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Tree insertion grammar (TIG) is a tree-based formalism that makes use of tree substitution and 
tree adjunction. TIG is related to tree adjoining grammar. However, the adjunction permitted in 
TIG is sufficiently restricted that TIGs only derive context-free languages and TIGs have the same 
cubic-time worst-case complexity bounds for recognition and parsing as context-free grammars. 
An efficient Earley-style parser for TIGs is presented. 

Any context-free grammar (CFG) can be converted into a lexicalized tree insertion grammar 
(LTIG) that generates the same trees. A constructive procedure is presented for converting a CFG 
into a left anchored (i.e., word initial) LTIG that preserves ambiguity and generates the same 
trees. The L,TIG created can be represented compactly by taking advantage of sharing between the 
elementary trees in it. Methods of converting CFGs into left anchored CFGs, e.g., the methods 
of Greibach and Rosenkrantz, do not preserve the trees produced and result in very large output 
grammars. 

For the purpose of experimental evaluation, the LTIG lexicalization procedure was applied 
to eight different CFGs for subsets of English. The LTIGs created were smaller than the original 
CFGs. Using an implementation of the Earley-style TIG parser that was specialized for left 
anchored LTIGs, it was possible to parse more quickly with the LTIGs than with the original 
CFGs. 

1. Introduction 

Most current  linguistic theories give lexical accounts of several  p h e n o m e n a  that used to 
be considered pure ly  syntactic. 1 The informat ion put  in the lexicon is thereby increased 
in both a m o u n t  and  complexity. 

In this paper,  we  s tudy  the p rob lem of lexicalizing context-free g r a m m a r s  and  
show that it enables faster processing. In previous  a t tempts  to take advan tage  of lex- 
icalization, a var ie ty  of lexicalization procedures  have  been deve loped  that conver t  
context-free g r a m m a r s  (CFGs) into equivalent  lexicalized g rammars .  However ,  these 
procedures  typically suffer f rom one or more  of the following problems.  

• Lexicalization procedures  such as those deve loped  by  Greibach (1965) 

* Mitsubishi Electric Research Laboratories, 201 Broadway, Cambridge, MA 02139, USA. E-mail: 
schabes/waters@merl.com. 

1 Some of the linguistic formalisms illustrating the increased use of lexical information are: lexical rules 
in LFG (Kaplan and Bresnan 1983), GPSG (Gazdar et al. 1985), HPSG (Pollard and Sag 1987), 
Categorial Grammars (Steedman 1987; Karttunen 1986), some versions of GB theory (Chomsky 1981), 
and Lexicon-Grammars (Gross 1984). 
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and Rosenkrantz (1967) often produce very large output grammars--so 
large that they can be awkward or even impossible to parse with. 

Procedures that convert CFGs into lexicalized CFGs provide only a weak 
lexicalization, because while they preserve the strings derived, they do 
not preserve the trees derived. Parsing with the resulting grammar can 
be fast, but it does not produce the right trees. 

Strong lexicalization that preserves the trees derived is possible using 
context-sensitive formalisms such as tree adjoining grammar (TAG) 
(Joshi and Schabes 1992; Schabes 1990). However, these context-sensitive 
formalisms entail larger computation costs than CFGs--O(n6)-time in the 
case of TAG (Vijay-Shanker and Joshi 1985), instead of O(n 3) for CFG. 

Tree Insertion Grammar (TIG) is a compromise between CFG and TAG that com- 
bines the efficiency of the former with the strong lexicalizing power of the latter. As 
discussed in Section 2, TIG is the same as TAG except that adjunction is restricted so 
that it no longer generates context-sensitive languages. In section 3, we compare TIG 
with CFG and TAG, showing how it is related to both. 

Like CFG, TIG can be parsed in O(IGInB)-time. Section 4 presents an Earley-style 
parser for TIG that maintains the valid prefix property. 

Section 5 presents a procedure that converts CFGs into lexicalized tree insertion 
grammars (LTIGs) generating the same trees. The procedure produces a left anchored 
LTIG---one where for each elementary tree, the first element that must be matched 
against the input is a lexical item. 

Section 6 presents a number of experiments evaluating TIG. Section 6.1 shows that 
the grammars generated by the LTIG procedure can be represented very compactly. 
In the experiments performed, the LTIG grammars are smaller than the CFGs they are 
generated from. Section 6.2 investigates the practical value of the grammars created by 
the LTIG procedure as a vehicle for parsing CFGs. It reports a number of experiments 
comparing a standard Earley-style parser for CFGs with the Earley-style TIG parser 
of Section 4, adapted to take advantage of the left anchored nature of the grammars 
created by the LTIG procedure. In these experiments, parsing using LTIG is typically 
5 to 10 times faster. 

The original motivation behind the development of TIG was the intuition that the 
natural-language grammars currently being developed using TAG do not make full 
use of the capabilities provided by TAG. This suggests a different use for TIG--as a 
(partial) substitute for TAG. This idea is explored in Section 7. 

2. Tree Insert ion Grammar  

Tree insertion grammar (TIG) is a tree generating system that is a restricted variant 
of tree-adjoining grammar (TAG) (Joshi and Schabes 1992; Schabes 1990). As in TAG, 
a TIG grammar consists of two sets of trees: initial trees, which are combined by 
substitution and auxiliary trees, which are combined with each other and the initial 
trees by adjunction. However, both the auxiliary trees and the adjunction allowed are 
different than in TAG. 

Def in i t ion  6 
[TIG] A tree insertion grammar (TIG) is a five-tuple (G, NT, L A, S), where ~. is a set of 
terminal symbols, NT is a set of nonterminal symbols, I is a finite set of finite initial 
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trees, A is a finite set of finite auxiliary trees, and S is a dist inguished nonterminal  
symbol. The set I t3 A is referred to as the e lementary trees. 

In each initial tree the root and interior--i .e. ,  nonroot,  non lea f - -nodes  are labeled 
by  nonterminal  symbols. The nodes on the frontier are labeled with terminal symbols, 
nonterminal  symbols, or the empty  string (e). The nonterminal  symbols on the frontier 
are marked  for substitution. By convention, substitutability is indicated in diagrams 
by  using a down  arrow (D. The root of at least one e lementary initial tree must  be 
labeled S. 

In each auxiliary tree the root and interior nodes are labeled by  nonterminal  sym- 
bols. The nodes on the frontier are labeled with terminal symbols, nonterminal  sym- 
bols, or the empty  string (e). The nonterminal  symbols on the frontier of an auxiliary 
tree are marked  for substitution, except that exactly one nonterminal  frontier node  
is marked as the foot. The foot must  be labeled with the same label as the root. By 
convention, the foot of an auxiliary tree is indicated in diagrams by  using an asterisk 
(,). The path from the root of an auxiliary tree to the foot is called the spine. 

Auxiliary trees in which every nonempty  frontier node is to the left of the foot are 
called left auxiliary trees. Similarly, auxiliary trees in which every  nonempty  frontier 
node is to the right of the foot are called right auxiliary trees. Other auxiliary trees are 
called wrapping auxiliary trees. 2 

The root of each e lementary tree must  have at least one child. Frontier nodes 
labeled with ~ are referred to as empty. If all the frontier nodes of an initial tree are 
empty, the tree is referred to as empty. If all the frontier nodes other  than the foot of 
an auxiliary tree are empty, the tree is referred to as empty. 

The operations of substitution and adjunction are discussed in detail below. Substi- 
tution replaces a node  marked  for substitution with an initial tree. Adjunction replaces 
a node with an auxiliary tree. 

To this point, the definition of a TIG is essentially identical to the definition of a 
TAG. However ,  the following differs f rom the definition of TAG. 

TIG does not allow there to be any elementary wrapping  auxiliary trees or ele- 
mentary  empty  auxiliary trees. This ensures that every  e lementary auxiliary tree will 
be uniquely  either a left auxiliary tree or a right auxiliary tree. (Wrapping auxiliary 
trees are neither. Empty  auxiliary trees are both and cause infinite ambiguity.) 

TIG does not allow a left (right) auxiliary tree to be adjoined on any node that is on 
the spine of a right (left) auxiliary tree. Further, no adjunction whatever  is permit ted 
on a node # that is to the right (left) of the spine of an e lementary left (right) auxiliary 
tree T. Note that for T to be a left (right) auxiliary tree, every  frontier  node dominated  
by  # must  be labeled with ~. 

TIG allows arbitrarily many  simultaneous adjunctions on a single node in a man- 
ner similar to the alternative TAG derivation defined in Schabes and Shieber (1994). 
Simultaneous adjunction is specified by  two sequences, one of left auxiliary trees and 
the other of right auxiliary trees that specify the order  of the strings corresponding to 
the trees combined. 

A TIG derivation starts with an initial tree rooted at S. This tree is repeatedly 
extended using substitution and adjunction. A derivat ion is complete when  every  
frontier node in the tree(s) der ived is labeled with a terminal symbol. By means of 
adjunction, complete derivations can be extended to bigger complete derivations. 

2 In Schabes and Waters (1993a) these three kinds of auxiliary trees are referred to differently, as right 
recursive, left recursive, and centrally recursive, respectively. 
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NP VP N 

D$ N V VP* A N* 

boy seems pretty 

Figure 1 
Example elementary TIG trees. 
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Figure 2 
Substitution. 

As in TAG, but  in contrast to CFG, there is an impor tant  difference in TIG between 
a derivation and the tree derived.  By means  of s imultaneous adjunction, there can be 
several trees created by  a single derivation. In addition, there can be several different 
derivations for the same tree. 

To eliminate useless ambiguity in derivations, TIG prohibits adjunction: at nodes 
marked  for substitution, because the same trees can be created by adjoining on the 
roots of the trees substi tuted at these nodes; at foot nodes of auxiliary trees, because 
the same trees can be created by simultaneous adjunction on the nodes the auxiliary 
trees are adjoined on; and at the roots of auxiliary trees, because the same trees can be 
created by  simultaneous adjunction on the nodes the auxiliary trees are adjoined on. 

Figure 1 shows five e lementary  trees that might  appear  in a TIG for English. The 
trees containing 'boy'  and 'saw' are initial trees. The remainder  are auxiliary trees. 

As illustrated in Figure 2, substitution inserts an initial tree T in place of a frontier 
node # that has the same label as the root of T and is marked  for substitution. 

Adjunction inserts an auxiliary tree T into another  tree at a node # that has the 
same label as the root (and therefore foot) of T. In particular, # is replaced by  T and 
the foot of T is replaced by  the subtree rooted at #. The adjunction of a left auxiliary 
tree is referred to as left adjunction. This is illustrated in Figure 3. The adjunction of 
a right auxiliary tree is referred to as right adjunction (see Figure 4). 

Simultaneous adjunction is fundamenta l ly  ambiguous  in nature and typically re- 
sults in the creation of several different trees. The order  in the sequences of left and 
right auxiliary trees fixes the order  of the strings being combined.  However ,  unless 
one of the sequences is empty, variability is possible in the trees that can be produced.  
The TIG formalism specifies that every  tree is p roduced  that is consistent with the 
specified order. 
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Figure 3 
Left adjunction. 

"/q 

Figure 4 
Right adjunction. 

a w 2 

w 

~A* A *~ 
wl % Ws 

Figure 5 
Simultaneous left and right adjunction. 

w 2 A A w 4 ?, and  
"Z, 

~ w3 

Figure 5 illustrates the simultaneous adjunction of one left and one right auxiliary 
tree on a node. The string corresponding to the left auxiliary tree must  precede the 
node, and the string corresponding to the right auxiliary tree must  follow it. However, 
two different trees can be derived---one where the left auxiliary tree is on top and one 
where the right auxiliary tree is on top. The simultaneous adjunction of two left and 
two right auxiliary trees leads to six derived trees. 

The adjunction of a wrapping auxiliary tree is referred to as wrapping adjunction. 
This is illustrated in Figure 6. The key force of the restrictions applied to TIG, in 
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Figure 6 
Wrapping adjunction. 

Volume 21, Number 4 

w2~ w4 
w~ 

comparison with TAG, is that they prevent wrapping adjunction from occurring, by 
preventing the creation of wrapping auxiliary trees. 3 

Wrapping adjunction yields context-sensitive languages because two strings that 
are mutually constrained by being in the same auxiliary tree are wrapped around an- 
other string. This observation stems from the equivalence of TAG and head grammars 
(Vijay-Shanker et al. 1986). In contrast, every operation allowed by a TIG inserts a 
string into another string. Simultaneous adjunction merely specifies multiple indepen- 
dent insertions. Simultaneous left and right adjunction is not an instance of wrapping, 
because TIG does not allow there to be any constraints between the adjoinability of 
the trees in question. 

There are many ways that the TIG formalism could be extended. First, adjoining 
constraints could be used to prohibit the adjunction of particular auxiliary trees (or all 
auxiliary trees) at a given node. 

Second, one can easily imagine variants of TIG where simultaneous adjunction is 
more limited. One could allow only one canonical derived tree. One could allow at 
most one left auxiliary tree and one right auxiliary tree as we did in Schabes and Waters 
(1993a). One could forbid multiple adjunction altogether. We have chosen unlimited 
simultaneous adjunction here primarily because it reduces the number of chart states, 
since one does not have to record whether adjunction has occurred at a given node. 

Third, one can introduce stochastic parameters controlling the probabilities with 
which particular substitutions and adjunctions occur (see Schabes and Waters 1993b). 

Fourth, and of particular importance in the current paper, one can require that a 
TIG be lexicalized. 

Definition 7 
[LTIG] A lexicalized tree insertion grammar (LTIG) 4 (G, NT, L A, S) is a TIG where every 
elementary tree in I U A is lexicalized. A tree is lexicalized if at least one frontier node 
is labeled with a terminal symbol. 

An LTIG is said to be left anchored if every elementary tree is left anchored. An 
elementary TIG tree is left anchored if the first nonempty frontier element other than 

3 Using a simple case-by-case analysis, one can show that given a TIG, it is not possible to create a 
wrapping auxiliary tree. A proof of this fact is presented in Appendix A. 

4 In Schabes and Waters (1993a) a formalism almost identical to LTIG is referred to as lexicalized 
context-free grammar (LCFG). A different name is used here to highlight the importance of the 
nonlexicalized formalism, which was not given a name in Schabes and Waters (1993a). 
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the foot, if any, is a lexical item. All the trees in Figure 1 are lexicalized; however,  only 
the ones containing seems, pretty, and smoothly are left anchored. 

3. Relations between CFG, TIG and TAG 

In this section, we briefly compare  CFG, TIG and TAG, noting that TIG shares a 
number  of propert ies with CFG on one hand and TAG on the other. 

Any CFG can be trivially converted into a TIG that derives the same trees by 
convert ing each rule R into a single-level initial tree. If the right hand side of R is 
empty, the initial tree created has a single frontier element  labeled with e. Otherwise,  
the elements of the right hand side of R become the labels on the frontier of the initial 
tree, with the nonterminals  marked  for substitution. 

Similarly, any TIG that does not  make use of adjoining constraints can be easily 
converted into a TAG that derives the same trees; however,  adjoining constraints may  
have to be used in the TAG. The trivial nature of the conversion can be seen by  
considering the three differences between TIG and TAG. 

First, TIG prohibits e lementary wrapping  auxiliary trees. From the perspective of 
this difference, a TIG is trivially a TAG without  the need for any alterations. 

Second, TIG prohibits adjunction on the roots of auxiliary trees and allows simul- 
taneous adjunction while TAG allows adjunction on the roots of auxiliary trees and 
prohibits s imultaneous adjunction. From the perspective of this difference in approach,  
a TIG is also trivially a TAG without  alteration. To see this, consider the following: 
Suppose that there are a set of auxiliary trees T that are allowed to adjoin on a node 
# in a TIG. Simultaneous adjunction in TIG allows these auxiliary trees to be chained 
together in every  possible way  root-to-foot on #. The same is true in a TAG where  the 
trees in T are al lowed to adjoin on each other ' s  roots. 

Third, TIG imposes a number  of detailed restrictions on the interaction of left 
and right auxiliary trees. To convert  a TIG into a TAG deriving the same trees and no 
more, one has to capture these restrictions. In general, this requires the use of adjoining 
constraints to prohibit  the forbidden adjunctions. 

It should be noted that if a TIG makes use of adjoining constraints, then the 
conversion of the TIG to a TAG deriving the same trees can become more complex 
or even impossible, depending  on the details of exactly how the adjoining constraints 
are allowed to act in the TIG and TAG. 

TIG generates context-free languages. Like CFG, TIG generates context-free languages. In 
contrast, TAG generates so called tree adjoining languages (TALs) (,Joshi 1985). 

The fact that any context-free language can be generated by a TIG follows from 
the fact that any CFG can be converted into a TIG. The fact that TIGs can only generate 
context-free languages follows from the fact that any TIG can be converted into a CFG 
generating the same language, as shown in the following theorem. 

Theorem 1 
If G = (E, NT, LA, S) is a TIG then there is a CFG G' = (E, NT',P,S) that generates the 
same string set. 5 

5 As usual, a context-freegrammar (CFG) G is a four-tuple (G, NT, P, S) where ~ is a set of terminal 
symbols, NT is a set of nonterminal symbols, P is a finite set of finite production rules that rewrite 
nonterminal symbols to, possibly empty, strings of terminal and nonterminal symbols, and S is a 
distinguished nonterminal symbol that is the start symbol of any derivation. 
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P~oo~ 
The key step in convert ing a TIG into a CFG is eliminating the auxiliary trees. Given 
only initial trees, the final conversion to a CFG is trivial. 

• Step 1: For each nonterminal  Ai in NT, add two more  nonterminals  Wi 
and Zi. This yields the new nonterminal  set NTL 

• Step 2: For each nonterminal  Ai, include the following rules in P: Yi ---* c 
and Zi --* c. 

• Step 3: Alter every  node # in every  e lementary tree in I and A as 
follows: Let Ai be the label of #. If left adjunction is possible at #, add a 
new leftmost child of # labeled Yi and mark it for substitution. If right 
adjunction is possible at #, add a new r ightmost  child of # labeled Zi 
and mark it for substitution. 

• Step 4: Conver t  every  auxiliary tree t in A into an initial tree as follows: 
Let a i be the label of the root # of t. If t is a left auxiliary tree, add a new 
root  labeled Yi with two children: # on the left, and on the right, a node  
labeled Yi and marked  for substitution. Otherwise add a new root 
labeled Zi with two children: # on the left, and on the right, a node  
labeled Zi and marked  for substitution. Relabel the foot of t with e, 
turning t into an initial tree. 

• Step 5: Every e lementary  tree t is now an initial tree. Each one is 
conver ted into a rule in P as follows: The label of the root of t becomes 
the left hand side of R. The labels on the frontier of t with any instances 
of c omit ted become the right hand side of R. 
Every derivation in G maps  directly to a derivat ion in G t that generates 
the same string. Substitution steps map  directly. Adjunctions are 
conver ted into substitutions via the new non-terminals Yi and Zi. The 
new roots and their children labeled Yi and Zi created in Step 3 allow 
arbitrarily many  simultaneous adjunctions at a node. The right linear 
ordering inherent  in these structures encodes the order ing information 
specified for a s imultaneous adjunction. [] 

It should be noted that while G / generates the same strings as G, it does not  
generate the same trees: the substitutions in G / that correspond to adjunctions in G 
create trees that are very  different from the trees generated by  G. For instance, if a left 
auxiliary tree T has structure to the right of its spine, this structure ends up  on the left 
rather than the right of the node "adjoined on" in G ~. However ,  this does not alter the 
strings that are generated, because by  the definition of TIG, the structure to the right 
of the spine of T must  be entirely empty. 

The theorem above does not convert  TAGs into CFGs, because the construction 
involving Yi and Zi does not  work  for wrapping  auxiliary trees. The reason for this is 
that a wrapping  auxiliary tree has nonempty  structure on both the left and the right 
of its spine. 

TIG generates context-free path sets. The path set of a g rammar  is the set of all paths 
from root to frontier in the trees generated by  the grammar.  The path set is a set of 
strings in (~. U NT)*. CFGs have path sets that are regular languages (RLs) (Thatcher 
1971). In contrast, TAGs have path  sets that are context-free languages (CFLs) (Weir 
1988). 
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Figure 7 
A TIG with a context-free path set. 

A 

S a 

B 

S* 

The fact that the path sets generated by a TIG cannot be more complex than 
context-free languages follows from the fact that TIGs can be converted into TAGs 
generating the same trees. The fact that TIGs can generate path sets more complex 
than regular languages is shown by the following example. 

Consider the TIG in Figure 7. The path set L generated by this grammar contains 
a variety of paths including Sx (from the elementary initial tree), SASBSx & SAa (from 
adjoining the elementary auxiliary tree once on the initial tree), and so on. By relying 
on the fact that the intersection of two regular languages must be regular, it is easy to 
show that L is not a regular language. In particular, consider: 

L N {SA}*S{BS}*x = {SA}nS{BS}nx 

This intersection corresponds to all the paths from root to x in the trees that are 
generated by recursively embedding the elementary auxiliary tree in Figure 7 into the 
middle of its spine. Since this intersection is not a regular language, L cannot be a 
regular language. 

4. Parsing TIG 

Since TIG is a restricted case of tree-adjoining grammar (TAG), standard O(n6)-time 
TAG parsers (Lang 1990; Schabes 1991; Vijay-Shanker 1987; Vijay-Shanker and Weir 
1993; Vijay-Shanker and Joshi 1985) can be used for parsing TIG. Further, they can be 
easily optimized to require at most O(n4)-time when applied to a TIG. However, this 
still does not take full advantage of the context-freeness of TIG. 

A simple O(nB)-time bottom-up recognizer for TIG in the style of the CKY parser 
for CFG can be straightforwardly constructed following the approach shown in Schabes 
and Waters (1993a). 

As shown below, one can obtain a more efficient left-to-right parsing algorithm 
for TIG that maintains the valid prefix property and requires O(n 3) time in the worst 
case, by combining top-down prediction as in Earley's algorithm for parsing CFGs 
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Figure 8 
An auxiliary tree and its textual representation. 
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(Earley 1970) with bottom-up recognition. The algorithm is a general recognizer for 
TIGs, which requires no condition on the grammar. 6 

4.1 A n  Earley-Style  Cubic -Time Parser For TIG 
Notation. Suppose that G = (G, NT, L A, S) is a TIG and that al . . .  an is an input string. 
The Greek letters #, v, and p are used to designate nodes in elementary trees. Subscripts 
are used to indicate the label on a node, e.g., #x. Superscripts are sometimes used to 
distinguish between nodes. 

A layer of an elementary tree is represented textually in a style similar to a pro- 
duction rule, e.g., #x--*~'Y pz. For instance, the tree in Figure 8 is represented in terms 
of four layer productions as shown on the right of the figure. 

The predicate Init(#x) is true if and only if #x is the root of an initial tree. The 
predicate LeftAux(px) is true if and only if px is the root of an elementary left auxiliary 
tree. The predicate RightAux(px) is true if and only if Px is the root of an elementary 
right auxiliary tree. The predicate Subst(#x) is true if and only if #x is marked for 
substitution. The predicate Foot(px) is true if and only if #x is the foot of an auxiliary 
tree. The predicate Adjoin(px, ,x)  is true if and only if the restrictions governing 
adjunction in TIG permit the auxiliary tree px to be adjoined on the node #x. 

Chart states. The Earley-style TIG parser collects states into a set called the chart, C. A 
state is a 3-tuple, [p, i,j] where: p is a position in an elementary tree as described below; 
and 0 < i < j _< n are integers indicating a span of the input string. 

During parsing, elementary trees are traversed in a top-down, left-to-right manner  
that visits the frontier nodes in left-to-right order (see Figure 9). Positions, which are 
depicted as dots in Figure 9, are used to represent the state of this traversal. 

In a manner  analogous to dotted rules for CFG as defined by Earley (1968), being 
at a particular position with regard to a particular node divides the subtree rooted 
at the node into two parts: a left context consisting of children that have already been 
matched and a right context that still needs to be matched. 

Positions are represented by placing a dot  in the production for the corresponding 
1 2 4 layer. For example, the fourth position reached in Figure 9 is represented as #S~#Ae#B . 

6 This parser is the more remarkable because for TAG the best  parser  known  that maintains the valid 
prefix property requires, in the worst  case. more  time than parsers that do not maintain the valid prefix 
property (o(ng)-t ime versus O(n6)) (Schabes 1991). 
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Figure 9 
Left-to-right tree traversal. 
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In dotted layer productions, the Greek letters ~, fl, and 31 are used to represent se- 
quences of zero or more nodes. 

The indices i,j record the portion of the input string that is spanned by the left 
context. The fact that TIG forbids wrapping auxiliary trees guarantees that a pair of 
indices is always sufficient for representing a left context. As traversal proceeds, the 
left context grows larger and larger. 

Correctness condition. Given an input string al " 'an,  for every node #x in every ele- 
mentary tree in G, the Earley-style TIG parsing algorithm guarantees that: 

h 

[#x--*~ofl, i,j] E C if and only if there is some derivation in G of some 
string beginning with al . . .aj where ai+l . . .aj is spanned by: 

A sequence of zero or more left auxiliary trees simultaneously 
adjoined on #x plus 
The children of #x corresponding to g plus 
if fl = ~, zero or more right auxiliary trees simultaneously 
adjoined on #x. 

The algorithm. Figure 10 depicts the Earley-style TIG parsing algorithm as a set of 
inference rules. Using the deductive parser developed by Shieber, Schabes, and Pereira 
(1995), we were able to experiment with the TIG parser represented directly in this 
form (see Section 6). 

The first rule (1) initializes the chart by adding all states of the form [#s--sock, 0, 0], 
where #s is the root of an initial tree. The initial states encode the fact that any valid 
derivation must  start from an initial tree whose root is labeled S. 

The addition of a new state to the chart can trigger the addition of other states 
as specified by the inference rules in Figure 10. Computat ion proceeds with the intro- 
duction of more and more states until no more inferences are possible. The last rule 
(13) specifies that the input is recognized if and only if the final chart contains a state 
of the form [#s--+go, 0, n], where #s is the root of an initial tree. 

The scanning and substitution rules recognize terminal symbols and substitutions 
of trees. They are similar to the steps found in Earley's parser for CFGs (Earley, 1970). 
The scanning rules match fringe nodes against the input string. Rule 4 recognizes the 
presence of a terminal symbol in the input string. Rules 5 and 6 encode the fact that one 
can skip over nodes labeled with c and foot nodes without  having to match anything. 
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Initialization 

Init(#s) t- [ # s~ . a ,  0, 0] (1) 

Left Adjunction 

[#A--*.a, i,j] A LeftAux(pa) A Adjoin(pA, #A) F [p,~--,.,y,j,j] (2) 

[#a-*.a,i,j] A [pA--*7*,j,k] A LeftAux(pA) A Adjoin(pA,#A) b [#A--**a,i,k] (3) 

Scanning 

[#A--*a*Ua fl, i,j] A a = aj+l [- [#A--+a Ua*fl, i,j +1] (4) 

[#a--*a'Ua fl, i,j] A a = ¢ F [#A--+a Ua*fl, i,j] (5) 

[#A~a'UB fl, i,j] A Foot(us) F [#A--*a ut3"fl, i,j] (6) 

Substitution 

[#A--*a.uB fl, i,j] A Subst(uB) A Init(ps) F [Ps--*'7, j, j] (7) 

[#,~--*a*us fl, i,j] A [Ps--'v*,j, k] A Subst(vB) A Init(pB) F [ # a ~ a  UB'fl, i, k] (8) 

Subtree Traversal 

[#a--*a,UB fl, i,j] I- [uB--*.%j,j] (9) 

[#A--*a*VBfl, i,j] A [VB--*7*,j,k] F [#A--*oePB*fl, i,k] (10) 

Right Adjunction 

[#A--*o~*, i,j] A RightAux(pa) A Adjoin(pA, #A) b [pA-**"/, j, j] (11) 

[#A-*a*,i,j] A [pA--*"/*,j,k] A RightAux(pA) A Adjoin(p,~,#A) F [#A--*a*, i, k] (12) 

Final Recognition 

[#s--~a., 0, n] A Init(#s) b Acceptance (13) 
Figure 10 
An Earley-style recognizer for TIG, expressed using inference rules. 

The substitution rules are triggered by states of the form [#A--*c~euB fl, i,j] where UB 
is a node at which substitution can occur. Rule 7 predicts a substitution. It does this 
top down only if an appropriate prefix string has been found. Rule 8 recognizes a 
completed substitution. It is a bottom-up step that concatenates the boundaries of a 
fully recognized initial tree with a partially recognized tree. 

The subtree traversal rules control the recognition of subtrees. Rule 9 predicts a 
subtree if and only if the previous siblings have already been recognized. Rule 10 
completes the recognition of a subtree. Rules 9 and 10 are closely analogous to rules 7 
and 8. They can be looked at as recognizing a subtree that is required to be substituted 
as opposed to a subtree that may be substituted. 

The left and right adjunction rules recognize the adjunction of left and right aux- 
iliary trees. The left adjunction rules are triggered by states of the form [#A--*ec~, i,j]. 
Rule 2 predicts the presence of a left auxiliary tree, if and only if a node that the 
auxiliary tree can adjoin on has already been predicted. Rule 3 supports the bottom- 
up recognition of the adjunction of a left auxiliary tree. The fact that left adjunction 
can occur any number of times (including zero) is captured by the fact that states of 
the form [#A--~-~, i,j] represent both situations where left adjunction can occur and 
situations where it has occurred. The right adjunction rules (11 & 12) are analogous to 
the left adjunction rules, but are triggered by states of the form [#a---~c~o, i,j]. 

As written in Figure 10, the algorithm is a recognizer. However, it can be straight- 
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forwardly converted to a parser by keeping track of the reasons why states are added 
to the chart. Derivations (and therefore trees) can then be retrieved from the chart 
(each in linear time). 

For the sake of simplicity, it was assumed in the discussion above that there are 
no adjunction constraints. However, the algorithm can easily be extended to handle 
such constraints by including them in the predicate Adjoin(px,/zx). 

Computational bounds. The algorithm in Figure 10 requires space O(IGIn 2) in the worst 
case. In this equation, n is the length of the input string and IG I is the size of the 
grammar G. For the TIG parser, IGI is computed as the sum over all the non-leaf 
nodes # in all the elementary trees in G of: one plus the number of children of #. The 
correctness of this space bound can be seen by observing that there are only IG]n 2 
possible chart states [#x--+aofl, i,j]. 

The algorithm takes O(IGI2n 3) time in the worst case. This can informally be seen 
by noting that the worst case complexity is due to the completion rules (3, 8, 10, & 12) 
because they apply to a pair of states, rather than just one state. Since each of the 
completion rules requires that the chart states be adjacent in the string, each can apply 
at most O(IGI2n 3) times, since there are at most n 3 possibilities for 0 < i < j < k < n. 

4.2 Improving the Efficiency of the TIG Parser 
As presented in Figure 10, the TIG parser is optimized for clarity rather than speed. 
There are several ways that the efficiency of the TIG parser can be improved. 

Parsingthatislinearinthegrammarsize. The time complexity of the parser can be reduced 
from O(IGI2n 3) to O(IGIn 3) by using the techniques described in Graham et al. 1980). 
This improvement is very important, because IG[ typically is much larger than n for 
natural language applications. The speedup can be achieved by altering the parser in 
two ways. 

The prediction rules (2, 7, 9, & 11) can apply O(IGI2n 2) times, because they are 
triggered by a chart state and grammar node /9; and for each of O(IGIn 2) possible 
values of the former there can be O(]GI) values of the latter. However, the new chart 
state produced by the prediction rules does not depend on the identity of the node in 
the triggering chart element, nor on the value of i, but rather only on whether there is 
any chart element ending at j that makes the relevant prediction. Therefore, the parser 
can be changed so that a prediction rule is triggered at most once for any j and p. This 
reduces the prediction rules to a time complexity of only O(IGIn ). 

The completion rules (3, 8, 10, & 12) can apply O(IGI2n 3) times, because they are 
triggered by pairs of chart states; and there can be O(IGI) possibilities for each element 
of the pair for each i < j < k. However, the new chart state produced by the completion 
rules does not depend on the identity of the node p in the second chart element, but 
rather only on whether there is any appropriate chart element from j to/~. Therefore, 
the parser can be changed so that a completion rule is triggered at most once for any 
possible first chart state and k. This reduces the completion rules to a time complexity 
of O(IGIn3). 

Eliminating equivalent states. Rules 5 and 6 merely move from state to state without 
changing the span i,j. These rules reflect facts about the grammar and the traversal 
that do not depend on the input. These rules can be largely precompiled out of the 
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algorithm by noting that the following states are equivalent. 

[/AA--+.L, Xc~,i,j] :-- [/AA---~,X.C~,i,j] if ( X =  c VFoot(~'x)) A -~3pA LeftAux(pA) 

[#A--*a.vxfl,  i,j] =-- [#A--+a~X.fl, i,j] if (X = ¢ VFoot(vx)) 

To take advantage of equivalent states during parsing, one skips directly from the 
first to the last state in a set of equivalent states. This avoids going through the normal 
rule application process and has the effect of reducing the grammar size. 

For a state [/AA-÷OL,X a, i,j] to be equivalent to [/AA~L, XOa, i,j], it is not sufficient that 
the first child of vx be empty or a foot node. It must also be the case that left adjunction 
is not possible on/AA. If left adjunction is possible on/AA, the state [/AA--*q, vX a, i,j] must 
be independently retained in order to trigger left adjunction when appropriate. 

Sharing nodes in a TIG. An important feature of the parser in Figure 10 is that the nth 
child of a node need not be unique and a subtree need not have only one parent. (Non- 
uniqueness indicates that a subtree or a supertree appears at several different places 
in the grammar.) The only requirement when sharing nodes is that every possible way 
of constructing a tree that is consistent with the parent-child relationships must be a 
valid elementary tree in the grammar. 

For example, consider the trees in Figure 11. 

S 

A B 

a A S*  

D$ b 

S 

A B 

a A S* 

a 

Figure 11 
A pair of TIG trees. 

They can be represented individually as follows: 

1....+ 2/A4 , 2 3 4 5 8 #s #A #A---~#a, #B---~#A#S, #5A---~#6 #7, CeftAux(#~), Subst(#6), Foot(#~), 

~1~'A2 4 ,  ~'A2--+Va 3' 4 --+~'5 ~,7, ~,AS~V6, CeftAux(L,1), Foot(~,7) 

However, taking maximum advantage of sharing within and between the trees, they 
can be represented more compactly as: 

14_+ 2 4 2 3 4 5 flS /AA/AB,/AA----~/Aa,/AB--'+{/AA [/A2}/AS,8/AA___+/ADB 6 /Ab,7 LeftAux(/A1), Subst(/A6), Foot(/A8) 

In the above, two kinds of sharing are apparent. Subtrees are shared by using the 
same node (for example/AA) on the right-hand side of more than one layer production. 
Supertrees are shared by explicitly recording the fact that there are multiple alternatives 
for the nth child of a some node. This is represented textually above using curly braces. 

In the case of Figure 11, sharing reduces the grammar size IG[ from 21 to 11. 
Depending on the amount of sharing present in a grammar, an exponential decrease 
in the grammar size is possible. 
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Parsing left anchored LTIGs. The algori thm above can be extended to take advantage of 
the fact that the e lementary trees in an LTIG are lexicalized. This does not change the 
worst  case complexity, but  is a dramatic improvement  in typical situations, because 
it has the effect of dramatically reducing the size of the grammar  that has to be 
considered when  parsing a particular input  string. 

Space does not permit  a discussion of all the ways lexical sensitivity can be intro- 
duced into the TIG parser. However ,  one way of doing this is particularly important  
in the context of this paper. The LTIG lexicalization procedure  presented in Section 5 
produces grammars  that have no left auxiliary trees and are left anchored---ones where  
for each e lementary tree, the first element that must  be matched against the input  is a 
lexical item. By means of two simple changes in the prediction rules, the TIG parser 
can benefit greatly from this kind of lexicalization. 

First, whenever  considering a node #B for prediction at position j, it should only 
be predicted if its anchor is equal to the next input  i tem aj+l. Other predictions cannot  
lead to successful matches. However ,  if sharing is being used, then one chart state 
can correspond to a number  of different positions in different trees. As a result, even 
though every tree has a unique left anchor, a given chart state can correspond to a set 
of such trees and therefore a set of such anchors. A prediction should be made  if any 
of these anchors is the next element  of the input. 

Second, when  predicting a node  ~B whose first child is a terminal symbol, it is 
known from the above that this child must  match the next input  element. Therefore, 
there is no need to create the state [#B--*eua c~,j,j]. One can instead skip directly to the 
state [#B--*ua.c~,j,j + 11. 

Both of the changes above depend  critically on the fact that there are no left 
auxiliary trees. In particular, if there is a left auxiliary tree PB that can be adjoined on 
/~B, then the next input  item may  be matched by  p8 rather than/~B; and neither of the 
shortcuts above can be applied. 

5. TIG Strongly Lexicalizes CFG 

In the following, we say that a grammar  is lexicalized (Schabes 1990; Schabes et al. 1988) 
if every  e lementary structure contains a terminal symbol called the anchor. A CFG is 
lexicalized if every  product ion rule contains a terminal. Similarly, a TIG is lexicalized 
if every  tree contains a terminal symbol. 

A formalism F' is said to lexicalize (Joshi and Schabes 1992) another  formalism F, if 
for every  grammar  G in F that does not derive the empty  string, there is a lexicalized 
grammar  G' in F' such that G and G' generate the same string set. 

F' is said to strongly lexicalize F if for every  finitely ambiguous  grammar  G in F 
that does not  derive the empty  string, there is a lexicalized grammar  G ~ in F ~ such that 
G and G ~ generate the same string set and tree set. 

The restrictions on the form of G in the definitions above are mot ivated by  two 
key propert ies of lexicalized grammars  (Joshi and Schabes 1992). First, lexicalized 
grammars  cannot derive the empty  string, because every structure introduces at least 

one lexical item. Thus, if a CFG is to be lexicalized, it must  not  be the case that S ~ e .  
Second, lexicalized grammars  are finitely ambiguous,  because every  rule intro- 

duces at least one lexical i tem into the resulting string. Thus, if a g rammar  is to be 
strongly lexicalized, it must  be only finitely ambiguous.  In the case of a CFG, this 

means that it must  not be the case that X=~X for any non-terminal  X. 
As shown by Greibach (1965) and Rosenkrantz (1967), any CFG grammar  that does 

not  generate the empty  string can be conver ted into a lexicalized CFG. Moreover,  this 
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g rammar  can be left anchored - -one  where  the first e lement  of the right hand side of 
each rule is a terminal symbol. However ,  this is only a weak lexicalization, because 
the trees generated by the lexicalized grammar  are not  the same as those generated 
by the original CFG. 

Another  way  to lexicalize CFGs is to convert  them into categorial grammars  (Bar- 
Hillel 1964). However ,  these are again only weak  lexicalizations because the trees 
produced  are not  preserved. 7 

Strong lexicalization can be obtained using TAG (Joshi and Schabes 1992; Schabes 
1990), but  only at the cost of O(n 6) parsing. TIG is O(n 3) parsable and strongly lexi- 
calizes CFG. 

5.1 A Strong Lexicalization Procedure 
In the following, we give a constructive proof  of the fact that TIG strongly lexicalizes 
CFG. The proof  is based on a lexicalization procedure  related to the lexicalization 
procedure  used to create Greibach normal  form (GNF) as presented in Harr ison 1978. 

5.1.1 Lemmas.  Our  procedure  relies on the following four lemmas. The first lemma 
converts CFGs into a very  restricted form of TIG. The next three lemmas describe 
ways that TIGs can be t ransformed wi thout  changing the trees produced.  

Lemma 1 
Any finitely ambiguous  CFG G = (~,NT, P, S) can be conver ted into a TIG G' = 
(G, NT, I, {}, S) such that: (i) there are no auxiliary trees; (ii) no initial tree contains any 
interior nodes; (iii) G ~ generates the same trees and, therefore, the same strings as G; 
(iv) there is only one way  to derive a given tree in G'. 

Proof 
We assume wi thout  loss of generality that G does not  contain any useless production.  

The set I of initial trees in G' is constructed by  convert ing each rule R in P into 
a one-level tree t whose  root is labeled with the left-hand side of R. If R has n > 0 
elements on its r ight-hand side, then t is given n children, each labeled with the cor- 
responding right-hand-side element. Each child labeled with a nonterminal  is marked  
for substitution. If the r ight-hand side of R is empty, t is given one child labeled with c. 

By construction, there are no auxiliary trees and no interior nodes in any initial tree. 
There is an exact one-to-one correspondence between derivations in G and derivations 
using the initial trees. Each rule substitution in G becomes a tree substitution in GL 
As a result, exactly the same trees are generated in both cases, and there is only one 
way  to generate each tree in G t, because there cannot  be two ways to derive the same 
tree in a CFG. [] 

Lemma 2 
Let G = (E, NT, LA, S) be a TIG. Let t c I U A be an e lementary  tree whose  root 
is labeled Y and let # be a frontier e lement  of t that is labeled X and marked  for 
substitution. Further, suppose that if t is an initial tree, X ~ Y. Let T' be the set of 

7 This is true even if Bar-Hillel's Categorial Grammars are augmented with composition (.Joshi, personal 
communication). 
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every  tree t ~ that can be created by  substi tut ing an X-rooted tree u E I for #. Define 
G' -= (~, NT, I ' ,  A', S) where  I '  and  A' are created as follows. 

If t E I then I '  = ( I -  {t}) U T' and  A' = A. 

If t E A then I '  = I and  A' = ( A -  {t}) U T'. 

Then, G' generates  exactly the same trees as G. Further, if there is only  one w a y  
to generate  each tree genera ted by  G, then there is only  one w a y  to generate  each tree 
genera ted by  GL 

Proof 
The t ransformat ion specified by  this l e m m a  closes over  substi tut ion into # and  then 
discards t. Since t cannot  be  subst i tuted into #, this only generates  a finite n u m b e r  of 
addit ional  trees. 

Any  complete  der ivat ion in G can be conver ted  into exactly one der ivat ion in G' 
as follows: A der ivat ion consists of e lementary  trees and  operat ions be tween  them. 
Every  use of t in a complete  der ivat ion in G has to be associated with  a substi tut ion of 
some u E I for #. Taken as a group,  the two trees t and u, a long with  the substi tut ion 
opera t ion be tween  them, can be replaced by  the appropr ia te  new tree t ~ E T t that was  
added  in the construction of G ~. 

Since TIGs do not treat the roots of initial trees in any  special way, there is no 
p rob lem convert ing any  opera t ion appl ied to the root of u into an opera t ion on the 
corresponding interior node  of t'. Further, since it cannot  be the case that t = u, there 
is no ambigui ty  in the m a p p i n g  defined above. 

Any  der ivat ion in G ~ can be conver ted  into exactly one der ivat ion in G by  doing 
the reverse of the conversion above. Each instance t' of one of the new trees in t roduced 
is replaced by  an instance of t wi th  the appropr ia te  initial tree u E I being combined  
with it by  substitution. 

Again, since TIGs do not treat the roots of initial trees in any  special way, there is 
no p rob lem convert ing any  operat ion appl ied to an interior node  of t ~ that corresponds  
to the root of u into an opera t ion on the root of u. 

Further, if there is only one w a y  to der ive a given tree in G, there is no ambigui ty  in 
the m a p p i n g  f rom derivat ions in G' to G, because there is no ambigui ty  in the m a p p i n g  
of T ~ to trees in G. The tree t ~ mus t  be different f rom the other trees genera ted w h e n  
creating T ~, because t ~ contains complete  informat ion about  the trees it was  created 
from. The tree t ~ mus t  not be in I U A. If it were,  there wou ld  be mult iple  der ivat ions 
for some tree in G---one involving t ~ and  one involving t and  u. Finally, t' mus t  be 
different f rom t, because it mus t  be larger than t. 

If there is only  one w a y  to der ive a given tree in G, the mapp ings  be tween  deriva-  
tions in G' and G are one-to-one and  there is therefore only one w a y  to der ive  a given 
tree in G ~. [] 

Lemma 3 
Let G = (E, NT, I,A, S) be a TIG. Let t E I be an e lementary  initial tree whose  root is 
labeled with X ~ S. Further, suppose  that none of the subst i tut ion nodes,  if any, on 
the fringe of t are labeled X. Let U' be the set of every  initial tree that  can be created 
by  subst i tut ing t for one or more  frontier nodes  in an initial tree u E I that are labeled 
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X and marked  for substitution. Let W be the set of every  auxil iary tree that can be 
created by  subst i tut ing t for one or more  frontier nodes  in an auxil iary tree v E A 
that  are labeled X and marked  for substitution. Define G ~ = (G, NT, I~,A',S) where  
I '  = (I - {t}) U U' and  A' = A U V'. 

Then, G ~ generates  exactly the same trees as G. Further, if there is only  one w a y  
to generate  each tree genera ted  by  G, then there is only  one w a y  to generate  each tree 
genera ted by  G ~. 

Proof  
The t ransformat ion specified by  this l e m m a  closes over  subst i tut ion of t and  then 
discards t. Since t cannot  be subst i tuted into itself, this generates  only  a finite n u m b e r  
of addit ional  trees. Since the root of t is not labeled S, t is not  required for any  pu rpose  
other than substitution. 

Any  complete  der ivat ion in G can be conver ted  into exactly one der ivat ion in G ~ 
as follows: Since the root of t is not labeled S, every  use of t in a comple te  der ivat ion 
in G has to be  subst i tuted into some frontier node  # of some u E I U A. Taken as a 
group,  the two trees u and  t, a long with  any  other  copies of t subst i tuted into other  
frontier nodes  of u and  the subst i tut ion operat ions  be tween  them, can be replaced by  
the appropr ia te  new tree u ~ E U ~ U V ~ that  was  added  in the construct ion of GL 

Since TIGs do not treat the roots of initial trees in any  special way, there is no 
p rob lem conver t ing any  opera t ion appl ied  to the root of t into an opera t ion on the 
cor responding  interior node  of u/. Further, since it cannot  be  the case that  t = u, there 
is no ambigu i ty  in the m a p p i n g  defined above.  

Any  der ivat ion in G ~ can be conver ted  into a der ivat ion in G by  doing the reverse 
of the convers ion above.  Each instance u ~ of one of the new trees in t roduced is replaced 
by  one or more  instances of t subst i tuted into the appropr ia te  tree u E I U A. 

Again,  since TIGs do not treat the roots of initial trees in any  special way, there is no 
p rob lem convert ing any  opera t ion appl ied  to the interior node  of u ~ that  cor responds  
to the root of t into an opera t ion on the root of t. 

Further, if there is only  one w a y  to der ive  a g iven tree in G, there is no ambigu i ty  
in the m a p p i n g  f rom derivat ions in G r to G, because there is no ambigu i ty  in the 
m a p p i n g  of u I to trees in G. The tree u ~ mus t  be different f rom the trees that  are 
genera ted  by  subst i tut ing t in other trees u, because u ~ contains complete  informat ion 
about  the trees it was  created from. The tree u r mus t  not be in I U A. If it were,  there 
would  be mul t ip le  der ivat ions for some  tree in G---one involving u ~ and  one involving 
u and  t. Finally, u ~ mus t  be  different f rom t, because it mus t  be larger than t. 

If there is only  one w a y  to der ive a g iven tree in G, the m a p p i n g s  be tween  deriva-  
tions in G ~ and  G are one-to-one and  there is therefore only one w a y  to der ive a given 
tree in G/. E3 

L e m m a  4 
Let G = (G, NT, LA, S) be a TIG and X E NT be a nonterminal .  Let T C I be the set of 
every  e lementa ry  initial tree t such that the root of t and  the lef tmost  n o n e m p t y  frontier 
node  of t are both  labeled X. Suppose  that  every  node  labeled X where  adjunction can 
occur is the root of an initial tree in I. Suppose  also that  there is no tree in A whose  
root is labeled X. Let T ~ be the set of r ight  auxil iary trees created by  mark ing  the first 
n o n e m p t y  frontier node  of each e lement  of T as a foot ra ther  than for substitution. 
Define G' = (~, NT, I - T, A U T', S). 

Then, G / generates  exactly the same trees as G. Further, if there is only  one w a y  
to generate  each tree genera ted  by  G, then there is only one w a y  to generate  each tree 
genera ted  by  GC 
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Proof  
Note  that w h e n  conver t ing the trees in T into trees in T ~, every  initial tree is conver ted  
into a different auxil iary tree. Therefore, there is a one-to-one m a p p i n g  be tween  trees 
in T and  T'. Further, since there are no X-rooted trees in A, A N T' = {}. 

Since in G, every  node  labeled X where  adjunction can occur is the root of an 
initial tree i n / ,  it mus t  be the case that in G', every  node  labeled X where  adjunction 
can occur is the root of an initial tree in I', because the construction of T t did not 
create any  new nodes  labeled X where  adjunction can occur. Therefore, the only w a y  
that  any  e lement  of T' can be used in a der ivat ion in G' is by  adjoining it on the root 
of an initial tree u. The effect of this adjunction is exactly the same as substi tut ing 
the corresponding t E I in place of u and  then subst i tut ing u for the first n o n e m p t y  
frontier node  of t. 

Any  complete  der ivat ion in G can be conver ted  into exactly one der ivat ion in G' 
as follows: Every instance of a tree in T has to occur in a substi tut ion chain. The 
chain consists of some n u m b e r  of instances h, t2 . . . .  , tm of trees in T, wi th  each tree 
subst i tuted for the leftmost  n o n e m p t y  frontier node  of the next. The top of the chain 
tm is either not  subst i tuted anywhere  (i.e., only if X = S) or subst i tuted at a node  that 
is not the leftmost  n o n e m p t y  node  of a tree in T. The bo t tom tree in the chain tl has 
some tree u ~ T subst i tuted for its leftmost  n o n e m p t y  frontier node. Since there are no 
X-rooted trees in A, there cannot  be any  adjunction on the root of u or on the roots of 
any  of the trees in the chain. The chain as a whole  can be replaced by  the s imul taneous  
adjunction of the corresponding trees ' ' ' in T t tl, t 2 . . . . .  t m on the root of u, wi th  u used 
in the same w a y  that tm was used. 

Any  der ivat ion in G' can be conver ted  into a der ivat ion in G by  doing the reverse 
of the conversion above.  Each use of a tree in T' mus t  occur as par t  of the s imul taneous  
adjunction of one or more  auxil iary trees on the root of some initial tree u, because 
there are no other nodes  at which this tree can be adjoined. Since the trees in T' are the 
only X-rooted trees in A ~, all the trees being s imul taneously  adjoined mus t  be instances 
of trees in T t. The s imul taneous  adjunction can be replaced with  a substi tut ion chain 
combining the corresponding trees in T, with u subst i tuted into the tree at the bo t tom 
of the chain and  the top of the chain used  however  u was  used. 

Further, if there is only one w a y  to der ive a given tree in G, there is no ambigui ty  
in the m a p p i n g  f rom derivat ions in G' to G, because there is no ambigui ty  in the 
m a p p i n g  of the t; to trees in G. If there is only  one way  to der ive a given tree in G, 
the mapp ings  be tween  derivat ions in G ~ and  G are one-to-one and there is therefore 
only one w a y  to derive a given tree in GL [] 

After an appl icat ion of L e m m a s  2-4, a TIG m a y  no longer be in reduced form; 
however ,  it can be brought  back to reduced form by  discarding any  unnecessary  ele- 
men ta ry  trees. For instance, in L e m m a  2, if # is the only substi tut ion node  labeled X 
and X ~ S, then when  t is discarded,  every  X-rooted initial tree can be discarded as 
well. 

5.1.2 Construct ing  an LTIG. Using the above lemmas ,  an LTIG corresponding to a 
CFG can be constructed. 

T h e o r e m  2 
If G = (G, NT, P,S)  is a finitely ambiguous  CFG that does not generate  the e m p t y  
string, then there is an LTIG G' = (G, NT, I ' ,A' ,  S) generat ing the same language  and  
tree set as G with  each tree der ivable  in only one way. Fur thermore ,  G' can be chosen 
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so that all the auxiliary trees are right auxiliary trees and every e lementary tree is left 
anchored. 

Proof 
To prove the theorem, we first prove a somewhat  weaker  theorem and then extend 
the proof  to the full theorem. We assume for the momen t  that the set of rules for G 
does not  contain any empty  rules of the form A ~ ¢. 

The proof  proceeds in four steps. At each step, none of the modifications made  
to the grammar  change the tree set p roduced  nor  introduce more  than one way  to 
derive any tree. Therefore, the degree of ambigui ty  of each string is preserved by  the 
constructed LTIG. 

An ordering {A1 . . . . .  Am} of the nonterminals  NT is assumed. 

• Step 1: Using Lemma 1, we first convert  G into an equivalent  TIG 
(Y~,NT, I, {}, S), generat ing the same trees. Because G does not contain 
any empty  rules, the set of initial trees created does not  contain any 
empty  trees. 

• Step 2: In this step, we modi fy  the grammar  of Step 1 so that every  
initial tree t E I satisfies the following proper ty  fL Let the label of the 
root of t be Ai. The tree t must  either: 

(i) 

(ii) 

be left anchored,  i.e., have a terminal as its first nonempty  
frontier node; or 
have a first nonempty  frontier node  labeled Aj where  i < j. 

We modify  the grammar  to satisfy f~ inductively for increasing values 
of i. Consider the Al-rooted initial trees that do not  satisfy Ft. Such trees 
must  have their first nonempty  frontier node labeled with A1. These 
initial trees are conver ted into right auxiliary trees as specified by  
Lemma 4. The applicability of Lemma 4 in this case is guaranteed since, 
after Step 1, there are no auxiliary trees, no interior nodes,  and TIG 
prohibits adjunction at frontier nodes. 

We now assume inductively that Ft holds for every  Ai rooted initial 
tree t where i < k. 

Step 2a: Consider the Ak-rooted initial trees that fail to satisfy Ft. 
Each one must  have a first nonempty  frontier node  # labeled 
with Aj where  j _< k. For those where  j < k, we generate a new 
set of initial trees by  substituting other  initial trees for # in 
accordance with Lemma 2. 

By the inductive hypothesis,  the substitutions specified by 
Lemma 2 result in trees that are either left anchored,  or have 
first nonempty  frontier nodes labeled with A l where  I > j. For 
those trees where 1 ~ k, substitution as specified by Lemma 2 is 
applied again. 

After at most  k - 1 rounds  of substitution, we reach a 
situation where  every  Ak-rooted initial tree that fails to satisfy Ft 
has a first nonempty  frontier node  labeled with Ak. 
Step 2b: The Ak-rooted initial trees where  the first n o n em p ty  
frontier node is labeled with Ak are then conver ted into right 
auxiliary trees as specified by  Lemma 4. The applicability of 
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Lemma 4 in this situation is guaranteed by the following facts. 
First, there cannot have previously been any Ak-rooted auxiliary 
trees, because there were none after Step 1, and every  auxiliary 
tree previously introduced in this induction has a root labeled Ai 
for some i < k. Second, there cannot be any internal nodes in 
any elementary tree labeled Ak, because there were none after 
Step 1, and all subsequent  substitutions have been at  nodes 
labeled Ai where i < k. 

Steps 2a and 2b are applied iteratively for each i, 1 < i _< m until  every  
initial tree satisfies f~. 

• Step 3: In this step, we modify  the set of initial trees further until every  
one is left anchored. We modify  the grammar  to satisfy this proper ty  
inductively for decreasing values of i. 

According to proper ty  f~, every  Am-rooted initial tree is left anchored,  
because there are no higher indexed nonterminals.  

We now assume inductively that every  Ai rooted initial tree t where  
i > k is left anchored. 

The Ak rooted initial-trees must  be left anchored,  or have leftmost 
nonempty  frontier nodes labeled with Aj, where j > k. When the label is 
Aj, we generate new initial trees using Lemma 2. These new rules are all 
left anchored, because by  the induction hypothesis,  all the trees u 
substi tuted by Lemma 2 are left anchored. 
The above is repeated for each i until i = 1 is reached. 

• Step 4: Finally, consider the auxiliary trees created above. Each is a right 
auxiliary tree. If an auxiliary tree t is not left anchored,  then the first 
nonempty  frontier element  after the foot is labeled with some 
nonterminal  Ai. There must  be some nonempty  frontier element  after the 
foot of t because G is not infinitely ambiguous.  We can use Lemma 2 yet 
again to replace t with a set of left anchored right auxiliary trees. All the 
trees produced  must  be left anchored because all the initial trees 
resulting from Step 3 are left anchored. 

• Empty  rules: The auxiliary assumption that G does not contain empty  
rules can be dispensed with. 

If G contains empty  rules, then the TIG created in Step 1 will contain 
empty  trees. These trees can be eliminated by  repeated application of 
Lemma 3. Let t be an empty  tree. Since G does not  derive the empty  
string, the label of the root of t is not S. The tree t can be eliminated by  
applying Lemma 3. This can lead to the creation of new empty  trees. 
However ,  these can be eliminated in turn using Lemma 3. This process 
must  terminate because G is finitely ambiguous.  

Mark all the interior nodes in all the initial trees created by Lemma 3 
as nodes where adjunction cannot occur. With the inclusion of these 
adjoining constraints, the procedure  above works just as before. [] 

In the worst  case, the number  of e lementary trees created by  the LTIG procedure  
above can be exponential ly greater than the number  of product ion rules in G. This 
explosion in numbers  comes from the compounding  of repeated substitutions in Steps 
2 & 3 .  
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CFG 
A1 ~ A2A2 

A2 --* A1A2IA2AIIa 

Step 1 A1 A2 A2 A2 

/ N  / N  / N  I 
A25 A25 A15 A25 A25 A15 a 

Step 2 

A1 A2 A2 A2 

/ N  / N  / N  I 
A25 A25 A 1 A25 A2* A15 a 

/ N  
A2* A25 

Step 3 

AI A2 A 2 A2 

A 2 A25 A 1 A25 A2* AI$ a 

I / N  
a A2* A25 

Step 4 (final LTIG) 

A1 A2 A2 A2 

/ N  / N  / N  I 
A 2 A25 A 1 A25 A2* A 1 a 

I / N  / N  
a A2* A 2 A 2 A25 

I I 
a a 

Figure 12 
Example of the operation of the LTIG procedure. 

However, as noted at the end of Section 4, counting the number of elementary 
trees is not an appropriate measure of the size of an LTIG. The compounding of 
substitutions in the LTIG procedure causes there to be a large amount of sharing 
between the elementary trees. Taking advantage of this sharing can counteract the 
exponential growth in the number of rules completely. In particular, if the CFG does 
not have any empty rules or sets of mutually left recursive rules involving more than 
one nonterminal, then the size of the LTIG created by the procedure of Theorem 2 will 
be smaller than the size of the original CFG. 

On the other hand, if a grammar has many sets of mutually left recursive rules 
involving more than one nonterminal, even taking advantage of sharing cannot stop 
an exponential explosion in the size of the LTIG. In the worst case, a grammar with 
m nonterminals can have m! sets of mutually left recursive rules, and the result LTIG 
will be enormous. 

5.1.3 An Example. Figure 12 illustrates the operation of the LTIG procedure. Step 1 
of the procedure converts the CFG at the top of the figure to the TIG shown on the 
second line. 
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In Step 2, no change is necessary in the Al-initial tree. However, the first A2-initial 
tree has the Al-initial tree substituted into it. After that, the first two A2-initial trees 
are converted into auxiliary trees as shown on the third line of Figure 12. 

In step 3, the Al-initial tree is lexicalized by substituting the remaining A2-initial 
tree into it. Step 4 creates the final LTIG by lexicalizing the auxiliary trees. The Al-initial 
tree is retained under the assumption that A1 is the start symbol of the grammar. 

5.1.4 LTIG Strongly Lexicalized TIG. It has been shown (Joshi and Schabes 1992; 
Schabes 1990) that TAG extended with adjoining constraints not only strongly lexical- 
izes CFG, but itself as well. We conjecture that our construction can be extended so 
that given any TIG as input, an LTIG generating the same trees could be produced. As 
with TAGs, adjoining constraints forbidding the adjunction of specific auxiliary trees 
on specific nodes can be required in the resulting LTIG. 

5.2 Comparison of the LTIG, GNF, and Rosenkrantz Procedures 
5.2.1 The GNF Procedure. The LTIG procedure of Theorem 2 is related to the proce- 
dure traditionally used to create GNF (see, for example, Harrison, 1978). This proce- 
dure is referred to below as the GNF procedure. This procedure is not the procedure 
originally developed by Greibach (1965). Rather, it is very similar to the procedure 
developed shortly thereafter by Abbott and Kuno (1965). The main part of the GNF 
procedure operates in three steps that are similar to Steps 2, 3, & 4. However, there 
are five important differences between the LTIG and GNF procedures. 

First, in lieu of Step 1, the GNF procedure converts the input into Chomsky normal 
form. This eliminates infinite ambiguity and empty rules, and puts the input grammar 
in a very specific form. The elimination of infinite ambiguity is essential, because the 
GNF procedure will not operate if infinite ambiguity is present. The elimination of 
empty rules is also essential, because empty rules in the input to the rest of the GNF 
procedure lead to empty rules in the output. However, the remaining changes caused 
by putting the input in Chomsky normal form are irrelevant to the basic goal of cre- 
ating a left anchored output. A more compact left anchored grammar can typically 
be produced by eliminating infinite ambiguity and empty rules without making the 
other changes necessary to put the input in Chomsky normal form. In the follow- 
ing discussion, we assume a modified version of the GNF procedure that takes this 
approach. 

Second, the GNF procedure can reduce the ambiguity of the input grammar. This 
is due to loss of information when the same rule is derived in more than one way 
by the GNF procedure. Ambiguity can be retained simply by retaining any duplicate 
rules that are derived (Abbott and Kuno 1965). 

Third, the GNF procedure changes the trees produced. This is an essential dif- 
ference and cannot be avoided. However, as shown by Abbott and Kuno (1965), it 
is possible to transform parse trees created using the GNF into the parse trees that 
would have been obtained using the original grammar, based on a record of exactly 
how each GNF rule was derived. In contrast to LTIG, which derives the correct trees 
in the first place, this transformation requires a separate post phase after parsing. 

The fourth important difference between the LTIG and GNF procedures is the way 
they handle left recursive rules. The LTIG procedure converts them into right auxiliary 
trees. In contrast, the GNF procedure converts them into right recursive rules. That is 
to say, the GNF procedure converts rules of the form Ak --+ AkO~ I fl into rules of the 
form Ak --~ fl [ flZk and Zk ~ ~ [ C~Zk. This is the source of the most radical changes in 
the trees produced. 
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A1 ~ A2A2 
CFG 

A2 ~ A1A21A2Alla 

A1 --~ A2A2 

Step2 A2 ~ aZ2[a 

Z 2 ---+ AllA2A2]A2A2Z2]A1Z2 

A1 ~ aA2IaZ2A2 

Step 3 A2 --* aZ21a 

Z2 ---+ A2A21AllAaA2Z21AIZ2 

A1 ~ aA21aZ2A2 

GNF A2 --~ aZ21a 

Z 2 ----+ aA2]aA2Z2]aZ2A21aZ2A2Z2 
Figure 13 
Example of the operation of the GNF procedure. 

A1 --* aZ2A2 

A2 ~ ag2 

Z2 ---+ aZ2A2Z2]c 
Figure 14 
The LTIG of Figure 12 converted into a CFG. 

Figure 13 illustrates the operation of the GNF procedure when applied to the same 
CFG as in Figure 12. Since the input grammar is finitely ambiguous and has no empty 
rules, it can be operated on as is. 

The step of the GNF procedure corresponding to Step 2 of the LTIG procedure 
converts the CFG at the top of Figure 13 into the rules shown in the second part of 
the figure. No change is necessary in the A1 rule. However, the first A2 rule has the A1 
rule substituted into it. After that, the left recursive A2 rules are converted into right 
recursive rules utilizing a new nonterminal Z2. 

The step of the GNF procedure corresponding to Step 3 of the LTIG procedure 
lexicalizes the A1 rule by substituting the A2 rules into it. 

The final step of the GNF procedure lexicalizes the Z2 rules as shown at the bottom 
of Figure 13. Note that there are eight ways of substituting an A1 or A2 rule into the first 
position of a Z2 rule, but they yield only four distinct rules. For example, substituting 
A1 ---* aA2 into Z2 --* A1 yields the same result as substituting A2 ~ a into Z2 --+ A2A2. 

If the LTIG created in Figure 12 is converted into a CFG as specified in Theorem 1, 
the rules in Figure 14 are obtained. Ambiguity is lost in this transformation, because 
both auxiliary trees turn into the same rule. If the empty rule in Figure 14 is eliminated 
by substitution, a grammar identical to the one at the bottom of Figure 13 results. 

We conjecture that there is, in general, an exact correspondence between the output 
of the LTIG procedure and the GNF procedure. In particular, if (a) the LTIG procedure 
is applied to a CFG in Chomsky normal form, (b) the LTIG is converted into a CFG 
as specified in Theorem 1, and (c) any resulting empty rules are eliminated by substi- 
tution, the result is always the same CFG as that produced by the GNF procedure. 

The fifth important difference between the LTIG and GNF procedures is that the 
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output of the LTIG procedure can be represented compactly. There are two reasons 
for this. To start with, the use of auxiliary trees in an LTIG can allow it to be expo- 
nentially smaller than the equivalent GNF. To see this, note that the elimination of 
empty rules required when converting an LTIG into a GNF can cause an exponential 
increase in the number of rules. Furthermore, the trees created by the LTIG proce- 
dure have an extremely repetitive structure. As a result, node sharing can typically be 
used to represent the LTIG compactly--it is often smaller than the original CFG (see 
Section 6.1). 

5.2.2 The Rosenkrantz Procedure. Another point of comparison with the LTIG proce- 
dure is the CFG lexicalization procedure of Rosenkrantz (1967). This procedure oper- 
ates in a completely different way from Greibach's procedure--simultaneously elimi- 
nating all leftmost derivation paths of length greater than one, rather than shortening 
derivation paths one step at a time via substitution and eliminating left recursive rules 
one nonterminal at a time. 

One consequence of the simultaneous nature of the Rosenkrantz procedure is that 
one need not select an order of the nonterminals. This contrasts with the Greibach and 
LTIG procedures where the order chosen can have a significant impact on the number 
of elementary structures in the result. 

As with the GNF procedure, one typically begins the Rosenkrantz procedure by 
converting the input to Chomsky normal form. This is necessary to remove infinite 
ambiguity and empty rules. However, it is also needed to remove chain rules, which 
would otherwise lead to nonlexicalized rules in the output. The conversion to Chore- 
sky normal form makes a lot of other changes as well, which are largely counterpro- 
ductive if one wants to construct a left anchored grammar. 

Also like the GNF procedure, ambiguity can be reduced and the trees derived are 
changed. However, the ambiguity can be retained if duplicate rules are maintained. 
It should also be possible to convert the resulting parse trees into parse trees in the 
original grammar. This could be a complicated process, however, since the Rosenkrantz 
algorithm alters the trees more radically than the GNF procedure. 

A key advantage of the Rosenkrantz procedure is that, unlike the Greibach and 
LTIG procedures, the output it produces cannot be exponentially larger than the in- 
put. In particular, the growth in the number of rules is at worst O(mS), where m is 
the number of nonterminals. However, the Rosenkrantz procedure typically produces 
grammars that are less compact than those created by the LTIG procedure (see Sec- 
tion 6.1). 

It may be useful to develop a formalism and procedure that bare the same relation- 
ship to the Rosenkrantz procedure that TIG and the LTIG procedure bare to the GNF 
procedure. Given the fundamental advantages of the Rosenkrantz procedure over the 
GNF procedure, this might lead to a result that is superior to the LTIG procedure. 

5.3 Variants of the LTIG Procedure 
The LTIG procedure above creates a left anchored LTIG that uses only right auxiliary 
trees. As shown in Section 6.3, this is quite an advantageous form. However, other 
forms might be more advantageous in some situations. Many variants of the LTIG 
procedure are possible. For example, everywhere in the procedure, the word "right" 
can be replaced by "left" and vice versa. This results in the creation of a right anchored 
LTIG that uses only left auxiliary trees. This could be valuable when processing a 
language with a fundamentally left recursive structure. 

A variety of steps can be taken to reduce the number of elementary trees produced 
by the LTIG procedure. To start with, the choice of an ordering {A1 . . . . .  Am} for the 
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Nonterminals Terminals Rules Size 

Tomita I 5 4 8 22 
Tomita II 13 9 43 133 
Tomita III 38 54 224 679 
Tomita IV 45 32 394 1,478 
Treebank 200 11 31 200 689 
Treebank 500 14 36 500 1,833 
Treebank 1000 16 36 1,000 3,919 
Mike 25 102 145 470 

Left Cycles of Length Right Cycles of Length 

1 2 > 2 1 2-9 > 9 

Tomita I 2 0 0 0 1 0 
Tomita II 7 0 0 8 3 0 
Tomita III 10 0 0 11 2,260 12,595 
Tomita IV 13 0 0 11 3,453 5,964 
Treebank 200 5 0 0 5 15 0 
Treebank 500 9 1 0 9 945 44 
Treebank 1000 11 2 0 10 14,195 5,624 
Mike 0 0 0 1 1 0 

Figure 15 
Properties of the Grammars used as test cases. 

nonterminals  is significant. In the presence of sets of mutual ly  left recursive rules 
involving more than one nonterminal  (i.e., sets of rules of the form {A ~ Bfl, B 
Ac~}), choosing the best ordering of the relevant nonterminals  can greatly reduce the 
number  of trees produced.  

If one abandons  the requirement  that the g rammar  must  be left anchored,  one can 
sometimes reduce the number  of e lementary  trees p roduced  dramatically. The reason 
for this is that instead of being forced to lexicalize each rule in G at the first position on 
its right hand side, one is free to choose the position that minimizes the total number  
of e lementary trees eventual ly produced.  However ,  one must  be careful to meet  the 
requirements  imposed  by  TIG while doing this. In particular, one must  create only 
left and right auxiliary trees as opposed  to wrapping  auxiliary trees. The search space 
of possible alternatives is so large that it is not  practical to find an optimal LTIG; 
however,  by  means of simple heuristics and hill climbing, significant reductions in the 
number  of e lementary trees can be obtained. 

Finally, one can abandon the requirement  that there be only one way  to derive 
each tree in the LTIG. This approach is discussed in Schabes and Waters 1993c. In 
the presence of sets of mutual ly  left recursive rules involving more  than one nonter-  
minal, allowing increased ambiguity can yield significant reduct ion in the number  of 
e lementary trees. 

It should be noted that while exploring ways  to create LTIGs with small numbers  
of e lementary trees is interesting, it may  not  be of practical significance because the 
number  of e lementary trees is not  a good measure  of the size of a TIG. In particular, 
if a decreased number  of e lementary  trees is accompanied by  decreased sharing, this 
can lead to an increase in the g rammar  size, rather than a decrease. As illustrated in 
Section 6.1, the opportuni t ies  for sharing between the e lementary trees in the LTIGs 
created by the LTIG procedure  is so high that the grammars  p roduced  are often smaller 
than alternatives that have many  fewer e lementary trees. 
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6. Experimental Results 

The experiments below use eight grammars for fragments of English as test cases 
(see Figure 15). The first four grammars are the test CFGs used by Tomita (1985). 
The next three grammars are derived from the Treebank corpus (Brill et al. 1990) 
of hand-parsed sentences from the Wall Street Journal. Each "Treebank n" grammar 
corresponds to the n most commonly occurring local rules in the corpus that form a 
CFG with no useless productions. 8 The eighth grammar is a CFG grammar used in the 
natural language processing component of a simple interactive computer environment. 
It supports conversation with an animated robot called Mike (Rich et al. 1994a and 
1994b). 

The grammars are all finitely ambiguous and none generates the empty string. The 
Tomita III grammar contains an empty rule. The relative size and complexity of the 
grammars is indicated at the top of Figure 15. The size [G[ is computed as appropriate 
for an Earley-style CFG parser--i.e., as the number of possible dotted rules, which is 
the sum, over all the rules, of: one plus the number of elements on the right-hand side 
of the rule. 

The bottom of Figure 15 summarizes the left and right recursive structure of the 
test grammars. The grammars have very few sets of mutually left recursive rules 
involving more than one nonterminal. In contrast, all but the smallest grammars have 
many sets of mutually right recursive rules involving significant numbers of different 
nonterminals. This reflects the fact that English is primarily right recursive in nature. 

Due to the unbalanced recursive nature of the test grammars, left anchored lexical- 
izations are more compact than right anchored ones. For languages that are primarily 
left recursive in nature, the situation would be reversed. 

The experiments below are based on parsing a corpus of randomly generated 
sentences. For each test grammar, four sentences were generated of each possible 
length from 1-25. The top of Figure 16 shows the average number of parses of these 
sentences versus sentence length. The ambiguity varies by five orders of magnitude 
across the test corpus. 

The bottom of Figure 16 shows the average number of chart states created when 
parsing the test sentences using a standard Earley-style CFG parser. As is to be ex- 
pected, the number of chart states rises significantly with the complexity of the gram- 
mars, varying by two orders of magnitude. The number of chart states also grows 
with the length of the sentences, but not much faster than linearly. 

6.1 The Size of LTIG Grammars 
The top of Figure 17 shows the number of elementary initial and auxiliary trees in 
grammars created by the LTIG procedure given the various test grammars. Because 
most of the test grammars do not have sets of mutually left recursive rules involving 
more than one nonterminal, the order chosen for the nonterminals typically has no 
effect on the output. However, for the grammars where there is an effect, the ordering 
that lead to the smallest number of elementary trees was automatically chosen. 

The middle portion of the table summarizes the left anchored LTIGs created by 
the procedure of Theorem 2. The rightmost portion summarizes unconstrained LTIGs 
created by a hill-climbing algorithm that attempts to minimize the number of elemen- 

8 A local rule encodes the relationship between a node in a tree and its immediate children. For example, 
the second tree on the last line of Figure 12 corresponds to three local rules A 2 ~ AIA2, A1 --* A2A2, 
and A 2 ---+ a. 
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1-5 6-10 11-15 16-20 21-25 

Tomita I 1 4 25 174 3,696 
Tomita II 1 2 3 50 46 
Tomita III 1 2 6 66 58 
Tomita IV 1 11 25 140 624 
Treebank 200 1 1 3 8 36 
Treebank 500 1 4 20 218 1,721 
Treebank 1000 2 36 1,376 23,106 279,656 
Mike 1 1 1 1 1 

1-5 6-10 11-15 16-20 21-25 

Tomita I 23 51 88 135 205 
Tomita II 145 308 461 698 898 
Tomita III 304 577 1,026 1,370 1,788 
Tomita IV 827 1,436 2,311 3,192 4,146 
Treebank 200 526 1,054 1,500 2,171 2,717 
Treebank 500 1,193 2,762 4,401 6,712 8,566 
Treebank 1000 3,795 8,301 15,404 23,689 32,633 
Mike 124 163 264 334 435 

Figure 16 
Properties of the sentences used as test cases versus sentence length. Top: average ambiguity. 
Bottom: average chart size. 

CFG Left LTIG LTIG 

Rules Initial Auxiliary Initial Auxiliary 

Tomita I 8 6 2 5 1 
Tomita II 43 905 7 87 8 
Tomita III 224 1,790 45 522 51 
Tomita IV 394 40,788 469 1,456 201 
Treebank 200 200 648 77 284 76 
Treebank 500 500 9,558 4,497 794 698 
Treebank 1000 1 ,000  1,050,343 667,972 2,792 3,306 
Mike 145 626 0 267 0 

CFG Left LTIG LTIG 

Figure 17 

Tomita I 22 16 21 
Tomita II 133 115 125 
Tomita III 679 528 665 
Tomita IV 1,478 1,263 1,438 
Treebank 200 689 517 677 
Treebank 500 1,833 1,427 1,801 
Treebank 1000 3,919 3,146 3,839 
Mike 470 356 470 

Properties of LTIGS corresponding to the test grammars. Top: numbers of elementary trees. 
Bottom: grammar size IGI. 

tary trees produced.  It can be seen that the left anchored LTIG cor responding  to a CFG 
can have  m a n y  more  e lementary  trees than an uncons t ra ined  LTIG. 

The bo t tom of Figure 17 shows the sizes of the var ious  LTIGS. The sizes are 
smaller  than the number s  of trees, because there is a large a m o u n t  of sharing be tween  
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CFG Left LTIG Rosenkrantz GNF 

Tomita I 8 8 16 19 
Tomita II 43 912 861 10,848 
Tomita III 224 1,835 3,961 4,931 
Tomita IV 394 41,257 45,834 243,374 
Treebank 200 200 725 2,462 1,723 
Treebank 500 500 14,055 20,896 149,432 
Treebank 1000 1,000 1,718,315 133,170 > 10 s 
Mike 145 626 656 843 

CFG Left LTIG Rosenkrantz GNF 

Tomita I 22 16 54 68 
Tomita II 133 115 3,807 100,306 
Tomita III 679 528 16,208 29,622 
Tomita IV 1,478 1,263 257,206 2,461,556 
Treebank 200 689 517 11,104 9,546 
Treebank 500 1,833 1,427 106,812 1,591,364 
Treebank 1000 3,919 3,146 766,728 > 10 9 

Mike 470 356 2,439 4,384 
Figure 18 
Comparison of the LTIG, Rosenkrantz, 
structures. Bottom: grammar size. 

and GNF procedures. Top: number of elementary 

the elementary structures in the LTIGs. In fact, there is so much sharing that the LTIGs 
are smaller than the corresponding CFGs. 

The left anchored LTIGs are also smaller than the unconstrained LTIGs. This is 
possible because of the small number of sets of mutually left recursive rules involving 
more than one nonterminal in the test grammars. If there were many such sets, the 
left anchored LTIGs could be larger than the unconstrained ones; and it might be 
fruitful to consider using a right anchored LTIG. If there were many sets of mutually 
left recursive rules and many sets of mutually right recursive rules, then every LTIG 
might be large. 

6.2 The GNF and Rosenkrantz Procedures 
As a basis for comparison with the LTIG procedure, the GNF and Rosenkrantz proce- 
dures were implemented as well. To minimize the size of the grammars produced by 
these latter procedures, the input grammars were not converted to Chomsky normal 
form, but rather only modified to the minimal extent required by the procedures (see 
Section 5.2). This yielded savings that were almost always significant and sometimes 
dramatic. In the case of the GNF procedure, the order of nonterminals was chosen so 
as to minimize the number of rules produced. 

The top of Figure 18 compares the grammars produced by the three procedures in 
terms of the number of elementary structures. Except for Treebank 200, the Rosenkrantz 
procedure created fewer rules than the GNF procedure and on the larger grammars, 
dramatically fewer. The LTIG procedure created somewhat fewer elementary structures 
than the Rosenkrantz procedure, except that for Treebank 1000, the LTIG has thirteen 
times more elementary structures than the Rosenkrantz grammar. Assumedly, the large 
size of the LTIG for Treebank 1000 reflects the fundamentally exponential behavior of 
the LTIG procedure in comparison to the polynomial behavior of the Rosenkrantz 
procedure. 

The bottom of Figure 18 takes sharing into account and compares the sizes of the 
various grammars. It reveals that the LTIGs are much more compact than the other 
grammars, particularly for the larger test grammars. 

The entries in Figure 18 for the Treebank 1000 GNF grammar are only approxi- 
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CFG Left LTIG Rosenkrantz GNF 

Tomita I 1.00 0.69 0.94 0.95 
Tomita II 1.00 0.31 0.39 2.14 
Tomita III 1.00 0.09 0.08 0.13 
Tomita 1V 1.00 0.14 0.28 
Treebank 200 1.00 0.12 0.15 0.53 
Treebank 500 1.00 0.13 0.27 
Treebank 1000 1.00 0.19 
Mike 1.00 0.21 0.17 0.19 

CFG Left LTIG Rosenkrantz GNF 

Tomita I 1.0 1.0 
Tomita II 1.0 1.0 
Tomita III 1.0 1.0 
Tomita IV 1.0 1.0 
Treebank 200 1.0 1.0 
Treebank 500 1.0 1.0 
Treebank 1000 1.0 1.0 
Mike 1.0 1.0 

Figure 19 
Parsing properties of LTIG, Rosenkrantz, and 
Bottom: relative ambiguity. 

1.0 1.0 
1.0 1.0 
0.7 0.7 
0.8 
1.0 0.9 
0.8 

1.0 1.0 

GNF grammars. Top: relative chart sizes. 

mate, because this grammar is too large to be practically computed, given the facilities 
available to the authors. We had to estimate the number of rules based on the number 
of substitutions called for by the GNF procedure. 

6.3 Parsing with LTIG 
To evaluate parsing with LTIG, three experimental parsers were implemented using 
the deductive engine developed by Shieber, Schabes, and Pereira (1995). The test gram- 
mars were parsed using a standard Earley-style CFG parser. The grammars created 
by the Greibach and Rosenkrantz procedures were parsed using an Earley-style CFG 
parser adapted to take full advantage of left anchored CFG grammars. The grammars 
produced by the LTIG procedure were parsed with the parser of Section 4 extended 
in all the ways discussed in Section 4.2 so that it takes full advantage of sharing and 
the left anchored nature of these LTIGs. Every effort was extended to make the three 
parsers as identical as possible, so that any differences in parsing would be due to the 
grammars used, rather than the parsers. 

The top of Figure 19 compares the number of chart states required when parsing 
using the various grammars. The numbers are averages over all the test sentences of 
the ratio of the number of chart states created using Various grammars to the chart 
states created when parsing using the original CFG. 

Chart states, instead of parsing times, are used as a basis for comparison because 
they can be more reliably and repeatably obtained than parsing times and because they 
allow the easy comparison of parsers implemented using different technologies. Chart 
states should be a particularly accurate basis for comparison in this case, because 
the overhead per chart element is essentially identical for the three parsers being 
compared. 

The second column in the table at the top of Figure 19 shows that in all cases, 
parsing with LTIG requires fewer chart states than parsing with the original CFG. 
Except for the Tomita I grammar, which is a toy example, the reduction is by a factor 
of at least 3 and typically in the range of 5-10. This benefit is obtained without changing 
the trees produced and without increasing the grammar size. The benefit is as great, 
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1-5 6-10 11-15 16-20 21-25 

Tomita I 0.43 0.60 0.69 0.76 0.86 
Tomita II 0.28 0.30 0.30 0.34 0.35 
Tomita III 0.06 0.08 0.10 0.10 0.11 
Tomita IV 0.11 0.14 0.15 0.15 0.17 
Treebank 200 0.08 0.11 0.12 0.14 0.14 
Treebank 500 0.08 0.11 0.13 0.16 0.16 
Treebank 1000 0.10 0.15 0.21 0.25 0.33 
Mike 0.14 0.23 0.21 0.22 0.21 

1 2-10 11-100 101-1000 > 1000 

Tomita I 0.44 0.61 0.73 0.80 0.90 
Tomita II 0.28 0.32 0.36 
Tomita III 0.06 0.09 0.13 
Tomita IV 0.11 0.13 0.16 0.18 
Treebank 200 0.09 0.13 0.15 
Treebank 500 0.07 0.12 0.15 0.18 0.20 
Treebank 1000 0.08 0.13 0.17 0.22 0.30 
Mike 0.20 

Figure 20 
Ratio of Left LTIG to CFG chart states. Top: versus sentence length. Bottom: versus sentence 
ambiguity. 

or greater, for large grammars  like Tomita IV and Treebank 1000 as for small ones like 
Tomita II and Mike. 

The grammars  generated by  the Rosenkrantz and GNF procedures  also yield re- 
ductions in the number  of chart states. However ,  the reduction is not  as great as for the 
LTIG, and is only obtained at the cost of changing the trees produced  and increasing 
the grammar  size. 

With the Rosenkrantz and GNF procedures,  the size of the g rammar  can be a 
significant problem in two ways. First, the grammar  can be so large that even with 
left anchored parsing, an unreasonably large number  of chart states is created. In 
Figure 19, this happens  with the GNF for Tomita II. Second, the grammar  can be too 
large to parse with at all. Several of the entries in Figure 19 are left blank, because 
using our  experimental  deduct ion-based parser, it was not possible for us to parse 
with grammars  larger than 100, 000 or so. It is not clear whether  any practical parser 
could handle the grammar  that the GNF procedure  creates for Treebank 1000. 

The bot tom of Figure 19 shows the average relative ambiguity of the grammars  
produced  by the three procedures when  applied to the test sentences. Each number  
is the average ambiguity of the sentences under  the grammar  in question divided by  
their ambiguity under  the original CFG. The LTIG always has the same ambigui ty  as 
the CFG. The other procedures often create grammars  with less ambiguity. 

The tables in Figure 20 provide a more detailed analysis of the reduction in chart  
states obtained via the LTIG procedure.  As in the top of Figure 19, the numbers  are 
ratios of the number  of chart states created by  the LTIG parser to the number  of chart 
states created by  the CFG parser, for sentences with the indicated properties.  

The top of Figure 20 shows that the benefit obtained by  using LTIG declines 
with longer sentences, but  continues to be significant. The bot tom of Figure 20 shows 
that the benefit obtained by using LTIG also declines with higher  ambiguity, but  not  
dramatically. The missing entries in the table stem from the fact that some of the 
grammars  do not generate significant numbers  of highly ambiguous  sentences. 
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7. A Future Direct ion  

In the preceding, TIG is primarily presented as an alternative to CFG. Another 
perspective on TIG is as an alternative to TAG. To explore the possibilities in this 
regard, we investigated the extent to which the lexicalized tree adjoining grammar 
(LTAG) for English being developed at the University of Pennsylvania (XTAG Research 
Group 1995) is consistent with LTIG. 

The current English LTAG consists of 392,001 elementary trees. These trees are all 
lexicalized and contain a total of 54,777 different words. At first glance, it might seem 
impractical to parse using such an enormous grammar expressed in any formalism. 
However, because the elementary trees are lexicalized and there are so many terminal 
symbols, only a small fraction of the elementary trees needs to be considered when 
parsing any one sentence. In particular, there are on average only 7 elementary trees 
for each word. Therefore, only on the order of 100 elementary trees need be considered 
when parsing any one ten to twenty word sentence. 

In the context of this paper, the most striking aspect of the current English LTAG 
is that it is nearly an LTIG (see Figure 21). In particular, the current English LTAG con- 
tains almost 100,000 elementary left and right auxiliary trees but only 109 elementary 
wrapping auxiliary trees. Further, the vast majority of the ways the auxiliary trees can 
be used are also consistent with the restrictions imposed by TIG. The only exceptions 
are the small number of situations where an elementary wrapping auxiliary tree can 
be adjoined and the even smaller number of situations where an elementary left aux- 
iliary tree can be adjoined on the spine of an elementary right auxiliary tree and vice 
versa. 

Figure 21 is suggestive, but it has several shortcomings. The figure implicitly as- 
sumes that every elementary tree and every interaction between them is equally im- 
portant. It is entirely possible that some of the non-LTIG adjunctions occur frequently 
or are linguistically essential, or both. 

More importantly, the figure considers only simple, unconstrained adjunction. 
However, the current English LTAG makes use of adjoining constraints and the propa- 
gation of attributes during parsing. To capture this additional information, one would 
have to use an extension of LTIG supporting adjoining constraints and the propaga- 
tion of attributes. Due to the switch from adjoining on the roots of auxiliary trees in 
LTAG to multiple simultaneous adjunction in LTIG, the constraints and propagation 
of attributes would have to operate very differently. Further research is needed to 
determine whether equivalent operation can be obtained in all situations. 

Given the above, there is no reason to believe that it would be easy to convert the 
current English LTAG entirely into an LTIG. However, there is every reason to believe 
that it would be worthwhile to try. Given that no effort was expended to date, yet the 
grammar is close to an LTIG, the grammar could probably be brought much closer to 
an LTIG. If complete conversion is not possible, one could consider implementing a 
combined parser for TIG and TAG that would apply TIG parsing to the TIG subset of 

Number Incompatible With LTIG 

initial trees 294,568 0 0% 
auxiliary trees 97,433 109 .11% 
possible adjunctions 45,962,478,485 49,840,130 .11% 

Figure 21 
Most of the current LTAG for English is consistent with LTIG. 
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a TAG and full TAG parsing to the rest. For a grammar that was mostly a TIG, such 
a parser should be almost as fast as a TIG parser. 

8. Conclusion 

A variety of lexicalization procedures for CFG have previously been developed. How- 
ever, they all have significant disadvantages. The approaches of Greibach and Rosen- 
krantz, which produce a CFG in Greibach normal form, are only weak lexicalization 
procedures since they do not guarantee that the same trees are produced. In addition, 
these approaches often produce very large output grammars. TAG allows strong lex- 
icalization that preserves the trees produced; however, because it uses an operation 
deriving context-sensitive languages, TAG entails larger computation costs than CFGs. 

Tree insertion grammar (TIG) is a restricted form of tree adjoining grammar (TAG) 
that is O(ng)-time parsable, generates context-free languages, and yet allows the strong 
lexicalization of CFG. The main results of this paper are an efficient Earley-style parser 
for TIG and a procedure that converts any CFG into a left anchored lexicalized TIG 
(LTIG) that produces the same trees with the same degree of ambiguity. By taking 
advantage of the sharing between trees, these LTIGs can be represented compactly. 

Experiments with grammars for subsets of English show that the corresponding 
LTIGs are often even smaller than the original CFGs. Most importantly, by taking 
advantage of the left anchored nature of the LTIG, it is possible to avoid on the order 
of 80-90% of the chart states required when parsing with the original CFG. Given that 
the per-chart-state cost of TIG and CFG parsers are essentially identical, this should 
translate directly into an 80-90% decrease in parsing time. 

A possible future use of TIG is as an alternative for TAG. TIG is not as powerful as 
TAG, but it includes a number of the features of TAG. Further, at least in the current 
English LTAG, the features of TAG that are included in TIG are used more often than 
the features that are not included in TIG. As a result, it may be possible to use TIG 
instead of TAG in some situations, thereby gaining O(n 3) parsability. 

The uses for TIG discussed in this paper all involve starting with an existing 
grammar and converting it into a TIG. An important area for further investigation 
is using TIG as the original formalism for constructing grammars. This is potentially 
valuable because TIG allows greater derivational freedom than CFG, without any 
additional parsing cost. For instance, one can require that the grammar be lexicalized, 
without placing any limits on the parse trees produced. This could result in grammars 
that are better motivated from a linguistic standpoint, or faster to parse, or both. 

Acknowledgments 
We thank John Coleman, Aravind Joshi, 
Esther K6nig, Fernando Pereira, Stuart 
Shieber and B. Srinivas for valuable 
discussions. We thank the anonymous 
referees for a number of insightful 
comments and suggestions. We thank 
Masaru Tomita for making his test 
grammars available to us. 

References 
Abbott, Russell, and Kuno, Susumu. (1965). 

"The predictive analyzer and context-free 
grammars." Harvard University Technical 
Report of the Machine Translation Project. 

Bar-Hillel, Yoshua. (1964). "On categorial 
and phrase structure grammars." In 
Language and Information, 99-115. 
(Addison-Wesley, First appeared in the 
Bulletin of the Research Council of Israel, 
vol. 9F, 1-16 (1960).) 

Brill, Eric; Magerman, David; Marcus, 
Mitchell; and Santorini, Beatrice. (1990). 
"Deducing linguistic structure from the 
statistics of large corpora." In DARPA 
Speech and Natural Language Workshop. 
Morgan Kaufmann, Hidden Valley, PA, 
June. 

Chomsky, Noam. (1981). Lectures on 
Government and Binding. Foris, Dordrecht. 

Earley, Jay C. (1968). An Efficient Context-Free 

511 



Computational Linguistics Volume 21, Number 4 

Parsing Algorithm. Doctoral dissertation, 
Carnegie-Mellon University, Pittsburgh, 
PA. 

Earley, Jay C. (1970). "An efficient 
context-free parsing algorithm." Commun. 
ACM, 13(2), 94-102. 

Gazdar, Gerald; Klein, Ewan H.; Pullum, 
Geoffrey. K.; and Sag, Ivan. A. (1985). 
Generalized Phrase Structure Grammars. 
Blackwell Publishing, Oxford. Also 
published by Harvard University Press, 
Cambridge, MA. 

Graham, Susan L.; Harrison, Michael A.; 
and Ruzzo, Walter L. (1980). "An 
improved context-free recognizer." ACM 
Transactions on Programming Languages and 
Systems, 2(3), 415--462, July. 

Greibach, Sheila A. (1965). "A new 
normal-form theorem for context-free 
phrase-structure grammars." J. ACM, 12, 
42-52. 

Gross, Maurice' (1984). "Lexicon-grammar 
and the syntactic analysis of French." In 
Proceedings, 10 th International Conference on 
Computational Linguistics (COLING'84), 
Stanford. 

Harrison, Michael A. (1978). Introduction to 
Formal Language Theory. Addison-Wesley, 
Reading, MA. 

Joshi, Aravind K. (1985). "How much 
context-sensitivity is necessary for 
characterizing structural 
descriptions--Tree Adjoining Grammars." 
In D. Dowty, L. Karttunen, and 
A. Zwicky, editors, Natural Language 
Processing--Theoretical, Computational and 
Psychological Perspectives. Cambridge 
University Press, New York. 

Joshi, Aravind K., and Schabes, Yves (1992). 
"Tree-adjoining grammars and lexicalized 
grammars." In Maurice Nivat and 
Andreas Podelski, editors, Tree Automata 
and Languages. Elsevier Science. 

Kaplan, Ronald, and Bresnan, Joan (1983). 
"Lexical-functional grammar: A formal 
system for grammatical representation." 
In J. Bresnan, editor, The Mental 
Representation of Grammatical Relations. MIT 
Press, Cambridge MA. 

Karttunen, Lauri (1986). "Radical 
lexicalism." Technical Report CSLI-86-68, 
CSLI, Stanford University, 1986. Also in 
Alternative Conceptions of Phrase Structure, 
University of Chicago Press, Baltin, M. 
and Kroch A., Chicago. 

Lang, Bernard (1990). "The systematic 
constructions of Earley parsers: 
Application to the production of O(n 6) 
Earley parsers for Tree Adjoining 
Grammars." In Proceedings, 1st 

International Workshop on Tree Adjoining 
Grammars, Dagstuhl Castle, FRG. 

Pollard, Carl, and Sag, Ivan A. (1987). 
Information-Based Syntax and Semantics. 
Vol. 1: Fundamentals. CSLI. 

Rich, Charles; Waters, Richard C.; Schabes, 
Yves; Freeman, William T.; Torrance, 
Mark C.; Golding, Andrew R.; and Roth, 
Michal (1994a). "An animated on-line 
community with artificial agents." IEEE 
Multimedia, 1(4), 32-42, Winter 1994. 

Rich, Charles; Waters, Richard C.; 
Strohecker, Carol; Schabes, Yves; Freeman, 
William T.; Torrance, Mark C.; Golding, 
Andrew R.; and Roth, Michal (1994b). 
"Demonstration of an interactive 
multimedia environment." IEEE Computer, 
27(12), 15-22, December 1994. 

Rosenkrantz, Daniel J. (1967). "Matrix 
equations and normal forms for 
context-free grammars." Journal of the 
Association for Computing Machinery, 14(3), 
501-507. 

Schabes, Yves (1990). Mathematical and 
Computational Aspects of Lexicalized 
Grammars. Doctoral dissertation, 
University of Pennsylvania, Philadelphia, 
PA. Available as technical report 
(MS-CIS-90-48, LINC LAB179) from the 
Department of Computer Science. 

Schabes, Yves (1991). "The valid prefix 
property and left to right parsing of 
tree-adjoining grammar." In Proceedings, 
Second International Workshop on Parsing 
Technologies, 21-30, Cancun, Mexico. 

Schabes, Yves; Abeill6, Anne; and Joshi, 
Aravind K. (1988). "Parsing strategies 
with 'lexicalized' grammars: Application 
to tree adjoining grammars." In 
Proceedings, 12 th International Conference on 
Computational Linguistics (COLING'88), 
Budapest, Hungary. 

Schabes, Yves, and Waters, Richard C. 
(1993a). "Lexicalized context-free 
grammars." In 21 st Meeting of the 
Association for Computational Linguistics 
(ACL'93), 121-129, Columbus, OH, June. 

Schabes, Yves, and Waters, Richard C. 
(1993b). "Stochastic lexicalized 
context-free grammars." In Proceedings, 
Third International Workshop on Parsing 
Technologies, 257-266, Tilburg (the 
Netherlans) and Durbuy (Belgium), 
August. 

Schabes, Yves, and Waters, Richard C. 
(1993c). "Lexicalized context-free 
grammar: A cubic-time parsable 
formalism that strongly lexicalizes 
context-free grammar." Technical Report 
93-04, Mitsubishi Electric Research 
Laboratories, 201 Broadway. Cambridge, 

512 



Schabes and Waters Tree Insertion Grammar 

MA 02139. 
Schabes, Yves, and Shieber, Stuart (1994). 

"An alternative conception of 
tree-adjoining derivation." Computational 
Linguistics, 20(1), 91-124, March. 

Shieber, Stuart M.; Schabes, Yves; and 
Pereira, Fernando C.N. (1995). "Principles 
and implementation of deductive 
parsing." Journal of Logic and Computation, 
24 (1&2), 3-36. 

Steedman, Mark (1987). "Combinatory 
grammars and parasitic gaps." Natural 
Language and Linguistic Theory, 5, 403-439. 

Thatcher, James W. (1971). "Characterizing 
derivations trees of context free grammars 
through a generalization of finite automata 
theory." Journal of Computer and System 
Sciences, 5, 365-396. 

Tomita, Masaru (1985). Efficient Parsing for 
Natural Language, A Fast Algorithm for 
Practical Systems. Kluwer Academic 
Publishers. 

Vijay-Shanker, K. (1987). A Study of Tree 
Adjoining Grammars. Doctoral dissertation, 
Department of Computer and Information 

Science, University of Pennsylvania. 
Vijay-Shanker, K., and Joshi, Aravind K. 

(1985). "Some computational properties of 
Tree Adjoining Grammars." In 23 rd 
Meeting of the Association for Computational 
Linguistics, 82-93, Chicago, Illinois. 

Vijay-Shanker, K., and Weir, David (1993). 
"Parsing some constrained grammar 
formalisms." Computational Linguistics, 
19(4), 591-636. 

Vijay-Shanker, K.; Weir, David J.; and Joshi, 
Aravind K. (1986). "Tree adjoining and 
head wrapping." In Proceedings, 11 th 
International Conference on Computational 
Linguistics (COLING'86). 

Weir, David J. (1988). Characterizing Mildly 
Context-Sensitive Grammar Formalisms. 
Doctoral dissertation, Department of 
Computer and Information Science, 
University of Pennsylvania. 

XTAG Research Group (1995). "A 
Lexicalized Tree Adjoining Grammar for 
English." IRCS technical report 95-03. 
Institute for Research in Cognitive 
Science. University of Pennsylvania, 
Philadelphia, PA 19104. 

Appendix A: No wrapping trees can be built in TIG 

In this appendix,  we give a proof that given a TIG (G, NT, L A, S), it is not  possible to 
create wrapping  auxiliary trees. 

Proof 
The only e lementary trees allowed are left auxiliary trees, right auxiliary trees and 
initial trees. A case-by-case analysis reveals that every  possible combination of these 
kinds of trees yields a new tree in one of the three categories. Therefore, no derivat ion 
can ever create a wrapping  auxiliary tree. 

Substitution of an initial tree in an initial tree yields an initial tree. 
Adjunction of a left or right auxiliary tree in an initial tree yields an initial tree. 
Substitution of an initial tree in a left (right) auxiliary tree yields a left (right) 

auxiliary tree, because by  definition the node marked  for substitution must  be left 
(right) of the foot and therefore all the new frontier nodes must  be added  left (right) 
of the foot. 

Adjunction of a left (right) auxiliary tree S in a right (left) auxiliary tree T yields a 
right (left) auxiliary tree, because by  definition the node adjoined upon  must  be to the 
right (left) of the spine of T and therefore all the new frontier nodes must  be added  
right (left) of the foot of T. 

Adjunction of a left (right) auxiliary tree S in a left (right) auxiliary tree T yields 
a left (right) auxiliary tree, for the same basic reason as above except that the node 
adjoined upon  can be o n t h e  spine of T. However ,  since all the nonempty  structure 
in S is left (right) of the spine of S, even in this case, all the new nonempty  frontier 
nodes are added  to the left (right) of the foot of T. [] 
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