
study for determining underdispersion) reveal a strong tendency to be key words. For 
instance, for Moby Dick, the ten most frequent underdispersed content words are Ahab, 
boat, captain, said, white, Stubb, whales, men, sperm, and Queequeg. The five most frequent 
underdispersed function words are you, ye, such, her, and any. 6 

The number of chunks in which an underdispersed word appears, and the fre- 
quencies with which such a word appears in the various chunks, cannot be predicted 
on the basis of the urn model. (Instead of the binomial or Poisson models, the neg- 
ative binomial has been found to be a good model for such words, see, e.g., Church 
and Gale [1995]). Before studying how these words appear in texts and how they af- 
fect the growth curve of the vocabulary, it is useful to further refine our definition of 
underdispersion. 

Consider again the distribution of the word Ahab in Figure 2. In text slice 25, 
Ahab occurs only once. Although this single occurrence contributes to the inter-textual 
cohesion of the novel as a whole, it can hardly be said to be a key word within text 
slice 25. In order to eliminate such spurious instances of key words, it is useful to set 
a frequency threshold. The threshold used here is that the frequency of the word in a 
given text slice should be at least equal to the mean frequency of the word calculated 
for the text slices in which the word appears. More formally, let~,k be the frequency of 
the i-th word type in the k-th text slice, and define the indicator variable di, k as  follows: 

1 iff ~/ ~ fi,k and a;i underdispersed (6) 
di'k = 0 o t h e r w i s e .  

The number of underdispersed types in text slice k, VU(k), and the corresponding 
number of underdispersed tokens, NU(k), can now be defined as 

VU(k) : ~_~di,k (7) 
i 

NU(k) = Y~di,k'fi,k. (8) 
i 

3.3 Lexical Specialization and Discourse Structure 
We are now in a position to investigate where underdispersed words appear and 
how they influence the observed growth curve of the vocabulary. First consider Fig- 
ure 4, which summarizes a number of diagnostic functions for Alice in Wonderland. 
The upper panels plot VU(k) (left) and NU(k) (right), the numbers of underdispersed 
types and tokens appearing in the successive text chunks. Over sampling time, we 
observe a slight increase in both the numbers of tokens and the numbers of types. 
Both trends are significant according to least squares regressions, represented by dot- 
ted lines (F(1,38) = 6.591,p < .02 for VU(k); F(1,38) = 16.58,p < .001 for NU(k)). A 
time-series smoother using running medians (Tukey 1977), represented by solid lines, 

similarly indebted to Fiona Tweedie, who suggested the use of the randomization test. Comparison of 
the results based on Z-scores (see Baayen, to appear) and the results based on the randomization test, 
however, reveal only minor differences that leave the main patterns in the data unaffected. 

6 The present method of finding underdispersed words appears to be fairly robust with respect to the 
number of text slices K. For different numbers of text chunks, virtually the same high-frequency words 
appear to be underdispersed. The number of text chunks exploited in this paper, 40, has been chosen to 
allow patterns in "sampling time" to become visible without leading to overly small text slices for the 
smaller texts. 
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Figure 4 
Diagnostic functions for Alice in Wonderland. VU(k) and NU(k): numbers of underdispersed 
types and tokens in text slice k; ACF: auto-correlation function; Pr(U, type) and Pr(U, token): 
proportions of underdispersed types and tokens; D(k) and DU(k): progressive difference 
scores for the overall vocabulary and the underdispersed words. 

suggests a slightly oscillating pattern. At least for a time lag of 1, this finds some sup- 
port in the autocorrelation functions, shown in the second line of panels of Figure 4. 
Clearly, key words are not uniformly distributed in Alice in Wonderland. Not only does 
the use of key words in one text slice appear to influence the intensity with which key 
words are used in the immediately neighboring text slices, but as the novel proceeds 
key words appear with increasing frequency. 

How does this nonrandom organization of key words in the discourse as a whole 
influence V(N)? To answer this question, it is convenient to investigate the nature of 
the new types that arrive with the successive text slices. Let 

AV(Mk) = V(Mk) - V(Mk_~) (9) 

denote the number of new types observed in text slice k, and let 

aVU(Mk) = V U ( M k )  - -  VU(Mk_,) (10) 

denote the number of new underdispersed types for text slice k. The proportion of new 
underdispersed types in text slice k on the total number of new types, Pr(U, type, k) 
is given by 

AVU(k) (11) 
Pr(U, type, k ) -  AV(k) 

The plot of Pr(U, types, k) is shown on the third row of Figure 4 (left-hand panel). 
According to a least squares regression (dotted line), there is a significant increase in 
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the proportion of underdispersed new types as k increases (F(1, 38) = 5.804, p < .05). 
The right-hand side counterpart shows a similar trend for the word tokens that is also 
supported by a least squares regression (F(1, 38) = 5.681, p < .05). Here, the proportion 
of new underdispersed tokens on the total number of new tokens is defined as 

Pr(U, token, k) - Y~i nUi,k (12) 
~-'~i ni,k " 

with 

and 

k - 1  
ni,k = fi,k iff ~m=lfi,m = 0 (13) 

0 otherwise, 

I k-1 
nUi,k = fi,k iff ~m=lfi, m = 0 and di,k = 1 (14) 

0 otherwise. 

The increase in the proportions of new underdispersed types and tokens shows that 
the pattern observed for the absolute numbers of types and tokens observed in the 
top panels of Figure 4 persists with respect to the new types and tokens. 

We can now test to what extent the underdispersed types are responsible for the 
divergence of E[V(N)] and its expectation by comparing the progressive difference 
scores D(k) defined in (5) with the progressive difference scores for the subset of the 
underdispersed words DU(k), defined as 

DU(k) = E[VU(k)] - E[VU(k - 1)] - AVU(k). (15) 

The two progressive difference score functions are shown in the bottom left panel of 
Figure 4, and the residuals D(k) - DU(k) are plotted in the bottom right-hand panel. 
The residuals do not reveal any significant trend (F(1, 38) < 1), which suggests that the 
underdispersed vocabulary is indeed responsible for the main trend in the progressive 
difference scores D(k) of the vocabulary and hence for the divergence between E[V(N)] 
and V(N). In the next section, I will argue that intra-textual cohesion is in large part 
responsible for the general downward curvature of DU(k). In what follows, I will first 
present an attempt to understand the differences in the error scores E[V(N)] - V(N) 
shown in Figure 1 as a function of differences in the use of key words at the discourse 
level. 

In Alice in Wonderland, key words are relatively rare in the initial text slices. As 
a result, these text slices reveal fewer types than expected under chance conditions. 
Consequently, V(N) is smaller than E[V(N)]. For increasing k, as shown in the up- 
per right panel of Figure 1, the divergence between V(N) and its expectation first 
increaseswthe initial text slices contain the lowest numbers of underdispersed types 
and tokens--and then decreases as more and more underdispersed words appear. 
Thus the semi-circular shape of the error scores E[V(N)] - V(N) shown in Figure 1 is 
a direct consequence of the topical structure at discourse level of Alice in Wonderland. 

The error scores E[V(N)] - V(N) for Moby Dick and Max Havelaar shown in Fig- 
ure 1 reveal a different developmental profile. In these novels, the maximal diver- 
gence appears early on in the text, after which the divergence decreases until, just 
before the end, V(N) becomes even slightly larger than its expectation. Is it possible 
to understand this qualitatively different pattern in terms of the discourse structure 
of these novels? First, consider Moby Dick. A series of diagnostic plots is shown in 
Figure 5. The numbers of underdispersed types and tokens VU(k) and NU(k) reveal 
some variation, but unlike in Alice in Wonderland, there is only a nonsignificant trend 
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Figure 5 
Diagnostic functions for Moby Dick. VU(k) and NU(k): numbers of underdispersed types and 
tokens in text slice k; Pr(U, type) and Pr(U, token): proportions of underdispersed types and 
tokens; D(k) and DU(k): progressive difference scores for the overall vocabulary and the 
underdispersed words; f[Ahab](k): frequency of Ahab in text slice k. 

(F(1,38) -- 2.11,p > .15 for VU(k), F(1,38) = 1.98,p > .15 for NU(k)) for underdisper-  
sion to occur more often as the novel  progresses. The absence of a t rend is suppor ted  
by  the proport ions of underdispersed  types and tokens, shown in the second row of 
panels (F < 1 for both  types and tokens). In the last text slices, underdispersed  words  
are even underrepresented.  The bot tom panels show that the progressive difference 
scores DU(k) for the underdispersed  words  capture the main  trend in the progressive 
difference scores of the total vocabulary D(k) quite well: The residuals D(k) - DU(k) 
do not  reveal a significant t rend (F(1, 38) = 1.08, p > .3). 

Interestingly, the use of underdispersed  words  in Moby Dick is to some extent 
correlated with the frequency of the word  Ahab, with respect to both  types and tokens 
(F(1,38) -- 4.61,p < .04,r 2 = .11 for VU(k); F(1,38) = 10.77,p < .003,r 2 = .22 for 
NU(k). The panels on the third row of Figure 5 show the frequencies of Ahab (left) 
and VU(k) as a function of the frequency of Ahab (right). A nonparametr ic  t ime series 
smoother  (solid line) supports  the least squares regression line (dotted line). In other 
words,  the key figure of Moby Dick induces a somewhat  more  intensive use of the key 
words  of the novel. 

The nonuni form distribution of Ahab sheds some light on the details of the shape 
of the difference function E[V(N)] - V(N) shown in Figure 1. The initial sections do 
not ment ion Ahab, it is here that D(k) reveals its highest values, and here too we find 
the largest discrepancies be tween E[V(N)] and V(N). By text slice 20, Ahab has been 
firmly established as a principal character in the novel,  and the main key words  have 
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Figure 6 
Diagnostic functions for Max Havelaar. VU(k) and NU(k): numbers of underdispersed types 
and tokens in text slice k; ACF: auto-correlation function; Pr(U, type) and Pr(U, token): 
proportions of underdispersed types and tokens; D(k) and DU(k): progressive difference 
scores for the overall vocabulary and the underdispersed words. 

appeared. The overestimation of the vocabulary is substantially reduced. As the novel 
draws to its dramatic end, the frequency of Ahab increases to its maximum. The plots 
on the first row of Figure 5 suggest that underdispersed types and tokens are also 
used more intensively in the last text slices. However, the proportions plots on the 
second row show a final dip, suggesting that at the very end of the novel, a more 
than average number of normally dispersed new types appears. Considered together, 
this may explain why at the very end of the novel the expected vocabulary slightly 
underestimates the observed vocabulary size, as shown in Figure 1. 

Finally, consider the diagnostic plots for Max Havelaar, shown in Figure 6. The time 
series smoother (solid line) for the absolute numbers of underdispersed types (VU(k)) 
and tokens (NU(k)) suggests an oscillating use of key words without any increase in the 
use of key words over time (the dotted lines represent the least squares regression lines, 
neither of which are significant: F < 1 in both cases). This oscillatory structure receives 
some support from the autocorrelation functions shown in the second row of panels. 
Especially in the token analysis, there is some evidence for positive autocorrelation 
at lag 1, and for a negative polarity at time lags 8 and 9. No trend emerges from 
the proportions of new underdispersed types and tokens (third row, F < 1 in both 
analyses). A comparison of the progressive difference scores D(k) and DU(k) (bottom 
row) shows that the underdispersed words are again largely responsible for the large 
values of D(k) for small k. No significant trend remains in the residuals D(k) - DU(k) 
(F(1, 38) ---- 1.848, p > .15). 
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Figure 1 revealed that E[V(N)] - V(N) is largest around text slices 3 to 7, but 
becomes negative for roughly the last third of the novel. This pattern may be due 
to the oscillating use of key words in Max Havelaar. Although there is a fair number 
of key words in the first few text chunks, the intensity of key words drops quickly, 
only to rise again around chunk 20. Thus, key words are slightly underrepresented in 
the first part of the novel, allowing the largest divergence between the expected and 
observed vocabulary size to emerge there. 

3.4 The Paragraph as the Domain of Topic Continuity 
The preceding analyses all revealed violations of the randomness assumption under- 
lying the urn model that originate in the topical structure of the narrative as a whole. 
I have argued that a detailed analysis of the distribution of key word tokens and 
types may shed some light on why the theoretical vocabulary size sometimes over- 
estimates and sometimes underestimates the observed vocabulary size. We are left 
with the question of to what extent repeated use of words within relatively short se- 
quences of sentences, henceforth for ease of reference paragraphs, affects the accuracy 
of E[V(N)]. I therefore carried out two additional analyses, one using five issues of the 
Dutch newspaper Trouw, and one using the random samples of the Dutch newspaper 
De Telegraaf available in the Uit den Boogaart (1975) corpus. For both texts, no overall 
topical discourse structure is at issue, so that we can obtain a better view of the effects 
of intra-textual cohesion by itself. 

For each newspaper, the available texts were brought together in one large cor- 
pus, preserving chronological order. Each corpus was divided into 40 equally large text 
slices. The upper left panel of Figure 7 shows that in the consecutive issues of Trouw 
(March 1994) the expected vocabulary size differs significantly from the observed vo- 
cabulary size for all of the first 20 measurement points, the domain for which signif- 
icance can be ascertained (see footnote 3). The upper right panel reveals that for the 
chronologically ordered series of samples from De Telegraaf in the Uit den Boogaart 
corpus (268 randomly sampled text fragments with on average 75 word tokens) only 
3 text chunks reveal a significant difference between E[V(N)] and V(N). The bottom 
panels of Figure 7 show the corresponding plots of the progressive difference scores 
for the complete vocabulary (D(k), ".") and underdispersed words (DU(k), "+"). The 
least squares regression lines (dotted) for D(k), supported by nonparametric scatter- 
plot smoothers (solid lines), reveal a significant negative slope (F(1, 38) = 6.89, p < .02 
for Trouw, F(1, 38) = 10.99, p < .001 for De Telegraaf). The residuals D(k) - DU(k) do 
not reveal any significant trends (F < 1 for both newspapers). Note that for De Tele- 
graaf DU(k) does not capture the downward curvature of D(k) as well as it should 
for large k. This may be due to the relatively small number of words that emerge as 
significantly underdispersed for this corpus. 

Figure 7 shows that intra-textual cohesion within paragraphs is sufficient to give 
rise to substantial deviation between E[V(N)] and V(N) in texts with no overall dis- 
course organization. Within successive issues of a newspaper, in which a given topic is 
often discussed on several pages within the same newspaper, and in which a topic may 
reappear in subsequent issues, strands of inter-textual cohesion may still contribute 
significantly to the large divergence between the observed and expected vocabulary 
size. It is only by randomly sampling short text fragments, as for the data from the Uit 
den Boogaart corpus, which contains samples evenly spread out over a period of one 
year, that a substantial reduction in overestimation is obtained. Note, however, that 
even for the corpus data we again find that the expectation of V(N) is consistently too 
high. Within paragraphs, words tend to be reused more often than expected under 
change conditions. This reuse pre-empts the use of other word tokens, among which 
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Figure 7 
Diagnostic plots for two Dutch newspapers. The difference between the expected and 
observed vocabulary size for the Trouw data (five issues from March 1994) and the random 
samples of De Telegraaf in the Uit den Boogaart colpus (upper panels; significant differences 
are highlighted for the first 20 measurement points). The bottom panels show the progressive 
difference error scores for the total vocabulary (D(k)) and for the subset of underdispersed 
words (DU(k)). The dotted line is a least squares regression, the solid line a nonparametric 
scatterplot smoother. 

tokens of types that have not been observed among the preceding tokens, and leads 
to a decrease in type richness. Since intra-textual cohesion is also present in the texts 
of novels, we may conclude that the overestimation bias in novels is determined by a 
combination of intra-textual and inter-textual cohesion. 

4. Implications 

We have seen that intra-textual and inter-textual cohesion lead to a significant differ- 
ence between the expected and observed vocabulary size for a wide range of sample 
sizes. This section addresses two additional questions. First, to what extent does the 
nonrandomness of word occurrences affect distributions of units selected or derived 
from words? Second, how does cohesive word usage affect the Good-Turing frequency 
estimates? 

4.1 Word-derived Units 
First consider the effect of nonrandomness on the frequency distributions of mor- 
phological categories. The upper panels of Figure 8 plot the difference between the 
expected and observed vocabulary size for the morphological category of words with 

469 



Computational Linguistics Volume 22, Number 4 

-heid in 'Max Havelaar' -heid in Trouw 

L,3 

Z 
> 

1.13 
z > 
LU O 

,/"'"ix. /\ /'\ 

\/\ , ' . .  
, ,  . \ 

\ 

\ / 
• . . -  

" ' . \ / "  

• /\ 

10 20 

k 

30 40 5 10 15 20 

k 

Digraphs in 'Alice in Wonderland' Syllables in Trouw 

>8 i 
o3 z~  

LU Q 

o 

\ , " ~  
\ , , ' . .  

o o,1 

o 

L o  / ;"", 
, . " \ . ,  

r '  
\ . ,  .,," 

0 10 20 30 40 0 10 20 

k k 

30 40 

Figure 8 
Diagnostic plots for affixes, syllables, and digraphs• The difference between the expected and 
observed vocabulary size for the morphological category of words with the Dutch suffix -heid 
'-ness' in Max Havelaar (upper left) and in Trouw (upper right), for syllables in Trouw (lower 
left), and for digraphs in Alice in Wonderland• Significant differences are shown in bold for the 
first half of the tokens• 

the Dutch suffix -heid, which, like -ness in English, is used to coin abstract nouns from 
adjectives (e.g., snelheid, 'speed', from snel, 'quick'). The plots are based on samples 
consisting of all and only those words occurring in Max Havelaar (upper left) and 
Trouw (upper right) that belong to the morphological category of -heid, ignoring all 
other words, and preserving their order of appearance in the original texts. The sample 
of -heid words in Max Havelaar consisted of 640 tokens representing 260 types, of which 
146 hapax legomena. From Trouw, 1145 tokens representing 394 types were extracted, 
among which 246 hapax legomena. 

In Max Havelaar, a number of words in -heid, such as waarheid 'truth' and vrijheid 
'freedom', are underdispersed key words. Not surprisingly, this affects the growth 
curve of -heid itself. For small values of k, we observe a significant divergence between 
E[V(N)] and V(N). In the newspaper Trouw, where -heid words do not play a central 
role in an overall discourse, no significant divergence emerges. Nevertheless, we again 
observe a consistent trend for the expected vocabulary size to overestimate the actual 
vocabulary size. 

Figure 8 also plots the development of the vocabulary of syllables in Trouw (bot- 
tom left), and the development of the vocabulary of digraphs in Alice in Wonderland 
(bottom right). The "texts" of syllables and digraphs preserve the linear order of the 
texts from which they were derived. For both digraphs (80,870 tokens representing 
398 types, of which 30 hapax legomena) and syllables (470,520 tokens, 6,748 types, 
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and 1,909 hapax legomena), Figure 8 reveals significant deviation in the first half of 
both texts. This suggests that the nonrandomness observed for words carries over to 
word-based units such as digraphs and syllables. 

4.2 Accuracy of Good-Turing Estimates 
Samples of words generally contain--often small--subsets of all the different types 
available in the population. The probability mass of the unseen types is generally large 
enough to significantly bias population probabilities estimated from sample relative 
frequencies. Good (1953) introduced an adjusted frequency estimate (which he credits 
to Turing) to correct this bias. Instead of estimating the probability of a word with 
frequency f by its sample relative frequency 

f (16) pi= , 

Good suggests the use of the adjusted estimate 

1 (1: + 1)E[V(N,f + 1)1 (17) 
my(N) = E[V(N,d)] 

A closely related statistic is the probability ~P(N) of sampling a new, unseen type after 
N word tokens have been sampled: 

7~(N ) _ E[V(N, 1)] (18) 
N 

These estimates are in wide use (see, e.g., Church and Gale [1991] for application 
to bigrams, Bod [1995] for application to syntax, and Baayen [1992] and Baayen and 
Sproat [1996] for application to morphology). Hence, it is useful to consider in some 
detail how their accuracy is affected by inter-textual and intra-textual cohesion. To this 
end, I carried out a short series of experiments of the following kind. 

Assume that the Trouw data used in the previous section constitute a population 
of N = 265,360 word tokens from which we sample the first N/2 = 132,680 words. For 
the Trouw data, this is a matter of stipulation, but for texts such as Moby Dick or Alice 
in Wonderland, an argument can be made that the novel is the true population rather 
than a sample from a population. For the present purposes, the crucial point is that 
we now have defined a population for which we know exactly what the population 
probabilities--the relative frequencies in the complete texts--are. 

First consider how accurately we can estimate the vocabulary size of the popu- 
lation from the sample. The expression for E[V(N)] given in (1) that we have used 
thus far does not allow us to extrapolate to larger sample sizes. However, analytical 
expressions that allow both interpolation (in the sense of estimating V(N) on the basis 
of the frequency spectrum for sample sizes M < N) and extrapolation (in the sense of 
estimating V(M) for M > N) are available (for a review, see Chitashvili and Baayen 
[1993]). Here, I will make use of a smoother developed by Sichel (1986). The three 
parameters of this smoother are estimated by requiring that E[V(N)] = V(N), that 
E[V(N, 1)] = V(N, 1), and by minimizing the chi-square statistic for a given span of 
frequency ranks. 

The upper left panel of Figure 9 shows that it was possible to select the param- 
eters of Sichel's model such that the observed frequencies of the first 20 frequency 
ranks (V(N,f),f = 1 . . . .  ,20) do not differ significantly from their model-dependent 
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Figure 9 
Interpolation and extrapolation from sample (the first half of the Trouw data) to population 
(the complete Trouw data). E[V(N,f)] and V(N,f): expected and observed frequency spectrum; 
E[V(N)] and V(N): expected and observed numbers of types; Mp(f): population probability 
mass of the types with frequency f in the sample; MGT(f): Good-Turing estimate of Mp(f); 
Ms(f): unadjusted sample estimate of Mp(f). 

expectations Es[V(N,f)]. 7 The upper right panel shows that interpolation on the basis 
of Sichel's model (dashed line) is virtually indistinguishable from interpolation using 
(1) (dotted line). The observed vocabulary sizes are represented by large dots. As ex- 
pected, both (1) and the parametric smoother reveal the characteristic overestimation 
pattern. 

The center panels of Figure 9 show that the overestimation characteristic for inter- 
polation is reversed when extrapolating to larger samples. For extrapolation, under- 
estimation is typical. The dotted line in the left-hand panel represents the observed 
vocabulary size of the complete Trouw text, the solid line shows the result from in- 
terpolation and extrapolation from N = 132,680. The right-hand panel highlights the 
corresponding difference scores. For N = 265,360, the error is large: 5.5% of the actual 
vocabulary size. 

Having established that E[V(N)] underestimates V(N) when extrapolating, the 
question is how well the Good-Turing estimates perform. To determine this, I will 
consider the probability mass of the frequency classes V(M,f) for f = 1. . .  40. Let 

= v ( M , f )  . p; (M) (19) 

7 T h e  fit (X2(18)  = 9.93,  p > .9) w a s  o b t a i n e d  fo r  t he  p a r a m e t e r  v a l u e s  c~ = 0 .291,  3' = - 0 . 7 ,  a n d  
b = 0.011. 
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be the joint Good-Turing probability mass of all types with frequency f in the sample 
of M = 132,680 tokens, and let Mp(f) be the joint probability mass of exactly the same 
word types, but now in the population (N = 265,360 tokens): 

Mp(f) -~ Y'~4 I[f(i,M)=jq . f ( i, N) (20) 
N 

with f(i, X) the frequency of the i-th type in a sample of X tokens. The bottom left 
panel of Figure 9 shows that for the first frequency ranks f ,  the Good-Turing estimate 
MeT (f, M) underestimates the probability mass of the frequency class in the population. 
For the higher-frequency ranks, the estimates are fairly reliable. The bottom right 
panel of Figure 9 plots the corresponding errors for the unadjusted sample probability 
estimate 

Ms(f,M) = ~d V(M,f), (21) 
f ,  

which overestimates the population values. Surprisingly, the unadjusted estimates 
overestimate the population values to roughly the same extent that the adjusted esti- 
mates lead to underestimation. A heuristic estimate, 

Mh(f,M) = V(M,f) (f + 1)Es[V(M,f + 1)] +fEs[V(M,f)] 
Es[V(M,f)] 2M 

(22) 

the mean of Ms(f, M) and MCT(f, M), appears to approximate the population relative 
class frequencies Mp(f) reasonably well, as shown in Table 1 for the Trouw data as 
well as for Alice in Wonderland, Moby Dick, and Max Havelaar. For f > 5, as shown in 
Figure 10, the heuristic estimate remains a reasonable compromise. 

We have seen that both E[V(N)] and the Good-Turing estimates MCT(f,M) (es- 
pecially for f < 5) lead to underestimation of population values. Interestingly, ~(M) 
overestimates the probability mass of unseen types. For the Trouw data, at M = 132,680 
we count 11,363 hapax legomena, hence ~'(M) = 0.0856. However, the probability mass 
of the types that do not appear among the first 132,680 tokens, M(0), is much smaller: 
0.0609. Table 1 shows that ~'(M) similarly leads to overestimation for Alice in Wonder- 
land, Moby Dick, and Max Havelaar. To judge from Table 1, the Good-Turing estimate 
MeT(1,M) is an approximate lower bound and the unadjusted estimate Ms(1,M) a 
strict upper bound for Mp (0). 

It is easy to see why 7~(N) is an upper bound for coherent text by focusing on 
its interpretation. Given the urn model, the probability that the first token sampled 
represents a type that will not be represented by any other token equals V(N, 1)/N. 
By symmetry, this probability is identical to the probability that the very last token 
sampled will represent an unseen type. This probability approximates the probability 
that, after N tokens have been sampled, the next token sampled will be a new type. 
However, this interpretation hinges on the random selection of word tokens, and 
this paper presents ample evidence that once a word has been used it is much more 
likely to be used again than the urn model predicts. Hence, the probability that after 
sampling N tokens the next token represents an unseen type is less than V(N, 1)/N. 
Due to intra-textual and inter-textual cohesion, the V(N) - V(N, 1) types that have 
already been observed have a slightly higher probability of appearing than expected 
under chance conditions, and consequently the unseen types have a lower probability. 

Summing up, the Good-Turing frequency estimates are severely effected by the 
cohesive use of words in normal text. In the absence of probabilistic models that take 
cohesive word usage into account, estimates of (relative) frequencies remain heuristic 
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Table 1 
Comparison of probability mass estimates for frequencies f = 1 . . . . .  5 using the smoother 
Es[V(N,f)] of Sichel (1986). The probability mass of unseen types, Mp(0), is also tabulated. 
Notation: MCTOC, M): Good-Turing estimate; Ms(f,M): sample estimate; Mh(f,M): heuristic 
estimate; Mp(f): population mass. For Max Havelaar, a sample comprising the first third of the 
novel was used, for the other texts, a sample consisting of the first half of the tokens was 
selected. 

f V(N,f) Es[V(N, f )]  McT(f,M) Ms(f,M) Mh(f,M) Mp(f) 

Alice in Wonderland 

0 0.0630 
1 885 885.00 0.0411 0.0668 0.0540 0.0560 
2 287 272.27 0.0328 0.0434 0.0381 0.0372 
3 147 137.27 0.0277 0.0333 0.0305 0.0293 
4 97 85.52 0.0255 0.0293 0.0274 0.0289 
5 68 59.55 0.0230 0.0257 0.0243 0.0228 

Moby Dick 

0 0.0350 
1 5,914 5,914.04 0.0366 0.0553 0.0460 0.0472 
2 2,035 1,958.22 0.0272 0.0381 0.0326 0.0331 
3 990 932.22 0.0218 0.0278 0.0248 0.0251 
4 601 549.44 0.0187 0.0225 0.0206 0.0210 
5 416 366.22 0.0168 0.0195 0.0181 0.0179 

Max Havelaar 

0 0.0921 
1 3,513 3,513.01 0.0494 0.1058 0.0776 0.0692 
2 908 821.04 0.0362 0.0547 0.0455 0.0411 
3 346 362.65 0.0240 0.0313 0.0276 0.0246 
4 214 208.95 0.0213 0.0258 0.0235 0.0216 
5 157 137.84 0.0203 0.0236 0.0220 0.0189 

Trouw 

0 0.0609 
1 11,363 11,363.05 0.0431 0.0856 0.0644 0.0639 
2 2,941 2,856.65 0.0297 0.0443 0.0370 0.0359 
3 1,338 1,276.07 0.0233 0.0303 0.0268 0.0256 
4 826 737.69 0.0206 0.0249 0.0227 0.0219 
5 532 487.51 0.0172 0.0200 0.0186 0.0190 

in nature. For the frequencies of types  occurring at least once in the sample ,  the 
average  of the sample  and  Good-Tur ing adjusted frequencies is a useful  heuristic. For 
est imates of the probabi l i ty  of unseen  types,  the sample  and  Good-Turing est imates 
p rov ide  approx imate  u p p e r  and  lower  bounds .  

5. D i s c u s s i o n  

Words do not  occur r andom l y  in texts. This s imple  fact is difficult to take into account  
in statistical mode ls  of word  f requency distributions. Hence,  it is often ignored,  in 
the hope  that  violat ions of the r andomness  a s sumpt ion  will not  seriously affect the 
accuracy of quanti tat ive measures  and  estimates.  

The goal of this pape r  has been  to explore in detail  the consequences of intra- 
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Frequency class probability mass estimates for the first 40 frequency ranks in a sample of 
M = 132,680 of the Trouw data. The dots denote the probability mass Mp(f) in the full text 
(N = 265,360) of the words with frequency f in the sample. The Good-Turing estimates 
MGT(f,M) are represented by "e," the sample estimates Ms(f,M) by "s," and the heuristic 
estimate Mh(f,M) by "+' .  

textual and inter-textual cohesion on the accuracy of theoretical estimates of vocab- 
ulary size, the growth rate of the vocabulary, and Good-Turing adjusted frequency 
estimates, in the belief that knowledge of how nonrandomness might affect these 
measures ultimately leads to a better understanding of the conditions under which 
these measures may, or may not, be reliable. 

Analyses of three novels, five consecutive issues of the Dutch newspaper Trouw, 
and the chronologically ordered samples of the Dutch newspaper De Telegraaf in 
the Uit den Boogaart corpus, all revealed systematic overestimation for the expected 
vocabulary size. Further analyses of subsets of derived words, syllables, and digrams 
showed that the overestimation bias reappears in units derived from words when 
these words occur in normal, cohesive text. 

The overestimation bias disappears when the order of the sentences is random- 
ized. This indicates that the bias should not be attributed to syntactic and semantic 
constraints on word usage operating within the sentence. Instead, the bias arises due 
to intra-textual and inter-textual cohesion. In sequences of sentences, words are more 
likely to be reused than expected under chance conditions. Coherent discourse requires 
local topic continuity. This intra-textual cohesion gives rise to a substantial part of the 
overestimation bias, a bias that leads to significant deviations even when small text 
fragments of some 75 words are selected randomly from a newspaper. 

In addition to intra-textual cohesion, there are words that contribute to the cohe- 
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sion of the discourse as a whole. Detailed analyses of how these key words appear 
over sampling time in the novels reveal marked differences in their distributions. 
These differences in turn shed light on the details of the differences in the patterns of 
estimation errors E[V(N)] - V(N) that characterize the texts. The progressive difference 
scores of the key words, the deviation scores for the expected and observed numbers 
of new types appearing in the successive text slices, reveal a pattern that is highly 
similar to the same scores for the vocabulary as a whole, both qualitatively and quan- 
titatively. This supports the hypothesis that the key words are primarily responsible 
for the deviation of the expected vocabulary size from its expectation. 

Nonrandomness in word usage not only introduces a bias with respect to the 
expected vocabulary size--overestimation when interpolating and underestimation 
when extrapolating, it also affects the accuracy of the Good-Turing estimates. To correct 
for an overestimation bias, Good (1953) introduced adjusted estimates, building on 
the assumption that word usage is to all practical purposes random. These adjusted 
estimates, however, appear to overshoot their mark for continuous text in that they 
underestimate the population relative frequencies to roughly the same extent that the 
unadjusted probabilities lead to overestimation, especially for the lowest frequencies. 
Again, the effect of inter-textual and intra-textual cohesion manifests itself. Once used, 
words tend to be used again, and this leads to a somewhat higher relative population 
frequency than expected. The other side of the same coin is that Good's estimate for 
the probability mass of unseen types, 79(N), is an upper bound. The words that have 
already been used have a raised probability of being used again. Hence, the probability 
for unseen types to appear is lowered. 

There are two major ways to deal with the effects of nonrandomness in word usage 
on the accuracy of statistical estimates. First, by randomly sampling individual sen- 
tences instead of sequences of sentences, the effects of intra-textual and inter-textual 
cohesion will be largely eliminated. With the increasingly large corpora that are becom- 
ing available at present, enhanced sampling methods should pose no serious problem. 
For literary studies, however, the discourse structure of a text is part and parcel of the 
object of study itself. Here, the use of the heuristically adjusted estimates proposed in 
Section 4.2 may prove to be useful. 

Finally, the investigation of the distribution of key words may turn out to be a 
useful tool for investigating the structure of literary texts, a tool that may lead to an 
improved understanding of the role of lexical specialization in shaping the quantitative 
developmental structure of the vocabulary. 

Appendix 

Equation (1) can be derived as follows; see Good 1953; Good and Toulmin 1956; Kalinin 
1965: Let f ( i ,M) denote the frequency of ~i in a sample of M tokens (M < N), and 
define 

1 i f f ( i ,M) = m (23) 
Xi -- 0 otherwise. 

Denoting the probability of wi by pi, the expected total number of word types with 
frequency m in a sample of M tokens, E[V(M, re)I, is given by 

E[V(M,m)] = E[y~ Xi] 
i 

= ZE[X,1 
i 
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= ~ 1-Pr(Xi = 1) + 0. Pr(Xi = 0) 
i 

: 

l 

(24) 

where we assume that the frequencies f( i ,M) are independently and identically bi- 
nomially (M, pi) distributed. The expected overall number of different types in the 
sample, irrespective of their frequency, follows immediately: 

E[V(M)] = V(M,m)] 

= ~ ~ m Pro(1 - pi)M-m 
_ i 

= ~(1--( l - -pi)M).  
i 

(25) 

For large M and small p, binomial probabilities can be approximated by Poisson prob- 
abilities, leading to the simplified expressions 

(AIM) m e-,X,M 
E[V(M,m)] = ~ m! 

i 

EfV(M)] = ~'~(1 - e-'~'M). (26) 

Conditional on a given frequency spectrum {V(N,f),f = 1, 2 . . . .  }, the vocabulary size 
E[V(M)] for sample size M < N equals 

E[V(M)] 
V(N) 

= ~--~(l_e-;~i M) 
i=1 

V(N) 
= Z ( 1  ~ e  S(-~)M) 

i=1 

= V(N)-~-'~V(N,f)e-~ M. 
f = l  

(27) 

In the last step, all V(N,f) types sharing the same frequency f have been grouped 
together. Note that when the N tokens themselves constitute a sample from a larger 
population, E[V(M)] is in fact an estimate. 

The derivation of (27) uses an urn model in which words are sampled with re- 
placement. A model in which words are sampled without replacement is more precise. 
For instance, for a randomly reordered text, the likelihood that a hapax-legomenon 
in the full text that appears in the first M tokens will reappear among the remaining 
N -  M tokens is greater than zero in a model that assumes constant probabilities, con- 
trary to fact. For large N and M, however, the binomial probabilities (sampling with 
replacement) are a good approximation of the hypergeometric probabilities (sampling 
without replacement). 
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Finally note that (27) suggests that, under randomness, and conditional on the 
words appearing in the sample of N tokens, f ( i ,M)  can alternatively be viewed as a 
binomially distributed random variable with parameters M / N  andf(i ,  N) forf(i,  N) ( (  
M, N (Muller 1977): 

E[V(M)] : V - E V(N,f)e-My 

f 

( ,~ V -  ~-'. ~V(N , f )  1 - 
f 

(28) 

The modification of (28) proposed by Hubert and Labbe (1988) requires the as- 
sumption that all the tokens of a word type with specialized use occur in a single 
text slice. Let the total number of words in the set S of types with specialized use be 
pV, and also assume that the text slices in which these specialized words appear are 
randomly distributed over the text. Let 

1 if wi c S and wi occurs in P1 
Xi -- 0 otherwise, (29) 

and let 

1 if wi ~ S and o;i occurs in P1 
Yi -- 0 o the rwise .  

(30) 

The overall number of types in P1 is ~-,i Xi + Y'~j Yj. If wi E S, itsfi, tokens ~ ( ( M )  will 
all appear in the same part of the text. The probability that they will appear in P1 is 
M_M Hence 
N" 

EHL[V(M)] 

-- ~ Pr(Xi = 1) + E Pr(Yj = 1) 
wiES ~fftS 

= 1 - 1 -  

wiCS wj~S 

M 
: 

M 
: 

M 
= p V ~  

+ ( 1 - p ) V -  E 1 -  
~j~8 

+ (1 - p ) V -  ~ ( 1  - p)V(N, f )  1 - 
f 

+ (1 - p)V - y ; l l  - p)V(N,fle--~< 
f 

(31) 

Note the implicit assumption that the same proportion of the V(N, f )  word types with 
frequency f is specialized, irrespective of the value of f .  
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List of Symbols 

di 
di,k 
D(k) 
DU(k) 
AV(k) 
AVU(k) 
E[X] 
EHL[V(M)] 
Es[V(N,f)] 
f 
f(i,M) 
Y ,k 
i 
k 
K 
m 
M 
MpO 
McT(f,M) 
Ms(f,M) 
MhGM) 
ni,k 
nUi, k 

N 
NU(k) 
P 
Pf 
pi 

Pr(U, token, k) 
Pr(U, type, k) 
Z'(N) 
v(N) 
V(N,f) 
V(Mk) 
VU(k) 

dispersion of word type i 
indicator variable for underdispersion of type i in chunk k 
progressive difference score for text slice k 
progressive difference score of underdispersed words at chunk k 
number of new types at k 
number of new underdispersed types at k 
expectation of X 
expectation of V(M) in the Hubert-Labbe model 
expectation of V(N,f) given Sichel's (1986) model 
token frequency of a word 
token frequency of i-th word type in sample of size M 
token frequency of i-th word in the k-th text slice 
index for word types 1 . . . . .  V 
index for text slices 1 . . . .  , K 
number of text slices 
token frequency of a word in sample of size M 
sample size in tokens when contrasting two sample sizes (M < N) 
population probability mass of frequency class f 
Good-Turing sample estimate of Mp(f) in sample of size M 
sample estimate of Mp(f) 
heuristic estimate of Mp(f) (mean of Ms(M,f) and MGT(M,f)) 
indicator variable for type i appearing first in chunk k 
indicator variable for type i appearing first in chunk k and i being 
underdispersed in k 
number of word tokens in the sample 
number of underdispersed tokens in chunk k 
Hubert-Labbe coefficient of vocabulary partition 
sample probability (f/N) 
probability of (d i 

Good-Turing adjusted probability for sample of size M 
proportion of new underdispersed tokens at k 
proportion of new underdispersed types at k 
growth rate of the vocabulary (E[V(N, 1)]/N) 
number of different word types among N tokens 
number of types with frequency f in a sample of N tokens 
number of types in the first ~- tokens 
number of underdispersed types in chunk k 
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