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In recent years models of parsing that are isomorphic to a principle-based theory of grammar (most 
notably Government and Binding (GB) Theory) have been proposed (Berwick et al. 1991). These 
models are natural and direct implementations of the grammar, but they are not efficient, because 
GB is not a computationally modular theory. This paper investigates one problem related to the 
tension between building linguistically based parsers and building efficient ones. In particular, the 
issue of what is a linguistically motivated way of deriving a parser from principle-based theories 
of grammar is explored. It is argued that an efficient and faithful parser can be built by taking 
advantage of the way in which principles are stated. To support this claim, two features of an 
implemented parser are discussed. First, configurations and lexical information are precompiled 
separately into two tables (an X table and a table of lexical co-occurrence) which gives rise to 
more compact data structures. Secondly, precomputation of syntactic features (O-roles, case, etc.) 
results in efficient computation of chains, because it reduces several problems of chain formation 
to a local computation, thus avoiding extensive search of the tree for an antecedent or extensive 
backtracking. It is also shown that this method of building long-distance dependencies can be 
computed incrementally. 

1. Introduction 

In the development of parsers for syntactic analysis, it is standard practice to posit 
two working levels: the grammar, on the one hand, and the algorithms, which produce 
the analysis of the sentence by using the grammar as the source of syntactic knowl- 
edge, on the other hand. Usually the grammar is derived directly from the work of 
theoretical linguists. The interest in building a parser that is grounded in a linguistic 
theory as closely as possible rests on two sets of reasons: first, theories are developed 
to account for empirical facts about language in a concise way--they seek general, 
abstract, language-independent explanations for linguistic phenomena; second, cur- 
rent linguistic theories are supposed to be models of humans' knowledge of language. 
Parsers that can use grammars directly are more likely to have wide coverage, and to 
be valid for many languages; they also constitute the most economical model of the 
human ability to put knowledge of language to use. Therefore, postulating a direct 
correspondence between the parser and theories of grammar is, methodologically, the 
strongest position, and is usually assumed as a starting point of investigation. How- 
ever, experiments with parsers that are tightly related to linguistic principles have 
often been a disappointment, largely because these parsers are inefficient. 

Inefficiency is a problem that cannot simply be cast aside. Computationally, it 
renders the use of linguistic theories impractical, and, empirically, it clashes with the 
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observation that humans make use of their knowledge of language very effectively. 
In this paper, I investigate the computational problem related to the tension between 
building linguistically based parsers and building efficient ones, which, I argue, derives 
from the particular forms linguistic theories have taken recently. In particular, I explore 
the issue of what is a good parsing technique to apply to principle-based theories of 
grammar. I take Government-Binding (GB) theory (Chomsky 1986a,b; Rizzi 1990) to 
be a suitable illustration of such theories, and also to show in all clarity the problems 
that might arise. I differ from other investigations on the import of principle-based 
parsing in not drawing on cognitive issues or psycholinguistic results to justify my 
assumptions. Indeed, part of the spirit of this work is to explore how far one can go in 
advocating principle-based parsing, in the absence of motivations given by cognitive 
modelling. 

1.1 The Problem 
When generative grammatical theory in the '70s talked about "dative shift," "topi- 
calization," "passive," it meant that each of these constructions was captured in the 
grammar by a specific rule. Consequently, rules were not only construction-specific, 
but also language-specific (French, Italian and Spanish, for instance, have no "dative 
shift"). The conceptual development of the '80s, in many frameworks, consists in hav- 
ing identified the unifying principles of many of these construction-specific rules. For 
example, according to GB theory, the same set of principles are at work in the "raising" 
construction, (la) and in passive, (lb). The principles are X theory, the Theta Criterion, 
and the Case Filter. In both cases, the relation between the underlying position and 
the surface string is expressed by chains. Chains consist of the word that undergoes 
movement and all the positions this word occupies in the course of a derivation. In 
(1) the chains are (John, t) and (The children, t). 

(1) a. John seems [ip t to like Bill ] 

b. The children are loved t by John. 

The advantage of this treatment is that common properties of language, here certain 
classes of verbs, are expressed by common principles. 

This search for generality is not unique to GB theory. Feature-structure formalisms 
also use rule schemata to capture similarities among grammar rules. Moreover, reen- 
trancy as a notational device to express common features seeks the same type of 
representational economy that is expressed by the use of "traces" in GB theory. 

It is desirable for a syntactic analyser to make use of linguistic theories to obtain, 
at least in principle, the same empirical coverage as the theory, and to capture the 
same generalizations. Moreover, a parser that makes direct use of a linguistic theory is 
more explanatory. A guiding belief for the development of the generative framework 
is that a theory that can derive its descriptions from the interaction of a small set of 
general principles is more explanatory than a theory in which descriptive adequacy is 
obtained by the interaction of a greater number of more particular, specific principles 
(Chomsky 1965). This is because the former theory is smaller. Thus, each principle can 
generate a set the encoding of which would require a much larger number of bits than 
the bits needed to encode the principle itself. The classic example is the use of natural 
classes of distinctive features in phonology, in order to compact several rules into one. 
A modular theory that encodes universal principles has obtained a greater degree of 

• succinctness than a nonmodular theory, and is considered more explanatory. Since it 
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is desirable for the parser to maintain the level of explanatory power of the theory, it 
must maintain its modularity. 

It has also been argued (Berwick 1991) that the current shift from rules to a modu- 
lar system of principles has computational advantages. Principle-based grammars en- 
gender compactness: Given a set of principles, P1, P 2 , . . . ,  Pn, the principles are stored 
separately and their interaction is computed on-line; the multiplicative interaction of 
the principles, P1 x P2 x ... × Pn does not need to be stored. Hence, the size of the 
grammar is the sum of the sizes of its components: IGI = P~ + P2 + "'" 4- Pn. Con- 
sequently, a parser based on such a grammar is compact, and, theoretically, easier 
to debug, maintain and update. 1 In practice, however, designing and implementing 
faithful and efficient parsers is not a simple matter. 

Defining "faithfulness" to a linguistic theory is not a trivial task, as a direct relation 
between the grammar and the parser is not the only option (see Bresnan 1978; Berwick 
and Weinberg 1984; van de Koot 1990, and references therein). In general, it is not 
necessary for a parser to implement the principles of the grammar directly. Rather, a 
covering grammar could be used, more suited to the purpose of parsing. However, it 
is important that such covering be done in such a way that accidental properties of 
a particular grammar, which would not hold under counterfactual changes, are not 
used. Otherwise, the covering grammar would not be sufficiently general. 

A faithful implementation is particularly difficult in the GB framework, as GB 
principles are informally expressed as English statements, and can take a variety of 
forms. For example, X theory (a condition on graphs), the Case Filter (an output filter 
on strings), and the 0 criterion (a bijection relation on predicates and arguments) all 
fall under the label of principles. Attempts have been made to formalize GB principles 
to a set of axioms (Stabler 1992). 

One possible, extreme interpretation of the direct use of principles is an approach 
where no grammar compilation is allowed (Abney 1989; Frank 1992; Crocker 1992). 2 
This approach is appealing because it reflects, intuitively, the idea of using the grammar 
as a set of axioms and reduces parsing to a deduction process. This is very much in 
the spirit of the current shift in linguistic theories from construction-dependent rules 
to general principles, and it separates quite clearly the grammar from the parsing 
algorithm. 

However, it is not obvious that this approach is efficient. Partial evaluation and 
variable substitution can increase performance, but, as usual, a space/time trade-off 
will ensue. Excess of partial evaluation off-line increases the size of the grammar, 
which might, in turn, slow down the parse. Experimentation with different kinds 
of algorithms suggests that some amount of compilation of the principles might be 
necessary to alleviate the problem of inefficiency, but that too much compilation slows 
down the parser again. 

1 Berwick (1982, 403ff.) shows that the size of a cascade of distinct principles (viewed as machines) is the 
size of its subparts, while if these same principles are collapsed, the size of the entire system grows 
mulfiplicatively. Modularity corresponds to maximal succinctness when all independent principles are 
stated separately. Independent principles are, intuitively, principles that can be computed 
independently of each other, and therefore whose interactions are all possible. Barton et al. (1987) and 
Berwick (1990) attempt to formalize the concept of independence as separability, assuming that the 
topology of a principle-based theory like GB can be mapped onto a planar graph. In fact, if 
independent modules are separable modules, there is little reason to think that GB is modular, as it 
corresponds to a highly connected graph. 

2 By compilation, here and below, I mean off-line computation of some general property of the grammar, 
for example the off-line computation of the interaction of principles, using partial evaluation or 
variable substitution. 
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1.2 On-line Computation is Inefficient 
Several researchers note that principle-based parsers allowing no grammar precom- 
pilation are inefficient. Firstly, Johnson (1989), Stabler (1990), and van de Koot (1991) 
note that the computation of a multi-level theory without any precompilation might 
not even terminate. Secondly, experimental results show that an entirely deductive 
approach is inefficient. Kashket (1991) discusses a principle-based parser, where no 
grammar precompilation is performed, and which parses English and Warlpiri us- 
ing a parameterized theory of grammar. The parsing algorithm is a generate-and-test, 
backtracking regime. Kashket (1991) reports, for instance, that a 5-word sentence in 
Warlpiri (which can have 5! analyses, given the free word order of the language) can 
take up to 40 minutes to parse. He concludes that, although no mathematical analysis 
for the algorithm is available, the complexity appears to increase exponentially with 
the input size. 

Fong (1991, 123) discusses a parsing algorithm. He shows that an initial version of 
the parser, where the phrase structure rules were expressed as a DCG and interpreted 
on-line, spent 80% of the total parsing time building structure. In a later version, 
where rules were compiled into an LR(1) table, structure-building constituted 20% of 
the total parsing time. This same parser includes a module for the computation of 
long distance dependencies, which works by generate-and-test. Fong finds that this 
parsing approach is also inefficient. 

Dorr (1987) notices similar effects in a parser that uses an algorithm more parallel 
in spirit (Earley 1970). Dorr notes that a limited amount of precompilation of the prin- 
ciples speeds up the parse, otherwise too many incorrect alternatives are carried along 
before being eliminated. For example, in her design, X theory and the other principles 
are coroutined. She finds that precompiling the principles that license empty categories 
with the phrase structure rules reduces considerably the number of structures that are 
submitted to the filtering action of the other principles, and thus speeds up the parse. 

In all these cases, the source of inefficiency stems from the principle-based design. 
Because each principle is formulated to be as general as possible, the "logical" abstrac- 
tion of each principle from the others causes a lot of overgeneration of structure and, 
consequently, a very large search space. 

1.3 Too Much Precompilation is Inefficient 
Simple precompilation is not a solution to the inefficiency of principle-based parsing, 
however. Experimentation with different amounts of precompilation shows that off- 
line precompilation speeds up parsing only up to a certain point, and that too much 
precompilation slows down the parser again. 

The logic of why this happens is clear. The complexity of a parsing algorithm is 
a composite function of the length of the input and the size of the grammar. For the 
kind of input lengths that are relevant for natural language, the size of the grammar 
easily becomes the predominant factor. If principles are precompiled in the form of 
grammar rules, the size of the grammar increases. 

As Tomita (1986) points out, input length does not cause a noticeable increase in 
running time up to 35 to 40 input tokens. For sentences of this length, grammar size be- 
comes a relevant factor for grammars that contain more than approximately 220 rules, 
in his algorithm (an LR parser with parallel stacks). Both Dorr (1987) and Tomita (1986) 
show experimental results confirming that there is a critical point beyond which the 
parser is slowed down by the increasing size of the grammar. In the Generalized Phrase 
Structure Grammar (GPSG) formalism (Gazdar et al. 1985), similar experiments have 
been performed, which confirm this result. Parsers for GPSG are particularly interest- 
ing, because they use a formalism that expresses many grammatical generalizations in 

518 



Paola Merlo Modu la r i t y  and  In format ion  Con ten t  Classes  

a uniform format. Therefore, GPSG is, in principle, more amenable to being processed 
by known parsing techniques. Thompson (1982) finds that expanding metarules, rather 
than computing them on-line, is advantageous, but that instantiating the variables in 
the expanded rules is not. Phillips and Thompson (1985) also remark that compiling 
out a grammar of twenty-nine phrase-structure rules and four metarules is equivalent 
to "several tens of millions of context-free rules." Phillips (1992) proposes a modifica- 
tion to GPSG that makes it easier to parse, by using propagation rules, but still notes 
that variables should not be expanded. 

In conclusion, the lesson from experimentation is that parsing done totally on-line 
is inefficient, but that compilation is not always a solution. A parser that uses linguistic 
principles directly must fulfill apparently contradictory demands: for the parser to be 
linguistically valid it must use the grammar directly, while a limited amount of off-line 
precompilation might make the parser more efficient. 3 In the next section, I propose 
and discuss a solution to this problem that builds on other approaches and relates the 
parser to the grammar in a principled way. 

2. The Proposal 

Two avenues have generally been pursued to build efficient GB parsers. In one case, a 
"covering grammar" is compiled, which overgenerates and is then filtered by con- 
straints. The compilation is done in such a way that the overgeneration is well- 
behaved. For instance, the correct distribution of empty categories is calculated off-line 
(Dorr 1993). In the other case, all the principles are applied on line, but they apply 
only to a portion of the tree, and are therefore restricted to a local computation (Frank 
1992). 4 My proposal combines these two approaches: it adopts the idea of compiling 
the grammar, at least partially, off-line but it attempts to find a principled way of 
doing so. In this, I differ from Dorr, where the amount of compilation is heuristic 
and based on practical experimentation. The approach shares Frank's intuition that 
linguistic principles have a form, which can be exploited in structuring the parser. 

This proposal is based on two observations. First, each principle of linguistic theory 
has a canonical form, and second, primitives of linguistic theories can be partitioned 
into classes, based on their content. 

As an illustration of the first observation, we can look at the principle that regulates 
the distribution of the empty categories in the phrase marker, the Empty Category 
Principle (ECP), as stated below (adapted from Rizzi 1990, 25). 

(2) 

. 

The Empty Category Principle 

An empty category x is licensed if the 3 following conditions are 
satisfied: 

x is in the domain of a head H 

3 For CF parsers, just how much compilation speeds up the parser is defined precisely by the analysis of 
the algorithm. No such precise analysis is available for principle-based algorithms. 

4 Frank (1992) presents a parsing model that is claimed not to allow any compilation of the linguistic 
theory, and to operate in linear time. Two objections can be raised to these claims: first, the use of TAG 
elementary trees to restrict the working space of the parser amounts to a precompilation of 
phrase-structure and locality constraints, so that locality is not computed in the course of the parse, but 
basically done as template matching. Second, in the measure of complexity, Frank does not count the 
cost of choosing which elementary tree to unadjoin or unsubstitute, or the cost of backtracking if the 
wrong decision is made. There are indeed cases where, in order to perform the correct operation, more 
than one elementary tree must be spanned. It is not clear that linear time complexity can actually be 
claimed if all factors are taken into account. For a more detailed discussion, see Merlo 1992, to appear. 
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. 

3. 
the category of H E {A, Agr, N, P, T, V} 
there is no barrier or head H r that intervenes between H and x 

It can be observed that this principle has an internal structure and can be decom- 
posed into separate pieces of information: (2.1) imposes a condition on configurations, 
namely, a condition on the shape of the tree; (2.2) imposes a condition on the labelling 
of the nodes in the tree; and (2.3) imposes a locality condition, as it defines the subtree 
available for the computation of the principle. These three conditions are independent. 
For instance, the configuration does not depend on the categorial labelling of the head 
node. The precompilation of these conditions would require computing all the possible 
combinations, without any reduction of the space of analysis. 

The second observation is based on a detailed inspection of the form of the prin- 
ciples of the grammar. What is presented in (2) as an illustrative example is, in fact, a 
consistent form of organization of the principles. If one looks at several of the princi- 
ples of the grammar that are involved in building structure and annotating the phrase 
marker, one finds the same internal organization. 

Theta-assignment occurs in the configuration of sisterhood, it requires a 0-assigning 
head, and it must occur between a node and its most local assigner. Assignment of 
Case occurs in a given configuration (according to Chomsky (1988, 1992) it is always 
a specifier-head configuration), given a certain lexical property of the head ([-N]), and 
locally, within the same maximal projection). The same restriction occurs again for 
what is called the wh-criterion (Rizzi 1991), which regulates wh-movement, where the 
head must have a +wh feature and occur within a specifier-head configuration. Cat- 
egorial selection and functional selection also occur under the same restrictions, in 
the complement configuration (i.e., between a head and a maximal projection). The 
licensing of subjects in the phrase marker, done by predication, must occur in the 
specifier-head configuration. The licensing of the empty category pro also requires the 
inflectional head of the sentence to bear the feature Strong Agr, and it occurs in the 
specifier-head configuration. The assignment of the feature [+ barrier] depends on 
L-marking, which in turn requires that the head is lexical, and that marking occurs in 
the complement configuration. 

Thus, each different "factor" that composes a principle can be considered a sepa- 
rate primitive, and such primitives can be grouped into classes defined according to 
their content. Linguistic information can be classified into five different classes: 

(3) a. Configurations: sisterhood, c-command, m-command, + maximal 

b. Lexical features: i N ,  +V, +Funct, +c-selected 

c. Syntactic features: +Case, +0, +% +barrier, +Strong Agr 

d. Locality information: minimality, antecedent government 

e. Referential information: q-anaphor, q-pronominal, indices 

This qualitative classification forms a partitioning into natural classes based on 
information content. I call these IC ClassesP 

5 Differently from Crocker (1992, to appear) and Frazier (1985), this partitioning does not rely on the 
particular representation used. The spirit of the hypothesis is that linguistic theory is formed by 
heterogeneous types of information, and that the representation used to describe them is a derived 
concept. Frazier (1990) proposes an evolutionary partitioning of the parser based on tasks. This 
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It can then be hypothesized that the amount  of compilation (or, conversely, the 
modular i ty  of the parser) is captured by the notion of IC classes as follows: 

IC Modularity Hypothesis (ICMH) 
Precompilation within IC Classes improves efficiency. 
Precompilation across IC Classes does not. 

In other words, a parser that takes advantage of the structure of linguistic principles 
will maintain a modular  design based on the five classes in (3). 

Al though the ICMH is not so stringent as to make predictions that converge on 
a single parsing architecture, it does provide some predictive power  about the orga- 
nization of the parser. First, structural information is encoded separately from lexical 
information. Standard context-free rules, specified with category, such as VP --*V NP, 
are not compatible with the ICMH, nor are proposals in the spirit of licensing gram- 
mars (Abney 1989, Frank 1992), where information is encoded in each lexical item. 
Second, the ICMH predicts that long-distance dependencies,  represented as chains, 
are computed  in steps. Empty  categories are licensed in two computat ional  steps: 
structural licensing by an appropriate head, and feature instantiation. With respect to 
feature instantiation in particular, it is predicted that precompiling syntactic features 
speeds up the parsing process. This is different from functional approaches such as 
Fong (1991), and Fong and Berwick (1992), in which there is no precompilation. 6 

These predictions seem to be supported (and, consequently, so is the ICMH) by 
two main results, which are illustrated below: 

. 
m 

separating X from lexical information yields more compact  data 
structures; I propose a parser that uses two compiled tables: one that 
encodes structural information, and the other that encodes lexical 
information. 

. using syntactic features to compute  empty  categories reduces the search 
space, complex chains can be computed  efficiently. 

These claims are supported in the next section, where I discuss the properties of an 
implemented parser, which computes  simple, complex, and multiple chain formation, 
as exemplified in Figure 1. This subset of constructions has been chosen because it con- 
stitutes the crucial test set for principle-based parsers: it involves complex interactions 
of principles over large portions of the tree. 7 

perspective is not in opposition to the current proposal, as the specialization of the parser in different 
tasks is likely to be an adaptive reaction to the different types of inputs. 

At first sight it might appear that the notion of types proposed by Fong (1991) is similar to IC 
classes. In fact, the similarity is superficial. Clearly, both notions constitute an attempt to partition the 
set of principles into smaller subsets. However, Fong's types are a mechanism to interleave constraints 
and phrase structure rules automatically. They are a method to schedule the on-line computation of 
principles that are the direct translation of the theory, and not a way of defining the design of the 
parser. In Fong's view, all computations are done on-line and the parser reflects the theory as directly 
as possible. 

6 It is difficult to separate precisely "lexical" from "syntactic" features. One can consider "syntactic" 
those features that are used to determine the well-formedness of syntactic trees. In the spirit of more 
recent developments in syntactic theory, I consider syntactic those features that are involved in some 
particular incarnation of the "Generalized Licensing Condition" (Sportiche 1992.) These include 0-roles, 
case, (possibly all ~6 features), and, following Rizzi (1991), Haegemann and Zanuttini (1991), and 
Laenzlinger (1993), also wh, neg, adverb. 

7 Many other proposals either do not deal with all types of chains (Frank 1992; Johnson 1989, for 
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TYPE EXAMPLE 

1 Simple Transitive 
2 Simple Intransitive 
3 Simple Passive 
4 Simple Raising 
5 Embedded Transitive 
6 Embedded Intransitive 
7 Embedded Raising 
8 Simple Question 
9 Embedded Question 

10 Embedded Question and Raising 
11 Embedded Wh-Question 

john loves mary 
john runs 
mary was loved 
mary seems to like john 
john thinks that mary loves bill 
john thinks that mary runs 
mary thinks that john seems to like bill 
who does john love ? 
who do you think that john likes ? 
who did you think that john seemed to like ? 
* who did you wonder why mary liked ? 

Figure 1 
Types of Sentences. 

In  the rest of  the paper ,  I first d iscuss  the a d v a n t a g e s  of  s to r ing  X in fo rma t ion  
separa te ly  f rom lexical i n fo rma t ion  (section 3). I then  tu rn  to the c o m p u t a t i o n  of  long-  
d is tance  dependenc ies .  I i l lustrate t wo  a lgor i thms  to c o m p u t e  chains:  I s h o w  that  a 
par t icu lar  use  of  syntact ic  feature  in fo rma t ion  speeds  u p  the parse,  and  I d iscuss  the 
plausibi l i ty  of  us ing  a lgo r i thms  that  require  strict lef t- to-r ight  anno t a t i on  of  the n o d e s  
(section 4). In fact, the a lgo r i thm I p r o p o s e  a ppea r s  to be  in teres t ingly  corre la ted  to a 
gap  in the t y p o l o g y  of  na tu ra l  languages .  

3. The Computation of Phrase Structure 

In o rde r  to explore  the va l id i ty  of  the p r o p o s e d  hypo thes i s  abou t  the m o d u l a r i t y  of  
the parser,  an  ana lyze r  for Engl ish  wa s  deve loped .  Each of  the da ta  s t ructures  is the 
direct  i m p l e m e n t a t i o n  of  l inguistic objects wi th  different  i n fo rma t ion  contents .  The 
inpu t  to the a lgo r i thm is an  u n a n n o t a t e d  sentence.  The  o u t p u t  consists  of  a tree and  a 
list of  two  chains: the list of  A chains  a nd  the list of  A chains,  that  is, chains  f o r m e d  
b y  w h - m o v e m e n t  a nd  N P  m o v e m e n t ,  respectively.  The m a i n  pa r s ing  a lgo r i thm is a 
mod i f i ed  LR pars ing  a lgo r i thm a u g m e n t e d  b y  mul t i -ac t ion  entr ies  and  cons t ra in ts  on  
reduct ion.  8 

The  s t ruc tu re -bu i ld ing  c o m p o n e n t  of  the parse r  is d r iven  by  an  LR(k) parse r  
(Knuth  1965) w h i c h  consul ts  two  tables. One  table encodes  X in fo rma t ion  ( fo l lowing 
Kornai  and  P u l l u m  1990). The  o ther  table encodes  lexical in format ion .  Lexical infor- 
m a t i o n  is consu l t ed  on ly  if it is n e e d e d  to d i s amb igua t e  a state con ta in ing  mul t ip le  
act ions  in the LR parser.  A n  o v e r v i e w  of  this des ign  is s h o w n  in Figure  2. 

instance) or they require extensive backtracking (Fong 1991; Fong and Berwick 1992). In formalism 
other than GB theory, gaps are encoded directly into the rules. Both GPSG and HPSG use slash features 
to percolate features to gaps. The use of slash features probably simplifies the computation. There has 
been a debate on the explanatory adequacy of grammars that employ slash features (see van de Koot 
1990, and Stabler 1994). For my purposes, note that, if anything, I am dealing with the worst case for 
the parser. 

8 The ICMH is not sufficient to predict a specific parsing architecture, but rather it loosely dictates the 
organization of the parser. The choice of an LR parser then is the result of the ICMH (with which the 
parser's organization must be compatible) and additional independent factors. First, LR parsers have 
the valid prefix property, namely they recognize that a string is not in the language as soon as possible 
(other parsing methods have this property as well, for instance Schabes 1991). A parser with this 
property is incremental, in the sense that it does not perform unnecessary work, and it fails as soon as 
an error occurs. Second, the stack of an LR parser encodes the notion of c-command implicitly. This is 
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Input [ 
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Stack 

LR Parsing 
Program 
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\ I, 

I' LR Table 
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Figure  2 
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Organization of the Parser: The data structures (tables, stack and chains) are represented as 
rectangles. Operations on feature annotation are performed by constraints, represented as 
ovals. 

Figure  3 
Category-Neutral Grammar. 

X" --* Y" X' specification 
X" --* X' Y" 
X' --* X Y" complementation 
X' ~ Y" X 
X' --* Y" X' modification 
X' --* X' Y" 
X' ~ X unary head 
X" ~ X' unary Xmax 
X ~ empty empty heads 
X" --~ empty empty Xmaxn 

The context-free grammar  compiled in the LR table is shown in Fi__gure 3. The 
crucial feature of this g rammar  is that nonterminals  specify only the X projection 
level, and not the category. Because the LR table is underspecified with respect to the 
categorial labels of the input, many  instances of LR conflicts arise, which can be teased 
apart by looking at the co-occurrence restrictions on categories. This information would  
be stored in the rules themselves in ordinary context-free rules. However ,  ordinary 
context-free rules do not encode many  other types of lexical information also used in 
parsing. Thus, they lose generality, wi thout  exploiting all the available information. 
As an illustration, consider the following set of context-free rules. 

crucial for fast computation of chains. Third, LR parsers are fast. 
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(4) 1. C' -+ Co IP 
2. I' --* I0 VP 
3. V' ~ V0 NP 
4. V' ~ V0 e 
5. V ~ ~ V0 

m 

Rules 1-4 have the same X structure, but they differ in the labels of the nodes. In 
rules I and 2 the heads, Co and I0 respectively, are followed by IP and VP obligatorily. 
Rules 4 and 5 cover the same string. Clearly, by writing 1-4 as different rules, the fact 
that they are instances of the same structure is not captured. Similarly, the obligatori- 
ness of IP and VP as complements of Co and I0 is lost. Finally, the choice of rule 4 or 
rule 5 depends on the actual verb in the string. If the verb is intransitive, rule 4 cannot 
apply. 

In the parser, structural information is separate from information about co-occur- 
rence (rules 1-4), functional selection (rules 1, 2) and subcategorization (rules 4, 5). 
This information is stored in a table, called a co-occurrence table. The table stores 
information about obligatory complementation, such as the fact that I0 must be fol- 
lowed by a VP. It also stores compatible continuations based on subcategorization. 
For instance, consider the case in which the current token is an intransitive verb. The 
LR table contains two actions that match the input: one action generates a projection 
of the input node (V'), without branching, while the other action creates an empty 
object NP. By consulting the subcategorization information, the parser can eliminate 
the second option as incorrect. 

Using an LR table together with a co-occurrence table is equivalent in coverage to a 
fully instantiated LR table, but it is more advantageous in other respects. Conceptually, 
the latter organization encodes X theory directly, and it maintains a general design, 
which makes it applicable to several languages. Practically, there is reason to think 
that it is more efficient. 

3.1 Testing the ICMH for phrase structure 
The prediction made by the ICMH is that compiling together X theory and categorial 
information will increase the size of the grammar without reducing the nondetermin- 
ism contained in the grammar, because category/subcategory information belongs to 
a different IC Class than structural (i.e., X) information. 

Method and Materials. The size of the grammar is measured as the number of rules or 
number of states in the LR table. The amount of nondeterminism is measured as the 
average number of conflicts (the ratio between the number of actions and the number 
of entries in a table.) 9 

Three grammars were constructed, constituting (pairwise) as close an approxima- 
tion as possible to minimal pairs (with respect to IC Classes). They are shown in the 
Appendix. Grammar 1 differs minimally from Grammar 2, because each head is in- 
stantiated by category. The symbol YP stands for any maximal projection admitted 
by linguistic theory. Grammar 3 differs minimally from Grammar 2, because it also 

9 The average number  of conflicts in the table gives a rough measure of the amount  of nondeterminism 
the parser has to face at each step. However, it is only an approximate measure for at least two 
reasons: taking the mean of the conflicts abstracts away from the size of the grammar, which might be 
a factor, as the search in the table becomes more burdensome for larger tables (but, if anything, it plays 
against small grammars/tables);  moreover, it does not take into account the fact that some states might 
be visited more often than others. 
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Table 1 
Comparison of the 3 grammars (compiled into LR tables) 

NB OF NB OF NB OF AVERAGE 
ENTRIES ACTIONS RULES COI~FLICTS 

GRAMMAR 1 63 123 16 1.95 
GRAMMAR 2 793 1319 51 1.78 
GRAMMAR 3 251 962 41 3.83 

Table 2 
Number of actions in the 3 LR tables 

NUMBER OF ACTIONS 
ENTRIES 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

GRAMMAR 1 38 6 8 8 1 2 
GRAMMAR 2 465 68 168 6 42 
GRAMMAR 3 144 43 3 8 5 4 30 14 

includes some subcategorization information (such as transitive, intransitive, raising), 
and some co-occurrence restrictions and functional selection. Moreover,  empty  cate- 
gories are "moved  up," so that they are encountered as high in the tree as possible. 
These three grammars  are then compiled by the same program (BISON) into three 
(LA)LR tables. The results are shown in Table 1, which compares  some of the indices 
of the nondeterminism in a given grammar  to its size, and Table 2, which shows the 
distribution of actions in each of the grammars.  

Discussion. Consider Grammar  I and Grammar  2 in Table 1. Grammar  2 has a slightly 
smaller average of conflicts, while it has three times the number  of rules and twelve 
times the number  of entries, compared  to Grammar  1. The fact that Grammar  2 is 
larger than Grammar  1, with only a slightly smaller average of conflicts, confirms the 
prediction made  by  the ICMH that compiling X theory with categorical information 
will increase the size of the grammar  wi thout  decreasing nondeterminism.  Since the 
number  of rules is expanded,  but  no "filtering" constraint is incorporated in Grammar  
2 with respect to Grammar  1, this result might  not  seem surprising. 

However ,  the ICMH is also confirmed by  the other pairwise comparisons and by 
the global results. Grammar  3 has a higher number  of average conflicts than Grammar  
2, but  it is smaller, both by  rules and LR entries, so it is more  compact.  Notice that 
adding information (subcategory, selection, etc.) has a filtering effect, and the resulting 
grammar  is smaller. However ,  adding information does not reduce nondeterminism.  
Compared  to Grammar  1, Grammar  3 does not show any improvement  on either 
dimension: Grammar  3 is both larger (four times as many  LR entries) and more  non- 
deterministic than Grammar  1. Globally, one can observe that an increase in g rammar  
size, either as a number  of rules or number  of LR entries, does not  correspond to a 
parallel decrease in nondeterminism.  

As Table 2 shows, the distribution of the conflicts in Grammar  3 presents some 
gaps. This occurs because certain groups of actions go together. Two main patterns of 
conflict are observed: In those states that have the highest number  of conflicts, all rules 
that cover the empty  string can apply; in those states that have an intermediate number  
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Table 3 
Comparison of the 3 grammars (compiled into LL tables) 

NB OF NB OF NB OF AVERAGE 
ENTRIES ACTIONS RULES CONFLICTS 

GRAMMAR 1 19 62 16 3.26 
GRAMMAR 1' 19 46 13 2.42 
GRAMMAR 2 112 255 51 2.28 
GRAMMAR 3 144 368 41 2.62 

of conflicts, only some rules can apply, namely, those that have a certain X projection 
level, and that cover the empty string (e.g., all XP's, independent of category, that 
cover the empty string). This observation confirms that categorial information does 
not reduce nondeterminism. On the contrary, adding categorical information multi- 
plies nondeterminism by adding structural configurations. Even introducing "filter- 
ing" lexical information (co-occurrence restrictions and functional complementation) 
does not appear to help. In fact, ambiguities caused by empty categories occur accord- 
ing to structural partitions. The qualitative observation supports the numerical results: 
Introducing categorial information is not advantageous, because it increases the size 
of the grammar without decreasing significantly the average number of conflicts. 

3.2 Extending the test to other compilation techniques 
The effects discussed above could be an artifact of the compilation technique. In order 
to check that this is not the case, the same three grammars (reported in the appendix) 
were compiled into LL and Left Corner (LC) tables. 

LL compilation: Discussion. The LL compilation method yields results similar to those 
of the LR compilation, although less clear cut. This confirms the intuition that the 
results reflect some structural property of the grammar, and are not an artifact of the 
LR compilation. 

The results of the compilation of the same grammars into LL tables are shown in 
Table 3. Grammar 1' is a modified version of Grammar 1, without adjunction rules. 
These figures show that there is no relation between the increased specialization of 
the grammar and the decrease of nondeterminism. Note that the LL compilation does 
not maintain the paired rankings of actions and rules. So, for the LL table, the co- 
occurrence of lexical categories does not play a filtering role. 

Globally, there appears to be an inverse relation between the size of the grammar, 
measured by the number of rules, and the average number of conflicts: the larger 
the grammar the smaller the number of conflicts. This might make one think that 
there is some sort of relation between grammar size and nondeterminism after all. 
However, this is not true if we use the number of entries as the relevant measure of 
size. Moreover, if one looks at Grammar 1', which is smaller than Grammar 1, one can 
see that the average number of conflicts decreases quite a bit. This confirms a weaker 
hypothesis, which is nonetheless related to the initial one, namely that nondeterminism 
does not vary in an inverse function to "content of information." 

Some qualitative observations might help clarify the sources of ambiguity in the 
tables. In all three grammars, the same ambiguities are repeated, for each terminal 
item. In other words, all columns of the LL table are identical (with the exception 
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Table 4 
Comparison of the 3 grammars (compiled into LC tables) 

NB OF NB OF NB OF AVERAGE 
ENTRIES ACTIONS RULES CONFLICTS 

GRAMMAR 1 49 136 16 2.77 
GRAMMAR 2 1456 4030 51 2.76 
GRAMMAR 3 398 610 41 1.53 

Table 5 
Number of actions in the 3 compiled LC tables 

NUMBER OF ACTIONS 
ENTRIES 1 2 3 4 5 6 7 18 19 

GRAMMAR I 4 18 15 9 3 
GRAMMAR 2 602 702 48 96 8 
GRAMMAR 3 282 92 4 4 4 12 

of cell [X0, wp] in G r a m m a r  1.) This suggests  that lexical tokens do not  p rov ide  any  
selective information.  Moreover,  as we  saw in th.e LR tables, projections to the same 
level have  the same pat tern  of conflicts. (In G r a m m a r  2, the n u m b e r  of conflicts is 
mult ipl ied by  the n u m b e r  of categories.) 1° 

LC-compilation: Discussion. The same three g r a m m a r s  were  compi led  in left corner (LC) 
tables. The result  of the compilat ion are shown  in Table 4, and  the distr ibution of the 
conflicts is shown  in Table 5. As can be seen f rom Table 4, G r a m m a r  2 is three t imes 
larger than G r a m m a r  1 and is compi led  in a table that has twenty-nine  t imes as m a n y  
entries, but  the average  n u m b e r  of conflicts is not significantly smaller. 

The interpretat ion of the LC table der ived f rom G r a m m a r  3 poses a p rob lem for 
the ICMH. G r a m m a r  3 is larger than G r a m m a r  1, as it contains category and  some 
co-occurrence information,  but  its average  of conflicts is smaller. In this case, it seems 
that adding  informat ion reduces nondeterminism.  On the other hand,  compared  to 
G r a m m a r  2, both  the table and  the average  n u m b e r  of conflicts are smaller. I take this to 
mean  that the ICMH is conf i rmed only by  a global assessment  of the relation be tween  
the content  of informat ion and the average  conflicts, but  not by  pairwise compar i sons  
of the g rammars .  Notice however ,  that the difference in the two pairwise compar i sons  
confirms that s imple  categorial informat ion does not  pe r fo rm a filtering action on the 
structure, while lexical co-occurrence does. This is precisely wha t  I p ropose  to compile  
in the lexical co-occurrence table. 

The qualitative inspection of the tables confirms the clustering of conflicts sug- 
gested by  Table 5. G r a m m a r  1 and  G r a m m a r  2 show the same pat terns  of conflicts as 
the LR and LL tables: conflicting actions cluster wi th  the bar  level of the category. So, 
for example,  in G r a m m a r  2, one finds that when  the left corner is a maximal  projection 

10 In all cases, this is caused by the X form of the grammar .  Namely,  the loci of recurs ion and  gapp ing  are 
at both s ides  of the head,  and  any th ing  can occur there. El iminat ing this proper ty  w o u l d  be incorrect, 
as it wou ld  a m o u n t  to e l iminat ing one of the  crucial principles of GB, name ly  move-c~, which  says  that  
any  max ima l  projection or head  can be gapped.  
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the action is unique, while when the corner is a bar level projection there are multiple 
actions and they are the same, independently of the input token. In Grammar 3, the 
same patterns of actions are repeated for each left corner, independently of the goal 
or of the input token. 

The qualitative inspection of the compiled tables is coherent across compilation 
methods and appears, in general, to support the ICMH, as the interaction of structural 
and lexical information is the cause of repeated patterns of conflicts. Quantitatively, the 
results, which are very suggestive in the LR compilation, are less clear in the other two 
methods. However, in no case do they clearly disconfirm the hypothesis. I conclude 
that categorial information should be factored out of the compiled table and separate 
data structures should be used. u 

4. The Computation of Chains 

As a result of using a category-neutral context-free backbone to parse, most of the 
feature annotation is performed by conditions on rule reduction associated with each 
context-free rule, which are shown in Figure 4. 

The most interesting issues arise in the treatment of tiller-gap dependencies, which 
are represented as chains. Informally, a chain is a syntactic object that defines an 
equivalence class of positions for the purpose of feature assignment and interpretation. 

(5) a. Maryi was loved ti 

b. Whoi did John love ti ? 

c. Maryi seemed t I to have been loved ti . 

d. Whoi did John think t I that Mary loved ti ? 

The sentence in (5a), for example, contains the chain (Maryi, ti), which encodes the fact 
that Mary is the object of love, represented by the empty category t. 

In this parser, empty categories are postulated by the LR parser, when building 
structure, and their licensing is immediately checked by the appropriate condition on 
rule reductions, shown in Figure 4. 

Many principles regulate the distribution of chains. For the purpose of the follow- 
ing discussion, it is only necessary to recall that a chain can only contain one thematic 
position and one position that receives case. Moreover, chains divide into two types: 

11 It should be noted that, although phrase-structure rules are reduced to the bare bones, they cannot be 
eliminated altogether. Parsers that project phrase structure and attachments entirely from the lexicon 
have been presented by Abney (1989) and Frank (1992), using licensing grammars (LS). They stiffer 
from serious shortcomings when faced with ambiguous input, as they do not have enough global 
knowledge of the possible structures in the language to recover from erroneous parses. Abney 
alleviates this problem by attaching LR states to the constructed nodes, thus losing much of the initial 
motivation of the licensing approach. Frank's parser is augmented by a parse stack to parse head-final 
languages. Frank does not discuss this issue in detail, but it seems that a "shift" operation must  be 
added to the operations of the parser. As there could always be a licensing head in the right context, 
which would license a left-branching structure, the "shift" operation is always correct. But then, the 
parser might reach the end of the input (or at least the end of the relevant elementary tree, i.e., the 
main predicate-argument structure) before realizing either that it pursued an incorrect analysis, in the 
case of ambiguous input, or that the input is ill-formed. Thus, this augmented parser could not 
recognize errors as soon as they are encountered. Finally, note that all the augmentation necessary to 
make the LS grammar work make it equivalent to a phrase-structure grammar, possibly with the 
disadvantage of being procedurally instead of declaratively encoded. On the other hand, a precompiled 
table which keeps track of all the alternative configurations guarantees that incorrect parses are 
detected as soon as possible, and, if alternative parses exist, they will be found. 

528 



Paola Merlo Modular i ty  and Information Content Classes 

CONSTRAINT FUNCTION 

0-criterion checks if all chains in the chain list have 
received a 0-role 

Case filter checks if all chains in the chain list have 
Case 

node labelling determines what  kind of chain link the cur- 
rent node is: head, intermediate, foot 

chain selection selects chain to unify with current node 

chain unification unifies node with selected chain 

head feature percolation consults cooccurrence table and 
determines cooccurrence restrictions 
among heads 

0-marked marks node with available 0-role 

case marked marks node with available Case 

c-select categorial selection 

is-a barrier checks if maximal projection is a barrier 

license empty  head checks features of closest lexical head 

licensing head finds a lexical head to license a maximal 
projection 

locality checks that the maximal projections be- 
tween antecedent and empty  category are 
not barriers 

Figure 4 
The Constraints. 

m 

wh-chains ,  a l so  ca l l ed  A-cha ins ,  a n d  N P - m o v e m e n t  cha ins ,  a l so  ca l led  A-cha ins ;  the  
e m p t y  ca t ego r i e s  tha t  occu r  in  these  cha ins  h a v e  d i f fe ren t  p r o p e r t i e s .  M o r e  t han  one  
cha in  can  occur  in  a sen tence .  M u l t i p l e  cha ins  o c c u r r i n g  in the  s a m e  sen tence  can  
e i the r  be  d i s jo in t  o r  in te r sec ted .  12 Dis jo in t  cha ins  a re  nes t ed ,  as  in (6a). If cha ins  in-  
tersect ,  t h e y  sha re  the  s a m e  i n d e x  a n d  t h e y  h a v e  exac t ly  one  e l e m e n t  in  c o m m o n ,  as  
in  (6b). 

(6) a. W h o i  d i d  Mary i  s e e m  tj to l ike  ti? 

b.  W h o i  d i d  y o u  t h i n k  ti s e e m e d  t i to l ike  M a r y ?  

4.1 The Algorithms 
W h e n  b u i l d i n g  cha ins ,  s eve r a l  p r o b l e m s  m u s t  be  so lved .  F i rs t  of  all,  the  p a r s e r  m u s t  
d e c i d e  w h e t h e r  to s ta r t  a n e w  cha in  o r  not.  It m u s t  a lso  d e c i d e  w h e t h e r  to s ta r t  a 
cha in  h e a d e d  b y  a n  e l e m e n t  in  a n  a r g u m e n t  p o s i t i o n  (A-cha in) ,  such  as  the  h e a d  of  a 
p a s s i v e  chain ,  or  a cha in  h e a d e d  b y  an  e l e m e n t  in a n o n - a r g u m e n t  p o s i t i o n  (A-cha in) ,  

12 Actually, chains can also compose. If chains compose they do not have intersecting elements, but they 
create a new link. This type of chain is exemplified in (i). We will only discuss chains of the types of (6). 

(i) Who i did you meet t i Oi without greeting ti? 
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such as the head of a wh-chain. Second, on positing an empty  element,  the parser must  
decide to which chain it belongs)  3 

The two decisions can be seen as instances of the same problem, which consists 
in identifying the type of link in the chain that a given input  node can form (whether  
head, intermediate or foot, abbreviated as H,I,F in what  follows.) One can describe this 
sequence of decisions as two problems that must  be solved in order  to form chains: the 
Node  Labelling Problem (NLAB), and the Chain Selection Problem (CSEL), formulated 
below. 

The Node Labelling Problem (NLAB). 

Given a node  N to be inserted in a chain, de termine its label L, where  
L ¢ {AH, AH, AI, AI, AF, AF}. 

This problem defines a relation R: N x L, where  N belongs to the set of nodes,  and 
L belongs to the set of labels for the elements of chains. The labels of possible chain 
links reflect the theoretical distinctions between A-movement  and A-movement ,  and 
the fact that links of a chain can be either the first e lement  of the chain, the head (H), 
or an intermediate e lement  (I) in the case of chains formed by  several links, or the last 
element,  the foot (F). 14 

Algorithm 1 
Input: Node,  Local Configurat ion 
Output:  List of Labels 

If Node  is not  empty  then 
If Node  is [+wh] then Label +-- AH 
else Label *-- AH 

else 
If Node  has 0-role then 

If Node  has Case then Label +-- AF 
else Label ~ AF 

else 
If Local Configuration = Spec of C then Label +-- AI 
else Label +-- AI 

There are six possible outputs  for this algorithm. The first case arises when  the 
node  N is a lexical wh-word, which starts a wh-chain. The second possibility is if the 
head is lexical, but  not a quest ion word.  In this case, an argument  chain (A-chain) 
is started, as in passives. The last four cases deal with empty  categories. The feature 

13 Strictly speaking, it must also provide a rescuing procedure. This can be done by checking whether all 
the chains satisfy the well-formedness.conditions. If not all the chains satisfy the well-formedness 
constraints, the parser can attempt to intersect or compose two or more chains in order to satisfy the 
well-formedness conditions. These two problems are not treated here. For an illustration, under the 
name of Chain Intersection Problem and Chain Composition Problem, see Merlo 1992. 

14 I present here a simplified version of the algorithm, to avoid technical linguistic details, which are not 
relevant for the following discussion. However, one should also output a label AOp, which designates 
the empty operator that binds, for instance, the empty variable in a parasitic gap construction and 
other cases of non-overt movement, such as relative clauses. In the man O P  ! saw an empty operator is 
postulated by analogy to the man whom/that  I saw. AOp is licensed by the same conditions that license 
an intermediate A trace. 
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annotat ion of the category is inspected: case distinguishes the foot of an A-chain from 
the foot of an A-chain, while intermediate traces are characterized by a lack of 0-role 
and by  their configurations (i.e., intermediate A empty  categories occur in A positions 
(spec of I), while intermediate A empty  categories occur in A positions (spec of C)). 

Once the potential  chain links have been labelled, a second algori thm looks for a 
chain that can "accept" a node with that label. 

The Chain Selection Problem (CSEL) 
Given a node N of label L, and an ordered list of chains C, re turn the chain Ci, possibly 
none, to which N has unified. 

Algorithm 2 
Input: Node,  Label(s), Ordered List of Chains 
Output:  Chain or empty  set 

m 

If Label E {AH, AH} then 
start new chain 

else 

else 

If Label E {AF, AF, AI} then 
choose (nearest) unsatura ted chain 

m 

If Label = AI then 
choose nearest unsaturated chain, 
unless it is the immediately preceding element in the stack. 

The list of chains given as input  is ordered by the structure-building algorithm: 
when  new chains are started, they are added at the end of the list. The first clause;of 
Algori thm 2 starts a new chain whenever  a lexical element  is seen. No other type of 
chain link can start a chain. The second clause selects a chain when  the foot is seen. By 
choosing the nearest chain (i.e., the last one in the list), only nested dependencies  are 
built. The third clause assigns AI in a condition that is more complex than the others, 
to deal with subject-oriented parasitic-gaps. 15 

In Figure 5, I show schematically how these algorithms build chains. A pseudo-  
Prolog notation is used, which is similar to the output  of the parser, where  chains are 
represented as lists enclosed in square brackets. I show the I / O  of each algorithm, 
given the sentence Who did you think that John seemed to like?, where  a multiple A-chain 
and an A-chain must  be recovered. NLAB takes an input  word  and outputs  a label, 
while CSEL takes a triple (Node, Label, Chains) as input,  and returns a new chain list. 

Note  that, in Algorithms I and 2, features such as Case and 0-role must  be available 
as input  for the correct labelling and chain assignment of the empty  category. This is 
a crucial feature of the algorithms for chain formation proposed here. 

In GB theory, empty  categories can be freely coindexed with an antecedent,  from 
which they inherit  their features. Features that are incompatible with a given context 
are automatically excluded, since the sentence will be ungrammatical  (Brody 1984). 
This theory is called functional determination of empty  categories. In GB parsing, there 
have been two approaches to the implementat ion of chains: one that mirrors directly 

15 This restriction handles sentences such as A man [ that I whenever I meet ] looks old.] This construction, 
although marginal, like all parasitic gaps, is accepted by many speakers. Parasitic gap constructions 
have many interesting properties that must be dealt with for the algorithms that treat chains to be fully 
general. 
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features such as case and thematic roles when building chains leads to an exponential 
growth of the space of hypotheses; second, I argue that using these features does not 
restrict the validity of the algorithm to specific constructions or languages. 

4.2 Restricting the Search Space 
As the previous section on phrase structure has shown, computing features is not 
always profitable, as some features reduce the search space while others do not. To 
see that checking features does indeed pay off, the cost of checking these features must 
be compared to the benefit of reducing the search space. 

This analysis mostly concerns the first algorithm, NLAB, which is constituted of 
a series of binary choices. More precisely, recall that the relevant information is: a) 
whether a node is lexical or not; b) whether it has a 0-role or not; c) whether it has 
Case or not; d) whether it is a sister of C (hence, in an A-position) or not (if not, it 
counts as an A-position). For the chain selection algorithm (CSEL) there are four main 
constraints: first, A-nodes can only be inserted in A-chains and A-nodes can only be 
inserted in A-chains. Second, empty nodes never start a new chain. Third, the closest 
head is always chosen as a potential chain to which to unify. Finally, only unsaturated 
chains are chosen. 

Consider what would result if NLAB did not check for all of these factors. If (b) 
were not checked, NLAB ~ would not distinguish between feet and intermediate traces, 
even in the same type of chain, thus it would output four sets of labels: AH, AH, {AF, 
AI}, {__AF, AI}. If (c) were not checked, NLAB" would not distinguish between A-feet 
and A-feet, thus it would output AH, AH, AI, AI, {AF, AF}. If (d) were not checked, 
NLAB'" would output AH, AH, {AI, AI}, AF, AF. If (b), (c) and (d) together were not 
checked, NLAB"" would output AH, AH, {AI, AI, AF, AF}. 

In accounting for the growth rate in the space of hypothesis of these modified 
algorithms, two factors must be taken into consideration. One factor is the number of 
active chain types, namely, whether a sentence presents only A-chains, only A-chains, 
or both. This factor encodes the second and third restriction of the CSEL algorithm, 
with the consequence that not all combinations are attempted. The second factor ac- 
counts for the growth rate proper, which is reducible to counting the set of k-strings 
over an n-sized alphabet, hence n k. Here, k is the number of relevant links in the sen- 
tence (for instance, feet in NLAB'), and n is given by the size of the set of features 
collapsed by lifting some of these checks, hence, 2, 2, 2 and 4, respectively. 

The hypothesis space in the three algorithms grows in slightly different ways. 
In NLAB ~, where there is no restriction on the number of active chains, the growth 
rate is n k. For NLAB" and NLAB m, the formula is NA k, where NA is the number of 
active chains. Practically, this amounts to 2 k at most, as the number of active chains 
is not more than 2, because of the restriction requiring that the nearest unsaturated 
chain be selected. For NLAB",  the restriction for active chains no longer holds. In 
this algorithm, no features are checked, so it is impossible to establish if a chain is 
saturated or not until structure building ends. Thus, the growth factor is a function 
of the number of heads seen up to a certain point in the parse, the number of empty 
categories, and their respective order in the input. Notice that the different size of the 
collapsed feature set, which is larger for NLAB" ,  is implicitly taken into account by 
k, as the number of relevant links varies with the size of the collapsed feature sets. For 
the same sentence, there are more relevant links if the collapsed feature set is larger. 

Now, in all cases, growth is exponential in the number of relevant links, while 
the possible gain obtained by not checking features can be at most logarithmic in the 
number of potential empty categories. Since the number of potential empty categories 
is at most 2f, for f binary features, this gain is expressed as f. Hence, suppressing 
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Table 6 
Growth of Hypothesis Space: S = sentence; TL = Total number of links; RL= Relevant Links; 
AC = Number of Active Chains; G = Growth rate 

S TL NLAB' NLAB" NLAB"' NLAB"" 

RL G RL AC G RL AC G RL G 

3 2 1 2 1 1 1 - - 1 1 1 
4 3 1 2 1 1 1 - - 1 1 1 
5 3 - - 0 1 1 - - 1 - - 
6 2 - - 0 1 1 - - 1 - - 
7 4 1 2 1 1 1 - - 1 1 2 
8 3 - - 1 2 2 - - 1 1 2 
9 5 - - 1 2 2 1 2 2 2 6 
10 6 1 2 2 2 4 1 2 2 3 18 

feature checks becomes beneficial only if kf > n k. N o w  notice that 2 _< n _< 2d. For 
n = 2 and f = 3, the inequality is satisfied for k < 4. This means that for algorithms 
NLAB" and NLAB "p, all sentences with more than three relevant links are computed  
faster if features are checked. For n = 4, i.e. algori thm N L A B " ,  the inequality is never 
satisfied. 17 

The results of some calculations are reported in Table 6. The numbers  in the "sen- 
tence" column refer to the type of construction, as exemplified in Figure 1 (sentence 
types 1 and 2 are not considered because they contain only trivial chains). If one con- 
siders a sentence such as Who did you say that John thought that Mary seemed to like?, with 
four gaps and four heads, there are 96 hypotheses about  chain formation to explore 
using N L A B " .  Clearly, checking features and using them for building chains, and 
keeping the hypothesis search space small, is beneficial in most  cases. 

Extensibility. These algorithms deal in detail with the somewhat  neglected problem 
of what  to do when more than one chain has to be constructed. They do not discuss 
specifically the issues of adjunction or r ightward movement .  However,  they could be 
extended. 

In the unextended algorithm, the postulation and structural licensing of empty  
categories is always performed by the same mechanism. According to the ECP (as 
formulated in Rizzi 1990, 25; Cinque 1990; Chomsky  1986b, among  others), for an 
empty  category to be licensed, two conditions must  be satisfied: the empty  category 
must  be within the maximal projection of a lexical head to be licensed structurally, 
and it must  be identified by an antecedent. The structural licenser and the antecedent 
need not be the same element. In fact, they hardly ever are. Whether  movemen t  is to 
the left or to the right does not affect structural licensing (which is here performed by 
the conditions that apply to the reduction of an ~-rule). 

Rightward movemen t  requires an extension of the algori thm to incorporate the 
empty  category in a chain. An  empty  category that is the foot of r ightward move-  
ment  must  be licensed structurally, before its antecedent is seen. When the NP that 
is the antecedent (head of chain) is found, it starts a new chain, according to CSEL. 
Therefore, an extension is needed to check if there are any empty  categories wait- 

17 Note that here I am assuming that checking a feature and checking a chain have the same 
computational cost, which is an approximation, as a chain cannot be checked with a single operation. 
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L-attributed rule into an S-attributed rule (Aho, Sethi and Ullman 1977, 282ff discuss 
the marker nonterminals technique). Such a transformation is possible if the attributes 
of the tokens on the left of the current token are at a fixed position in the stack. 

We can use this S-attribution transformation for Case assignment to the subject 
(nominative Case or structural case). In English, structural case is assigned to the 
subject position, if the subject is a sibling of (the projection of) a finite inflectional 
node. This position can occur both in main and embedded clauses. English is head- 
initial, and the Specifier precedes the head. These properties interact, so that when 
the subject NP is reduced, INFL is always the next token in the parsing configuration. 
Thus, rule (8) can be u s e d .  21 

(8) IP --+ NP {Case assign, if I +fin} I' 

This rule assigns case correctly only if the attribution is not a function of the 
subconstituents of I. This is precisely what distinguishes case assigned to the subject 
(structural case assignment) from other types of case assignments (e.g., case assigned 
to the object by either a verb or a preposition): it is assigned independently of the 
properties of the main verb. 

The S-attribution transformation is not restricted to languages with the properties 
of English; it can also be extended to head-final languages. In verb-final languages 
(German, for example) the subject of the sentence in embedded clauses is not string 
adjacent to the head of the sentence, as it is in English. However, structural case can 
be assigned from left to right, since the complementizer, which necessarily marks the 
left edge of an IP, is obligatory, and the finite complementizer is always different from 
the infinitival complementizer. 

S-attribution could not be performed, however, in parsing a language with all the 
characteristics given in (9). 

(9) a. no overt case marking 

b. no distinct finite complementizer 

c. verb final 

d. right branching in the projections other than the verb 

21 At first sight, this might appear as a wild overidealization. In fact, there are both theoretical and 
empirical reasons to think that this is the right way to idealize the data. A corpus analysis on 111 
occurrences of the verb a n n o u n c e  in the Penn Treebank shows that the subject is followed by an 
aspectual adverb 11 times, twice by incidental phrases, and 4 times by an apposition. In all other cases 
the subject and the verb are indeed adjacent. I do not consider appositions and incidentals as 
challenging for the general claim: incidentals are clearly outside of an X structure assigned to the 
sentence; while appositions are "internal" to the NP, thus when the verb is reached, the phrase sitting 
on the stack is indeed the NP subject, which can therefore receive Case. The treatment of aspectual 
adverbs is more complex. There are at least two possible tacks. First, one can notice that adverbs, 
although they are analysed as maximal projections because they can be modified, never take a 
complement, thus they are usually limited to a very short sequence of words, and they do not have a 
recursive structure. A minimum amount of lookahead, even limited to these particular instances of 
aspectual adverbs, would solve the problem. Clearly, this is an inelegant solution. A more principled 
treatment comes from recent developments in the theory, that have changed somewhat the 
representation used for adverbs. Laenzlinger (1993) suggests that all maximal projections have two 
specifiers, one A and one A, the higher of the two is the A-position, which can be occupied by adverbs, 
if they are licensed by the appropriate head (the Adv-Criterion). For these adverbs, the appropriate 
head is Asp0 which we find only with finite verbs. The parser could compile this information and 
assign case directly, without even waiting to see the (lexical) verb. 
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Because of property (9a), case could not be inferred from explicit information contained 
in the input (unlike Japanese or German); because of property (9b) the subject position 
of an embedded clause would not be unmistakably signalled (unlike German but like 
Japanese); because of property (9c), the inflectional head would occur after the NP that 
needs to be assigned case; finally, because of property (9d), an LR parser could give 
worst-case results (which is not the case for verb-final, but left-branching, languages, 
like Japanese): it could require the entire sentence to be stacked before starting to 
assemble it. 

Although a problem in principle, this limitation disappears in practice. Inspec- 
tion of some of the sources on language typology shows that such languages are 
very difficult to find (Steele 1978; Shopen 1985; Comrie 1981). According to Downing 
(1978), verb-final languages usually have prenominal relative clauses, which is a sign 
that they are left branching. Only two verb-final languages have postnominal relative 
clauses, Persian and Turkish. In Persian, the clause boundary is overtly marked by 
the suffix -i on the antecedent. Moreover, both languages have overt case marking 
of the subject. Although this is by no means definitive evidence, it suggests that the 
algorithm for chain formation and feature assignment that I have presented is not 
obviously inadequate, and that it is applicable to a variety of languages with different 
properties. 

5. Conclusion 

The parser described in this paper has been implemented for English. It parses a 
homogeneous, though small, set of sentences. As a matter of fact, one of the interesting 
features of this implementation is that it offers a unified treatment of all of the chain 
types presented above. 

The parser has clear limitations due to the fact that it was developed mainly for 
exploratory purposes. For instance, it deals only with very simple nominal phrases 
and it does not treat adjunction. In other respects, however, this design lends itself 
readily to extensions: The structure building and chain formation routines do not rely 
on characteristics that are found only in English or in a head initial language, as was 
discussed in the previous section. 

In the course of pondering the relation between the grammar and the parser, 
and mostly how the conceptual modularity of current linguistic theories can be imple- 
mented, one learns that, in fact, the notion of modular theory is both true and false, 
at least in its present incarnation. All linguists strive to develop theories that rest on 
general, abstract principles, which interact in complex ways, so that many empirical 
facts "fall out" from a few principles. Such a theory is clearly not modular, although 
highly general and abstract. On the other hand, linguistic concepts operate on different 
primitives: intuitively, X-theory, and principles of argument structure or coreference 
are different objects. Future research must lead in a direction that enables us to de- 
fine more precisely this basic intuition. Modularity, if it exists, is to be found in the 
linguistic content, and not in the organization of the theory. 
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p2 : p l ;  / *  40 * /  
p l  : pO; / *  41 * /  
d2 : d l ;  / *  42 * /  
d l  : dO; /*  43 * /  
y2 : /*empty*/In21c21i2lv21a21p2; /* 44-51 */ 

A.3 Grammar 3 
s : i2 ] c2 ; 
c2 : y2 c l l  c l l  / *  empty * /  ; 
c l  : cO i 2  I cO; 
cO : c I / * e m p t y * /  ; 
i2 : y2 il Iil I /* empty */; 
il : iO v2 I iO; 
iO : i I /*empty*/ ; 
v2 : y2 vl I /*empty */Iv1 ; 
vl : vOint p2 ; 
vOint : vintl /* empty */; 
vl : vOt n2; 
vOt : vt I /*empty*/ ; 
vl : vOrais i2; 
vOrais : vrais I /*empty*/ ; 
vl : vOint c2; 
y2 : c2 I i2 I n2 I v2 I p2 

I /* empty */ ; 
n2 : n I /* empty */; 
p2 : pO y2 I /* empty */; 
pO : p I / * e m p t y * / ;  
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