
Transformation-Based Error-Driven
Learning and Natural Language
Processing: A Case Study in
Part-of-Speech Tagging

Eric Brill*
The Johns Hopkins University

Recently, there has been a rebirth of empiricism in the field of natural language processing. Man-
ual encoding of linguistic information is being challenged by automated corpus-based learning
as a method of providing a natural language processing system with linguistic knowledge. Al-
though corpus-based approaches have been successful in many different areas of natural language
processing, it is often the case that these methods capture the linguistic information they are
modelling indirectly in large opaque tables of statistics. This can make it difficult to analyze,
understand and improve the ability of these approaches to model underlying linguistic behavior.
In this paper, we will describe a simple rule-based approach to automated learning of linguistic
knowledge. This approach has been shown for a number of tasks to capture information in a clearer
and more direct fashion without a compromise in performance. We present a detailed case study
of this learning method applied to part-of-speech tagging.

1. Introduction

It has recently become clear that automatically extracting linguistic information from
a sample text corpus can be an extremely powerful method of overcoming the linguis-
tic knowledge acquisition bottleneck inhibiting the creation of robust and accurate
natural language processing systems. A number of part-of-speech taggers are readily
available and widely used, all trained and retrainable on text corpora (Church 1988;
Cutting et al. 1992; Brill 1992; Weischedel et al. 1993). Endemic structural ambiguity,
which can lead to such difficulties as trying to cope with the many thousands of possi-
ble parses that a grammar can assign to a sentence, can be greatly reduced by adding
empirically derived probabilities to grammar rules (Fujisaki et al. 1989; Sharman, Je-
linek, and Mercer 1990; Black et al. 1993) and by computing statistical measures of
lexical association (Hindle and Rooth 1993). Word-sense disambiguation, a problem
that once seemed out of reach for systems without a great deal of handcrafted lin-
guistic and world knowledge, can now in some cases be done with high accuracy
when all information is derived automatically from corpora (Brown, Lai, and Mercer
1991; Yarowsky 1992; Gale, Church, and Yarowsky 1992; Bruce and Wiebe 1994). An
effort has recently been undertaken to create automated machine translation systems
in which the linguistic information needed for translation is extracted automatically
from aligned corpora (Brown et al. 1990). These are just a few of the many recent
applications of corpus-based techniques in natural language processing.

• Department of Computer Science, Baltimore, MD 21218-2694. E-mail: brill@cs.jhu.edu.

© 1995 Association for Computational Linguistics

Computational Linguistics Volume 21, Number 4

Along with great research advances, the infrastructure is in place for this line of
research to grow even stronger, with on-line corpora, the grist of the corpus-based
natural language processing grindstone, getting bigger and better and becoming more
readily available. There are a number of efforts worldwide to manually annotate large
corpora with linguistic information, including parts of speech, phrase structure and
predicate-argument structure (e.g., the Penn Treebank and the British National Corpus
(Marcus, Santorini, and Marcinkiewicz 1993; Leech, Garside, and Bryant 1994)). A vast
amount of on-line text is now available, and much more will become available in the
future. Useful tools, such as large aligned corpora (e.g., the aligned Hansards (Gale
and Church 1991)) and semantic word hierarchies (e.g., Wordnet (Miller 1990)), have
also recently become available.

Corpus-based methods are often able to succeed while ignoring the true complex-
ities of language, banking on the fact that complex linguistic phenomena can often be
indirectly observed through simple epiphenomena. For example, one could accurately
assign a part-of-speech tag to the word race in (1-3) without any reference to phrase
structure or constituent movement: One would only have to realize that, usually, a
word one or two words to the right of a modal is a verb and not a noun. An excep-
tion to this generalization arises when the word is also one word to the right of a
determiner.

(1)

(2)

(3)

He will race/VERB the car.

He will not race/VERB the car.

When will the race/NOUN end?

It is an exciting discovery that simple stochastic n-gram taggers can obtain very
high rates of tagging accuracy simply by observing fixed-length word sequences, with-
out recourse to the underlying linguistic structure. However, in order to make progress
in corpus-based natural language processing, we must become better aware of just
what cues to linguistic structure are being captured and where these approximations
to the true underlying phenomena fail. With many of the current corpus-based ap-
proaches to natural language processing, this is a nearly impossible task. Consider
the part-of-speech tagging example above. In a stochastic n-gram tagger, the informa-
tion about words that follow modals would be hidden deeply in the thousands or
tens of thousands of contextual probabilities (P(Tagi I Zagi-lZagi-2)) and the result of
multiplying different combinations of these probabilities together.

Below, we describe a new approach to corpus-based natural language processing,
called transformation-based error-driven learning. This algorithm has been applied to a
number of natural language problems, including part-of-speech tagging, prepositional
phrase attachment disambiguation, and syntactic parsing (Brill 1992; Brill 1993a; Brill
1993b; Brill and Resnik 1994; Brill 1994). We have also recently begun exploring the
use of this technique for letter-to-sound generation and for building pronunciation
networks for speech recognition. In this approach, the learned linguistic information
is represented in a concise and easily understood form. This property should make
transformation-based learning a useful tool for further exploring linguistic modeling
and attempting to discover ways of more tightly coupling the underlying linguistic
systems and our approximating models.

544

Brill Transformation-Based Error-Driven Learning

UNANNOTATED

TEXT

STATE

/~kI~INOTETAx.T ~ D TRUTH

Figure 1
Transformation-Based Error-Driven Learning.

RULES

2. Transformation-Based Error-Driven Leaming

Figure I illustrates how transformation-based error-driven learning works. First, unan-
notated text is passed through an initial-state annotator. The initial-state annotator can
range in complexity from assigning random structure to assigning the output of a
sophisticated manually created annotator. In part-of-speech tagging, various initial-
state annotators have been used, including: the output of a stochastic n-gram tagger;
labelling all words with their most likely tag as indicated in the training corpus; and
naively labelling all words as nouns. For syntactic parsing, we have explored initial-
state annotations ranging from the output of a sophisticated parser to random tree
structure with random nonterminal labels.

Once text has been passed through the initial-state annotator, it is then compared
to the truth. A manually annotated corpus is used as our reference for truth. An
ordered list of transformations is learned that can be applied to the output of the
initial-state annotator to make it better resemble the truth. There are two components
to a transformation: a rewrite rule and a triggering environment. An example of a
rewrite rule for part-of-speech tagging is:

Change the tag from modal to noun.

and an example of a triggering environment is:

The preceding word is a determiner.

Taken together, the transformation with this rewrite rule and triggering environ-
ment when applied to the word can would correctly change the mistagged:

The~determiner can~modal rusted~verb ./.

545

Computational Linguistics Volume 21, Number 4

to:

The~determiner can~noun rusted~verb ./.

An example of a bracketing rewrite rule is: change the bracketing of a subtree
from:

A

B C

to:

C

A B

where A, B and C can be either terminals or nonterminals. One possible set of trigger-
ing environments is any combination of words, part-of-speech tags, and nonterminal
labels within and adjacent to the subtree. Using this rewrite rule and the triggering
environment A = the, the bracketing:

(the (boy ate))

would become:

((the boy) ate)

In all of the applications we have examined to date, the following greedy search is
applied for deriving a list of transformations: at each iteration of learning, the transfor-
mation is found whose application results in the best score according to the objective
function being used; that transformation is then added to the ordered transforma-
tion list and the training corpus is updated by applying the learned transformation.
Learning continues until no transformation can be found whose application results in
an improvement to the annotated corpus. Other more sophisticated search techniques
could be used, such as simulated annealing or learning with a look-ahead window,
but we have not yet explored these alternatives.

Figure 2 shows an example of learning transformations. In this example, we as-
sume there are only four possible transformations, T1 through T4, and that the ob-
jective function is the total number of errors. The unannotated training corpus is
processed by the initial-state annotator, and this results in an annotated corpus with
5,100 errors, determined by comparing the output of the initial-state annotator with
the manually derived annotations for this corpus. Next, we apply each of the possible
transformations in turn and score the resulting annotated corpus. 1 In this example,

1 In the real implementation, the search is data driven, and therefore not all transformations need to be
examined.

546

Brill Transformation-Based Error-Driven Learning

Unannotated

Corpus

I
Initial State

Annotator

Annotated

Corpus

Errors = 5,100

TI

I

Annotated

Corpus

Errors = 5,100

Annotated

Corpus

Errors = 3,145

Annotated

Corpus

Errors = 3,910

T1

Annotated

Corpus

Annotated
T2 Corpus

Errors = 2,110

Annotated

Corpus

Errors = 1,231

W4 Ano ted 4 IAnnotate'
Corpus Corpus /

Errors = 6,300 Errors = 4 , 2 5 ~

Figure 2
An Example of Transformation-Based Error-Driven Learning.

T1

1"2

T3

T4

Annotated

Corpus

Errors = 1,410

Annotated

Corpus

Errors = 1,251

Annotated
Corpus

Errors = 1,231

Annotated
Corpus

Errors = 1,231

applying transformation T2 results in the largest reduction of errors, so T2 is learned
as the first transformation. T2 is then applied to the entire corpus, and learning con-
tinues. At this stage of learning, transformation T3 results in the largest reduction of
error, so it is learned as the second transformation. After applying the initial-state
annotator, followed by T2 and then T3, no further reduction in errors can be obtained
from applying any of the transformations, so learning stops. To annotate fresh text,
this text is first annotated by the initial-state annotator, followed by the application of
transformation T2 and then by the application of T3.

To define a specific application of transformation-based learning, one must specify
the following:

.

2.

.

The initial state-annotator.

The space of allowable transformations (rewrite rules and triggering
environments).

The objective function for comparing the corpus to the truth and
choosing a transformation.

In cases where the application of a particular transformation in one environment
could affect its application in another environment, two additional parameters must
be specified: the order in which transformations are applied to a corpus, and whether
a transformation is applied immediately or only after the entire corpus has been ex-
amined for triggering environments. For example, take the sequence:

A A A A A A

and the transformation:

547

Computational Linguistics Volume 21, Number 4

Change the label from A to B if the preceding label is A.

If the effect of the application of a transformation is not written out until the entire
file has been processed for that one transformation, then regardless of the order of
processing the output will be:

A B B B B B ,

since the triggering environment of a transformation is always checked before that
transformation is applied to any surrounding objects in the corpus. If the effect of a
transformation is recorded immediately, then processing the string left to right would
result in:

A B A B A B ,

whereas processing right to left would result in:

A B B B B B .

3. A Comparison With Decision Trees

The technique employed by the learner is somewhat similar to that used in decision
trees (Breiman et al. 1984; Quinlan 1986; Quinlan and Rivest 1989). A decision tree
is trained on a set of preclassified entities and outputs a set of questions that can be
asked about an entity to determine its proper classification. Decision trees are built
by finding the question whose resulting partition is the purest, 2 splitting the training
data according to that question, and then recursively reapplying this procedure on
each resulting subset.

We first show that the set of classifications that can be provided via decision trees
is a proper subset of those that can be provided via transformation lists (an ordered
list of transformation-based rules), given the same set of primitive questions. We then
give some practical differences between the two learning methods.

3.1 Decision Trees c_ Transformation Lists
We prove here that for a fixed set of primitive queries, any binary decision tree can
be converted into a transformation list. Extending the proof beyond binary trees is
straightforward.

Proof (by induction)
Base Case:
Given the following primitive decision tree, where the classification is A if the

answer to the query X? is yes, and the classification is B if the answer is no:

X?

B A

2 One possible measure for puri ty is entropy reduction.

548

this tree can be converted into the following transformation list:

.

2.

3.

X?

Label with S / * Start State Annotation */

If X, then S --* A

S --* B / * Empty Tagging Environment--Always Applies To Entities
Currently Labeled With S */

Induction:
Assume that two decision trees T1 and T2 have corresponding transformation lists

L1 and L2. Assume that the arbitrary label names chosen in constructing L1 are not
used in L2, and that those in L2 are not used in L1. Given a new decision tree T3
constructed from T1 and T2 as follows:

Brill Transformation-Based Error-Driven Learning

we construct a new transformation list L3. Assume the first transformation in L1 is:

Label with S'

and the first transformation in L2 is:

Label with S"

The first three transformations in L3 will then be:

1. Label with S

2. If X then S --* S'

3. S --+ S"

followed by all of the rules in L1 other than the first rule, followed by all of the rules
in L2 other than the first rule. The resulting transformation list will first label an item
as S' if X is true, or as S" if X is false. Next, the tranformations from L1 will be applied
if X is true, since S' is the initial-state label for L1. If X is false, the transformations
from L2 will be applied, because S" is the initial-state label for L2. []

3.2 Decision Trees # Transformation Lists
We show here that there exist transformation lists for which no equivalent decision
trees exist, for a fixed set of primitive queries. The following classification problem is
one example. Given a sequence of characters, classify a character based on whether
the position index of a character is divisible by 4, querying only using a context of
two characters to the left of the character being classified.

549

Computational Linguistics Volume 21, Number 4

Assuming transformations are applied left to right on the sequence, the above
classification problem can be solved for sequences of arbitrary length if the effect of
a transformation is written out immediately, or for sequences up to any prespecified
length if a transformation is carried out only after all triggering environments in the
corpus are checked. We present the proof for the former case.

Given the input sequence:

A A A A A A A A A A
0 1 2 3 4 5 6 7 8 9

the underlined characters should be classified as true because their indices are 0, 4,
and 8. To see why a decision tree could not perform this classification, regardless of
order of classification, note that, for the two characters before both A3 and A4, both the
characters and their classifications are the same, although these two characters should
be classified differently. Below is a transformation list for performing this classification.
Once again, we assume transformations are applied left to right and that the result of a
transformation is written out immediately, so that the result of applying transformation
x to character ai will always be known when applying transformation x to ai+l.

1. Label with S
RESULT: A/S A/S A/S A/S

2. If there is no previous character,
RESULT: A/F A/S A/S A/S

3. If the character two to the left is
RESULT: A/F A/S A/F A/S

4. If the character two to the left is
RESULT: A / F A/S A/S A/S

5. F --+ yes

6. S--* no

A/S A/S A/S A/S A/S A/S A/S

then S ~ F
A/S A/S A/S A/S A/S A/S A/S

labelled with F, then S --* F
A /F A/S A/F A/S A / F A/S A/F

labelled with F, then F ~ S
A/F A/S A/S A/S A / F A/S A/S

RESULT: A/yes A /no A/no A/no A/yes A /no A/no A/no A/yes
A /no A/no

The extra power of transformation lists comes from the fact that intermediate
results from the classification of one object are reflected in the current label of that
object, thereby making this intermediate information available for use in classifying
other objects. This is not the case for decision trees, where the outcome of questions
asked is saved implicitly by the current location within the tree.

3.3 S o m e Practical D i f f erences B e t w e e n D e c i s i o n Trees and Transformat ion Lists
There are a number of practical differences between transformation-based error-driven
learning and learning decision trees. One difference is that when training a decision
tree, each time the depth of the tree is increased, the average amount of training mate-
rial available per node at that new depth is halved (for a binary tree). In transformation-
based learning, the entire training corpus is used for finding all transformations. There-
fore, this method is not subject to the sparse data problems that arise as the depth of
the decision tree being learned increases.

Transformations are ordered, with later transformations being dependent upon
the outcome of applying earlier transformations. This allows intermediate results in

550

Brill Transformation-Based Error-Driven Learning

classifying one object to be available in classifying other objects. For instance, whether
the previous word is tagged as to-infinitival or to-preposition m ay be a good cue for de-
termining the part of speech of a word. 3 If, initially, the word to is not reliably tagged
everywhere in the corpus with its proper tag (or not tagged at all), then this cue will
be unreliable. The transformation-based learner will delay positing a transformation
triggered by the tag of the word to until other transformations have resulted in a more
reliable tagging of this word in the corpus. For a decision tree to take advantage of
this information, any word whose outcome is dependen t upon the tagging of to would
need the entire decision tree structure for the proper classification of each occurrence
of to built into its decision tree path. If the classification of to were dependent upon the
classification of yet another word, this would have to be built into the decision tree as
well. Unlike decision trees, in transformation-based learning, intermediate classifica-
tion results are available and can be used as classification progresses. Even if decision
trees are applied to a corpus in a left-to-right fashion, they are al lowed only one pass
in which to proper ly classify.

Since a transformation list is a processor and not a classifier, it can readily be
used as a postprocessor to any annotat ion system. In addit ion to annotat ing from
scratch, rules can be learned to improve the performance of a mature annotat ion
system by using the mature system as the initial-state annotator. This can have the
added advantage that the list of transformations learned using a mature annotat ion
system as the initial-state annotator provides a readable description or classification of
the errors the mature system makes, thereby aiding in the refinement of that system.
The fact that it is a processor gives a transformation-based learner greater than the
classifier-based decision tree. For example, in applying transformation-based learning
to parsing, a rule can apply any structural change to a tree. In tagging, a rule such as:

Change the tag of the current word to X, and of the previous word to Y, if Z holds

can easily be handled in the processor-based system, whereas it would be difficult to
handle in a classification system.

In transformation-based learning, the objective function used in training is the
same as that used for evaluation, whenever this is feasible. In a decision tree, using sys-
tem accuracy as an objective function for training typically results in poor performance 4
and some measure of node purity, such as en t ropy reduction, is used instead. The di-
rect correlation between rules and performance improvement in transformation-based
learning can make the learned rules more readily interpretable than decision tree rules
for increasing populat ion purity, s

4. Part of Speech Tagging: A Case Study in Transformation-Based Error-Driven
Learning

In this section we describe the practical application of transformation-based learning
to part-of-speech tagging. 6 Part-of-speech tagging is a good application to test the

3 The original tagged Brown Corpus (Francis and Kucera, 1982) makes this distinction; the Penn
Treebank (Marcus, Santorini, and Marcinkiewicz, 1993) does not.

4 For a d iscuss ion of w h y this is the case, see Breiman et al. (1984, 94-98).
5 For a d i scuss ion of other issues regarding these two learning algor i thms, see R a m s h a w and Marcus

(1994).
6 All of the p rog rams described herein are freely available wi th no restrictions on use or redistr ibution.

For informat ion on obta ining the tagger, contact the author.

551

Computational Linguistics Volume 21, Number 4

learner, for several reasons. There are a number of large tagged corpora available,
allowing for a variety of experiments to be run. Part-of-speech tagging is an active
area of research; a great deal of work has been done in this area over the past few years
(e.g., Jelinek 1985; Church 1988; Derose 1988; Hindle 1989; DeMarcken 1990; Merialdo
1994; Brill 1992; Black et al. 1992; Cutting et al. 1992; Kupiec 1992; Charniak et al. 1993;
Weischedel et al. 1993; Schutze and Singer 1994).

Part-of-speech tagging is also a very practical application, with uses in many areas,
including speech recognition and generation, machine translation, parsing, information
retrieval and lexicography. Insofar as tagging can be seen as a prototypical problem
in lexical ambiguity, advances in part-of-speech tagging could readily translate to
progress in other areas of lexical, and perhaps structural, ambiguity, such as word-
sense disambiguation and prepositional phrase attachment disambiguation. 7 Also, it is
possible to cast a number of other useful problems as part-of-speech tagging problems,
such as letter-to-sound translation (Huang, Son-Bell, and Baggett 1994) and building
pronunciation networks for speech recognition. Recently, a method has been proposed
for using part-of-speech tagging techniques as a method for parsing with lexicalized
grammars (Joshi and Srinivas 1994).

When automated part-of-speech tagging was initially explored (Klein and Sim-
mons 1963; Harris 1962), people manually engineered rules for tagging, sometimes
with the aid of a corpus. As large corpora became available, it became clear that simple
Markov-model based stochastic taggers that were automatically trained could achieve
high rates of tagging accuracy (Jelinek 1985). Markov-model based taggers assign to a
sentence the tag sequence that maximizes Prob(word I tag),Prob(tag I previous n tags).
These probabilities can be estimated directly from a manually tagged corpus, s These
stochastic taggers have a number of advantages over the manually built taggers, in-
cluding obviating the need for laborious manual rule construction, and possibly cap-
turing useful information that may not have been noticed by the human engineer.
However, stochastic taggers have the disadvantage that linguistic information is cap-
tured only indirectly, in large tables of statistics. Almost all recent work in developing
automatically trained part-of-speech taggers has been on further exploring Markov-
model based tagging (Jelinek 1985; Church 1988; Derose 1988; DeMarcken 1990; Meri-
aldo 1994; Cutting et al. 1992; Kupiec 1992; Charniak et al. 1993; Weischedel et al. 1993;
Schutze and Singer 1994).

4.1 Transformation-based Error-driven Part-of-Speech Tagging
Transformation-based part of speech tagging works as follows. 9 The initial-state an-
notator assigns each word its most likely tag as indicated in the training corpus. The
method used for initially tagging unknown words will be described in a later section.
An ordered list of transformations is then learned, to improve tagging accuracy based
on contextual cues. These transformations alter the tagging of a word from X to Y iff

7 In Brill and Resnik (1994), we describe an approach to prepositional phrase attachment disambiguation
that obtains highly competitive performance compared to other corpus-based solutions to this problem.
This system was derived in under two hours from the transformation-based part of speech tagger
described in this paper.

8 One can also estimate these probabilities without a manually tagged corpus, using a hidden Markov
model. However, it appears to be the case that directly estimating probabilities from even a very small
manually tagged corpus gives better results than training a hidden Markov model on a large untagged
corpus (see Merialdo (1994)).

9 Earlier versions of this work were reported in Brill (1992, 1994).

552

Brill Transformation-Based Error-Driven Learning

either:

1. The word was not seen in the training corpus O R

2. The word was seen tagged with ¥ at least once in the training corpus.

In taggers based on Markov models , the lexicon consists of probabili t ies of the
somew ha t counterintui t ive but p roper form P(WORD I TAG). In the t ransformat ion-
based tagger, the lexicon is s imply a list of all tags seen for a word in the training
corpus, wi th one tag labeled as the mos t likely. Below we show a lexical entry for the

word half in the t ransformat ion-based tagger. 1°

half: CD DT JJ N N PDT RB VB

This entry lists the seven tags seen for half in the training corpus, wi th N N marked
as the mos t likely. Below are the lexical entries for half in a Markov mode l tagger,
extracted f rom the same corpus:

P(half l CD) = 0.000066

P(half l DT) = 0.000757

P(half I J J) = 0.000092

P(half INN) = 0.000702

P(half l PDT) = 0.039945

P(half l RB) = 0.000443

P(half I VB) = 0.000027

It is difficult to make m u c h sense of these entries in isolation; they have to be v iewed
in the context of the m a n y contextual probabilities.

First, we will describe a nonlexicalized version of the tagger, where t ransformat ion
templates do not make reference to specific words. In the nonlexicalized tagger, the
t ransformat ion templates we use are:

Change tag a to tag b when:

1. The preceding (following) word is tagged z.

2. The word two before (after) is tagged z.

3. One of the two preceding (following) words is tagged z.

4. One of the three preceding (following) words is tagged z.

5. The preceding word is tagged z and the following word is tagged w.

6. The preceding (following) word is tagged z and the word two before
(after) is tagged w.

where a, b, z and w are variables over the set of parts of speech.

To learn a t ransformation, the learner, in essence, tries out every possible trans-
formation, 1I and counts the n u m b e r of tagging errors after each one is applied. After

10 A description of the partoof-speech tags is provided in Appendix A.
11 All possible instantiations of transformation templates.

553

Computational Linguistics Volume 21, Number 4

1. apply initial-state annotator to corpus
2. while transformations can still be found do
3. for from_tag = tag1 to tagn
4. for to_tag = tag1 to tagn
5. for corpus_position = 1 to corpus_size
6. if (correct_tag(corpus_position) --= to_tag

&& current_tag(corpus_position) == from_tag)
7. num_good_transformations(tag(corpus_position -1))++
8. else if (correct_tag(corpus_position) == from_tag

&& current_tag(corpus_position) == from_tag)
9. num_bad_transformations(tag(corpus_position-1))++
10. find maxT (num_good_transformations(T) - num_bad_transformations(T))
11. if this is the best-scoring rule found yet then store as best rule:

Change tag from from_tag to to_tag if previous tag is T
12. apply best rule to training corpus
13. append best rule to ordered list of transformations

Figure 3
Pseudocode for learning transformations.

all possible transformations have been tried, the transformation that resulted in the
greatest error reduction is chosen. Learning stops when no transformations can be
found whose application reduces errors beyond some prespecified threshold.

In the experiments described below, processing was done left to right. For each
transformation application, all triggering environments are first found in the corpus,
and then the transformation triggered by each triggering environment is carried out.

The search is data-driven, so only a very small percentage of possible transfor-
mations really need be examined. In figure 3, we give pseudocode for the learning
algorithm in the case where there is only one transformation template:

Change the tag from X to Y if the previous tag is Z.

In each learning iteration, the entire training corpus is examined once for every pair
of tags X and Y, finding the best transformation whose rewrite changes tag X to tag Y.
For every word in the corpus whose environment matches the triggering environment,
if the word has tag X and X is the correct tag, then making this transformation will
result in an additional tagging error, so we increment the number of errors caused
when making the transformation given the part-of-speech tag of the previous word
(lines 8 and 9). If X is the current tag and Y is the correct tag, then the transformation
will result in one less error, so we increment the number of improvements caused
when making the transformation given the part-of-speech tag of the previous word
(lines 6 and 7).

In certain cases, a significant increase in speed for training the transformation-
based tagger can be obtained by indexing in the corpus where different transformations
can and do apply. For a description of a fast index-based training algorithm, see
Ramshaw and Marcus (1994).

In figure 4, we list the first twenty transformations learned from training on the
Penn Treebank Wall Street Journal Corpus (Marcus, Santorini, and Marcinkiewicz
1993). 12 The first transformation states that a noun should be changed to a verb if

12 Version 0.5 of the Penn Treebank was used in all exper iments reported in this paper.

554

Brill Transformation-Based Error-Driven Learning

Change Tag
From To
1 NN VB
2 VBP VB
3 NN VB
4 VB NN
5 VBD VBN
6 VBN VBD
7 VBN VBD
8 VBD VBN
9 VBP VB
10 POS VBZ
11 VB VBP
12 VBD VBN
13 IN WDT
14 VBD VBN
15 VB VBP
16 IN WDT
17 IN DT
18 JJ NNP
19 IN WDT
20 JJR RBR

Figure 4

Condition
Previous tag is TO

One of the previous three tags is MD
One of the previous two tags is MD
One of the previous two tags is DT

One of the previous three tags is VBZ
Previous tag is PRP
Previous tag is NNP
Previous tag is VBD
Previous tag is TO

Previous tag is PRP
Previous tag is NNS

One of previous three tags is VBP
One of next two tags is VB

One of previous two tags is VB
Previous tag is PRP

Next tag is VBZ
Next tag is N N

Next tag is NNP
Next tag is VBD

Next tag is JJ

The first 20 nonlexicalized transformations.

the previous tag is TO, as in: to~TO conflict/NN--.VB with. The second transforma-
tion fixes a tagging such as: might/MD vanish/VBP--.VB. The third fixes might/MD not
reply/NN--.VB. The tenth transformation is for the token's, which is a separate token
in the Penn Treebank. 's is most frequently used as a possessive ending, but after a
personal pronoun, it is a verb (John's, compared to he 's). The transformations chang-
ing IN to WDT are for tagging the word that, to determine in which environments that
is being used as a synonym of which.

4.2 Lexicalizing the Tagger
In general, no relationships between words have been directly encoded in stochas-
tic n-gram taggers. 13 In the Markov model typically used for stochastic tagging, state
transition probabilities (P(Tagi I Tagi_l... Tagi-n)) express the likelihood of a tag im-
mediately following n other tags, and emit probabilities (P(Wordj I Tagi)) express the
likelihood of a word, given a tag. Many useful relationships, such as that between a
word and the previous word, or between a tag and the following word, are not di-
rectly captured by Markov-model based taggers. The same is true of the nonlexicalized
transformation-based tagger, where transformation templates do not make reference
to words.

To remedy this problem, we extend the transformation-based tagger by adding

13 In Kupiec (1992), a limited amount of lexicalization is introduced by having a stochastic tagger with
word states for the 100 most frequent words in the corpus.

555

Computational Linguistics Volume 21, Number 4

contextual transformations that can make reference to words as well as part-of-speech
tags. The transformation templates we add are:

Change tag a to tag b when:

.

2.

3.

4.

5.

6.

7.

.

The

The

The

The
t.

The preceding (following) word is w.

The word two before (after) is w.

One of the two preceding (following) words is w.

current word is w and the preceding (following) word is x.

current word is w and the preceding (following) word is tagged z.

current word is w.

preceding (following) word is w and the preceding (following) tag is

The current word is w, the preceding (following) word is w2 and the
preceding (following) tag is t.

where w and x are variables over all words in the training corpus, and z
and t are variables over all parts of speech.

BelOw we list two lexicalized transformations that were learned, training once
again on the Wall Street Journal.

Change the tag:

(12) From IN to RB if the word two positions to the right is as.
(16) From VBP to VB if one of the previous two words is n ' t . TM

The Penn Treebank tagging style manual specifies that in the collocation as . . . as,
the first as is tagged as an adverb and the second is tagged as a preposition. Since as is
most frequently tagged as a preposi t ion in the training corpus, the initial-state tagger
will mistag the phrase as tall as as:

a s / I N tall/JJ a s / I N

The first lexicalized transformation corrects this mistagging. Note that a bigram tagger
trained on our training set would not correctly tag the first occurrence of as. Although
adverbs are more likely than preposit ions to follow some verb form tags, the fact
that P(as] IN) is much greater than P(as] RB), and P(JJ] IN) is much greater than
P(JJ] RB) lead to as being incorrectly tagged as a preposit ion by a stochastic tagger. A
tr igram tagger will correctly tag this collocation in some instances, due to the fact that
P(IN] RB JJ) is greater than P(IN] IN JJ), but the outcome will be highly dependen t
upon the context in which this collocation appears.

The second transformation arises from the fact that when a verb appears in a
context such as We do n't eat or We did n't usually drink, the verb is in base form. A
stochastic tr igram tagger would have to capture this linguistic information indirectly
from frequency counts of all trigrams of the form shown in figure 5 (where a star can
match any part-of-speech tag) and from the fact that P(n't] RB) is fairly high.

14 In the Penn Treebank, n't is treated as a separate token, so don't becomes do/VBP n't/RB.

556

Brill Transformation-Based Error-Driven Learning

* RB VBP
* RB VB
RB * VBP
RB * VB

Figure 5
Trigram Tagger Probability Tables.

In Weischedel et al. (1993), results are given when training and testing a Markov-
model based tagger on the Penn Treebank Tagged Wall Street Journal Corpus. They cite
results making the closed vocabulary assumption that all possible tags for all words in
the test set are known. When training contextual probabilities on one million words,
an accuracy of 96.7% was achieved. Accuracy dropped to 96.3% when contextual prob-
abilities were trained on 64,000 words. We trained the transformation-based tagger on
the same corpus, making the same closed-vocabulary assumption. 15 When training
contextual rules on 600,000 words, an accuracy of 97.2% was achieved on a separate
150,000 word test set. When the training set was reduced to 64,000 words, accuracy
dropped to 96.7%. The transformation-based learner achieved better performance, de-
spite the fact that contextual information was captured in a small number of simple
nonstochastic rules, as opposed to 10,000 contextual probabilities that were learned
by the stochastic tagger. These results are summarized in table 1. When training on
600,000 words, a total of 447 transformations were learned. However, transformations
toward the end of the list contribute very little to accuracy: applying only the first 200
learned transformations to the test set achieves an accuracy of 97.0%; applying the first
100 gives an accuracy of 96.8%. To match the 96.7% accuracy achieved by the stochas-
tic tagger when it was trained on one million words, only the first 82 transformations
are needed.

To see whether lexicalized transformations were contributing to the transformation-
based tagger accuracy rate, we first trained the tagger using the nonlexical transfor-
mation template subset, then ran exactly the same test. Accuracy of that tagger was
97.0%. Adding lexicalized transformations resulted in a 6.7% decrease in the error rate
(see table 1). 16

We found it a bit surprising that the addition of lexicalized transformations did
not result in a much greater improvement in performance. When transformations are
allowed to make reference to words and word pairs, some relevant information is
probably missed due to sparse data. We are currently exploring the possibility of
incorporating word classes into the rule-based learner, in hopes of overcoming this
problem. The idea is quite simple. Given any source of word class information, such

15 In both Weischedel et al. (1993) and here, the test set was incorporated into the lexicon, bu t was not
used in learning contextual information. Testing wi th no u n k n o w n words migh t seem like an
unrealistic test. We have done so for three reasons: (1) to al low for a compar i son wi th previously
quoted results, (2) to isolate k n o w n word accuracy from u n k n o w n word accuracy, and (3) in some
sys tems, such as a closed vocabulary speech recognit ion sys tem, the a s s u m p t i o n that all words are
k n o w n is valid. (We s h o w results w h e n u n k n o w n words are inc luded later in the paper.)

16 The training we did here was slightly subopt imal , in that we used the contextual rules learned wi th
u n k n o w n words (described in the next section), and filled in the dictionary, rather than t raining on a
corpus wi thout u n k n o w n words.

557

Computational Linguistics Volume 21, Number 4

Table 1
Comparison of Tagging Accuracy With No Unknown Words

Training # of Rules
Corpus or Context. Acc.

Method Size (Words) Probs. (%)
Stochastic 64 K 6,170 96.3
Stochastic 1 Million 10,000 96.7

Rule-Based
With Lex. Rules 64 K 215 96.7

Rule-Based
With Lex. Rules 600 K 447 97.2

Rule-Based
w / o Lex. Rules 600 K 378 97.0

as WordNet (Miller 1990), the learner is extended such that a rule is a l lowed to make
reference to par ts of speech, words , and word classes, a l lowing for rules such as

Change the tag from X to Y if the following word belongs to word class Z.

This approach has a l ready been successfully appl ied to a sys tem for preposi t ional
phrase a t tachment d i sambigua t ion (Brill and Resnik 1994).

4.3 Tagging Unknown Words
So far, we have not addressed the p rob lem of u n k n o w n words . As stated above, the
initial-state annota tor for tagging assigns all words their mos t likely tag, as indicated
in a training corpus. Below we show h o w a t ransformat ion-based approach can be
taken for tagging u n k n o w n words , by automat ical ly learning cues to predict the mos t
likely tag for words not seen in the training corpus. If the mos t likely tag for u n k n o w n
words can be assigned with high accuracy, then the contextual rules can be used to
improve accuracy, as described above.

In the t ransformat ion-based u n k n o w n - w o r d tagger, the initial-state annota tor naively
assumes the mos t likely tag for an u n k n o w n word is "p roper noun" if the word is
capital ized and " c o m m o n noun" otherwise. 17

Below, we list the set of al lowable t ransformations.

Change the tag of an unknown word (from X) to Y if:

1.

.

3.

.

5.

Delet ing the prefix (suffix) x, Ixl < 4, results in a word (x is any str ing of
length 1 to 4).

The first (last) (1,2,3,4) characters of the word are x.

Add ing the character string x as a prefix (suffix) results in a word
(Ixl ~ 4).

Word w ever appea r s immedia te ly to the left (right) of the word.

Character z appears in the word.

17 If we change the tagger to tag all unknown words as common nouns, then a number of rules are
learned of the form: change tag to proper noun if the prefix is "E', "A", "B', etc., since the learner is
not provided with the concept of upper case in its set of transformation templates.

558

Brill Transformation-Based Error-Driven Learning

Change Tag
From To Condit ion
1 N N NNS Has suffix -s
2 N N CD Has charac ter .
3 N N JJ Has character -
4 N N VBN Has suffix -ed
5 NN VBG Has suffix -ing
6 ?? RB Has suffix -ly
7 ?? JJ Adding suffix -ly results in a word.
8 N N CD The word $ can appear to the left.
9 N N JJ Has suffix -al
10 N N VB The word would can appear to the left.
11 N N CD Has character 0
12 N N JJ The word be can appear to the left.
13 NNS JJ Has suffix - u s

14 NNS VBZ The word it can appear to the left.
15 N N JJ Has suffix -ble
16 N N JJ Has suffix -ic
17 N N CD Has character 1
18 NNS NN Has suffix - s s

19 ?? JJ Deleting the prefix u n - results in a word
20 N N JJ Has suffix - i re

Figure 6
The first 20 transformations for unknown words.

An unannota ted text can be used to check the conditions in all of the above trans-
formation templates. Annotated text is necessary in training to measure the effect of
transformations on tagging accuracy. Since the goal is to label each lexical entry for
new words as accurately as possible, accuracy is measured on a per type and not a
per token basis.

Figure 6 shows the first 20 transformations learned for tagging unknown words in
the Wall Street Journal corpus. As an example of how rules can correct errors generated
by prior rules, note that applying the first t ransformation will result in the mistagging
of the word actress. The 18th learned rule fixes this problem. This rule states:

Change a tag from p l u r a l c o m m o n n o u n to s i n g u l a r c o m m o n n o u n if the word has
SUffiX ss.

Keep in mind that no specific affixes are prespecified. A transformation can make
reference to any string of characters up to a bounded length. So while the first rule
specifies the English suffix "s', the rule learner was not constrained from considering
such nonsensical rules as:

Change a tag to adjective if the word has suffix "xhqr'.

Also, absolutely no English-specific information (such as an affix list) need be
prespecified in the learner. TM

18 This learner has also been applied to tagging Old English. See Brill (1993b). Although the

559

Computational Linguistics Volume 21, Number 4

J

==

i i E i i

0 100 200 300 400

Transformation Number

Figure 7
Accuracy vs. Transformation Number

We then ran the following experiment using 1.1 million words of the Penn Tree-
bank Tagged Wall Street Journal Corpus. Of these, 950,000 words were used for training
and 150,000 words were used for testing. Annotations of the test corpus were not used
in any way to train the system. From the 950,000 word training corpus, 350,000 words
were used to learn rules for tagging unknown words, and 600,000 words were used
to learn contextual rules; 243 rules were learned for tagging unknown words, and 447
contextual tagging rules were learned. Unknown word accuracy on the test corpus was
82.2%, and overall tagging accuracy on the test corpus was 96.6%. To our knowledge,
this is the highest overall tagging accuracy ever quoted on the Penn Treebank Corpus
when making the open vocabulary assumption. Using the tagger without lexicalized
rules, an overall accuracy of 96.3% and an unknown word accuracy of 82.0% is ob-
tained. A graph of accuracy as a function of transformation number on the test set for
lexicalized rules is shown in figure 7. Before applying any transformations, test set ac-
curacy is 92.4%, so the transformations reduce the error rate by 50% over the baseline.
The high baseline accuracy is somewhat misleading, as this includes the tagging of
unambiguous words. Baseline accuracy when the words that are unambiguous in our
lexicon are not considered is 86.4%. However, it is difficult to compare taggers using
this figure, as the accuracy of the system depends on the particular lexicon used. For
instance, in our training set the word the was tagged with a number of different tags,
and so according to our lexicon the is ambiguous. If we instead used a lexicon where
the is listed unambiguously as a determiner, the baseline accuracy would be 84.6%.

For tagging unknown words, each word is initially assigned a part-of-speech tag
based on word and word-distribution features. Then, the tag may be changed based
on contextual cues, via contextual transformations that are applied to the entire cor-
pus, both known and unknown-words. When the contextual rule learner learns trans-
formations, it does so in an attempt to maximize overall tagging accuracy, and not
unknown-word tagging accuracy. Unknown words account for only a small percent-
age of the corpus in our experiments, typically two to three percent. Since the distribu-
tional behavior of unknown words is quite different from that of known words, and

transformations are not English-specific, the set of transformation templates would have to be extended
to process languages with dramatically different morphology,

560

Brill Transformation-Based Error-Driven Learning

Table 2
Tagging Accuracy on Different Corpora

Corpus Accuracy

Penn WSJ 96.6%

Penn Brown 96.3%

Orig Brown 96.5%

since a transformation that does not increase unknown-word tagging accuracy can
still be beneficial to overall tagging accuracy, the contextual transformations learned
are not optimal in the sense of leading to the highest tagging accuracy on unknown
words. Better unknown-word accuracy may be possible by training and using two
sets of contextual rules, one maximizing known-word accuracy and the other maxi-
mizing unknown-word accuracy, and then applying the appropriate transformations
to a word when tagging, depending upon whether the word appears in the lexicon.
We are currently experimenting with this idea.

In Weischedel et al. (1993), a statistical approach to tagging unknown words is
shown. In this approach, a number of suffixes and important features are prespecified.
Then, for unknown words:

p(W I T) -= p(unknown word I T) • p(Capitalize-feature I T) * p(suffixes, hyphenation I T)

Using this equation for unknown word emit probabilities within the stochastic tagger,
an accuracy of 85% was obtained on the Wall Street Journal corpus. This portion of
the stochastic model has over 1,000 parameters, with 108 possible unique emit proba-
bilities, as opposed to a small number of simple rules that are learned and used in the
rule-based approach. In addition, the transformation-based method learns specific cues
instead of requiring them to be prespecified, allowing for the possibility of uncover-
ing cues not apparent to the human language engineer. We have obtained comparable
performance on unknown words, while capturing the information in a much more
concise and perspicuous manner, and without prespecifying any information specific
to English or to a specific corpus.

In table 2, we show tagging results obtained on a number of different corpora, in
each case training on roughly 9.5 x 10 s words total and testing on a separate test set
of 1.5-2 x 10 s words. Accuracy is consistent across these corpora and tag sets.

In addition to obtaining high rates of accuracy and representing relevant linguistic
information in a small set of rules, the part-of-speech tagger can also be made to
run extremely fast. Roche and Schabes (1995) show a method for converting a list
of tagging transformations into a deterministic finite state transducer with one state
transition taken per word of input; the result is a transformation-based tagger whose
tagging speed is about ten times that of the fastest Markov-model tagger.

4.4 K-Best Tags
There are certain circumstances where one is willing to relax the one-tag-per-word
requirement in order to increase the probability that the correct tag will be assigned to
each word. In DeMarcken (1990) and Weischedel et al. (1993), k-best tags are assigned
within a stochastic tagger by returning all tags within some threshold of probability
of being correct for a particular word.

561

Computational Linguistics Volume 21, Number 4

Table 3
Results from k-best tagging.

of Rules Accuracy Avg. # of tags per word

0 96.5 1.00

50 96.9 1.02

100 97.4 1.04

150 97.9 1.10

200 98.4 1.19

250 99.1 1.50

We can modi fy the t ransformat ion-based tagger to return mul t ip le tags for a word
by mak ing a s imple modificat ion to the contextual t ransformat ions described above.
The initial-state annota tor is the tagging ou tpu t of the prev ious ly descr ibed one-best
t ransformat ion-based tagger. The al lowable t ransformat ion templa tes are the same as
the contextual t ransformat ion templates listed above, but wi th the rewri te rule: change
tag X to tag Y modif ied to add tag X to tag Y or add tag X to word W. Instead of changing
the tagging of a word, t ransformat ions n o w add al ternat ive taggings to a word.

When al lowing more than one tag per word , there is a trade-off be tween accuracy
and the average n u m b e r of tags for each word. Ideally, we wou ld like to achieve as
large an increase in accuracy with as few extra tags as possible. Therefore, in training
we find t ransformat ions that maximize the function:

N u m b e r of corrected errors

N u m b e r of addi t ional tags

In table 3, we present results f rom first using the one- tag-per -word t ransforma-
t ion-based tagger described in the previous section and then app ly ing the k-best tag
t ransformations. These t ransformat ions were learned f rom a separate 240,000 word
corpus. As a baseline, we did k-best tagging of a test corpus. Each k n o w n word in the
test corpus was tagged with all tags seen with that word in the training corpus and
the five mos t likely u n k n o w n - w o r d tags were assigned to all words not seen in the
training corpus. 19 This resul ted in an accuracy of 99.0%, wi th an average of 2.28 tags
per word. The t ransformat ion-based tagger obta ined the same accuracy wi th 1.43 tags

per word , one third the n u m b e r of addi t ional tags as the baseline tagger. 2°

5. C o n c l u s i o n s

In this paper, we have described a new t ransformat ion-based approach to corpus-based
learning. We have given details of h o w this approach has been appl ied to part-of-
speech tagging and have demons t ra t ed that the t ransformat ion-based approach obtains

19 Thanks to Fred Jelinek and Fernando Pereira for suggesting this baseline experiment.
20 Unfortunately, it is difficult to find results to compare these k-best tag results to. In DeMarcken (1990),

the test set is included in the training set, and so it is difficult to know how this system would do on
fresh text. In Weischedel et al. (1993), a k-best tag experiment was run on the Wall Street Journal
corpus. They quote the average number of tags per word for various threshold settings, but do not
provide accuracy results.

562

Brill Transformation-Based Error-Driven Learning

competitive performance with stochastic taggers on tagging both unknown and known
words. The transformation-based tagger captures linguistic information in a small
number of simple nonstochastic rules, as opposed to large numbers of lexical and
contextual probabilities. This learning approach has also been applied to a number
of other tasks, including prepositional phrase attachment disambiguation (Brill and
Resnik 1994), bracketing text (Brill 1993a) and labeling nonterminal nodes (Brill 1993c).
Recently, we have begun to explore the possibility of extending these techniques to
other problems, including learning pronunciation networks for speech recognition and
learning mappings between syntactic and semantic representations.

Appendix A: Penn Treebank Part-of-Speech Tags (Excluding Punctuation)

1. CC Coordinating conjunction
2. CD Cardinal number
3. DT Determiner
4. EX Existential "there"
5. FW Foreign word
6. IN Preposition or subordinating conjunction
7. JJ Adjective
8. JJR Adjective, comparative
9. JJS Adjective, superlative
10. LS List item marker
11. MD Modal
12. NN Noun, singular or mass
13. NNS Noun, plural
14. NNP Proper noun, singular
15. NNPS Proper noun, plural
16. PDT Predeterminer
17. POS Possessive ending
18. PP Personal pronoun
19. PP$ Possessive pronoun
20. RB Adverb
21. RBR Adverb, comparative
22. RBS Adverb, superlative
23. RP Particle
24. SYM Symbol
25. TO "to"
26. UH Interjection
27. VB Verb, base form
28. VBD Verb, past tense
29. VBG Verb, gerund or present participle
30. VBN Verb, past participle
31. VBP Verb, non-3rd person singular present
32. VBZ Verb, 3rd person singular present
33. WDT Wh-determiner
34. WP Wh-pronoun
35. WP$ Possessive wh-pronoun
36. WRB Wh-adverb

563

Computational Linguistics Volume 21, Number 4

Acknowledgments
This work was funded in part by NSF grant
IRI-9502312. In addition, this work was
done in part while the author was in the
Spoken Language Systems Group at
Massachusetts Institute of Technology
under ARPA grant N00014-89-J-1332, and
by DARPA/AFOSR grant AFOSR-90-0066 at
the University of Pennsylvania. Thanks to
Mitch Marcus, Mark Villain, and the
anonymous reviewers for many useful
comments on earlier drafts of this paper.

References
Black, Ezra; Jelinek, Fred; Lafferty, John;

Magerman, David; Mercer, Robert; and
Roukos, Salim (1993). "Towards
history-based grammars: Using richer
models for probabilistic parsing." In
Proceedings, 31st Annual Meeting of the
Association for Computational Linguistics.
Columbus, OH.

Black, Ezra; Jelinek, Fred; Lafferty, John;
Mercer, Robert, and Roukos, Salim (1992).
"Decision tree models applied to the
labeling of text with parts-of-speech." In
Darpa Workshop on Speech and Natural
Language. Harriman, NY.

Breiman, Leo; Friedman, Jerome; Olshen,
Richard; and Stone, Charles (1984).
Classification and regression trees.
Wadsworth and Brooks.

Brill, Eric (1992). "A simple rule-based part
of speech tagger." In Proceedings, Third
Conference on Applied Natural Language
Processing, ACL, Trento, Italy.

Brill, Eric (1993a). "Automatic grammar
induction and parsing free text: A
transformation-based approach." In
Proceedings, 31st Meeting of the Association of
Computational Linguistics, Columbus, OH.

Brill, Eric (1993b). A Corpus-Based Approach to
Language Learning. Doctoral dissertation,
Department of Computer and Information
Science, University of Pennsylvania.

Brill, Eric (1993c). "Transformation-based
error-driven parsing." In Proceedings, Third
International Workshop on Parsing
Technologies, Tilburg, The Netherlands.

Brill, Eric (1994). "Some advances in
rule-based part of speech tagging." In
Proceedings, Twelfth National Conference on
Artificial Intelligence (AAAI-94), Seattle,

WA.
Brill, Eric and Resnik, Philip (1994). "A

transformation-based approach to
prepositional phrase attachment
disambiguation." In Proceedings, Fifteenth
International Conference on Computational
Linguistics (COLING-1994), Kyoto, Japan.

Brown, Peter; Cocke, John; Della Pietra,
Stephen; Della Pietra, Vincent; Jelinek,
Fred; Lafferty, John; Mercer, Robert; and
Roossin, Paul (1990). "A statistical
approach to machine translation."
Computational Linguistics, 16(2).

Brown, Peter; Lai, Jennifer; and Mercer,
Robert (1991). "Word-sense
disambiguation using statistical
methods." In Proceedings, 29th Annual
Meeting of the Association for Computational
Linguistics, Berkeley, CA

Bruce, Rebecca and Wiebe, Janyce (1994).
"Word-sense disambiguation using
decomposable models." In Proceedings,
32nd Annual Meeting of the Association for
Computational Linguistics, Las Cruces, NM

Charniak, Eugene; Hendrickson, Curtis;
Jacobson, Neil; and Perkowitz, Michael
(1993). "Equations for part of speech
tagging." In Proceedings, Conference of the
American Association for Artificial
Intelligence (AAAI-93), Washington, DC.

Church, Kenneth (1988). "A stochastic parts
program and noun phrase parser for
unrestricted text." In Proceedings, Second
Conference on Applied Natural Language
Processing, ACL, Austin, TX.

Cutting, Doug; Kupiec, Julian; Pedersen,
Jan; and Sibun, Penelope (1992). "A
practical part-of-speech tagger." In
Proceedings, Third Conference on Applied
Natural Language Processing, ACL, Trento,
Italy.

DeMarcken, Carl (1990). "Parsing the lob
corpus." In Proceedings, 1990 Conference of
the Association for Computational Linguistics,
Pittsburgh, PA.

Derose, Stephen (1988). "Grammatical
category disambiguation by statistical
optimization." Computational Linguistics,
14.

Francis, Winthrop Nelson and Kucera,
Henry (1982). Frequency analysis of English
usage: Lexicon and grammar. Houghton
Mifflin, Boston.

564

Brill Transformation-Based Error-Driven Learning

Fujisaki, Tetsu; Jelinek, Fred; Cocke, John;
and Black, Ezra (1989). "Probabilistic
parsing method for sentence
disambiguation." In Proceedings,
International Workshop on Parsing
Technologies, Carnegie Mellon University,
Pittsburgh, PA.

Gale, William and Church, Kenneth (1991).
"A program for aligning sentences in
bilingual corpora." In Proceedings, 29th
Annual Meeting of the Association for
Computational Linguistics, Berkeley, CA.

Gale, William; Church, Kenneth; and
Yarowsky, David (1992). "A method for
disambiguating word senses in a large
corpus." Computers and the Humanities.

Leech, Geoffrey; Garside, Roger; and
Bryant, Michael (1994). "Claws4: The
tagging of the British National Corpus."
In Proceedings, 15th International Conference
on Computational Linguistics, Kyoto, Japan.

Harris, Zellig (1962). String Analysis of
Language Structure. Mouton and Co., The
Hague.

Hindle, Donald (1989). "Acquiring
disambiguation rules from text." In
Proceedings, 27th Annual Meeting of the
Association for Computational Linguistics,
Vancouver, BC.

Hindle, D. and Rooth, M. (1993). "Structural
ambiguity and lexical relations."
Computational Linguistics, 19(1):103-120.

Huang, Caroline; Son-Bell, Mark; and
Baggett, David (1994). "Generation of
pronunciations from orthographies using
transformation-based error-driven
learning." In International Conference on
Speech and Language Processing (ICSLP),
Yokohama, Japan.

Jelinek, Fred (1985). Self-Organized Language
Modelling for Speech Recognition. Dordrecht.
In Impact of Processing Techniques on
Communication, J. Skwirzinski, ed.

Joshi, Aravind and Srinivas, B. (1994).
"Disambiguation of super parts of speech
(or supertags): Almost parsing." In
Proceedings, 15th International Conference on
Computational Linguistics, Kyoto, Japan.

Klein, Sheldon and Simmons, Robert (1963).
"A computational approach to
grammatical coding of English words."
]ACM, 10.

Kupiec, Julian (1992). "Robust

part-of-speech tagging using a hidden
Markov model." Computer Speech and
Language, 6.

Marcus, Mitchell; Santorini, Beatrice; and
Marcinkiewicz, Maryann (1993).
"Building a large annotated corpus of
English: the Penn Treebank."
Computational Linguistics, 19(2).

Merialdo, Bernard (1994). "Tagging English
text with a probabilistic model."
Computational Linguistics.

Miller, George (1990). "Wordnet: an on-line
lexical database." International Journal of
Lexicography, 3(4).

Quinlan, J. Ross (1986). "Induction of
decision trees." Machine Learning,
1:81-106.

Quinlan, J. Ross and Rivest, Ronald (1989).
"Inferring decision trees using the
minimum description length principle."
Information and Computation, 80.

Ramshaw, Lance and Marcus, Mitchell
(1994). "Exploring the statistical
derivation of transformational rule
sequences for part-of-speech tagging." In
The Balancing Act: Proceedings of the ACL
Workshop on Combining Symbolic and
Statistical Approaches to Language, New
Mexico State University, July.

Roche, Emmanuel and Schabes, Yves (1995).
"Deterministic part of speech tagging
with finite state transducers."
Computational Linguistics, 21(2), 227-253.

Schutze, Hinrich and Singer, Yoram (1994).
Part of speech tagging using a variable
memory Markov model. In Proceedings,
Association for Computational Linguistics,
Las Cruces, NM.

Sharman, Robert; Jelinek, Fred; and Mercer,
Robert (1990). "Generating a grammar for
statistical training." In Proceedings, 1990
Darpa Speech and Natural Language
Workshop.

Weischedel, Ralph; Meteer, Marie; Schwartz,
Richard; Ramshaw, Lance; and Palmucci,
Jeff (1993). "Coping with ambiguity and
unknown words through probabilistic
models." Computational Linguistics.

Yarowsky, David (1992). "Word-sense
disambiguation using statistical models of
Roget's categories trained on large
corpora." In Proceedings of COLING-92,
pages 454-460, Nantes, France, July.

565

