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An automatic word-classification system has been designed that uses word unigram and bigram 
frequency statistics to implement a binary top-down form of word clustering and employs an 
average class mutual information metric. Words are represented as structural tags--n-bit num- 
bers the most significant bit-patterns of which incorporate class information. The classification 
system has revealed some of the lexical structure of English, as well as some phonemic and se- 
mantic structure. The system has been compared---directly and indirectly--with other recent 
word-classification systems. We see our classification as a means towards the end of construct- 
ing multilevel class-based interpolated language models. We have built some of these models 
and carried out experiments that show a 7% drop in test set perplexity compared to a standard 
interpolated trigram language model. 

1. Introduction 

Many applications that process natural language can be enhanced by incorporating 
information about the probabilities of word strings; that is, by using statistical language 
model information (Church et al. 1991; Church and Mercer 1993; Gale, Church, and 
Yarowsky 1992; Liddy and Paik 1992). For example, speech recognition systems often 
require some model of the prior likelihood of a given utterance (Jelinek 1976). For 
convenience, the quality of these components can be measured by test set perplexity, 
PP (Bahl, Jelinek, and Mercer 1983; Bahl et al. 1989; Jelinek, Mercer, and Roukos 1990), 
in spite of some limitations (Ueberla 1994): PP = P(wlN) - ~, where there are N words in 
the word stream (w~/and  ib is some estimate of the probability of that word stream. 
Perplexity is related to entropy, so our goal is to find models that estimate a low 
perplexity for some unseen representative sample of the language being modeled. 
Also, since entropy provides a lower bound on the average code length, the project of 
statistical language modeling makes some connections with text compression--good 
compression algorithms correspond to good models of the source that generated the 
text in the first place. With an arbitrarily chosen standard test set, statistical language 
models can be compared (Brown, Della Pietra, Mercer, Della Pietra, and Lai 1992). This 
allows researchers to make incremental improvements to the models (Kuhn and Mori 
1990). It is in this context that we investigate automatic word classification; also, some 
cognitive scientists are interested in those features of automatic word classification 
that have implications for language acquisition (Elman 1990; Redington, Chater, and 
Finch 1994). 

One common model of language calculates the probability of the ith word wi 
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in a test set by considering the n - 1 most recent words (Wi_n+l,Wi_n . . . .  ,Wi_l>, or 
i - 1  (wi_,+l> in a more compact notation. The model is finitary (according to the Chomsky 

hierarchy) and linguistically naive, but it has the advantage of being easy to construct 
and its structure allows the application of Markov model theory (Rabiner and Juang 
1986). 

Much work has been carried out on word-based n-gram models, although there 
are recognized weaknesses in the paradigm. One such problem concerns the way that 
n-grams partition the space of possible word contexts. In estimating the probability 
of the ith word in a word stream, the model considers all previous word contexts to 
be identical if and only if they share the same final n - 1 words. This simultaneously 
fails to differentiate some linguistically important contexts and unnecessarily fractures 
others. For example, if we restrict our consideration to the two previous words in a 
stream--that is, to the trigram conditional probability estimate P(wilwi-~)--then the 
sentences: 

(1) a. The boys eat the sandwiches quickly. 

and 

(2) a. The cheese in the sandwiches is delicious. 

contain points where the context is inaccurately considered identical. We can illustrate 
the danger of conflating the two sentence contexts by considering the nonsentences: 

(1) b. *The boys eat the sandwiches is delicious. 

and 

(2) b. "The cheese in the sandwiches quickly. 

There are some techniques to alleviate this problem--for example O'Boyle's n-gram 
(n > 3) weighted average language model (O'Boyle, Owens, and Smith 1994). A sec- 
ond weakness of word-based language models is their unnecessary fragmentation of 
contexts--the familiar sparse data problem. This is a main motivation for the multilevel 
class-based language models we shall introduce later. Successful approaches aimed at 
trying to overcome the sparse data limitation include backoff (Katz 1987), Turing-Good 
variants (Good 1953; Church and Gale 1991), interpolation (Jelinek 1985), deleted esti- 
mation (Jelinek 1985; Church and Gale 1991), similarity-based models (Dagan, Pereira, 
and Lee 1994; Essen and Steinbiss 1992), Pos-language models (Derouault and Meri- 
aldo 1986) and decision tree models (Bahl et al. 1989; Black, Garside, and Leech 1993; 
Magerman 1994). We present an approach to the sparse data problem that shares 
some features of the similarity-based approach, but uses a binary tree representation 
for words and combines models using interpolation. 

Consider the word <boys> in (la) above. We would like to structure our entire 
vocabulary around this word as a series of similarity layers. A linguistically significant 
layer around the word <boys> is one containing all plural nouns; deeper layers contain 
more semantic similarities. 

If sentences (la) and (2a) are converted to the word-class streams <determiner 
noun verb determiner noun adverb> and <determiner noun preposition deter- 

miner noun verb adjective> respectively, then bigram, trigram, and possibly even 
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higher n-gram statistics may become available with greater reliability for use as con- 
text differentiators (although Sampson [1987] suggests that no amount of word-class 
n-grams may be sufficient to characterize natural language fully). Of course, this still 
fails to differentiate many contexts beyond the scope of n-grams; while n-gram models 
of language may never fully model long-distance linguistic phenomena, we argue that 
it is still useful to extend their scope. 

In order to make these improvements, we need access to word-class information 
(Pos information [Johansson et al. 1986; Black, Garside, and Leech 1993] or semantic 
information [Beckwith et al. 1991]), which is usually obtained in three main ways: 
Firstly, we can use corpora that have been manually tagged by linguistically informed 
experts (Derouault and Merialdo 1986). Secondly, we can construct automatic part-of- 
speech taggers and process untagged corpora (Kupiec 1992; Black, Garside, and Leech 
1993); this method boasts a high degree of accuracy, although often the construction of 
the automatic tagger involves a bootstrapping process based on a core corpus which 
has been manually tagged (Church 1988). The third option is to derive a fully au- 
tomatic word-classification system from untagged corpora. Some advantages of this 
last approach include its applicability to any natural language for which some corpus 
exists, independent of the degree of development of its grammar, and its parsimo- 
nious commitment to the machinery of modern linguistics. One disadvantage is that 
the classes derived usually allow no linguistically sensible summarizing label to be 
attached (Schfitze [1995] is an exception). Much research has been carried out recently 
in this area (Hughes and Atwell 1994; Finch and Chater 1994; Redington, Chater, and 
Finch 1993; Brill et al. 1990; Kiss 1973; Pereira and Tishby 1992; Resnik 1993; Ney, 
Essen, and Kneser 1994; Matsukawa 1993). The next section contains a presentation of 
a top-down automatic word-classification algorithm. 

2. Word Classification and Structural Tags 

Most statistical language models making use of class information do so with a single 
layer of word classes--often at the level of common linguistic classes: nouns, verbs, 
etc. (Derouault and Merialdo 1986). In contrast, we present the structural tag rep- 
resentation, where the symbol representing the word simultaneously represents the 
classification of that word (McMahon and Smith [1994] make connections between 
this and other representations; Black et al. [1993] contains the same idea applied to the 
field of probabilistic parsing; also structural tags can be considered a subclass of the 
more general tree-based statistical language model of Bahl et al. [1989]). In our model, 
each word is represented by an s-bit number the most significant bits of which corre- 
spond to various levels of classification; so given some word represented as structural 
tag w, we can gain immediate access to all s levels of classification of that word. 

Generally, the broader the classification granularity we chose, the more confident 
we can be about the distribution of classes at that level, but the less information this 
distribution offers us about next-word prediction. This should be useful for dealing 
with the range of frequencies of n-grams in a statistical language model. Some n-grams 
occur very frequently, so word-based probability estimates can be used. However, 
as n-grams become less frequent, we would prefer to sacrifice predictive specificity 
for reliability. Ordinary Pos-language models offer a two-level version of this ideal; 
it would be preferable if we could defocus our predictive machinery to some stages 
between all-word n-grams and Pos n-grams when, for example, an n-gram distribution 
is not quite representative enough to rely on all-word n-grams but contains predictively 
significant divisions that would be lost at the relatively coarse POS level. Also, for 
rare n-grams, even Pos distributions succumb to the sparse data problem (Sampson 
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1987); if very broad classification information was available to the language-modeling 
system, coarse-grained predictions could be factored in, which might improve the 
overall performance of the system in just those circumstances. 

In many word-classification systems, the hierarchy is not explicitly represented 
and further processing, often by standard statistical clustering techniques, is required; 
see, for example, Elman (1990), Schtitze (1993), Brill et al. (1990), Finch and Chater 
(1994), Hughes and Atwell (1994), and Pereira and Tishby (1992). With the structural 
tag representation, each tag contains explicitly represented classification information; 
the position of that word in class-space can be obtained without reference to the posi- 
tions of other words. Many levels of classification granularity can be made available 
simultaneously, and the weight which each of these levels can be given in, for ex- 
ample, a statistical language model, can alter dynamically. Using the structural tag 
representation, the computational overheads for using class information can be kept 
to a minimum. Furthermore, it is possible to organize an n-gram frequency database 
so that close structural tags are stored near to each other; this could be exploited to 
reduce the search space explored in speech recognition systems. For example, if the 
system is searching for the frequency of a particular noun in an attempt to find the 
most likely next word, then alternative words should already be nearby in the n-gram 
database. Finally, we note that in the current implementation of the structural tag 
representation we allow only one tag per orthographic word-form; although many of 
the current word-classification systems do the same, we would prefer a structural tag 
implementation that models the multimodal nature of some words more successfully. 
For example, ( l ight)  can occur as a verb and as a noun, whereas our classification 
system currently forces it to reside in a single location. 

Consider sentences (la) and (2a) again; we would like to construct a clustering 
algorithm that assigns some unique s-bit number to each word in our vocabulary 
so that the words are distributed according to some approximation of the layering 
described above that is, (boys) should be close to (people) and (is) should be close 
to (eat). We would also like semantically related words to cluster, so that, although 
(boys) may be near (sandwiches) because both are nouns, (g i r l s )  should be even 
closer to (boys) because both are human types. In theory, structural tag representations 
can be dynamically updated--for  example, (bank) might be close to ( r iver)  in some 
contexts and closer to (money) in others. Although we could ,construct a useful set 
of structural tags manually (McMahon 1994), we prefer to design an algorithm that 
builds such a classification. 

For a given vocabulary V, the mapping t initially translates words into their cor- 
responding unique structural tags. This mapping is constructed by making random 
word-to-tag assignments. 

The mutual information (Cover and Thomas 1991) between any two events x and 
y is: 

1 P(x,y) 
I(x,y) = og P(x ) 

If the two events x and y stand for the occurrence of certain word-class unigrams in a 
sample, say ci and cj, then we can estimate the mutual information between the two 
classes. In these experiments, we use maximum likelihood probability estimates based 
on a training corpus. In order to estimate the average class mutual information for a 
classification depth of s bits, we compute the average class mutual information: 

Ms(t) = ~_P(c i ,  cj) x log P(ci, cj) 
c,,c, P(ci)P(cj) (1) 
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where ci and cj are word classes and Ms(t) is the average class mutual information for 
structural tag classification t at bit depth s. This criterion is the one used by Brown, 
Della Pietra, DeSouza, Lai, and Mercer (1992); Kneser and Ney (1993) show how it is 
equivalent to maximizing the bi-Pos-language model probability. We are interested in 
that classification which maximizes the average class mutual information; we call this 
t o and it is found by computing: 

Ms(t °) - maxMs(t) (2) 
t 

Currently, no method exists that can find the globally optimal classification, but sub- 
optimal strategies exist that lead to useful classifications. The suboptimal strategy 
used in the current automatic word-classification system involves selecting the locally 
optimal structure between t and t', which differ only in their classification of a single 
word. An initial structure is built by using the computer's pseudorandom number 
generator to produce a random word hierarchy. Its M(t) value is calculated. Next, 
another structure, t r is created as a copy of the main one, with a single word moved 
to a different place in the classification space. Its M(t t) value is calculated. This second 
calculation is repeated for each word in the vocabulary and we keep a record of 
the transformation which leads to the highest M(t'). After an iteration through the 
vocabulary, we select that t' having the highest M(t ~) value and continue until no 
single move leads to a better classification. With this method, words which at one 
time are moved to a new region in the classification hierarchy can move back at a 
later time, if licensed by the mutual information metric. In practice, this does happen. 
Therefore, each transformation performed by the algorithm is not irreversible within 
a level, which should allow the algorithm to explore a larger space of possible word 
classifications. 

The algorithm is embedded in a system that calculates the best classifications 
for all levels beginning with the highest classification level. Since the structural tag 
representation is binary, this first level seeks to find the best distribution of words 
into two classes. Other versions of the top-down approach are used by Pereira and 
Tishby (1992) and Kneser and Ney (1993) to classify words; top-down procedures are 
also used in other areas (Kirkpatrick, Gelatt, and Vecchi 1983). The system of Pereira 
and Tishby (1992; Pereira, Tishby, and Lee 1993) has the added advantage that class 
membership is probabilistic rather than fixed. 

When the locally optimal two-class hierarchy has been discovered by maximizing 
Ml(t), whatever later reclassifications occur at finer levels of granularity, words will 
always remain in the level 1 class to which they now belong. For example, if many 
nouns now belong to class 0 and many verbs to class 1, later subclassifications will 
not influence the M1 (t) value. This reasoning also applies to all classes s = 2, 3 . . .  16 
(see Figure 1). 

We note that, in contrast with a bottom-up approach, a top-down system makes 
its first decisions about class structure at the root of the hierarchy; this constrains 
the kinds of classification that may be made at lower levels, but the first clustering 
decisions made are based on healthy class frequencies; only later do we start noticing 
the effects of the sparse data problem. We therefore expect the topmost classifications 
to be less constrained, and hopefully more accurate. With a bottom-up approach, the 
reverse may be the case. The tree representation also imposes its own constraints, 
mentioned later. 

This algorithm, which is O(V 3) for vocabulary size V, works well with the most 
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level s-3 • 

level s-2 • 

level s-1 -~ 

level s 

Class M Class N 

Figure 1 
Top-down clustering. The algorithm is designed so that, at a given level s, words will have 
already been re-arranged at levels s - 1, etc. to maximize the average class mutual 
information. Any alterations at level s will not bear on the classification achieved at s - 1. 
Therefore, a word in class M may only move to class N to maximize the mutual 
information--any other move would violate a previous level's classification. 

frequent words  from a corpus1; however,  we have deve loped  a second algorithm, to 
be used after the first, to allow vocabulary coverage in the range of tens of thousands 
of word  types. This second algori thm exploits Zipf 's  law (1949)--the most  frequent  
words  account  for the majority of word  t okens - -by  adding in low-frequency words  
only after the first algori thm has finished processing high-frequency ones. We make  
the assumption that any influence that these infrequent  words  have on the first set 
of frequent  words  can be discounted. The algori thm is an order  of magni tude  less 
computat ional ly  intensive and so can process m an y  more words  in a given time. By 
this method,  we can also avoid model ing only a simplified subset of the phenomena  
in which we are interested and hence avoid the danger  of designing systems that do 
not  scale-up adequately  (Elman 1990). Once the positions of high-frequency words  
has been fixed by  the first algorithm, they are not  changed again; we can add any 
new word,  in order  of frequency, to the growing classification structure by  making 16 
binary decisions: Should its first bit be a 0 or a 1? And  its second? Of our  33,360 word  
vocabulary, we note that the most  frequent  569 words  are clustered using the main 

1 In a wors t  case analysis ,  the m u t u a l  in format ion  metric will be O(V 2) and  we  need  to evaluate  the  tree 
on  V occas ions- -~ach  t ime wi th  one  word  reclassified; lower order  t e rms  (for example ,  the  n u m b e r  of 
i terations at each level) can be ignored.  In practice, the  m u t u a l  in format ion  calculat ion is m u c h  less 
than  O(V 2) since there are far fewer than  V 2 b ig rams  observed  in our  t ra ining text. 
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algorithm; the next 15,000 are clustered by our auxiliary algorithm and the remaining 
17,791 words are added to the tree randomly. We add these words randomly due 
to hardware limitations, though we notice that the 15,000th most frequent word in 
our vocabulary occurs twice only--a very difficult task for any classification system. 
The main algorithm takes several weeks to cluster the most frequent 569 words on a 
Sparc-IPC and several days for the supplementary algorithm. 

3. Word Classification Performance 

In evaluating this clustering algorithm, we were interested to see if it could discover 
some rudiments of the structures of language at the phonemic, syntactic, and semantic 
levels; we also wanted to investigate the possibility that the algorithm was particularly 
suited to English. 

To these ends, we applied our algorithm to several corpora. It successfully dis- 
covered major noun-verb distinctions in a toy regular grammar introduced by Elman 
(1990), made near perfect vowel-consonant distinctions when applied to a phonemic 
corpus and made syntactic and semantic distinctions in a Latin corpus (McMahon 
1994). It also discovered some fine-grained semantic detail in a hybrid pos-word cor- 
pus. However, classification groups tended to be dispersed at lower levels; we shall 
discuss this phenomenon with respect to the distribution of number words and offer 
some reasons in a later section. 

3.1 Clustering Results 
We report on the performance of our top-down algorithm when applied to the most 
frequent words from an untagged version of the LOB corpus (Johansson et al. 1986) and 
also when applied to a hybrid word-and-class version of the LOB. We used structural 
tags 16 bits long and we considered the 569 most frequent words; this gave us 46,393 
bigrams to work with--all other word bigrams were ignored. We present the following 
figures as illustrations of the clustering results: our main use for the classification 
system will be as a way to improve statistical language models; we eschew any detailed 
discussion of the linguistic or cognitive relevance of the clustering results. Illustrative 
clusterings of this type can also be found in Pereira, Tishby, and Lee (1993), Brown, 
Della Pietra, Mercer, Della Pietra, and Lai (1992), Kneser and Ney (1993), and Brill 
et al. (1990), among others. 

In Figure 2, we observe the final state of the classification, to a depth of five bits. 
Many syntactic and some semantic divisions are apparent--prepositions, pronouns, 
verbs, nouns, and determiners cluster--but many more distinctions are revealed when 
we examine lower levels of the classification. For example, Figure 3 shows the sub- 
cluster of determiners whose initial structural tag is identified by the four-bit schema 
0000. In Figure 4 we examine the finer detail of a cluster of nouns. Here, some se- 
mantic differences become clear (we have internally ordered the words to make the 
semantic relations easier to spot). Many of the 25 groups listed in Figure 2 show this 
type of fine detail. It is clear, also, that there are many anomalous classifications, from 
a linguistic point of view. We shall say more about this later. 

In a second experiment (see Figure 5), a hybrid version of the LOB corpus was 
created: we replaced each word and part-of-speech pair by the word alone if the 
part-of-speech was a singular noun, the base form of a verb, or the third person 
singular present tense of a verb; otherwise we replaced it by the part-of-speech. By 
doing this, we hoped to lighten the burden of inducing syntactic structure in the 
vocabulary to see if the classification system could move beyond syntax and into 
semantic clustering. We considered that, of the word tokens replaced by their part- 
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Figure 2 
Final distribution of the most frequent words from the LOB corpus. Only the first five levels of 
classification are given here, but important syntactic relations are already clear. The empty 
classes are shown to make the binary topology clear. 

224 



McMahon and Smith Improving Statistical Language Models 

- ->  

~--her 
, I L_ another 

I each 
] ~ s°mera l  those 

/ r '°' 

W_~ --~ make 
~Fall both once whom 

___t  L--making talking such 

LC3o~ 6 ten 
F~any 

_~ every 

a n 

n o  

 -ouz_ 
. _ [ its 

- -  their 
, ~ his 

'--i L my your whose 

! r-Mr 
I ~ ~ -  Mrs 

i ~--Dr 
- -  Miss 

Figure 3 
Word classification results. Detail of relationship between words whose final tag value starts 
with the four bits 0000. Many of these words exhibit determiner-like behavior. 

of-speech, the vast majority would be function words and hence would contribute 
little to any semantic classification. Also, we hoped that relatively rare content words 
would now find themselves within slightly more substantial bigram contexts, again 
aiding the clustering process. 

When we examine the most frequent "words" of this hybrid corpus, we find that 
there are many more content words present, but that the remaining content words 
still have an indirect effect on word classification, since they are represented by the 
part-of-speech of which they are an example. Figure 5 shows many of the largest 
groupings of words found after processing, at a classification level of nine bits. By 
inspection, we observe a variety of semantic associations, although there are many 
obvious anomalies. We offer several explanations for this--words are polysemic in 
reality, the clustering criterion exploits bigram information only, and this algorithm, 
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Figure 4 
Detail, from Level 5 to Level 9, of many noun-like words. Semantic differences are registered. 

like others, finds a locally optimal classification. In each word group we include here, 
the entire membership is listed (except for the irrelevant POS tags). The remaining 
groups not presented here also display strong semantic clustering. From this second 
experiment, we conclude that bigram statistics can be used to make some semantic 
differentiations. This lends support to our case for using multilevel statistical language 
models- -we can see the kinds of distinctions that structural tags can make and which 
will be lost in the more usual two-level (word and Pos) language models. 

Finally, Figure 6 shows the complete phoneme classification of a phonemic ver- 
sion of the vor)IS corpus. The most obvious feature of this figure is the successful 
distinction between vowels and consonants. Beyond the vowel-consonant distinction, 
other similarities emerge: vowel sounds with similar vocal tract positions are clustered 
c lo se ly - - the / a / sounds ,  for example, and the phoneme p a i r / o / a n d / o o / ;  some con- 
sonants that are similarly articulated also map onto local regions of the classification 
s p a c e - - - / r / a n d / r x / , / c h / a n d / z / ,  a n d / n / a n d / n g / ,  for example. 

3.2 Clustering Comparisons 
A scientifically reliable method of comparing classifications would be to measure how 
different they are from randomly generated classifications. This kind of approach has 
been taken by Redington, Chater, and Finch (1994) but is not used here because it 
is apparent that the classifications are clearly different from random ones and, more 
significantly, because many classification processes could produce distributions that 
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Figure 6 
Automatic phoneme clustering. Differentiation between vowels and consonants. From a 
phonemic version of the VODIS corpus. 

are nonrandom, but have nothing to do with lexical categories and are not useful for 
class-based statistical language modeling. 

The question of the criterion of a successful classification is dependent upon re- 
search motivations, which fall into two broad schools. The first school is made up of 
those who primarily would like to recover the structures linguists posit--the struc- 
tures they seek are mainly syntactic but can also be semantic. The second school 
is interested in classifications that help to improve some language model or other 
language-processing system and that may or may not exhibit linguistically perspic- 
uous categories. Unless modem linguistics is radically wrong, a degree of overlap 
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should occur in these two ideals. 
Researchers who claim that linguistically well-formed classifications are not the 

immediate goal of their research must find some other way of measuring the appli- 
cability of their classifications. For example, we can operationally define good word 
classifications as those conferring performance improvements to statistical language 
models. We shall make this our goal later, but first we compare our system with others 
by inspection. 

In Brill et al. (1990), another automatic word-classification algorithm was devel- 
oped and trained using the Brown corpus; they report success at partitioning words 
into word classes. They note that pronouns have a disjoint classification, since the 
+nominative and -nominative pronouns--for example, <I), <they) and (me), <them) 
respectively--have dissimilar distributions. These effects are replicated in our experi- 
ment. They report other, more fine-grained features such as possessives, singular deter- 
miners, definite-determiners and Wh-adjuncts. Our algorithm also distinguishes these 
features. Brill et al. do not report any substantial adjective clustering, or noun clus- 
tering, or singular-plural differences, or co-ordinating and subordinating conjunction 
distinction, or verb tense differentiation. At lower levels, the only semantic clustering 
they report involves the group: <man world time life work people years) and the 
group: <give make take find). 

The results described in Brown, Della Pietra, DeSouza, Lai, and Mercer (1992) 
are based on a training set two orders of magnitude greater than the one used in 
the above experiment. Even the vocabulary size is an order of magnitude bigger. As 
the vocabulary size is increased, the new vocabulary items tend, with a probability 
approaching unity, to be content words: after approximately one thousand words, few 
function words are left undiscovered. This increase in resources makes contexts more 
balanced and, simultaneously, more statistically significant. It also allows many more 
content words to be grouped together semantically. The authors give two tables of 
generated word classes, one being specially selected by them and the other containing 
randomly selected classes. They do not report on any overall taxonomic relations 
between these classes, so it is not possible to compare the broad detail of the two sets 
of data. 

The results of Finch and Chater (1992, 1991) are also based on a substantially larger 
corpus. Finch and Chater also run a version of the Elman experiment (see below). Their 
system fails to produce a complete noun-verb distinction at the highest level, though 
they offer an argument to suggest that the inadequacy lies in the nature of Elman's 
pseudo-natural language corpus; our system uses Elman's corpus but succeeds in 
making the primary noun-verb distinction. Finch and Chater also cluster letters and 
phonemes--their system succeeds in distinguishing between vowels and consonants 
in the letter experiment, and only the phoneme /u/ is incorrectly classified in the 
phoneme experiment. Conversely, our algorithm completely clusters phonemes into 
vowels and consonants, but performs less well with letters (McMahon 1994). 

Pereira and Tishby (1992) do not give details of syntactic similarity--they con- 
centrate on a small number of words and make fine-grained semantic differentiations 
between them. Their evaluation techniques include measuring how helpful their sys- 
tem is in making selectional restrictions and in disambiguating verb-noun pairs. 

Schiitze (1993) uses a standard sparse matrix algorithm with neural networks; his 
system is the only one that attempts to side-step the problem of deciding what his 
clusters are clusters of, by producing a system that generates its own class labels. He 
does not report the overall structure of his one-level classification. His training set is 
one order of magnitude bigger than the largest one used in the present experiments. 
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3.2.1 Ceteris Paribus Qualitative Comparison. This section describes comparisons 
between our algorithm and others, where some of the experimental parameters are 
controlled--for example, corpus size. We considered it useful to compare the perfor- 
mance of our algorithm with others' on precisely the same input data because we 
believe that factors like vocabulary, corpus size, and corpus complexity make evalua- 
tion difficult. 

A Recurrent Neural Network and a Regular Grammar. We redescribe the salient details of 
one of the experiments performed by Elman (1990). The grammar that generates the 
language upon which this experiment is based is, according to the Chomsky classifica- 
tion, type 4 (regular, or finite-state). Its production rules are shown in Figure 7. Some 
of the words belong to two or more word classes. The sentence frames encode a sim- 
ple semantics--noun types of certain classes engage in behavior unique to that class. 
Elman generates a 10,000-sentence corpus to be used as the training corpus. Each sen- 
tence frame is just as likely to be selected as any other; similarly, each word member 
of a particular word group has an equiprobable chance of selection. No punctuation 
is included in the corpus, so sentence endings are only implicitly represented--for 
example, the segment s t r eam/ca t  smell cookie clog e x i s t  boy smash p la t e  / con- 
tains a three-word sentence followed by a two-word sentence followed by another 
three-word sentence. 

After training, Elman's net was tested on an unseen set, generated by the same 
underlying grammar. The network's performance was poor--only achieving a predic- 
tion error rate slightly above chance. Elman then presented the training data to the 
net a further four times, but the prediction was still poor. He claimed that, with even 
more training, the net could have improved its performance further. But this was not 
the main goal of the experiment; instead, hierarchical cluster analysis was performed 
on the averaged hidden unit activations for each of the 29 words. Figure 8 reproduces 
the similarity tree that cluster analysis of the recurrent net produced. His analysis re- 
veals that the network has learned most of the major syntactic differences and many 
of the semantic ones coded in the original language. For example, there is a clear 
distinction ,between verbs and nouns; within the main class of nouns, there is a clear 
animate-inanimate distinction; within that, the classes of agent-patient, aggressor, and 
nonhuman animal have been induced. The analysis is not perfect: the most important 
distinction is considered to be between a handful of inanimate noun objects (bread, 
cookie, sandwich, glass, and plate) and the rest of the vocabulary. 

We now discuss the results obtained when our algorithm is applied to a similar 
test corpus. Elman's grammar of Figure 7 was used to produce a corpus of 10,000 sen- 
tences with no sentence breaks. Unigram and bigram word-frequency statistics were 
generated. Our structural tag word-classification algorithm was applied to the initial 
mapping, which randomly assigned tag values to the 29 words. Figure 9 shows the im- 
portant classification decisions made by this algorithm. Unlike the Elman classification 
(see Figure 8), informationally useful class structure exists from level 1 onwards. This 
algorithm also produces a classification some features of which are qualitatively better 
than Elman's--all nouns and all verbs are separated; all animates and inanimates are 
separated. The multicontext noun/verb  /break / is identified as different from other 
verbs; intransitive verbs cluster together and the aggressive nouns are identified. This 
algorithm does not recapture the complete syntax and semantics of the language--  
human nouns and non-aggressive animate nouns remain mixed, and the food noun 
cluster failed to attract the word (sandwich/. This experiment was repeated several 
times, each time resulting in a classification whose overall structure was similar but 
whose fine detail was slightly different. One run, for example, correctly differentiated 
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• NOUN-AGRESS VERB-EAT NOUN-ANIM 
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NOUN-ANIM • 

NOUN-INAN • 

NOUN-AGRESS - - •  

NOUN-FRAGILE - - •  

NOUN-FOOD • 

VERB-INTRAN • 

VERB-TRAN • 

VERB-AGPAT • 

VERB-PERCEPT--•  

VERB-DESTROY • 
V E R B - E A T - - •  

Figure 7 

man woman girl boy 

cat mouse dog man woman girl boy dragon monster lion 
book rock car cookie break bread sandwich glass plate 

dragon monster lion 

glass plate 

cookie break bread sandwich 

think sleep exist 

see chase like 
move break 

smell see 
break smash 

eat 

The Elman grammar. There are 16 nonterminal  rules and 12 terminals. Notice also that 
terminals can belong to more than one word class--for example, {break) is an inanimate 
noun, a food noun,  an agent-patient verb, and a destroy verb. 
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bread 
{--CC cookie 

sandwich 
glass 
plate 
eat 
smash 

~ chase 
like 
move 

_ _ ~ -  break 
- -  smell 

 s,e:0 
[_/---think 

t ~ e x i s t  
book 

Li---car L--rock 
. _ ~ . .  ragon 

L monster 

_ _  girl 

a n  

m a n  

Figure 8 
Elman's results. A Cluster analysis of the hidden units of a trained recurrent net, showing the 
major verb-noun distinction, as well as many other syntactic and semantic fine-grained 
distinctions. 

between small animals and humans, but failed to recognize food nouns as a complete 
group. Another run identified food nouns perfectly but failed to separate aggressors 
from other animates. 

Classi~cation Using a Merging Algorithm. The systems described in Brown, Della Pietra, 
DeSouza, Lai, and Mercer (1992) and Brill and Marcus (1992) both provide examples of 
bottom-up, merge-based classification systems; a version of such a system was chosen 
to be implemented and tested against our algorithm, using the same input data. The 
Brown system uses a principle of class merging as its main clustering technique. The 
initial classification contains as many classes as there are words to classify, each word in 
its own class. Initially these classes are all mutually independent. Then two classes are 
chosen to merge; the criterion of choice is based on a mutual information calculation 
(see Equation 2). The process is repeated until only one class remains. Next, the order 
of merging provides enough information for a hierarchical cluster to be constructed. A 
comparison experiment was designed using the 70,000-word VODIS corpus (Cookson 
1988) as a source of frequency information; our system and the merging system were 
given a set of those words from the decapitalized and depunctuated corpus (except 
for the apostrophe when it is a part of a word) whose frequencies were greater than 
30. This accounted for the 256 most frequent words. 

The final classifications, to a depth of five levels, are shown in Figure 10 and Fig- 
ure 11 for the bottom-up and top-down systems, respectively. The difficulty of corn- 
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alright fine lovely okay fight thanks then oh past and or please yes 

at about before by after between than is does isn't gets was of on for what's 
/ with . . 
t - - j u s t  not only probably still hang hold half quarter got going goes possible 

trying one in there country cross cheaper more round straight through 
monday friday saturday tomorrow back off over down up it that early late 
she something this that's it's there's i'm you're i've you've 

~ 
. ~  bdtish bye 

liverpool rail good hello card enquiries street 

~ - -  much day class thing time out sort cost price times 

! .'__ aftemoon evening morning first best other next same indeed bit lot moment 
pound child second single sunday return children journey line saver station 
fare ticket train trains adult hour way 

! 

• -- how very 

~ - -~  what 

I c -  the 
~-- a any each long an been my your 

Figure 10 
Merge-based clustering. Classification of the most frequent words of a formatted VODIS 
corpus, using a merge-based method. 

for this kind of division between numbers. The merge-based system includes these 
numbers at Level I only. Both systems identify place names well ((liverpool> is most 
often seen in this corpus as part of the place name--<liverpool street station>); 
however, the nearest class in the merge-based system is a group of verb-like words, 
whereas in the top-down system, the nearest class is a group of nouns. With verbs, 
the merge-based system performs better~ producing a narrower dispersion of words. 
However, this success is slightly moderated by the consideration that one half of 
the entire merge classification system was allocated to number words, leaving the 
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Figure 11 
Top-down clustering. Classification of the most frequent words of a formatted VODm corpus, 
using a top-down method. 

rest of the vocabulary, including the verbs, to be distributed through the other half. 
Considering the distributions of pronouns and determiners, the merge-based system 
performs slightly better. 

In conclusion, the two systems display the same kinds of differences and similar- 
ities as were seen when we compared our system to Elman's neural network--that  is, 
our method performs slightly better with respect to overall classification topology, but 
loses in quality at lower levels. This loss in performance is also noted by Magerman 
(1994), who applies a binary classification tree to the task of parsing. Magerman also 
makes the point that trees (as opposed to directed graphs) are inherently vulnerable 
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Table 1 
Reduced tag set used in Hughes-Atwell evaluation system. 

ADJ ADV ART CCON 
CARD DET EX EXPL 
LET MD NEG NOUN 
ORD OTH P A S T  PREP 
PRES P R O N  PUNC QUAL 
SCON TO WH 

to unnecessary data fragmentation. The inaccuracies introduced by the first of these 
characteristics may be controlled, to a limited extent only, by using a hybrid top-down 
and bottom-up approach: instead of clustering vocabulary items from the top down, 
we could first merge some words into small word classes. Later top-down clustering 
would operate on these word groups as if they were words. 

3.2.2 Quantitative comparison. Arriving at more quantitatively significant conclusions 
is difficult; Hughes (1994), for example, suggests benchmark evaluation--a standard 
tagged corpus (e.g., the LOB) is used as a reference against which automatic com- 
parisons can be made. While this may not be appropriate for the designers of every 
automatic classification system, such as researchers whose main interest is in automatic 
classification in statistical language modeling, it has many advantages over qualitative 
inspection by an expert as an evaluation method, which to date has been the dominant 
method. Brill and Marcus (1992) suggest a similar idea for evaluating an automatic 
part-of-speech tagger. 

Classification trees can be sectioned into distinct clusters at different points in the 
hierarchy; each of these clusters can then be examined by reference to the distribution 
of LOB classes associated to each word member of the cluster. A high-scoring cluster is 
one whose members are classified similarly in the tagged LOB corpus. In the following, 
we follow Hughes' method. 

The evaluation is performed on the 195 most frequent words of the LOB corpus. 
The words are automatically classified using our top-down algorithm. The resulting 
classification is then passed to the evaluator, which works as follows: The first stage 
involves producing successive sections, cutting the tree into distinct clusters (from 
one cluster to as many clusters as there are vocabulary items), so that an evaluation 
score can be generated for each level; these evaluations can be plotted against the 
number of clusters. At each section, and for each cluster, we make an estimate of 
the preferred classification label for that cluster by finding the most common parts of 
speech associated with each word in the classification under question. For that part 
of speech most frequently associated with the word, we give a high weight, with 
decreasing weight for the second most frequent part of speech, and so on for the top 
four parts of speech. We then estimate the most likely part-of-speech category and 
label this cluster accordingly. Then, for each member of this cluster, a partial score 
is calculated that rates our classification of the word against its distribution of LOB 
classes. The summed score is then normalized as a percentage. An outline of the 
evaluation scheme is shown in Figure 12. 

Hughes does not use the classification system provided with the LOB corpus-- 
instead, he uses a reduced classification system consisting of 23 class tags, shown in 
Table 1. The results are shown in Figure 13. 

Both of the compared classification systems use familiar statistical measures of cor- 
relation (Spearman's rank correlation coefficient and Manhattan metric) and grouping 
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the: <article,38458> 
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(i) "the': matches Estimated Cluster Label with most frequent LOB-class 

ADD 1 
(ii) "all": also matches Estimated Cluster Label with top LOB-class 

ADD 1 
(iii) "some": doesn't match Estimated Cluster Label with any of the top 
four of its LOB-classes 

ADD 0 

Generally, for each word, if the Estimated Cluster Label matches the kth top LOB-class, 
ADD (5-k)/4 to the score; k<5. Contributions to the estimate of the Preferred Cluster 
Label work similarly. 

Figure 12 
Hughes-Atwell Cluster Evaluation. 

(group averaging and Ward's method) as their main method. Our system scores higher 
than the Finch system at all levels; the Hughes system scores better than ours over the 
first eighty classes, but worse at lower levels. However, we note that both Hughes and 
Finch use contiguous and noncontiguous bigram information, whereas we use con- 
tiguous bigram information only--the simplest estimate of word context possible--to 
explore just how much information could be extracted from this minimal context. 

One limitation of Hughes' evaluation system is that fractured class distributions 
are not penalized: if some subbranch of the classification contains nothing but number 

237 



Computational Linguistics Volume 22, Number 2 

100 

90 _ - -  

P 
~. 7o 

-~ 6o 

~ 50 
uJ 

~ 40 
~) "1~ ~ o d  and Manhattan Metric 
T~ 30 Spearman Rank and Group Average [ 

0 20 40 60 80 100 120 140 160 180 200 
Number of Clusters 

Figure 13 
Performance comparison. Graph showing the performance of the top-down classification 
system compared to two recent systems --  those of Hughes and Atwell and of Finch and 
Chater. Performance is measured by the Hughes-Atwell cluster evaluation system. 

words (<ten), (three/,  etc.) then that branch gets a certain score, regardless of how 
spread-out the words are within that branch. On the other hand, there may well 
be good engineering reasons to treat linguistically homogeneous words as belonging 
to different classes. For example, in a corpus of conversations about train timetables, 
where numbers occur in two main situations--as ticket prices and as times--we might 
expect to observe a difference between, say, the numbers from 1 to 12, and numbers 
up to 59 (hour numbers and minute numbers respectively); Figure 11 lends some 
support to this speculation. Similarly, phrases like ( f ive  pounds n ine ty  nine  pence 
/ could lead to different patterns of collocation for number words. This sort of effect is 
indeed observed (McMahon 1994). It is less clear whether our main clustering result 
separates number words into different classes for the same kind of reason (in Figure 2, 
class 00000 contains 4 number words and class 00101 contains 11). A second limitation 
lies in the evaluation scheme estimating the canonical part of speech based on the rank 
of the parts of speech of each word in it--a better system would make the weight be 
some function of the probability of the parts of speech. A third criticism of the scheme 
is its arbitrariness in weighting and selecting canonical classes; the criticism is only 
slight, however, because the main advantage of any benchmark is that it provides a 
standard, regardless of the pragmatically influenced details of its construction. 

Automatic word-classification systems are intrinsically interesting; an analysis of 
their structure and quality is itself an ongoing research topic. However, these systems 
can also have more immediate uses. The two types of use are related to the two types of 
approach to the subject--linguistic and engineering. Consequently, indirect evaluation 
can be linguistic or engineering-based. 

Indirect linguistic evaluation examines the utility of the derived classes in solv- 
ing various linguistic problems: pronoun reference (Elman 1990; Fisher and Riloff 
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1992), agreement, word-sense disambiguation (Liddy and Paik 1992; Gale, Church, 
and Yarowsky 1992; Yarowsky 1992; Pereira, Tishby, and Lee 1993) and resolution of 
anaphoric reference (Burger and Connolly 1992). A classification is said to be useful if 
it can contribute to a more accurate linguistic parse of given sentences. If our main in- 
terest were linguistic or cognitive scientific, we would be even more concerned about 
the way our system cannot handle multimodal word behavior and about the resulting 
misclassifications and fracturing of the classes. 

One main engineering application that can use word classes is the statistical lan- 
guage model. Classifications which, when incorporated into the models, lower the test 
set perplexity are judged to be useful. 

4. Structural Tags in Multiclass Statistical Language Models 

There are several ways of incorporating word-classification information into statisti- 
cal language models using the structural tag representation (McMahon 1994). Here, 
we shall describe a method, derived from Markov model theory (Jelinek and Mercer 
1980), which is based on interpolating several language components. The interpola- 
tion parameters are estimated by using a held-out corpus. We decided to build an 
interpolated language model partly because it has been well studied and is familiar 
to the research community and partly because we can examine the lambda param- 
eters directly to see if weight is indeed distributed across multiple class levels. A 
poor language model component will receive virtually no weight in an interpolated 
system--if  we find that weight is distributed mostly with one or two components, we 
can conclude that interpolated language models do not find much use for multiple 
class information. 

For the following experiments, a formatted version (punctuation removed, all 
words decapitalized, control characters removed) of the one-million-word Brown cor- 
pus was used as a source of language data; 60% of the corpus was used to generate 
maximum likelihood probability estimates, 30% to estimate frequency-dependent in- 
terpolation parameters, and the remaining 10% as a test set. The vocabulary items 
extracted from the training set were clustered according to the method described ear- 
lier. 

For comparison, we calculated some test set perplexities of other language models. 
Improved performance can be obtained by making interpolation parameters depend 
upon some distinguishing feature of the prediction context. One easily calculated fea- 
ture is the frequency of the previously processed word. In our main experiment, this 
resulted in 428 sets of & values, corresponding to 428 different previous-word frequen- 
cies. The parameters are fitted into an interpolated language model the core of which 
is described by the equation: 

P(Wk) "~- "~u(f) X P(Wk) -{- )~b(f) X P (w  k I Wk-1) q- )~t(f) X P(w  k I Wk-2,Wk-1) 

where f = f(wj), the frequency of word (wj) if a valid wj exists and 0 otherwise--  
namely at the beginning of the test set, and when the previous word is not in the 
training vocabulary. The & values are selected using a standard re-estimation algo- 
rithm (Baum et al. 1970). The resulting perplexity value for this system is 621.6. This 
represents a pragmatically sensible baseline value against which any variant language 
model should be compared. A similar word-based language model, the weighted av- 
erage language model, has been developed by O'Boyle, Owens, and Smith (1994). This 
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model is described as follows: 

m Wk_ i ) q- ~0 X PML(Wk) P(Wk I W~ -1) = ~i=1/~i X PML(Wk I k-1 
m A ~ i=0  i 

where there are statistically significant segments up to m + 1 words long and PML(Wk) 
is the maximum likelihood probability estimate of a word. The numerator acts as a 
normalizer. It has been found that: 

kml 
Ai = 2 (Iwk-~ I) x logf(w~-~) 

where k-1 IWk_il is the size of the segment, results in a useful language model of this form. 
When applied to the Brown corpus, excluding the 30% allocated for interpolation and 
only using n-grams up to 3, the model still performs well, achieving a perplexity score 
of 644.6; adding the extra training text should remove the disadvantage suffered by 
the weighted average model but at the probable cost of introducing new vocabulary 
items, making the test set perplexity comparisons even more difficult to interpret. 

An important component of many statistical language-modeling systems is the 
bigram conditional probability estimator P(wi ] wi-1) (Church and Gale 1991); we 
shall restrict our attention to the case where both words have been seen before, 
though the bigram (Wi_l,Wi) itself may be unseen. We shall suggest an alternative 
to the familiar maximum likelihood bigram estimate, which estimates the probability 

as P(wi I wi-1) f(wi_~,wi) wheref(w) is just the frequency of occurrence of w in some 
- f ( w i _ ~ )  , 

training corpus. 
The general form of the multilevel smoothed bigram model is: 

S 
P(wi I wi-1) = ~/~)(wi-l),sP(CS(wi) I CS(wi-1))P( wi I CS(wi)) (3) 

where there are S levels of class granularity and CS(wi) is the class at level s of the 
word wi; ),4(w~_l),s is an interpolation weight for language model component s and de- 
pends upon some function ~(Wi_I) of the conditioning word wi-1; common functions 
include a frequency-based interpolation ~(wi-1) = f ( w i - 1 )  and a depth-s class-based 
interpolation, qS(wi_l) = CS(wi_l), though ~ can partition the conditioning context in 
any way and this context does not necessarily have to be a recent word. The ,~ values 
are estimated as before, using the frequency of the previous word to partition the 
conditioning context. Parameter setting for the smoothed bigram takes less than a day 
on a Sparc-IPC. 

Our 16-bit structural tag representation allows us to build an interpolated bigram 
model containing 16 levels of bigram-class information. As suggested earlier, we can 
look at the spread of )~ values used by the smoothed bigram component as a function 
of the class granularity and frequency of the conditioning word. Figure 14 shows 
clearly that the smoothed bigram component does indeed find each class level useful, 
at different frequencies of the conditioning word. Next, we need to find out how much 
of an improvement we can achieve using this new bigram model. 

We can replace the maximum likelihood bigram estimator in our interpolated 
trigram model with the smoothed bigram estimator. When we do, we get a perplexity 
of 577.4, a 7.1% improvement on standard interpolation, which scores 621.6. Other 
experiments with )~ depending on the class (at a certain depth) of the previous word 
lead to smaller improvements and are not reported here. 
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Figure 14 
Bigram lambda weights. Surface showing how lambda varies with frequency (log scale) of 
previous word and bigram-class granularity. The projected contour map highlights the main 
feature of this relationship--at various frequencies, each of the 16 class bigram models is used. 

Figure 15 summarizes the test set perplexity results. We note that our 7.1% im- 
provement is larger than that obtained by Brown, Della Pietra, DeSouza, Lai, and 
Mercer (1992), who report a 3.3% improvement. The smaller absolute perplexity scores 
they quote are a consequence of the much larger training data they use. One reason 
for this apparent improvement may be that their baseline model, constructed as it is 
out of much more training data, is already better than our equivalent baseline, so that 
they find improvements harder to achieve. Another reason may be due to the different 
vocabulary sizes used (Ueberla 1994). A third reason, and one which we consider to be 
important, is that multilevel class-based language models may perform significantly 
better than two-level ones. We carried out another experiment to support this claim. 

We constructed a frequency-dependent interpolated unigram and bigram model 
as a baseline. Its test set perplexity was 635. We then replaced the maximum likeli- 
hood bigram component with the smoothed bigram estimate. The perplexity for this 
system was 580, a 9% improvement. We also replaced the maximum likelihood bigram 
component with a series of 15 two-level smoothed bigram models--from a 16-plus- 
15 smoothed bigram to a 16-plus-1 smoothed bigram. Figure 16 details these results. 
The best of these two-level systems is the 16-plus-8 model, which scores 606. So, on 
a bigram model, the multilevel system is 4.3% better than the best two-level system, 
which supports our claim. We chose bigram models in this experiment so that we 
could make some comparisons with similarity-based bigram models. 

Dagan, Markus, and Markovitch (1993) claim that word-classification systems of 
this type may lead to substantial information loss when compared to similarity meth- 
ods (Dagan, Pereira, and Lee 1994; Essen and Steinbiss 1992). The similarity-based 
system of Dagan, Pereira, and Lee (1994) improves a baseline Turing-Good bigram 
model by 2.4% and the co-occurrence system of Essen and Steinbiss (1992) leads to 
a 10% improvement over an interpolated baseline bigram model. This latter result is 
based on a similarly sized training set and so our 9% improvement compared to their 
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Language Model Test Set Perplexity 
Weighted Average 644.626 
Interpolated Trigram 621.632 
Interpolated Trigram (smoothed bigram component) 577.421 

Figure 15 
Test set perplexity improvements. When an interpolated trigram language model uses 
smoothed bigram estimates, test set perplexity reduced by approximately 7.1% compared to a 
similar system with maximum likelihood bigram estimates, and 10% compared to the 
weighted average language model. 

Language Model Test Set Perplexity 
Baseline bigram 
word plus class 1 
word plus class 2 
word plus class 3 
word plus class 4 
word plus class 5 
word plus class 6 
word plus class 7 
word plus class 8 
word plus class 9 
word plus class 10 
word plus class 11 
word plus class 12 
word plus class 13 
word plus class 14 
word plus class 15 
Multilevel 

635 
634 
633 
626 
621 
616 
614 
609 
606 
609 
614 
618 
622 
627 
631 
633 
580 

Figure 16 
Multilevel versus two-level bigram performances. A multilevel smoothed bigram model is 9% 
better than a baseline maximum likelihood model and 4.3% better than the best two-level 
class-based bigram model. 

10% suggests that language models based upon fixed-place classes can be only slightly 
worse than some similarity models, given approximately equal training texts. 

4.1 An Example 
As an illustration of the kind of advantage structural tag language models can offer, 
we introduce nine oronyms (word strings which, when uttered, can produce the same 
sound) based upon the uttered sentence: 

The boys eat the sandwiches. 

If we assume that we already possess a perfect speech recognition acoustic model 
(Jelinek, Mercer, and Roukos 1992), it may be able to recover the phoneme string: 

/DH a b 01 z EE t DH A s AA n d w i j i z/ 
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Sentence W.A. Smoothed Grammatical 
the boy seat the sandwiches 
the boys eat the sandwiches 
the boy seat this and which is 
the boys eat this and which is 
the buoys eat the sandwiches 
the buoys eat this and which is 
the boys eat the sand which is 
the buoys eat the sand which is 
the buoy seat this and which is 

3,419 
1,787 

435 
232 
195 
25 
14 

1.5 
0 

7,848 
8,821 

137 
149 
469 

8 
21 

1.1 
0 

n o  

yes 
n o  

n o  

yes 
no 

yes 
yes 
n o  

Figure 17 
Improvements in a simulated speech-recognition example. Nine versions of a phonemically 
identical oronym, ordered by weighted average (W.A.) probability (x 10-20). The W.A. 
language model ranks the preferred sentence second. The smoothed structural tag model 
successfully predicts the original utterance as the most likely. (buoy) is an unseen vocabulary 
item in this test. Also, in all but two nonzero cases, the smoothed model makes grammatically 
correct sentences more likely and vice versa. 

The original sentence is not the only speech utterance that could give rise to the 
observed phoneme string; for example, the meaningless and ungrammatical sentence: 

*The buoy seat this and which is. 

can also give rise to the observed phonemic stream. Humans usually reconstruct the 
most likely sentence successfully, but artificial speech recognizers with no language 
model component cannot. Nonprobabilistic models, while theoretically well-grounded, 
so far tend to have poor coverage. Another limitation can be seen if we consider a 
third hypothesized sentence: 

The buoys eat the sand which is. 

This simultaneously surreal and metaphysical sentence may be accepted by grammar 
systems that detect well-formedness, but it is subsequently considered just as plausible 
as the original sentence. A probabilistic language model should assign a relatively low 
probability to the third sentence. We constructed nine hypothesized sentences, each 
of which could have produced the phoneme string; we presented these sentences as 
input to a high-quality word-based language model (the weighted average language 
model) and to another smoothed structural tag language model. Neither the Hughes 
system nor the Finch system are ever applied to language models; also, the details of 
the Brown language model are insufficient for us to rebuild it and run our sentences 
through it. Figure 17 shows the normalized probability results of these experiments. 
The new language model successfully identifies the most likely utterance. In all but 
two nonzero cases, grammatically well-formed sentences are assigned a higher raw 
probability by the new model, and vice-versa for ungrammatical sentences. 

Using the top two sentences (the boy seat  the sandwiches)and (the boys eat  
the sandwiches), we can examine the practical benefits of class information for statis- 
tical language modeling. An important difference between the two is in the bigrams 
(boy seat) and (boys eat), neither of which occurred in the training corpus. The 
model that uses word frequencies exclusively differentiates between the two hypoth- 
esized sentences by examining the unigrams (boy), (seat), (boys), and (eat). In our 
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training corpus, <boy> and <seat> are individually more likely than <boys> and <eat>. 
However, with the structural tag model, extra word-class information allows the sys- 
tem to prefer the more common noun-verb pattern. This sort of advantage becomes 
even more apparent with number words: for example, if we were trying to predict the 
likelihood of <seconds> given <six>, even though the bigram <six seconds> does not 
occur in our training text, we find that <three seconds>, (four seconds>, and <five 
seconds> occur, as do <six years>, <six months>, <six weeks>, and <six days>. 

5. Discussion 

The automatic word-classification system based on a binary top-down mutual infor- 
mation algorithm leads to qualitatively interesting syntactic and semantic clustering 
results; quantitatively, it fares well compared with other systems, demonstrating com- 
plementary strengths and weaknesses compared to the more usual merge-based classi- 
fication systems. Results from an implementation of one version of a multilevel class- 
based language model (an interpolated trigram model with the maximum likelihood 
bigram component replaced with a smoothed bigram component) show a 7% improve- 
ment in statistical language model performance compared to a standard interpolated 
language model. We have incorporated structural tag information into an interpolated 
model because it provides a well-attested and successful base system against which 
improvement can be measured; it also offers us the opportunity to visualize the ), dis- 
tribution across 16 classes so that we can observe in which circumstances each class 
level is preferred (see Figure 14). However, we believe that the weighted average sys- 
tem described earlier, with its scope for improvements including n-gram information 
beyond the trigram and its avoidance of data-intensive and computationally intensive 
parameter optimization, could offer a more convenient platform within which to place 
structural tag information. Although variable granularity class-based language mod- 
els will never fully capture linguistic dependencies, they can offer modest advances 
in coverage compared to exclusively word-based systems. 
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