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Recently, there has been a rebirth of empiricism in the field of natural language processing. Man- 
ual encoding of linguistic information is being challenged by automated corpus-based learning 
as a method of providing a natural language processing system with linguistic knowledge. Al- 
though corpus-based approaches have been successful in many different areas of natural language 
processing, it is often the case that these methods capture the linguistic information they are 
modelling indirectly in large opaque tables of statistics. This can make it difficult to analyze, 
understand and improve the ability of these approaches to model underlying linguistic behavior. 
In this paper, we will describe a simple rule-based approach to automated learning of linguistic 
knowledge. This approach has been shown for a number of tasks to capture information in a clearer 
and more direct fashion without a compromise in performance. We present a detailed case study 
of this learning method applied to part-of-speech tagging. 

1. Introduction 

It has recently become clear that automatically extracting linguistic information from 
a sample text corpus can be an extremely powerful method of overcoming the linguis- 
tic knowledge acquisition bottleneck inhibiting the creation of robust and accurate 
natural language processing systems. A number of part-of-speech taggers are readily 
available and widely used, all trained and retrainable on text corpora (Church 1988; 
Cutting et al. 1992; Brill 1992; Weischedel et al. 1993). Endemic structural ambiguity, 
which can lead to such difficulties as trying to cope with the many thousands of possi- 
ble parses that a grammar can assign to a sentence, can be greatly reduced by adding 
empirically derived probabilities to grammar rules (Fujisaki et al. 1989; Sharman, Je- 
linek, and Mercer 1990; Black et al. 1993) and by computing statistical measures of 
lexical association (Hindle and Rooth 1993). Word-sense disambiguation, a problem 
that once seemed out of reach for systems without a great deal of handcrafted lin- 
guistic and world knowledge, can now in some cases be done with high accuracy 
when all information is derived automatically from corpora (Brown, Lai, and Mercer 
1991; Yarowsky 1992; Gale, Church, and Yarowsky 1992; Bruce and Wiebe 1994). An 
effort has recently been undertaken to create automated machine translation systems 
in which the linguistic information needed for translation is extracted automatically 
from aligned corpora (Brown et al. 1990). These are just a few of the many recent 
applications of corpus-based techniques in natural language processing. 
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Along with great research advances, the infrastructure is in place for this line of 
research to grow even stronger, with on-line corpora, the grist of the corpus-based 
natural language processing grindstone, getting bigger and better and becoming more 
readily available. There are a number of efforts worldwide to manually annotate large 
corpora with linguistic information, including parts of speech, phrase structure and 
predicate-argument structure (e.g., the Penn Treebank and the British National Corpus 
(Marcus, Santorini, and Marcinkiewicz 1993; Leech, Garside, and Bryant 1994)). A vast 
amount of on-line text is now available, and much more will become available in the 
future. Useful tools, such as large aligned corpora (e.g., the aligned Hansards (Gale 
and Church 1991)) and semantic word hierarchies (e.g., Wordnet (Miller 1990)), have 
also recently become available. 

Corpus-based methods are often able to succeed while ignoring the true complex- 
ities of language, banking on the fact that complex linguistic phenomena can often be 
indirectly observed through simple epiphenomena. For example, one could accurately 
assign a part-of-speech tag to the word race in (1-3) without any reference to phrase 
structure or constituent movement: One would only have to realize that, usually, a 
word one or two words to the right of a modal is a verb and not a noun. An excep- 
tion to this generalization arises when the word is also one word to the right of a 
determiner. 

(1) 

(2) 

(3) 

He will  race/VERB the car. 

He will  not race/VERB the car. 

When will the race/NOUN end? 

It is an exciting discovery that simple stochastic n-gram taggers can obtain very 
high rates of tagging accuracy simply by observing fixed-length word sequences, with- 
out recourse to the underlying linguistic structure. However, in order to make progress 
in corpus-based natural language processing, we must become better aware of just 
what cues to linguistic structure are being captured and where these approximations 
to the true underlying phenomena fail. With many of the current corpus-based ap- 
proaches to natural language processing, this is a nearly impossible task. Consider 
the part-of-speech tagging example above. In a stochastic n-gram tagger, the informa- 
tion about words that follow modals would be hidden deeply in the thousands or 
tens of thousands of contextual probabilities (P(Tagi I Zagi-lZagi-2) ) and the result of 
multiplying different combinations of these probabilities together. 

Below, we describe a new approach to corpus-based natural language processing, 
called transformation-based error-driven learning. This algorithm has been applied to a 
number of natural language problems, including part-of-speech tagging, prepositional 
phrase attachment disambiguation, and syntactic parsing (Brill 1992; Brill 1993a; Brill 
1993b; Brill and Resnik 1994; Brill 1994). We have also recently begun exploring the 
use of this technique for letter-to-sound generation and for building pronunciation 
networks for speech recognition. In this approach, the learned linguistic information 
is represented in a concise and easily understood form. This property should make 
transformation-based learning a useful tool for further exploring linguistic modeling 
and attempting to discover ways of more tightly coupling the underlying linguistic 
systems and our approximating models. 

544 



Brill Transformation-Based Error-Driven Learning 

UNANNOTATED 

TEXT 

STATE 

/~kI~INOTETAx.T ~ D  TRUTH 

Figure 1 
Transformation-Based Error-Driven Learning. 

RULES 

2. Transformation-Based Error-Driven Leaming 

Figure I illustrates how transformation-based error-driven learning works. First, unan- 
notated text is passed through an initial-state annotator. The initial-state annotator can 
range in complexity from assigning random structure to assigning the output of a 
sophisticated manually created annotator. In part-of-speech tagging, various initial- 
state annotators have been used, including: the output of a stochastic n-gram tagger; 
labelling all words with their most likely tag as indicated in the training corpus; and 
naively labelling all words as nouns. For syntactic parsing, we have explored initial- 
state annotations ranging from the output of a sophisticated parser to random tree 
structure with random nonterminal labels. 

Once text has been passed through the initial-state annotator, it is then compared 
to the truth. A manually annotated corpus is used as our reference for truth. An 
ordered list of transformations is learned that can be applied to the output of the 
initial-state annotator to make it better resemble the truth. There are two components 
to a transformation: a rewrite rule and a triggering environment. An example of a 
rewrite rule for part-of-speech tagging is: 

Change the tag from modal to noun. 

and an example of a triggering environment is: 

The preceding word is a determiner. 

Taken together, the transformation with this rewrite rule and triggering environ- 
ment when applied to the word can would correctly change the mistagged: 

The~determiner can~modal rusted~verb ./. 
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to: 

The~determiner can~noun rusted~verb ./. 

An example of a bracketing rewrite rule is: change the bracketing of a subtree 
from: 

A 

B C 

to: 

C 

A B 

where A, B and C can be either terminals or nonterminals. One possible set of trigger- 
ing environments is any combination of words, part-of-speech tags, and nonterminal 
labels within and adjacent to the subtree. Using this rewrite rule and the triggering 
environment A = the, the bracketing: 

( the ( boy ate ) ) 

would become: 

( ( the boy ) ate ) 

In all of the applications we have examined to date, the following greedy search is 
applied for deriving a list of transformations: at each iteration of learning, the transfor- 
mation is found whose application results in the best score according to the objective 
function being used; that transformation is then added to the ordered transforma- 
tion list and the training corpus is updated by applying the learned transformation. 
Learning continues until no transformation can be found whose application results in 
an improvement to the annotated corpus. Other more sophisticated search techniques 
could be used, such as simulated annealing or learning with a look-ahead window, 
but we have not yet explored these alternatives. 

Figure 2 shows an example of learning transformations. In this example, we as- 
sume there are only four possible transformations, T1 through T4, and that the ob- 
jective function is the total number of errors. The unannotated training corpus is 
processed by the initial-state annotator, and this results in an annotated corpus with 
5,100 errors, determined by comparing the output of the initial-state annotator with 
the manually derived annotations for this corpus. Next, we apply each of the possible 
transformations in turn and score the resulting annotated corpus. 1 In this example, 

1 In the real implementation, the search is data driven, and therefore not all transformations need to be 
examined. 
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Figure 2 
An Example of Transformation-Based Error-Driven Learning. 
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applying transformation T2 results in the largest reduction of errors, so T2 is learned 
as the first transformation. T2 is then applied to the entire corpus, and learning con- 
tinues. At this stage of learning, transformation T3 results in the largest reduction of 
error, so it is learned as the second transformation. After applying the initial-state 
annotator, followed by T2 and then T3, no further reduction in errors can be obtained 
from applying any of the transformations, so learning stops. To annotate fresh text, 
this text is first annotated by the initial-state annotator, followed by the application of 
transformation T2 and then by the application of T3. 

To define a specific application of transformation-based learning, one must specify 
the following: 

. 

2. 

. 

The initial state-annotator. 

The space of allowable transformations (rewrite rules and triggering 
environments). 

The objective function for comparing the corpus to the truth and 
choosing a transformation. 

In cases where the application of a particular transformation in one environment 
could affect its application in another environment, two additional parameters must 
be specified: the order in which transformations are applied to a corpus, and whether 
a transformation is applied immediately or only after the entire corpus has been ex- 
amined for triggering environments. For example, take the sequence: 

A A A A A A  

and the transformation: 

547 



Computational Linguistics Volume 21, Number 4 

Change the label from A to B if the preceding label is A. 

If the effect of the application of a transformation is not written out until the entire 
file has been processed for that one transformation, then regardless of the order of 
processing the output will be: 

A B B B B B ,  

since the triggering environment of a transformation is always checked before that 
transformation is applied to any surrounding objects in the corpus. If the effect of a 
transformation is recorded immediately, then processing the string left to right would 
result in: 

A B A B A B ,  

whereas processing right to left would result in: 

A B B B B B .  

3. A Comparison With Decision Trees 

The technique employed by the learner is somewhat similar to that used in decision 
trees (Breiman et al. 1984; Quinlan 1986; Quinlan and Rivest 1989). A decision tree 
is trained on a set of preclassified entities and outputs a set of questions that can be 
asked about an entity to determine its proper classification. Decision trees are built 
by finding the question whose resulting partition is the purest, 2 splitting the training 
data according to that question, and then recursively reapplying this procedure on 
each resulting subset. 

We first show that the set of classifications that can be provided via decision trees 
is a proper subset of those that can be provided via transformation lists (an ordered 
list of transformation-based rules), given the same set of primitive questions. We then 
give some practical differences between the two learning methods. 

3.1 Decision Trees c_ Transformation Lists 
We prove here that for a fixed set of primitive queries, any binary decision tree can 
be converted into a transformation list. Extending the proof beyond binary trees is 
straightforward. 

Proof (by induction) 
Base Case: 
Given the following primitive decision tree, where the classification is A if the 

answer to the query X? is yes, and the classification is B if the answer is no: 

X? 

B A 

2 One possible measure for puri ty is entropy reduction. 
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this tree can be converted into the following transformation list: 

. 

2. 

3. 

X? 

Label with S / *  Start State Annotation */ 

If X, then S --* A 

S --* B / *  Empty Tagging Environment--Always Applies To Entities 
Currently Labeled With S */ 

Induction: 
Assume that two decision trees T1 and T2 have corresponding transformation lists 

L1 and L2. Assume that the arbitrary label names chosen in constructing L1 are not 
used in L2, and that those in L2 are not used in L1. Given a new decision tree T3 
constructed from T1 and T2 as follows: 

Brill Transformation-Based Error-Driven Learning 

we construct a new transformation list L3. Assume the first transformation in L1 is: 

Label with S' 

and the first transformation in L2 is: 

Label with S" 

The first three transformations in L3 will then be: 

1. Label with S 

2. If X then S --* S' 

3. S --+ S" 

followed by all of the rules in L1 other than the first rule, followed by all of the rules 
in L2 other than the first rule. The resulting transformation list will first label an item 
as S' if X is true, or as S" if X is false. Next, the tranformations from L1 will be applied 
if X is true, since S' is the initial-state label for L1. If X is false, the transformations 
from L2 will be applied, because S" is the initial-state label for L2. [] 

3.2 Decision Trees # Transformation Lists 
We show here that there exist transformation lists for which no equivalent decision 
trees exist, for a fixed set of primitive queries. The following classification problem is 
one example. Given a sequence of characters, classify a character based on whether  
the position index of a character is divisible by 4, querying only using a context of 
two characters to the left of the character being classified. 
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Assuming transformations are applied left to right on the sequence, the above 
classification problem can be solved for sequences of arbitrary length if the effect of 
a transformation is written out immediately, or for sequences up to any prespecified 
length if a transformation is carried out only after all triggering environments in the 
corpus are checked. We present the proof for the former case. 

Given the input sequence: 

A A A A A A A A A A 
0 1 2 3 4 5 6 7 8 9 

the underlined characters should be classified as true because their indices are 0, 4, 
and 8. To see why a decision tree could not perform this classification, regardless of 
order of classification, note that, for the two characters before both A3 and A4, both the 
characters and their classifications are the same, although these two characters should 
be classified differently. Below is a transformation list for performing this classification. 
Once again, we assume transformations are applied left to right and that the result of a 
transformation is written out immediately, so that the result of applying transformation 
x to character ai will always be known when applying transformation x to ai+l. 

1. Label with S 
RESULT: A/S A/S A/S A/S 

2. If there is no previous character, 
RESULT: A/F  A/S A/S A/S 

3. If the character two to the left is 
RESULT: A/F  A/S A/F  A/S 

4. If the character two to the left is 
RESULT: A / F  A/S A/S A/S 

5. F --+ yes 

6. S--* no 

A/S A/S A/S A/S A/S A/S A/S 

then S ~ F 
A/S A/S A/S A/S A/S A/S A/S 

labelled with F, then S --* F 
A /F  A/S A/F  A/S A / F  A/S A/F  

labelled with F, then F ~ S 
A/F  A/S A/S A/S A / F  A/S A/S 

RESULT: A/yes  A /no  A/no  A/no  A/yes  A /no  A/no  A/no  A/yes  
A /no  A/no  

The extra power of transformation lists comes from the fact that intermediate 
results from the classification of one object are reflected in the current label of that 
object, thereby making this intermediate information available for use in classifying 
other objects. This is not the case for decision trees, where the outcome of questions 
asked is saved implicitly by the current location within the tree. 

3.3 S o m e  Practical D i f f erences  B e t w e e n  D e c i s i o n  Trees and Transformat ion  Lists 
There are a number of practical differences between transformation-based error-driven 
learning and learning decision trees. One difference is that when training a decision 
tree, each time the depth of the tree is increased, the average amount of training mate- 
rial available per node at that new depth is halved (for a binary tree). In transformation- 
based learning, the entire training corpus is used for finding all transformations. There- 
fore, this method is not subject to the sparse data problems that arise as the depth of 
the decision tree being learned increases. 

Transformations are ordered, with later transformations being dependent upon 
the outcome of applying earlier transformations. This allows intermediate results in 
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classifying one object to be available in classifying other objects. For instance, whether  
the previous word  is tagged as to-infinitival or to-preposition m ay  be a good cue for de- 
termining the part  of speech of a word.  3 If, initially, the word  to is not  reliably tagged 
everywhere  in the corpus with its proper  tag (or not tagged at all), then this cue will 
be unreliable. The transformation-based learner will delay positing a transformation 
triggered by  the tag of the word  to until other transformations have resulted in a more 
reliable tagging of this word  in the corpus. For a decision tree to take advantage of 
this information, any word  whose outcome is dependen t  upon  the tagging of to would  
need the entire decision tree structure for the proper  classification of each occurrence 
of to built into its decision tree path. If the classification of to were dependent  upon  the 
classification of yet  another  word,  this would have to be built into the decision tree as 
well. Unlike decision trees, in transformation-based learning, intermediate classifica- 
tion results are available and can be used as classification progresses. Even if decision 
trees are applied to a corpus in a left-to-right fashion, they are al lowed only one pass 
in which to proper ly  classify. 

Since a transformation list is a processor and not a classifier, it can readily be 
used as a postprocessor to any annotat ion system. In addit ion to annotat ing from 
scratch, rules can be learned to improve the performance of a mature  annotat ion 
system by using the mature  system as the initial-state annotator. This can have the 
added  advantage that the list of transformations learned using a mature  annotat ion 
system as the initial-state annotator  provides a readable description or classification of 
the errors the mature  system makes, thereby aiding in the refinement of that system. 
The fact that it is a processor gives a transformation-based learner greater than the 
classifier-based decision tree. For example, in applying transformation-based learning 
to parsing, a rule can apply  any structural change to a tree. In tagging, a rule such as: 

Change the tag of the current word to X, and of the previous word to Y, if Z holds 

can easily be handled in the processor-based system, whereas it would  be difficult to 
handle in a classification system. 

In transformation-based learning, the objective function used in training is the 
same as that used for evaluation, whenever  this is feasible. In a decision tree, using sys- 
tem accuracy as an objective function for training typically results in poor  performance 4 
and some measure of node purity, such as en t ropy reduction, is used instead. The di- 
rect correlation between rules and performance improvement  in transformation-based 
learning can make the learned rules more readily interpretable than decision tree rules 
for increasing populat ion purity, s 

4. Part of Speech Tagging: A Case Study in Transformation-Based Error-Driven 
Learning 

In this section we describe the practical application of transformation-based learning 
to part-of-speech tagging. 6 Part-of-speech tagging is a good application to test the 

3 The original tagged Brown Corpus  (Francis and  Kucera, 1982) makes  this distinction; the Penn 
Treebank (Marcus, Santorini, and  Marcinkiewicz,  1993) does not. 

4 For a d iscuss ion  of w h y  this is the case, see Breiman et al. (1984, 94-98). 
5 For a d i scuss ion  of other  issues  regarding these two learning algor i thms,  see R a m s h a w  and  Marcus  

(1994). 
6 All of the p rog rams  described herein are freely available wi th  no restrictions on use  or redistr ibution.  

For informat ion on obta ining the tagger, contact the author. 
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learner, for several reasons. There are a number of large tagged corpora available, 
allowing for a variety of experiments to be run. Part-of-speech tagging is an active 
area of research; a great deal of work has been done in this area over the past few years 
(e.g., Jelinek 1985; Church 1988; Derose 1988; Hindle 1989; DeMarcken 1990; Merialdo 
1994; Brill 1992; Black et al. 1992; Cutting et al. 1992; Kupiec 1992; Charniak et al. 1993; 
Weischedel et al. 1993; Schutze and Singer 1994). 

Part-of-speech tagging is also a very practical application, with uses in many areas, 
including speech recognition and generation, machine translation, parsing, information 
retrieval and lexicography. Insofar as tagging can be seen as a prototypical problem 
in lexical ambiguity, advances in part-of-speech tagging could readily translate to 
progress in other areas of lexical, and perhaps structural, ambiguity, such as word- 
sense disambiguation and prepositional phrase attachment disambiguation. 7 Also, it is 
possible to cast a number of other useful problems as part-of-speech tagging problems, 
such as letter-to-sound translation (Huang, Son-Bell, and Baggett 1994) and building 
pronunciation networks for speech recognition. Recently, a method has been proposed 
for using part-of-speech tagging techniques as a method for parsing with lexicalized 
grammars (Joshi and Srinivas 1994). 

When automated part-of-speech tagging was initially explored (Klein and Sim- 
mons 1963; Harris 1962), people manually engineered rules for tagging, sometimes 
with the aid of a corpus. As large corpora became available, it became clear that simple 
Markov-model based stochastic taggers that were automatically trained could achieve 
high rates of tagging accuracy (Jelinek 1985). Markov-model based taggers assign to a 
sentence the tag sequence that maximizes Prob(word I tag),Prob(tag I previous n tags). 
These probabilities can be estimated directly from a manually tagged corpus, s These 
stochastic taggers have a number of advantages over the manually built taggers, in- 
cluding obviating the need for laborious manual rule construction, and possibly cap- 
turing useful information that may not have been noticed by the human engineer. 
However, stochastic taggers have the disadvantage that linguistic information is cap- 
tured only indirectly, in large tables of statistics. Almost all recent work in developing 
automatically trained part-of-speech taggers has been on further exploring Markov- 
model based tagging (Jelinek 1985; Church 1988; Derose 1988; DeMarcken 1990; Meri- 
aldo 1994; Cutting et al. 1992; Kupiec 1992; Charniak et al. 1993; Weischedel et al. 1993; 
Schutze and Singer 1994). 

4.1 Transformation-based Error-driven Part-of-Speech Tagging 
Transformation-based part of speech tagging works as follows. 9 The initial-state an- 
notator assigns each word its most likely tag as indicated in the training corpus. The 
method used for initially tagging unknown words will be described in a later section. 
An ordered list of transformations is then learned, to improve tagging accuracy based 
on contextual cues. These transformations alter the tagging of a word from X to Y iff 

7 In Brill and Resnik (1994), we describe an approach to prepositional phrase attachment disambiguation 
that obtains highly competitive performance compared to other corpus-based solutions to this problem. 
This system was derived in under two hours from the transformation-based part of speech tagger 
described in this paper. 

8 One can also estimate these probabilities without a manually tagged corpus, using a hidden Markov 
model. However, it appears to be the case that directly estimating probabilities from even a very small 
manually tagged corpus gives better results than training a hidden Markov model on a large untagged 
corpus (see Merialdo (1994)). 

9 Earlier versions of this work were reported in Brill (1992, 1994). 
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either: 

1. The word  was  not  seen in the training corpus  O R  

2. The word  was  seen tagged with  ¥ at least once in the training corpus.  

In taggers based on Markov  models ,  the lexicon consists of probabili t ies of the 
somew ha t  counterintui t ive but  p roper  form P(WORD I TAG). In the t ransformat ion-  
based tagger, the lexicon is s imply  a list of all tags seen for a word  in the training 
corpus,  wi th  one tag labeled as the mos t  likely. Below we show a lexical entry for the 

word  half in the t ransformat ion-based tagger. 1° 

half:  CD DT JJ N N  PDT RB VB 

This entry lists the seven tags seen for half in the training corpus,  wi th  N N  marked  
as the mos t  likely. Below are the lexical entries for half in a Markov  mode l  tagger, 
extracted f rom the same corpus: 

P(half l CD ) = 0.000066 

P(half l DT ) = 0.000757 

P(half I J J) = 0.000092 

P(half INN) = 0.000702 

P(half l PDT ) = 0.039945 

P(half l RB ) = 0.000443 

P(half I VB ) = 0.000027 

It is difficult to make  m u c h  sense of these entries in isolation; they have  to be v iewed  
in the context of the m a n y  contextual  probabilities. 

First, we  will describe a nonlexicalized version of the tagger, where  t ransformat ion 
templates  do not make  reference to specific words.  In the nonlexicalized tagger, the 
t ransformat ion templates  we  use are: 

Change tag a to tag b when: 

1. The preceding (following) word  is tagged z. 

2. The word  two before (after) is tagged z. 

3. One of the two preceding  (following) words  is tagged z. 

4. One of the three preceding (following) words  is tagged z. 

5. The preceding word  is tagged z and  the following word  is tagged w. 

6. The preceding (following) word  is tagged z and the word  two before 
(after) is tagged w. 

where  a, b, z and w are variables over  the set of parts  of speech. 

To learn a t ransformation,  the learner, in essence, tries out  every  possible trans- 
formation,  1I and  counts the n u m b e r  of tagging errors after each one is applied.  After 

10 A description of the partoof-speech tags is provided in Appendix A. 
11 All possible instantiations of transformation templates. 
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1. apply initial-state annotator to corpus 
2. while transformations can still be found do 
3. for from_tag = tag1 to tagn 
4. for to_tag = tag1 to tagn 
5. for corpus_position = 1 to corpus_size 
6. if (correct_tag(corpus_position) --= to_tag 

&& current_tag(corpus_position) == from_tag) 
7. num_good_transformations(tag(corpus_position -1))++ 
8. else if (correct_tag(corpus_position) == from_tag 

&& current_tag(corpus_position) == from_tag) 
9. num_bad_transformations(tag(corpus_position-1 ))++ 
10. find maxT (num_good_transformations(T) - num_bad_transformations(T)) 
11. if this is the best-scoring rule found yet then store as best rule: 

Change tag from from_tag to to_tag if previous tag is T 
12. apply best rule to training corpus 
13. append best rule to ordered list of transformations 

Figure 3 
Pseudocode for learning transformations. 

all possible transformations have been tried, the transformation that resulted in the 
greatest error reduction is chosen. Learning stops when no transformations can be 
found whose application reduces errors beyond some prespecified threshold. 

In the experiments described below, processing was done left to right. For each 
transformation application, all triggering environments are first found in the corpus, 
and then the transformation triggered by each triggering environment is carried out. 

The search is data-driven, so only a very small percentage of possible transfor- 
mations really need be examined. In figure 3, we give pseudocode for the learning 
algorithm in the case where there is only one transformation template: 

Change the tag from X to Y if the previous tag is Z. 

In each learning iteration, the entire training corpus is examined once for every pair 
of tags X and Y, finding the best transformation whose rewrite changes tag X to tag Y. 
For every word in the corpus whose environment matches the triggering environment, 
if the word has tag X and X is the correct tag, then making this transformation will 
result in an additional tagging error, so we increment the number of errors caused 
when making the transformation given the part-of-speech tag of the previous word 
(lines 8 and 9). If X is the current tag and Y is the correct tag, then the transformation 
will result in one less error, so we increment the number of improvements caused 
when making the transformation given the part-of-speech tag of the previous word 
(lines 6 and 7). 

In certain cases, a significant increase in speed for training the transformation- 
based tagger can be obtained by indexing in the corpus where different transformations 
can and do apply. For a description of a fast index-based training algorithm, see 
Ramshaw and Marcus (1994). 

In figure 4, we list the first twenty transformations learned from training on the 
Penn Treebank Wall Street Journal Corpus (Marcus, Santorini, and Marcinkiewicz 
1993). 12 The first transformation states that a noun should be changed to a verb if 

12 Version 0.5 of the Penn  Treebank was  used  in all exper iments  reported in this paper. 
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Change Tag 
# From To 
1 NN VB 
2 VBP VB 
3 NN VB 
4 VB NN 
5 VBD VBN 
6 VBN VBD 
7 VBN VBD 
8 VBD VBN 
9 VBP VB 
10 POS VBZ 
11 VB VBP 
12 VBD VBN 
13 IN WDT 
14 VBD VBN 
15 VB VBP 
16 IN WDT 
17 IN DT 
18 JJ NNP 
19 IN WDT 
20 JJR RBR 

Figure 4 

Condition 
Previous tag is TO 

One of the previous three tags is MD 
One of the previous two tags is MD 
One of the previous two tags is DT 

One of the previous three tags is VBZ 
Previous tag is PRP 
Previous tag is NNP 
Previous tag is VBD 
Previous tag is TO 

Previous tag is PRP 
Previous tag is NNS 

One of previous three tags is VBP 
One of next two tags is VB 

One of previous two tags is VB 
Previous tag is PRP 

Next tag is VBZ 
Next tag is N N  

Next tag is NNP 
Next tag is VBD 

Next tag is JJ 

The first 20 nonlexicalized transformations. 

the previous tag is TO, as in: to~TO conflict/NN--.VB with. The second transforma- 
tion fixes a tagging such as: might/MD vanish/VBP--.VB. The third fixes might/MD not 
reply/NN--.VB. The tenth transformation is for the token's,  which is a separate token 
in the Penn Treebank. 's is most frequently used as a possessive ending, but after a 
personal pronoun, it is a verb (John's, compared to he 's). The transformations chang- 
ing IN to WDT are for tagging the word that, to determine in which environments that 
is being used as a synonym of which. 

4.2 Lexicalizing the Tagger 
In general, no relationships between words have been directly encoded in stochas- 
tic n-gram taggers. 13 In the Markov model typically used for stochastic tagging, state 
transition probabilities (P(Tagi I Tagi_l... Tagi-n)) express the likelihood of a tag im- 
mediately following n other tags, and emit probabilities (P(Wordj I Tagi)) express the 
likelihood of a word, given a tag. Many useful relationships, such as that between a 
word and the previous word, or between a tag and the following word, are not di- 
rectly captured by Markov-model based taggers. The same is true of the nonlexicalized 
transformation-based tagger, where transformation templates do not make reference 
to words. 

To remedy this problem, we extend the transformation-based tagger by adding 

13 In Kupiec (1992), a limited amount of lexicalization is introduced by having a stochastic tagger with 
word states for the 100 most frequent words in the corpus. 
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contextual transformations that can make reference to words  as well as part-of-speech 
tags. The transformation templates we add are: 

Change tag a to tag b when: 

. 

2. 

3. 

4. 

5. 

6. 

7. 

. 

The 

The 

The 

The 
t. 

The preceding (following) word  is w. 

The word  two before (after) is w. 

One of the two preceding (following) words  is w. 

current  word  is w and the preceding (following) word  is x. 

current  word  is w and the preceding (following) word  is tagged z. 

current  word  is w. 

preceding (following) word  is w and the preceding (following) tag is 

The current  word  is w, the preceding (following) word  is w2 and the 
preceding (following) tag is t. 

where  w and x are variables over  all words  in the training corpus, and z 
and t are variables over  all parts of speech. 

BelOw we list two lexicalized transformations that were learned, training once 
again on the Wall Street Journal. 

Change the tag: 

(12) From IN to RB if the word  two positions to the right is as. 
(16) From VBP to VB if one of the previous two words  is n ' t .  TM 

The Penn Treebank tagging style manual  specifies that in the collocation as . . .  as, 
the first as is tagged as an adverb and the second is tagged as a preposition. Since as is 
most  frequently tagged as a preposi t ion in the training corpus, the initial-state tagger 
will mistag the phrase as tall as as: 

a s / I N  tall/JJ a s / I N  

The first lexicalized transformation corrects this mistagging. Note  that a bigram tagger 
trained on our  training set would  not  correctly tag the first occurrence of as. Although 
adverbs are more likely than preposit ions to follow some verb form tags, the fact 
that P(as ] IN) is much  greater than P(as ] RB), and P(JJ ] IN) is much  greater than 
P(JJ ] RB) lead to as being incorrectly tagged as a preposit ion by a stochastic tagger. A 
tr igram tagger will correctly tag this collocation in some instances, due  to the fact that 
P(IN ] RB JJ) is greater than P(IN ] IN JJ), but  the outcome will be highly dependen t  
upon  the context in which this collocation appears.  

The second transformation arises from the fact that when  a verb appears  in a 
context such as We do n't eat or We did n't usually drink, the verb is in base form. A 
stochastic tr igram tagger would  have to capture this linguistic information indirectly 
from frequency counts of all trigrams of the form shown in figure 5 (where a star can 
match any part-of-speech tag) and from the fact that P(n't ] RB) is fairly high. 

14 In the Penn Treebank, n't is treated as a separate token, so don't becomes do/VBP n't/RB. 

556 



Brill Transformation-Based Error-Driven Learning 

* RB VBP 
* RB VB 
RB * VBP 
RB * VB 

Figure  5 
Trigram Tagger Probability Tables. 

In Weischedel et al. (1993), results are given when training and testing a Markov- 
model based tagger on the Penn Treebank Tagged Wall Street Journal Corpus. They cite 
results making the closed vocabulary assumption that all possible tags for all words in 
the test set are known. When training contextual probabilities on one million words, 
an accuracy of 96.7% was achieved. Accuracy dropped to 96.3% when contextual prob- 
abilities were trained on 64,000 words. We trained the transformation-based tagger on 
the same corpus, making the same closed-vocabulary assumption. 15 When training 
contextual rules on 600,000 words, an accuracy of 97.2% was achieved on a separate 
150,000 word test set. When the training set was reduced to 64,000 words, accuracy 
dropped to 96.7%. The transformation-based learner achieved better performance, de- 
spite the fact that contextual information was captured in a small number of simple 
nonstochastic rules, as opposed to 10,000 contextual probabilities that were learned 
by the stochastic tagger. These results are summarized in table 1. When training on 
600,000 words, a total of 447 transformations were learned. However, transformations 
toward the end of the list contribute very little to accuracy: applying only the first 200 
learned transformations to the test set achieves an accuracy of 97.0%; applying the first 
100 gives an accuracy of 96.8%. To match the 96.7% accuracy achieved by the stochas- 
tic tagger when it was trained on one million words, only the first 82 transformations 
are needed. 

To see whether lexicalized transformations were contributing to the transformation- 
based tagger accuracy rate, we first trained the tagger using the nonlexical transfor- 
mation template subset, then ran exactly the same test. Accuracy of that tagger was 
97.0%. Adding lexicalized transformations resulted in a 6.7% decrease in the error rate 
(see table 1). 16 

We found it a bit surprising that the addition of lexicalized transformations did 
not result in a much greater improvement in performance. When transformations are 
allowed to make reference to words and word pairs, some relevant information is 
probably missed due to sparse data. We are currently exploring the possibility of 
incorporating word classes into the rule-based learner, in hopes of overcoming this 
problem. The idea is quite simple. Given any source of word class information, such 

15 In both  Weischedel  et al. (1993) and  here, the test set was  incorporated into the lexicon, bu t  was  not  
used  in learning contextual  information.  Testing wi th  no u n k n o w n  words  migh t  seem like an 
unrealistic test. We have  done  so for three reasons: (1) to al low for a compar i son  wi th  previously  
quoted  results,  (2) to isolate k n o w n  word  accuracy from u n k n o w n  word  accuracy, and  (3) in some  
sys tems,  such  as a closed vocabulary  speech recognit ion sys tem,  the a s s u m p t i o n  that  all words  are 
k n o w n  is valid. (We s h o w  results  w h e n  u n k n o w n  words  are inc luded later in the paper.) 

16 The training we did here was  slightly subopt imal ,  in that  we  used  the contextual  rules learned wi th  
u n k n o w n  words  (described in the next  section), and  filled in the  dictionary, rather than  t raining on a 
corpus  wi thout  u n k n o w n  words.  
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Table 1 
Comparison of Tagging Accuracy With No Unknown Words 

Training # of Rules 
Corpus or Context. Acc. 

Method Size (Words) Probs. (%) 
Stochastic 64 K 6,170 96.3 
Stochastic 1 Million 10,000 96.7 

Rule-Based 
With Lex. Rules 64 K 215 96.7 

Rule-Based 
With Lex. Rules 600 K 447 97.2 

Rule-Based 
w / o  Lex. Rules 600 K 378 97.0 

as WordNet  (Miller 1990), the learner is extended such that a rule is a l lowed to make  
reference to par ts  of speech, words ,  and  word  classes, a l lowing for rules such as 

Change the tag from X to Y if the following word belongs to word class Z. 

This approach  has a l ready been successfully appl ied  to a sys tem for preposi t ional  
phrase  a t tachment  d i sambigua t ion  (Brill and  Resnik 1994). 

4.3 Tagging Unknown Words 
So far, we  have  not addressed  the p rob lem of u n k n o w n  words .  As stated above,  the 
initial-state annota tor  for tagging assigns all words  their mos t  likely tag, as indicated 
in a training corpus. Below we show h o w  a t ransformat ion-based  approach  can be 
taken for tagging u n k n o w n  words ,  by  automat ical ly  learning cues to predict  the mos t  
likely tag for words  not  seen in the training corpus.  If the mos t  likely tag for u n k n o w n  
words  can be assigned with  high accuracy, then the contextual  rules can be used to 
improve  accuracy, as described above.  

In the t ransformat ion-based  u n k n o w n - w o r d  tagger, the initial-state annota tor  naively  
assumes  the mos t  likely tag for an u n k n o w n  word  is "p roper  noun"  if the word  is 
capital ized and " c o m m o n  noun"  otherwise.  17 

Below, we list the set of al lowable t ransformations.  

Change the tag of an unknown word (from X) to Y if: 

1. 

. 

3. 

. 

5. 

Delet ing the prefix (suffix) x, Ixl < 4, results in a word  (x is any  str ing of 
length 1 to 4). 

The first (last) (1,2,3,4) characters of the word  are x. 

Add ing  the character string x as a prefix (suffix) results in a word  
(Ixl ~ 4). 

Word w ever  appea r s  immedia te ly  to the left (right) of the word.  

Character  z appears  in the word.  

17 If we change the tagger to tag all unknown words as common nouns, then a number of rules are 
learned of the form: change tag to proper noun if the prefix is "E', "A", "B', etc., since the learner is 
not provided with the concept of upper case in its set of transformation templates. 
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Change Tag 
# From To Condit ion 
1 N N  NNS Has suffix -s 
2 N N  CD Has charac ter .  
3 N N  JJ Has character - 
4 N N  VBN Has suffix -ed 
5 NN VBG Has suffix -ing 
6 ?? RB Has suffix -ly 
7 ?? JJ Adding suffix -ly results in a word.  
8 N N  CD The word  $ can appear  to the left. 
9 N N  JJ Has suffix -al 
10 N N  VB The word would  can appear  to the left. 
11 N N  CD Has character 0 
12 N N  JJ The word be can appear  to the left. 
13 NNS JJ Has suffix - u s  

14 NNS VBZ The word  it can appear  to the left. 
15 N N  JJ Has suffix -ble 
16 N N  JJ Has suffix -ic 
17 N N  CD Has character 1 
18 NNS NN Has suffix - s s  

19 ?? JJ Deleting the prefix u n -  results in a word  
20 N N  JJ Has suffix - i re  

Figure  6 
The first 20 transformations for unknown words. 

An unannota ted  text can be used to check the conditions in all of the above trans- 
formation templates. Annotated text is necessary in training to measure the effect of 
transformations on tagging accuracy. Since the goal is to label each lexical entry for 
new words  as accurately as possible, accuracy is measured on a per  type and not a 
per token basis. 

Figure 6 shows the first 20 transformations learned for tagging unknown  words in 
the Wall Street Journal corpus. As an example of how rules can correct errors generated 
by prior rules, note that applying the first t ransformation will result in the mistagging 
of the word  actress. The 18th learned rule fixes this problem. This rule states: 

Change a tag from p l u r a l  c o m m o n  n o u n  to s i n g u l a r  c o m m o n  n o u n  if the word has 
SUffiX ss.  

Keep in mind that no specific affixes are prespecified. A transformation can make 
reference to any string of characters up  to a bounded  length. So while the first rule 
specifies the English suffix "s', the rule learner was not constrained from considering 
such nonsensical rules as: 

Change a tag to adjective if the word has suffix "xhqr'. 

Also, absolutely no English-specific information (such as an affix list) need be 
prespecified in the learner. TM 

18 This learner has also been applied to tagging Old English. See Brill (1993b). Although the 
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Figure 7 
Accuracy vs. Transformation Number 

We then ran the following experiment using 1.1 million words of the Penn Tree- 
bank Tagged Wall Street Journal Corpus. Of these, 950,000 words were used for training 
and 150,000 words were used for testing. Annotations of the test corpus were not used 
in any way to train the system. From the 950,000 word training corpus, 350,000 words 
were used to learn rules for tagging unknown words, and 600,000 words were used 
to learn contextual rules; 243 rules were learned for tagging unknown words, and 447 
contextual tagging rules were learned. Unknown word accuracy on the test corpus was 
82.2%, and overall tagging accuracy on the test corpus was 96.6%. To our knowledge, 
this is the highest overall tagging accuracy ever quoted on the Penn Treebank Corpus 
when making the open vocabulary assumption. Using the tagger without lexicalized 
rules, an overall accuracy of 96.3% and an unknown word accuracy of 82.0% is ob- 
tained. A graph of accuracy as a function of transformation number on the test set for 
lexicalized rules is shown in figure 7. Before applying any transformations, test set ac- 
curacy is 92.4%, so the transformations reduce the error rate by 50% over the baseline. 
The high baseline accuracy is somewhat misleading, as this includes the tagging of 
unambiguous words. Baseline accuracy when the words that are unambiguous in our 
lexicon are not considered is 86.4%. However, it is difficult to compare taggers using 
this figure, as the accuracy of the system depends on the particular lexicon used. For 
instance, in our training set the word the was tagged with a number of different tags, 
and so according to our lexicon the is ambiguous. If we instead used a lexicon where 
the is listed unambiguously as a determiner, the baseline accuracy would be 84.6%. 

For tagging unknown words, each word is initially assigned a part-of-speech tag 
based on word and word-distribution features. Then, the tag may be changed based 
on contextual cues, via contextual transformations that are applied to  the entire cor- 
pus, both known and unknown-words. When the contextual rule learner learns trans- 
formations, it does so in an attempt to maximize overall tagging accuracy, and not 
unknown-word tagging accuracy. Unknown words account for only a small percent- 
age of the corpus in our experiments, typically two to three percent. Since the distribu- 
tional behavior of unknown words is quite different from that of known words, and 

transformations are not English-specific, the set of transformation templates would have to be extended 
to process languages with dramatically different morphology, 
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Table 2 
Tagging Accuracy on Different Corpora 

Corpus Accuracy 

Penn WSJ 96.6% 

Penn Brown 96.3% 

Orig Brown 96.5% 

since a transformation that does not increase unknown-word tagging accuracy can 
still be beneficial to overall tagging accuracy, the contextual transformations learned 
are not optimal in the sense of leading to the highest tagging accuracy on unknown 
words. Better unknown-word accuracy may be possible by training and using two 
sets of contextual rules, one maximizing known-word accuracy and the other maxi- 
mizing unknown-word accuracy, and then applying the appropriate transformations 
to a word when tagging, depending upon whether the word appears in the lexicon. 
We are currently experimenting with this idea. 

In Weischedel et al. (1993), a statistical approach to tagging unknown words is 
shown. In this approach, a number of suffixes and important features are prespecified. 
Then, for unknown words: 

p(W I T) -= p(unknown word I T) • p(Capitalize-feature I T) * p(suffixes, hyphenation I T) 

Using this equation for unknown word emit probabilities within the stochastic tagger, 
an accuracy of 85% was obtained on the Wall Street Journal corpus. This portion of 
the stochastic model has over 1,000 parameters, with 108 possible unique emit proba- 
bilities, as opposed to a small number of simple rules that are learned and used in the 
rule-based approach. In addition, the transformation-based method learns specific cues 
instead of requiring them to be prespecified, allowing for the possibility of uncover- 
ing cues not apparent to the human language engineer. We have obtained comparable 
performance on unknown words, while capturing the information in a much more 
concise and perspicuous manner, and without prespecifying any information specific 
to English or to a specific corpus. 

In table 2, we show tagging results obtained on a number of different corpora, in 
each case training on roughly 9.5 x 10 s words total and testing on a separate test set 
of 1.5-2 x 10 s words. Accuracy is consistent across these corpora and tag sets. 

In addition to obtaining high rates of accuracy and representing relevant linguistic 
information in a small set of rules, the part-of-speech tagger can also be made to 
run extremely fast. Roche and Schabes (1995) show a method for converting a list 
of tagging transformations into a deterministic finite state transducer with one state 
transition taken per word of input; the result is a transformation-based tagger whose 
tagging speed is about ten times that of the fastest Markov-model tagger. 

4.4 K-Best Tags 
There are certain circumstances where one is willing to relax the one-tag-per-word 
requirement in order to increase the probability that the correct tag will be assigned to 
each word. In DeMarcken (1990) and Weischedel et al. (1993), k-best tags are assigned 
within a stochastic tagger by returning all tags within some threshold of probability 
of being correct for a particular word. 
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Table 3 
Results from k-best tagging. 

# of Rules Accuracy Avg. # of tags per word 

0 96.5 1.00 

50 96.9 1.02 

100 97.4 1.04 

150 97.9 1.10 

200 98.4 1.19 

250 99.1 1.50 

We can modi fy  the t ransformat ion-based  tagger to return mul t ip le  tags for a word  
by  mak ing  a s imple  modificat ion to the contextual  t ransformat ions  described above.  
The initial-state annota tor  is the tagging ou tpu t  of the prev ious ly  descr ibed one-best  
t ransformat ion-based  tagger. The al lowable t ransformat ion  templa tes  are the same as 
the contextual  t ransformat ion templates  listed above,  but  wi th  the rewri te  rule: change 
tag X to tag Y modif ied  to add tag X to tag Y or add tag X to word W. Instead of changing 
the tagging of a word,  t ransformat ions  n o w  add  al ternat ive taggings to a word.  

When  al lowing more  than one tag per  word ,  there is a trade-off  be tween  accuracy 
and  the average  n u m b e r  of tags for each word.  Ideally, we  wou ld  like to achieve as 
large an increase in accuracy with  as few extra tags as possible. Therefore,  in training 
we find t ransformat ions  that maximize  the function: 

N u m b e r  of corrected errors 

N u m b e r  of addi t ional  tags 

In table 3, we  present  results f rom first using the one- tag-per -word  t ransforma-  
t ion-based tagger described in the previous  section and  then app ly ing  the k-best  tag 
t ransformations.  These t ransformat ions  were  learned f rom a separate  240,000 word  
corpus. As a baseline, we  did  k-best tagging of a test corpus.  Each k n o w n  word  in the 
test corpus  was  tagged with  all tags seen with  that  word  in the training corpus  and  
the five mos t  likely u n k n o w n - w o r d  tags were  assigned to all words  not  seen in the 
training corpus.  19 This resul ted in an accuracy of 99.0%, wi th  an average  of 2.28 tags 
per  word.  The t ransformat ion-based  tagger  obta ined the same accuracy wi th  1.43 tags 

per  word ,  one third the n u m b e r  of addi t ional  tags as the baseline tagger. 2° 

5. C o n c l u s i o n s  

In this paper,  we  have  described a new t ransformat ion-based  approach  to corpus-based  
learning. We have  given details of h o w  this approach  has been  appl ied  to part-of-  
speech tagging and  have  demons t ra t ed  that  the t ransformat ion-based  approach  obtains 

19 Thanks to Fred Jelinek and Fernando Pereira for suggesting this baseline experiment. 
20 Unfortunately, it is difficult to find results to compare these k-best tag results to. In DeMarcken (1990), 

the test set is included in the training set, and so it is difficult to know how this system would do on 
fresh text. In Weischedel et al. (1993), a k-best tag experiment was run on the Wall Street Journal 
corpus. They quote the average number of tags per word for various threshold settings, but do not 
provide accuracy results. 
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competitive performance with stochastic taggers on tagging both unknown and known 
words. The transformation-based tagger captures linguistic information in a small 
number of simple nonstochastic rules, as opposed to large numbers of lexical and 
contextual probabilities. This learning approach has also been applied to a number 
of other tasks, including prepositional phrase attachment disambiguation (Brill and 
Resnik 1994), bracketing text (Brill 1993a) and labeling nonterminal nodes (Brill 1993c). 
Recently, we have begun to explore the possibility of extending these techniques to 
other problems, including learning pronunciation networks for speech recognition and 
learning mappings between syntactic and semantic representations. 

Appendix A: Penn Treebank Part-of-Speech Tags (Excluding Punctuation) 

1. CC Coordinating conjunction 
2. CD Cardinal number 
3. DT Determiner 
4. EX Existential "there" 
5. FW Foreign word 
6. IN Preposition or subordinating conjunction 
7. JJ Adjective 
8. JJR Adjective, comparative 
9. JJS Adjective, superlative 
10. LS List item marker 
11. MD Modal 
12. NN Noun, singular or mass 
13. NNS Noun, plural 
14. NNP Proper noun, singular 
15. NNPS Proper noun, plural 
16. PDT Predeterminer 
17. POS Possessive ending 
18. PP Personal pronoun 
19. PP$ Possessive pronoun 
20. RB Adverb 
21. RBR Adverb, comparative 
22. RBS Adverb, superlative 
23. RP Particle 
24. SYM Symbol 
25. TO "to" 
26. UH Interjection 
27. VB Verb, base form 
28. VBD Verb, past tense 
29. VBG Verb, gerund or present participle 
30. VBN Verb, past participle 
31. VBP Verb, non-3rd person singular present 
32. VBZ Verb, 3rd person singular present 
33. WDT Wh-determiner 
34. WP Wh-pronoun 
35. WP$ Possessive wh-pronoun 
36. WRB Wh-adverb 
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