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The goal of the research presented here is to apply unsupervised neural network learning methods 
to some of the lower-level problems in speech synthesis currently performed by rule-based systems. 
The latter tend to be strongly influenced by notations developed by linguists (see figure 1 in Klatt 
(1987)), which were primarily devised to deal with written rather than spoken language. In 
general terms, what is needed in phonetics is a notation that captures information about ratios 
rather than absolute values, as is typically seen in biological systems. The notations derived here 
are based on an ordered pattern space that can be dealt with more easily by neural networks, 
and by systems involving a neural and symbolic component. Hence, the approach described here 
might also be useful in the design of a hybrid neural~symbolic system to operate in the speech 
synthesis domain. 

1. Background and phonetic motivation 

Phonological and phonetic notations have been developed by linguists primarily as 
descriptive tools, using rewrite-rules operating on highly abstracted basic units de- 
rived from articulatory phonetics. Even some connectionist work has followed this 
tradition (Touretzky et al. 1990). The primary aim of these notations is explanation 
and understanding, and there are difficulties in incorporating them into systems with 
a practical aim such as deriving speech from text, which tend to be data-driven. One 
recent study claimed that introduction of linguistic knowledge degrades performance 
in grapheme-phoneme conversion (van den Bosch and Daelemans 1993). However, 
typical purely data-driven systems are opaque from a phonetic or phonological point 
of view. In order to handle many of the very hard problems remaining in speech syn- 
thesis, there is a need to develop a basic underlying notation (or method of deriving 
a notation) that can be parameterized for different speakers. This notation could be 
based on articulatory phonetics (where a higher-level task, such as grapheme-phoneme 
conversion, is being performed) or on a spectral/perceptual measure of similarity, for 
more low-level tasks such as duration adjustment. This notation would ideally be rep- 
resented in a low-dimensional, topological space so as to be both perspicuous and 
flexible enough to use in further nonsymbolic modules. 

Existing synthesis-by-rule (SBR) systems (Allen et al. 1987) have been concerned 
with text-to-speech conversion, and have made use of a segmental approach derived 
from traditional phonology. Among the simplifying assumptions remaining from this 
approach are that transitions into and out of a consonant are identical, and that the 
same transition may be used in each CV combination, regardless of the larger phonetic 
environment. These assumptions need to be modified in a principled manner rather 
than by tables of exceptions. 
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It has been argued by phoneticians that articulatory models cannot account for 
all the variability found in natural speech (Bladon and A1-Bamerni 1976; Kelly and 
Local 1986). Therefore, there is a need to find ways of incorporating other sources of 
variability into synthetic speech, including, for example, the feedback a talker receives 
from the perception of their own voice. Evidence that such feedback affects speech is 
the degradation seen in the speech of persons with acquired deafness. One possible 
way to introduce this kind of variability is through the development of representations 
that encode (in a reduced dimensionality) a range of examples of the phenomenon to 
be accounted for. Formant data can be used to introduce a perceptual measure of 
similarity (see section 3 below). 

This report describes the theoretical motivations of an experimental system that 
has been implemented as a set of shell scripts and 'C' programs; not all of the technical 
details of this system have been finalized, and it has not been formally tested. While 
formants have been made use of as training data (as well as acoustic tube data), as yet 
no use has been made of a formant synthesizer for creating the output speech, due to 
the need for handcrafting of values. At present, waveform segment concatenation is 
being used to explore a parametric duration model based on the kind of proximity- 
based notations described here. 

2. Application of the SOM to phoneme data 

In outline, the Self-Organizing Map (SOM, Kohonen 1988) approximates to the prob- 
ability density function of the input pattern space, by representing the N-dimensional 
pattern vectors on a 2D array of reference vectors in such a way that the resulting clus- 
terings conform to an elastic surface, where neighboring units share similar reference 
vectors. This algorithm and Learning Vector Quantization (LVQ) are described in Ko- 
honen (1990), which has practical advice for implementation, and in more theoretical 
detail in Kohonen (1989). 

It has been widely noted that 2D representations of speech are useful where there 
is a need to transmit information to humans at a phonetic level--for example, in tactile 
listening systems (Ellis and Robinson 1993). If a speech synthesis system has a phonetic 
interface or level of operation, it is then possible to introduce learning techniques for 
subsequent modules (e.g., those which calculate durations or an intonation contour) 
and to have an idea of what is happening, in phonetic terms, when things go wrong, 
and therefore how the training program or learning method may be adjusted. There 
is a long tradition of two-dimensional representations of formant data in attempts 
to classify vowels, going back at least to the study of Peterson and Barney (1952). 
Another type of advantage lies in the flexibility given by the very large dimensionality 
reductions achievable by Kohonen's technique. These reductions are possible even 
where the input pattern space may be only sparsely populated, yielding a flexible 
encoding with not too many degrees of freedom. It is possible for Kohonen's technique 
to work in 3D (3D maps have been produced by the author, but are more difficult to 
work with and are still undergoing evaluation). In 4D or above, interpretation becomes 
much more difficult. Refinements such as the Growing Cells technique (Fritzke 1993) 
might be preferable to a move to higher dimensionality, so as to retain transparency 
of the notation and a possible link to symbol-based stages of operation. 

Figure 1 shows a map resulting from applying the SOM algorithm to phoneme 
feature data. The following nine binary articulatory features were used: continuant, 
voiced, nasal, strident, grave, compact, vowel height(I), vowel height(2), and round. 
The features hl and h2 are used for height simply because there are three possibilities: 
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Figure 1 
Clustering of phoneme data (8 x 12). 
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open, mid and closed, which cannot be encoded by a binary bit} In this case, the point 
is not to do feature extraction (since the features are already known), but to provide 
a statistical clustering in 2D that can indicate whether the features chosen provide 
a good basis for analysis. Figure 1 suggests that phoneticians have 'got it right' in 
that the features do result in a clustering of similar sounds such as stops, fricatives 
and nasals, as well as the more obvious separation between vowels and consonants. 
It is worth pointing out that neither the SOM nor the LVQ algorithm handles raw 
data (such as waveform values or image intensity values), but each operates on data 
such as spectral components or LPC coefficients that are themselves the output of a 
significant processing stage, and can justifiably be called features. 

The phoneme map is produced by a single Kohonen layer that self-organizes using 
the standard algorithm (Kohonen, 1990), taking as input nine articulatory features 
commonly used by phoneticians to describe the possible speech sounds. The features 
were designed so that any phoneme (or syllable) may be uniquely specified as a cluster 
of features, without reference to specific units (segments such as phones, syllables, 
etc.)--any feature may run across unit boundaries. Figure I shows a 12 x 8 map created 
(as are all the following maps) with hexagonal connections in the lattice indicating 
which units are neighbors. A monotonically shrinking 'bubble' neighborhood was 
used in all the maps shown here. Kohonen refers to this type of kernel as a bubble 
because it relates to certain kinds of activity bubbles in laterally connected networks 
(see Kohonen 1989). 

1 Thanks to John Local for providing the basis for the data. 
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relevant information is captured in the formant  trajectories. Maps based on acoustic 
tube data computed  from the LPC coefficients have also been created, with much  the 
same kind of results as seen in the formant  maps. That the results should be similar is 
to be expected as this data is essentially spectral, and bears little resemblance to real 
vocal tract data. Experiments are currently being carried out  to determine whether  
these maps  or those based on formants will work better as part  of h prototype speech 
synthesis system. 

To factor out  the influence of the initial configuration of the network (the reference 
vectors are initialized to small r andom values), twenty trials were run on each data 
set, and the map with the lowest quantizat ion error (QE) was selected as the best. The 
QE is simply the mean error over  the N pattern vectors in the set, 

Y~zt=l IIx(t) - me(011 QE 
N 

where  x(t) is the input  vector and mc the best matching reference vector for x(t). 
In order  to compare  QEs, the topology (form of lateral connections) and adaptat ion 

functions must  be the same, since the amount  of lateral interaction determines the 
self-organizing power  of the network.  In the simplest case of competi t ive learning the 
neighborhood contains only one unit, so a minimal QE may  be achieved, but  in this 
case there is no self-organizing effect. 

Schematically, then, resynthesis would take place on the basis of a trajectory across 
a d iphone  map. The trajectory could be stored simply as a vector of co-ordinates that 
are 'lit up '  on the map. These vectors would  occupy little storage space, and might  
be passed as input  to a further SOM layer to try to cluster similar sounding words. 
The t ime-varying, sequential propert ies of speech, which are difficult for neural  nets 
to handle, can thus be modeled  as a spatial pat tern in an accessible and straightfor- 
ward manner. Vectors of addresses would  be completely different (e.g., the endpoints  

571 





Cohen Nonsymbolic Phonetic Notation for Speech Synthesis 

airp. 

oap 

dip oorp 

arp 

poi 

iep 

erp 

pee 

pad 

ahp aap ep 

oip 

awp 

pu 

oop 

uup 

po 

poa 

peer . 

pair . 

per poo 

poor pou 

paw pai puu 

pie par 

Figure 2c 
Clustering of data for transitions into and out of 'p'. 
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Figure 2d 
Clustering of data with Sammon's mapping. 
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concatenation procedure, on which various enhancements based on the SOM are being 
tried, which will be more fully described in future reports. Using the examples given 
on a record supplied with Klatt's (1987) review article, informal comparison shows a 
high degree of variability in quality of the sentences generated: the best are comparable 
with the diphone concatenation methods (which have better transitions than DECtalk, 
even if the prosody is in some cases not as well developed), while the worst are highly 
unnatural, but usually intelligible. 

4. Conclusion and further work 

The outline of a conventional SBR system has a series of symbolic stages, assuming a 
modularity of data at each level, before the final low-level stage ('synthesis routines') 
calculates the synthesizer parameters. The essential feature is the 'abstract linguistic 
description', which must be derived before any attempt is made to calculate parameter 
values. In the proposed system, this middle stage is replaced by the SOM stage, which 
introduces a learned notation based on acoustic data. Generation of an intonation 
contour, though this has been implemented with neural nets, is probably best handled 
with rules as it is almost purely a prosodic (i.e., sentence level) matter. 

The SOM coding replaces the linguistic description, and leads to direct access 
of waveform values for a given diphone, which then become default values for the 
next stage to operate on. In conclusion, arguments have been presented for the use 
of nonsymbolic codings as the central stage of a text to-speech system. These cod- 
ings are both closer to the acoustic domain and capable of greater flexibility than 
the standard phonetic notations. Additional sources of variability, such as stress and 
emotional quality, could also be accounted for with this kind of trajectory in a low- 
dimensional space, rather than attempting to derive a speaker-independent symbolic 
notation. These maps are also capable of being operated on by a neural network in 
further processing stages, opening the way to a different type of phonetics based on 
a multitude of soft constraints rather than the rigid phoneme and rewrite rule. 

Further work is needed to investigate the usefulness of the SOMs in speech synthe- 
sis, and how they may be integrated in a hybrid system that uses rule-based prosody. 
Other data sets need to be explored to introduce other kinds of variability. It would 
also be important to determine whether the distance measure provided by the diphone 
maps correlates better with subjective perception of the mismatch between successive 
diphones than more standard measures of spectral distance, such as various distance 
measures between frames of cepstral coefficients. 
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