
Tree Insertion Grammar: A Cubic-Time,
Parsable Formalism that Lexicalizes
Context-Free Grammar without Changing
the Trees Produced

Yves Schabes •
MERL

Richard C. Waters"
MERL

Tree insertion grammar (TIG) is a tree-based formalism that makes use of tree substitution and
tree adjunction. TIG is related to tree adjoining grammar. However, the adjunction permitted in
TIG is sufficiently restricted that TIGs only derive context-free languages and TIGs have the same
cubic-time worst-case complexity bounds for recognition and parsing as context-free grammars.
An efficient Earley-style parser for TIGs is presented.

Any context-free grammar (CFG) can be converted into a lexicalized tree insertion grammar
(LTIG) that generates the same trees. A constructive procedure is presented for converting a CFG
into a left anchored (i.e., word initial) LTIG that preserves ambiguity and generates the same
trees. The L,TIG created can be represented compactly by taking advantage of sharing between the
elementary trees in it. Methods of converting CFGs into left anchored CFGs, e.g., the methods
of Greibach and Rosenkrantz, do not preserve the trees produced and result in very large output
grammars.

For the purpose of experimental evaluation, the LTIG lexicalization procedure was applied
to eight different CFGs for subsets of English. The LTIGs created were smaller than the original
CFGs. Using an implementation of the Earley-style TIG parser that was specialized for left
anchored LTIGs, it was possible to parse more quickly with the LTIGs than with the original
CFGs.

1. Introduction

Most current linguistic theories give lexical accounts of several p h e n o m e n a that used to
be considered pure ly syntactic. 1 The informat ion put in the lexicon is thereby increased
in both a m o u n t and complexity.

In this paper, we s tudy the p rob lem of lexicalizing context-free g r a m m a r s and
show that it enables faster processing. In previous a t tempts to take advan tage of lex-
icalization, a var ie ty of lexicalization procedures have been deve loped that conver t
context-free g r a m m a r s (CFGs) into equivalent lexicalized g rammars . However , these
procedures typically suffer f rom one or more of the following problems.

• Lexicalization procedures such as those deve loped by Greibach (1965)

* Mitsubishi Electric Research Laboratories, 201 Broadway, Cambridge, MA 02139, USA. E-mail:
schabes/waters@merl.com.

1 Some of the linguistic formalisms illustrating the increased use of lexical information are: lexical rules
in LFG (Kaplan and Bresnan 1983), GPSG (Gazdar et al. 1985), HPSG (Pollard and Sag 1987),
Categorial Grammars (Steedman 1987; Karttunen 1986), some versions of GB theory (Chomsky 1981),
and Lexicon-Grammars (Gross 1984).

@ 1995 Association for Computational Linguistics

Computational Linguistics Volume 21, Number 4

and Rosenkrantz (1967) often produce very large output grammars--so
large that they can be awkward or even impossible to parse with.

Procedures that convert CFGs into lexicalized CFGs provide only a weak
lexicalization, because while they preserve the strings derived, they do
not preserve the trees derived. Parsing with the resulting grammar can
be fast, but it does not produce the right trees.

Strong lexicalization that preserves the trees derived is possible using
context-sensitive formalisms such as tree adjoining grammar (TAG)
(Joshi and Schabes 1992; Schabes 1990). However, these context-sensitive
formalisms entail larger computation costs than CFGs--O(n6)-time in the
case of TAG (Vijay-Shanker and Joshi 1985), instead of O(n 3) for CFG.

Tree Insertion Grammar (TIG) is a compromise between CFG and TAG that com-
bines the efficiency of the former with the strong lexicalizing power of the latter. As
discussed in Section 2, TIG is the same as TAG except that adjunction is restricted so
that it no longer generates context-sensitive languages. In section 3, we compare TIG
with CFG and TAG, showing how it is related to both.

Like CFG, TIG can be parsed in O(IGInB)-time. Section 4 presents an Earley-style
parser for TIG that maintains the valid prefix property.

Section 5 presents a procedure that converts CFGs into lexicalized tree insertion
grammars (LTIGs) generating the same trees. The procedure produces a left anchored
LTIG---one where for each elementary tree, the first element that must be matched
against the input is a lexical item.

Section 6 presents a number of experiments evaluating TIG. Section 6.1 shows that
the grammars generated by the LTIG procedure can be represented very compactly.
In the experiments performed, the LTIG grammars are smaller than the CFGs they are
generated from. Section 6.2 investigates the practical value of the grammars created by
the LTIG procedure as a vehicle for parsing CFGs. It reports a number of experiments
comparing a standard Earley-style parser for CFGs with the Earley-style TIG parser
of Section 4, adapted to take advantage of the left anchored nature of the grammars
created by the LTIG procedure. In these experiments, parsing using LTIG is typically
5 to 10 times faster.

The original motivation behind the development of TIG was the intuition that the
natural-language grammars currently being developed using TAG do not make full
use of the capabilities provided by TAG. This suggests a different use for TIG--as a
(partial) substitute for TAG. This idea is explored in Section 7.

2. Tree Insert ion Grammar

Tree insertion grammar (TIG) is a tree generating system that is a restricted variant
of tree-adjoining grammar (TAG) (Joshi and Schabes 1992; Schabes 1990). As in TAG,
a TIG grammar consists of two sets of trees: initial trees, which are combined by
substitution and auxiliary trees, which are combined with each other and the initial
trees by adjunction. However, both the auxiliary trees and the adjunction allowed are
different than in TAG.

Def in i t ion 6
[TIG] A tree insertion grammar (TIG) is a five-tuple (G, NT, L A, S), where ~. is a set of
terminal symbols, NT is a set of nonterminal symbols, I is a finite set of finite initial

480

Schabes and Waters Tree Insertion Grammar

trees, A is a finite set of finite auxiliary trees, and S is a dist inguished nonterminal
symbol. The set I t3 A is referred to as the e lementary trees.

In each initial tree the root and interior--i .e. , nonroot, non lea f - -nodes are labeled
by nonterminal symbols. The nodes on the frontier are labeled with terminal symbols,
nonterminal symbols, or the empty string (e). The nonterminal symbols on the frontier
are marked for substitution. By convention, substitutability is indicated in diagrams
by using a down arrow (D. The root of at least one e lementary initial tree must be
labeled S.

In each auxiliary tree the root and interior nodes are labeled by nonterminal sym-
bols. The nodes on the frontier are labeled with terminal symbols, nonterminal sym-
bols, or the empty string (e). The nonterminal symbols on the frontier of an auxiliary
tree are marked for substitution, except that exactly one nonterminal frontier node
is marked as the foot. The foot must be labeled with the same label as the root. By
convention, the foot of an auxiliary tree is indicated in diagrams by using an asterisk
(,). The path from the root of an auxiliary tree to the foot is called the spine.

Auxiliary trees in which every nonempty frontier node is to the left of the foot are
called left auxiliary trees. Similarly, auxiliary trees in which every nonempty frontier
node is to the right of the foot are called right auxiliary trees. Other auxiliary trees are
called wrapping auxiliary trees. 2

The root of each e lementary tree must have at least one child. Frontier nodes
labeled with ~ are referred to as empty. If all the frontier nodes of an initial tree are
empty, the tree is referred to as empty. If all the frontier nodes other than the foot of
an auxiliary tree are empty, the tree is referred to as empty.

The operations of substitution and adjunction are discussed in detail below. Substi-
tution replaces a node marked for substitution with an initial tree. Adjunction replaces
a node with an auxiliary tree.

To this point, the definition of a TIG is essentially identical to the definition of a
TAG. However , the following differs f rom the definition of TAG.

TIG does not allow there to be any elementary wrapping auxiliary trees or ele-
mentary empty auxiliary trees. This ensures that every e lementary auxiliary tree will
be uniquely either a left auxiliary tree or a right auxiliary tree. (Wrapping auxiliary
trees are neither. Empty auxiliary trees are both and cause infinite ambiguity.)

TIG does not allow a left (right) auxiliary tree to be adjoined on any node that is on
the spine of a right (left) auxiliary tree. Further, no adjunction whatever is permit ted
on a node # that is to the right (left) of the spine of an e lementary left (right) auxiliary
tree T. Note that for T to be a left (right) auxiliary tree, every frontier node dominated
by # must be labeled with ~.

TIG allows arbitrarily many simultaneous adjunctions on a single node in a man-
ner similar to the alternative TAG derivation defined in Schabes and Shieber (1994).
Simultaneous adjunction is specified by two sequences, one of left auxiliary trees and
the other of right auxiliary trees that specify the order of the strings corresponding to
the trees combined.

A TIG derivation starts with an initial tree rooted at S. This tree is repeatedly
extended using substitution and adjunction. A derivat ion is complete when every
frontier node in the tree(s) der ived is labeled with a terminal symbol. By means of
adjunction, complete derivations can be extended to bigger complete derivations.

2 In Schabes and Waters (1993a) these three kinds of auxiliary trees are referred to differently, as right
recursive, left recursive, and centrally recursive, respectively.

481

Computational Linguistics Volume 21, Number 4

NP VP N

D$ N V VP* A N*

boy seems pretty

Figure 1
Example elementary TIG trees.

VP

VP* Adv

smooth ly

S

NPo$ VP

V NPI,[,

s a w

Figure 2
Substitution.

As in TAG, but in contrast to CFG, there is an impor tant difference in TIG between
a derivation and the tree derived. By means of s imultaneous adjunction, there can be
several trees created by a single derivation. In addition, there can be several different
derivations for the same tree.

To eliminate useless ambiguity in derivations, TIG prohibits adjunction: at nodes
marked for substitution, because the same trees can be created by adjoining on the
roots of the trees substi tuted at these nodes; at foot nodes of auxiliary trees, because
the same trees can be created by simultaneous adjunction on the nodes the auxiliary
trees are adjoined on; and at the roots of auxiliary trees, because the same trees can be
created by simultaneous adjunction on the nodes the auxiliary trees are adjoined on.

Figure 1 shows five e lementary trees that might appear in a TIG for English. The
trees containing 'boy' and 'saw' are initial trees. The remainder are auxiliary trees.

As illustrated in Figure 2, substitution inserts an initial tree T in place of a frontier
node # that has the same label as the root of T and is marked for substitution.

Adjunction inserts an auxiliary tree T into another tree at a node # that has the
same label as the root (and therefore foot) of T. In particular, # is replaced by T and
the foot of T is replaced by the subtree rooted at #. The adjunction of a left auxiliary
tree is referred to as left adjunction. This is illustrated in Figure 3. The adjunction of
a right auxiliary tree is referred to as right adjunction (see Figure 4).

Simultaneous adjunction is fundamenta l ly ambiguous in nature and typically re-
sults in the creation of several different trees. The order in the sequences of left and
right auxiliary trees fixes the order of the strings being combined. However , unless
one of the sequences is empty, variability is possible in the trees that can be produced.
The TIG formalism specifies that every tree is p roduced that is consistent with the
specified order.

482

Schabes and Waters Tree Insertion Grammar

Figure 3
Left adjunction.

"/q

Figure 4
Right adjunction.

a w 2

w

~A* A *~
wl % Ws

Figure 5
Simultaneous left and right adjunction.

w 2 A A w 4 ?, and
"Z,

~ w3

Figure 5 illustrates the simultaneous adjunction of one left and one right auxiliary
tree on a node. The string corresponding to the left auxiliary tree must precede the
node, and the string corresponding to the right auxiliary tree must follow it. However,
two different trees can be derived---one where the left auxiliary tree is on top and one
where the right auxiliary tree is on top. The simultaneous adjunction of two left and
two right auxiliary trees leads to six derived trees.

The adjunction of a wrapping auxiliary tree is referred to as wrapping adjunction.
This is illustrated in Figure 6. The key force of the restrictions applied to TIG, in

483

Computational Linguistics

Figure 6
Wrapping adjunction.

Volume 21, Number 4

w2~ w4
w~

comparison with TAG, is that they prevent wrapping adjunction from occurring, by
preventing the creation of wrapping auxiliary trees. 3

Wrapping adjunction yields context-sensitive languages because two strings that
are mutually constrained by being in the same auxiliary tree are wrapped around an-
other string. This observation stems from the equivalence of TAG and head grammars
(Vijay-Shanker et al. 1986). In contrast, every operation allowed by a TIG inserts a
string into another string. Simultaneous adjunction merely specifies multiple indepen-
dent insertions. Simultaneous left and right adjunction is not an instance of wrapping,
because TIG does not allow there to be any constraints between the adjoinability of
the trees in question.

There are many ways that the TIG formalism could be extended. First, adjoining
constraints could be used to prohibit the adjunction of particular auxiliary trees (or all
auxiliary trees) at a given node.

Second, one can easily imagine variants of TIG where simultaneous adjunction is
more limited. One could allow only one canonical derived tree. One could allow at
most one left auxiliary tree and one right auxiliary tree as we did in Schabes and Waters
(1993a). One could forbid multiple adjunction altogether. We have chosen unlimited
simultaneous adjunction here primarily because it reduces the number of chart states,
since one does not have to record whether adjunction has occurred at a given node.

Third, one can introduce stochastic parameters controlling the probabilities with
which particular substitutions and adjunctions occur (see Schabes and Waters 1993b).

Fourth, and of particular importance in the current paper, one can require that a
TIG be lexicalized.

Definition 7
[LTIG] A lexicalized tree insertion grammar (LTIG) 4 (G, NT, L A, S) is a TIG where every
elementary tree in I U A is lexicalized. A tree is lexicalized if at least one frontier node
is labeled with a terminal symbol.

An LTIG is said to be left anchored if every elementary tree is left anchored. An
elementary TIG tree is left anchored if the first nonempty frontier element other than

3 Using a simple case-by-case analysis, one can show that given a TIG, it is not possible to create a
wrapping auxiliary tree. A proof of this fact is presented in Appendix A.

4 In Schabes and Waters (1993a) a formalism almost identical to LTIG is referred to as lexicalized
context-free grammar (LCFG). A different name is used here to highlight the importance of the
nonlexicalized formalism, which was not given a name in Schabes and Waters (1993a).

484

Schabes and Waters Tree Insertion Grammar

the foot, if any, is a lexical item. All the trees in Figure 1 are lexicalized; however, only
the ones containing seems, pretty, and smoothly are left anchored.

3. Relations between CFG, TIG and TAG

In this section, we briefly compare CFG, TIG and TAG, noting that TIG shares a
number of propert ies with CFG on one hand and TAG on the other.

Any CFG can be trivially converted into a TIG that derives the same trees by
convert ing each rule R into a single-level initial tree. If the right hand side of R is
empty, the initial tree created has a single frontier element labeled with e. Otherwise,
the elements of the right hand side of R become the labels on the frontier of the initial
tree, with the nonterminals marked for substitution.

Similarly, any TIG that does not make use of adjoining constraints can be easily
converted into a TAG that derives the same trees; however, adjoining constraints may
have to be used in the TAG. The trivial nature of the conversion can be seen by
considering the three differences between TIG and TAG.

First, TIG prohibits e lementary wrapping auxiliary trees. From the perspective of
this difference, a TIG is trivially a TAG without the need for any alterations.

Second, TIG prohibits adjunction on the roots of auxiliary trees and allows simul-
taneous adjunction while TAG allows adjunction on the roots of auxiliary trees and
prohibits s imultaneous adjunction. From the perspective of this difference in approach,
a TIG is also trivially a TAG without alteration. To see this, consider the following:
Suppose that there are a set of auxiliary trees T that are allowed to adjoin on a node
in a TIG. Simultaneous adjunction in TIG allows these auxiliary trees to be chained
together in every possible way root-to-foot on #. The same is true in a TAG where the
trees in T are al lowed to adjoin on each other ' s roots.

Third, TIG imposes a number of detailed restrictions on the interaction of left
and right auxiliary trees. To convert a TIG into a TAG deriving the same trees and no
more, one has to capture these restrictions. In general, this requires the use of adjoining
constraints to prohibit the forbidden adjunctions.

It should be noted that if a TIG makes use of adjoining constraints, then the
conversion of the TIG to a TAG deriving the same trees can become more complex
or even impossible, depending on the details of exactly how the adjoining constraints
are allowed to act in the TIG and TAG.

TIG generates context-free languages. Like CFG, TIG generates context-free languages. In
contrast, TAG generates so called tree adjoining languages (TALs) (,Joshi 1985).

The fact that any context-free language can be generated by a TIG follows from
the fact that any CFG can be converted into a TIG. The fact that TIGs can only generate
context-free languages follows from the fact that any TIG can be converted into a CFG
generating the same language, as shown in the following theorem.

Theorem 1
If G = (E, NT, LA, S) is a TIG then there is a CFG G' = (E, NT',P,S) that generates the
same string set. 5

5 As usual, a context-freegrammar (CFG) G is a four-tuple (G, NT, P, S) where ~ is a set of terminal
symbols, NT is a set of nonterminal symbols, P is a finite set of finite production rules that rewrite
nonterminal symbols to, possibly empty, strings of terminal and nonterminal symbols, and S is a
distinguished nonterminal symbol that is the start symbol of any derivation.

485

Computational Linguistics Volume 21, Number 4

P~oo~
The key step in convert ing a TIG into a CFG is eliminating the auxiliary trees. Given
only initial trees, the final conversion to a CFG is trivial.

• Step 1: For each nonterminal Ai in NT, add two more nonterminals Wi
and Zi. This yields the new nonterminal set NTL

• Step 2: For each nonterminal Ai, include the following rules in P: Yi ---* c
and Zi --* c.

• Step 3: Alter every node # in every e lementary tree in I and A as
follows: Let Ai be the label of #. If left adjunction is possible at #, add a
new leftmost child of # labeled Yi and mark it for substitution. If right
adjunction is possible at #, add a new r ightmost child of # labeled Zi
and mark it for substitution.

• Step 4: Conver t every auxiliary tree t in A into an initial tree as follows:
Let a i be the label of the root # of t. If t is a left auxiliary tree, add a new
root labeled Yi with two children: # on the left, and on the right, a node
labeled Yi and marked for substitution. Otherwise add a new root
labeled Zi with two children: # on the left, and on the right, a node
labeled Zi and marked for substitution. Relabel the foot of t with e,
turning t into an initial tree.

• Step 5: Every e lementary tree t is now an initial tree. Each one is
conver ted into a rule in P as follows: The label of the root of t becomes
the left hand side of R. The labels on the frontier of t with any instances
of c omit ted become the right hand side of R.
Every derivation in G maps directly to a derivat ion in G t that generates
the same string. Substitution steps map directly. Adjunctions are
conver ted into substitutions via the new non-terminals Yi and Zi. The
new roots and their children labeled Yi and Zi created in Step 3 allow
arbitrarily many simultaneous adjunctions at a node. The right linear
ordering inherent in these structures encodes the order ing information
specified for a s imultaneous adjunction. []

It should be noted that while G / generates the same strings as G, it does not
generate the same trees: the substitutions in G / that correspond to adjunctions in G
create trees that are very different from the trees generated by G. For instance, if a left
auxiliary tree T has structure to the right of its spine, this structure ends up on the left
rather than the right of the node "adjoined on" in G ~. However , this does not alter the
strings that are generated, because by the definition of TIG, the structure to the right
of the spine of T must be entirely empty.

The theorem above does not convert TAGs into CFGs, because the construction
involving Yi and Zi does not work for wrapping auxiliary trees. The reason for this is
that a wrapping auxiliary tree has nonempty structure on both the left and the right
of its spine.

TIG generates context-free path sets. The path set of a g rammar is the set of all paths
from root to frontier in the trees generated by the grammar. The path set is a set of
strings in (~. U NT)*. CFGs have path sets that are regular languages (RLs) (Thatcher
1971). In contrast, TAGs have path sets that are context-free languages (CFLs) (Weir
1988).

486

Schabes and Waters Tree Insertion Grammar

Figure 7
A TIG with a context-free path set.

A

S a

B

S*

The fact that the path sets generated by a TIG cannot be more complex than
context-free languages follows from the fact that TIGs can be converted into TAGs
generating the same trees. The fact that TIGs can generate path sets more complex
than regular languages is shown by the following example.

Consider the TIG in Figure 7. The path set L generated by this grammar contains
a variety of paths including Sx (from the elementary initial tree), SASBSx & SAa (from
adjoining the elementary auxiliary tree once on the initial tree), and so on. By relying
on the fact that the intersection of two regular languages must be regular, it is easy to
show that L is not a regular language. In particular, consider:

L N {SA}*S{BS}*x = {SA}nS{BS}nx

This intersection corresponds to all the paths from root to x in the trees that are
generated by recursively embedding the elementary auxiliary tree in Figure 7 into the
middle of its spine. Since this intersection is not a regular language, L cannot be a
regular language.

4. Parsing TIG

Since TIG is a restricted case of tree-adjoining grammar (TAG), standard O(n6)-time
TAG parsers (Lang 1990; Schabes 1991; Vijay-Shanker 1987; Vijay-Shanker and Weir
1993; Vijay-Shanker and Joshi 1985) can be used for parsing TIG. Further, they can be
easily optimized to require at most O(n4)-time when applied to a TIG. However, this
still does not take full advantage of the context-freeness of TIG.

A simple O(nB)-time bottom-up recognizer for TIG in the style of the CKY parser
for CFG can be straightforwardly constructed following the approach shown in Schabes
and Waters (1993a).

As shown below, one can obtain a more efficient left-to-right parsing algorithm
for TIG that maintains the valid prefix property and requires O(n 3) time in the worst
case, by combining top-down prediction as in Earley's algorithm for parsing CFGs

487

Computational Linguistics Volume 21, Number 4

S

A B

a A S*

D,I. b

Figure 8
An auxiliary tree and its textual representation.

,1__ 4. 2 , 4
S ~A

5 6 7
"A---~"D "b
Lef tAux(, 1)

Subst (, 6)

Foot (, 8)

(Earley 1970) with bottom-up recognition. The algorithm is a general recognizer for
TIGs, which requires no condition on the grammar. 6

4.1 A n Earley-Style Cubic -Time Parser For TIG
Notation. Suppose that G = (G, NT, L A, S) is a TIG and that al . . . an is an input string.
The Greek letters #, v, and p are used to designate nodes in elementary trees. Subscripts
are used to indicate the label on a node, e.g., #x. Superscripts are sometimes used to
distinguish between nodes.

A layer of an elementary tree is represented textually in a style similar to a pro-
duction rule, e.g., #x--*~'Y pz. For instance, the tree in Figure 8 is represented in terms
of four layer productions as shown on the right of the figure.

The predicate Init(#x) is true if and only if #x is the root of an initial tree. The
predicate LeftAux(px) is true if and only if px is the root of an elementary left auxiliary
tree. The predicate RightAux(px) is true if and only if Px is the root of an elementary
right auxiliary tree. The predicate Subst(#x) is true if and only if #x is marked for
substitution. The predicate Foot(px) is true if and only if #x is the foot of an auxiliary
tree. The predicate Adjoin(px, ,x) is true if and only if the restrictions governing
adjunction in TIG permit the auxiliary tree px to be adjoined on the node #x.

Chart states. The Earley-style TIG parser collects states into a set called the chart, C. A
state is a 3-tuple, [p, i,j] where: p is a position in an elementary tree as described below;
and 0 < i < j _< n are integers indicating a span of the input string.

During parsing, elementary trees are traversed in a top-down, left-to-right manner
that visits the frontier nodes in left-to-right order (see Figure 9). Positions, which are
depicted as dots in Figure 9, are used to represent the state of this traversal.

In a manner analogous to dotted rules for CFG as defined by Earley (1968), being
at a particular position with regard to a particular node divides the subtree rooted
at the node into two parts: a left context consisting of children that have already been
matched and a right context that still needs to be matched.

Positions are represented by placing a dot in the production for the corresponding
1 2 4 layer. For example, the fourth position reached in Figure 9 is represented as #S~#Ae#B .

6 This parser is the more remarkable because for TAG the best parser known that maintains the valid
prefix property requires, in the worst case. more time than parsers that do not maintain the valid prefix
property (o(ng)-t ime versus O(n6)) (Schabes 1991).

488

Schabes and Waters Tree Insertion Grammar

Figure 9
Left-to-right tree traversal.

I

I
oA ° B ~,~

• a • ° A I S * ~ °

,,gAx
~ / No

In dotted layer productions, the Greek letters ~, fl, and 31 are used to represent se-
quences of zero or more nodes.

The indices i,j record the portion of the input string that is spanned by the left
context. The fact that TIG forbids wrapping auxiliary trees guarantees that a pair of
indices is always sufficient for representing a left context. As traversal proceeds, the
left context grows larger and larger.

Correctness condition. Given an input string al " 'an, for every node #x in every ele-
mentary tree in G, the Earley-style TIG parsing algorithm guarantees that:

h

[#x--*~ofl, i,j] E C if and only if there is some derivation in G of some
string beginning with al . . .aj where ai+l . . .aj is spanned by:

A sequence of zero or more left auxiliary trees simultaneously
adjoined on #x plus
The children of #x corresponding to g plus
if fl = ~, zero or more right auxiliary trees simultaneously
adjoined on #x.

The algorithm. Figure 10 depicts the Earley-style TIG parsing algorithm as a set of
inference rules. Using the deductive parser developed by Shieber, Schabes, and Pereira
(1995), we were able to experiment with the TIG parser represented directly in this
form (see Section 6).

The first rule (1) initializes the chart by adding all states of the form [#s--sock, 0, 0],
where #s is the root of an initial tree. The initial states encode the fact that any valid
derivation must start from an initial tree whose root is labeled S.

The addition of a new state to the chart can trigger the addition of other states
as specified by the inference rules in Figure 10. Computat ion proceeds with the intro-
duction of more and more states until no more inferences are possible. The last rule
(13) specifies that the input is recognized if and only if the final chart contains a state
of the form [#s--+go, 0, n], where #s is the root of an initial tree.

The scanning and substitution rules recognize terminal symbols and substitutions
of trees. They are similar to the steps found in Earley's parser for CFGs (Earley, 1970).
The scanning rules match fringe nodes against the input string. Rule 4 recognizes the
presence of a terminal symbol in the input string. Rules 5 and 6 encode the fact that one
can skip over nodes labeled with c and foot nodes without having to match anything.

489

Computational Linguistics Volume 21, Number 4

Initialization

Init(#s) t- [# s~ . a , 0, 0] (1)

Left Adjunction

[#A--*.a, i,j] A LeftAux(pa) A Adjoin(pA, #A) F [p,~--,.,y,j,j] (2)

[#a-*.a,i,j] A [pA--*7*,j,k] A LeftAux(pA) A Adjoin(pA,#A) b [#A--**a,i,k] (3)

Scanning

[#A--*a*Ua fl, i,j] A a = aj+l [- [#A--+a Ua*fl, i,j +1] (4)

[#a--*a'Ua fl, i,j] A a = ¢ F [#A--+a Ua*fl, i,j] (5)

[#A~a'UB fl, i,j] A Foot(us) F [#A--*a ut3"fl, i,j] (6)

Substitution

[#A--*a.uB fl, i,j] A Subst(uB) A Init(ps) F [Ps--*'7, j, j] (7)

[#,~--*a*us fl, i,j] A [Ps--'v*,j, k] A Subst(vB) A Init(pB) F [# a ~ a UB'fl, i, k] (8)

Subtree Traversal

[#a--*a,UB fl, i,j] I- [uB--*.%j,j] (9)

[#A--*a*VBfl, i,j] A [VB--*7*,j,k] F [#A--*oePB*fl, i,k] (10)

Right Adjunction

[#A--*o~*, i,j] A RightAux(pa) A Adjoin(pA, #A) b [pA-**"/, j, j] (11)

[#A-*a*,i,j] A [pA--*"/*,j,k] A RightAux(pA) A Adjoin(p,~,#A) F [#A--*a*, i, k] (12)

Final Recognition

[#s--~a., 0, n] A Init(#s) b Acceptance (13)
Figure 10
An Earley-style recognizer for TIG, expressed using inference rules.

The substitution rules are triggered by states of the form [#A--*c~euB fl, i,j] where UB
is a node at which substitution can occur. Rule 7 predicts a substitution. It does this
top down only if an appropriate prefix string has been found. Rule 8 recognizes a
completed substitution. It is a bottom-up step that concatenates the boundaries of a
fully recognized initial tree with a partially recognized tree.

The subtree traversal rules control the recognition of subtrees. Rule 9 predicts a
subtree if and only if the previous siblings have already been recognized. Rule 10
completes the recognition of a subtree. Rules 9 and 10 are closely analogous to rules 7
and 8. They can be looked at as recognizing a subtree that is required to be substituted
as opposed to a subtree that may be substituted.

The left and right adjunction rules recognize the adjunction of left and right aux-
iliary trees. The left adjunction rules are triggered by states of the form [#A--*ec~, i,j].
Rule 2 predicts the presence of a left auxiliary tree, if and only if a node that the
auxiliary tree can adjoin on has already been predicted. Rule 3 supports the bottom-
up recognition of the adjunction of a left auxiliary tree. The fact that left adjunction
can occur any number of times (including zero) is captured by the fact that states of
the form [#A--~-~, i,j] represent both situations where left adjunction can occur and
situations where it has occurred. The right adjunction rules (11 & 12) are analogous to
the left adjunction rules, but are triggered by states of the form [#a---~c~o, i,j].

As written in Figure 10, the algorithm is a recognizer. However, it can be straight-

490

Schabes and Waters Tree Insertion Grammar

forwardly converted to a parser by keeping track of the reasons why states are added
to the chart. Derivations (and therefore trees) can then be retrieved from the chart
(each in linear time).

For the sake of simplicity, it was assumed in the discussion above that there are
no adjunction constraints. However, the algorithm can easily be extended to handle
such constraints by including them in the predicate Adjoin(px,/zx).

Computational bounds. The algorithm in Figure 10 requires space O(IGIn 2) in the worst
case. In this equation, n is the length of the input string and IG I is the size of the
grammar G. For the TIG parser, IGI is computed as the sum over all the non-leaf
nodes # in all the elementary trees in G of: one plus the number of children of #. The
correctness of this space bound can be seen by observing that there are only IG]n 2
possible chart states [#x--+aofl, i,j].

The algorithm takes O(IGI2n 3) time in the worst case. This can informally be seen
by noting that the worst case complexity is due to the completion rules (3, 8, 10, & 12)
because they apply to a pair of states, rather than just one state. Since each of the
completion rules requires that the chart states be adjacent in the string, each can apply
at most O(IGI2n 3) times, since there are at most n 3 possibilities for 0 < i < j < k < n.

4.2 Improving the Efficiency of the TIG Parser
As presented in Figure 10, the TIG parser is optimized for clarity rather than speed.
There are several ways that the efficiency of the TIG parser can be improved.

Parsingthatislinearinthegrammarsize. The time complexity of the parser can be reduced
from O(IGI2n 3) to O(IGIn 3) by using the techniques described in Graham et al. 1980).
This improvement is very important, because IG[typically is much larger than n for
natural language applications. The speedup can be achieved by altering the parser in
two ways.

The prediction rules (2, 7, 9, & 11) can apply O(IGI2n 2) times, because they are
triggered by a chart state and grammar node /9; and for each of O(IGIn 2) possible
values of the former there can be O(]GI) values of the latter. However, the new chart
state produced by the prediction rules does not depend on the identity of the node in
the triggering chart element, nor on the value of i, but rather only on whether there is
any chart element ending at j that makes the relevant prediction. Therefore, the parser
can be changed so that a prediction rule is triggered at most once for any j and p. This
reduces the prediction rules to a time complexity of only O(IGIn).

The completion rules (3, 8, 10, & 12) can apply O(IGI2n 3) times, because they are
triggered by pairs of chart states; and there can be O(IGI) possibilities for each element
of the pair for each i < j < k. However, the new chart state produced by the completion
rules does not depend on the identity of the node p in the second chart element, but
rather only on whether there is any appropriate chart element from j to/~. Therefore,
the parser can be changed so that a completion rule is triggered at most once for any
possible first chart state and k. This reduces the completion rules to a time complexity
of O(IGIn3).

Eliminating equivalent states. Rules 5 and 6 merely move from state to state without
changing the span i,j. These rules reflect facts about the grammar and the traversal
that do not depend on the input. These rules can be largely precompiled out of the

491

Computational Linguistics Volume 21, Number 4

algorithm by noting that the following states are equivalent.

[/AA--+.L, Xc~,i,j] :-- [/AA---~,X.C~,i,j] if (X = c VFoot(~'x)) A -~3pA LeftAux(pA)

[#A--*a.vxfl, i,j] =-- [#A--+a~X.fl, i,j] if (X = ¢ VFoot(vx))

To take advantage of equivalent states during parsing, one skips directly from the
first to the last state in a set of equivalent states. This avoids going through the normal
rule application process and has the effect of reducing the grammar size.

For a state [/AA-÷OL,X a, i,j] to be equivalent to [/AA~L, XOa, i,j], it is not sufficient that
the first child of vx be empty or a foot node. It must also be the case that left adjunction
is not possible on/AA. If left adjunction is possible on/AA, the state [/AA--*q, vX a, i,j] must
be independently retained in order to trigger left adjunction when appropriate.

Sharing nodes in a TIG. An important feature of the parser in Figure 10 is that the nth
child of a node need not be unique and a subtree need not have only one parent. (Non-
uniqueness indicates that a subtree or a supertree appears at several different places
in the grammar.) The only requirement when sharing nodes is that every possible way
of constructing a tree that is consistent with the parent-child relationships must be a
valid elementary tree in the grammar.

For example, consider the trees in Figure 11.

S

A B

a A S*

D$ b

S

A B

a A S*

a

Figure 11
A pair of TIG trees.

They can be represented individually as follows:

1....+ 2/A4 , 2 3 4 5 8 #s #A #A---~#a, #B---~#A#S, #5A---~#6 #7, CeftAux(#~), Subst(#6), Foot(#~),

~1~'A2 4 , ~'A2--+Va 3' 4 --+~'5 ~,7, ~,AS~V6, CeftAux(L,1), Foot(~,7)

However, taking maximum advantage of sharing within and between the trees, they
can be represented more compactly as:

14_+ 2 4 2 3 4 5 flS /AA/AB,/AA----~/Aa,/AB--'+{/AA [/A2}/AS,8/AA___+/ADB 6 /Ab,7 LeftAux(/A1), Subst(/A6), Foot(/A8)

In the above, two kinds of sharing are apparent. Subtrees are shared by using the
same node (for example/AA) on the right-hand side of more than one layer production.
Supertrees are shared by explicitly recording the fact that there are multiple alternatives
for the nth child of a some node. This is represented textually above using curly braces.

In the case of Figure 11, sharing reduces the grammar size IG[from 21 to 11.
Depending on the amount of sharing present in a grammar, an exponential decrease
in the grammar size is possible.

492

Schabes and Waters Tree Insertion Grammar

Parsing left anchored LTIGs. The algori thm above can be extended to take advantage of
the fact that the e lementary trees in an LTIG are lexicalized. This does not change the
worst case complexity, but is a dramatic improvement in typical situations, because
it has the effect of dramatically reducing the size of the grammar that has to be
considered when parsing a particular input string.

Space does not permit a discussion of all the ways lexical sensitivity can be intro-
duced into the TIG parser. However , one way of doing this is particularly important
in the context of this paper. The LTIG lexicalization procedure presented in Section 5
produces grammars that have no left auxiliary trees and are left anchored---ones where
for each e lementary tree, the first element that must be matched against the input is a
lexical item. By means of two simple changes in the prediction rules, the TIG parser
can benefit greatly from this kind of lexicalization.

First, whenever considering a node #B for prediction at position j, it should only
be predicted if its anchor is equal to the next input i tem aj+l. Other predictions cannot
lead to successful matches. However , if sharing is being used, then one chart state
can correspond to a number of different positions in different trees. As a result, even
though every tree has a unique left anchor, a given chart state can correspond to a set
of such trees and therefore a set of such anchors. A prediction should be made if any
of these anchors is the next element of the input.

Second, when predicting a node ~B whose first child is a terminal symbol, it is
known from the above that this child must match the next input element. Therefore,
there is no need to create the state [#B--*eua c~,j,j]. One can instead skip directly to the
state [#B--*ua.c~,j,j + 11.

Both of the changes above depend critically on the fact that there are no left
auxiliary trees. In particular, if there is a left auxiliary tree PB that can be adjoined on
/~B, then the next input item may be matched by p8 rather than/~B; and neither of the
shortcuts above can be applied.

5. TIG Strongly Lexicalizes CFG

In the following, we say that a grammar is lexicalized (Schabes 1990; Schabes et al. 1988)
if every e lementary structure contains a terminal symbol called the anchor. A CFG is
lexicalized if every product ion rule contains a terminal. Similarly, a TIG is lexicalized
if every tree contains a terminal symbol.

A formalism F' is said to lexicalize (Joshi and Schabes 1992) another formalism F, if
for every grammar G in F that does not derive the empty string, there is a lexicalized
grammar G' in F' such that G and G' generate the same string set.

F' is said to strongly lexicalize F if for every finitely ambiguous grammar G in F
that does not derive the empty string, there is a lexicalized grammar G ~ in F ~ such that
G and G ~ generate the same string set and tree set.

The restrictions on the form of G in the definitions above are mot ivated by two
key propert ies of lexicalized grammars (Joshi and Schabes 1992). First, lexicalized
grammars cannot derive the empty string, because every structure introduces at least

one lexical item. Thus, if a CFG is to be lexicalized, it must not be the case that S ~ e .
Second, lexicalized grammars are finitely ambiguous, because every rule intro-

duces at least one lexical i tem into the resulting string. Thus, if a g rammar is to be
strongly lexicalized, it must be only finitely ambiguous. In the case of a CFG, this

means that it must not be the case that X=~X for any non-terminal X.
As shown by Greibach (1965) and Rosenkrantz (1967), any CFG grammar that does

not generate the empty string can be conver ted into a lexicalized CFG. Moreover, this

493

Computational Linguistics Volume 21, Number 4

g rammar can be left anchored - -one where the first e lement of the right hand side of
each rule is a terminal symbol. However , this is only a weak lexicalization, because
the trees generated by the lexicalized grammar are not the same as those generated
by the original CFG.

Another way to lexicalize CFGs is to convert them into categorial grammars (Bar-
Hillel 1964). However , these are again only weak lexicalizations because the trees
produced are not preserved. 7

Strong lexicalization can be obtained using TAG (Joshi and Schabes 1992; Schabes
1990), but only at the cost of O(n 6) parsing. TIG is O(n 3) parsable and strongly lexi-
calizes CFG.

5.1 A Strong Lexicalization Procedure
In the following, we give a constructive proof of the fact that TIG strongly lexicalizes
CFG. The proof is based on a lexicalization procedure related to the lexicalization
procedure used to create Greibach normal form (GNF) as presented in Harr ison 1978.

5.1.1 Lemmas. Our procedure relies on the following four lemmas. The first lemma
converts CFGs into a very restricted form of TIG. The next three lemmas describe
ways that TIGs can be t ransformed wi thout changing the trees produced.

Lemma 1
Any finitely ambiguous CFG G = (~,NT, P, S) can be conver ted into a TIG G' =
(G, NT, I, {}, S) such that: (i) there are no auxiliary trees; (ii) no initial tree contains any
interior nodes; (iii) G ~ generates the same trees and, therefore, the same strings as G;
(iv) there is only one way to derive a given tree in G'.

Proof
We assume wi thout loss of generality that G does not contain any useless production.

The set I of initial trees in G' is constructed by convert ing each rule R in P into
a one-level tree t whose root is labeled with the left-hand side of R. If R has n > 0
elements on its r ight-hand side, then t is given n children, each labeled with the cor-
responding right-hand-side element. Each child labeled with a nonterminal is marked
for substitution. If the r ight-hand side of R is empty, t is given one child labeled with c.

By construction, there are no auxiliary trees and no interior nodes in any initial tree.
There is an exact one-to-one correspondence between derivations in G and derivations
using the initial trees. Each rule substitution in G becomes a tree substitution in GL
As a result, exactly the same trees are generated in both cases, and there is only one
way to generate each tree in G t, because there cannot be two ways to derive the same
tree in a CFG. []

Lemma 2
Let G = (E, NT, LA, S) be a TIG. Let t c I U A be an e lementary tree whose root
is labeled Y and let # be a frontier e lement of t that is labeled X and marked for
substitution. Further, suppose that if t is an initial tree, X ~ Y. Let T' be the set of

7 This is true even if Bar-Hillel's Categorial Grammars are augmented with composition (.Joshi, personal
communication).

494

Schabes and Waters Tree Insertion Grammar

every tree t ~ that can be created by substi tut ing an X-rooted tree u E I for #. Define
G' -= (~, NT, I ' , A', S) where I ' and A' are created as follows.

If t E I then I ' = (I - {t}) U T' and A' = A.

If t E A then I ' = I and A' = (A - {t}) U T'.

Then, G' generates exactly the same trees as G. Further, if there is only one w a y
to generate each tree genera ted by G, then there is only one w a y to generate each tree
genera ted by GL

Proof
The t ransformat ion specified by this l e m m a closes over substi tut ion into # and then
discards t. Since t cannot be subst i tuted into #, this only generates a finite n u m b e r of
addit ional trees.

Any complete der ivat ion in G can be conver ted into exactly one der ivat ion in G'
as follows: A der ivat ion consists of e lementary trees and operat ions be tween them.
Every use of t in a complete der ivat ion in G has to be associated with a substi tut ion of
some u E I for #. Taken as a group, the two trees t and u, a long with the substi tut ion
opera t ion be tween them, can be replaced by the appropr ia te new tree t ~ E T t that was
added in the construction of G ~.

Since TIGs do not treat the roots of initial trees in any special way, there is no
p rob lem convert ing any opera t ion appl ied to the root of u into an opera t ion on the
corresponding interior node of t'. Further, since it cannot be the case that t = u, there
is no ambigui ty in the m a p p i n g defined above.

Any der ivat ion in G ~ can be conver ted into exactly one der ivat ion in G by doing
the reverse of the conversion above. Each instance t' of one of the new trees in t roduced
is replaced by an instance of t wi th the appropr ia te initial tree u E I being combined
with it by substitution.

Again, since TIGs do not treat the roots of initial trees in any special way, there is
no p rob lem convert ing any operat ion appl ied to an interior node of t ~ that corresponds
to the root of u into an opera t ion on the root of u.

Further, if there is only one w a y to der ive a given tree in G, there is no ambigui ty in
the m a p p i n g f rom derivat ions in G' to G, because there is no ambigui ty in the m a p p i n g
of T ~ to trees in G. The tree t ~ mus t be different f rom the other trees genera ted w h e n
creating T ~, because t ~ contains complete informat ion about the trees it was created
from. The tree t ~ mus t not be in I U A. If it were, there wou ld be mult iple der ivat ions
for some tree in G---one involving t ~ and one involving t and u. Finally, t' mus t be
different f rom t, because it mus t be larger than t.

If there is only one w a y to der ive a given tree in G, the mapp ings be tween deriva-
tions in G' and G are one-to-one and there is therefore only one w a y to der ive a given
tree in G ~. []

Lemma 3
Let G = (E, NT, I,A, S) be a TIG. Let t E I be an e lementary initial tree whose root is
labeled with X ~ S. Further, suppose that none of the subst i tut ion nodes, if any, on
the fringe of t are labeled X. Let U' be the set of every initial tree that can be created
by subst i tut ing t for one or more frontier nodes in an initial tree u E I that are labeled

495

Computational Linguistics Volume 21, Number 4

X and marked for substitution. Let W be the set of every auxil iary tree that can be
created by subst i tut ing t for one or more frontier nodes in an auxil iary tree v E A
that are labeled X and marked for substitution. Define G ~ = (G, NT, I~,A',S) where
I ' = (I - {t}) U U' and A' = A U V'.

Then, G ~ generates exactly the same trees as G. Further, if there is only one w a y
to generate each tree genera ted by G, then there is only one w a y to generate each tree
genera ted by G ~.

Proof
The t ransformat ion specified by this l e m m a closes over subst i tut ion of t and then
discards t. Since t cannot be subst i tuted into itself, this generates only a finite n u m b e r
of addit ional trees. Since the root of t is not labeled S, t is not required for any pu rpose
other than substitution.

Any complete der ivat ion in G can be conver ted into exactly one der ivat ion in G ~
as follows: Since the root of t is not labeled S, every use of t in a comple te der ivat ion
in G has to be subst i tuted into some frontier node # of some u E I U A. Taken as a
group, the two trees u and t, a long with any other copies of t subst i tuted into other
frontier nodes of u and the subst i tut ion operat ions be tween them, can be replaced by
the appropr ia te new tree u ~ E U ~ U V ~ that was added in the construct ion of GL

Since TIGs do not treat the roots of initial trees in any special way, there is no
p rob lem conver t ing any opera t ion appl ied to the root of t into an opera t ion on the
cor responding interior node of u/. Further, since it cannot be the case that t = u, there
is no ambigu i ty in the m a p p i n g defined above.

Any der ivat ion in G ~ can be conver ted into a der ivat ion in G by doing the reverse
of the convers ion above. Each instance u ~ of one of the new trees in t roduced is replaced
by one or more instances of t subst i tuted into the appropr ia te tree u E I U A.

Again, since TIGs do not treat the roots of initial trees in any special way, there is no
p rob lem convert ing any opera t ion appl ied to the interior node of u ~ that cor responds
to the root of t into an opera t ion on the root of t.

Further, if there is only one w a y to der ive a g iven tree in G, there is no ambigu i ty
in the m a p p i n g f rom derivat ions in G r to G, because there is no ambigu i ty in the
m a p p i n g of u I to trees in G. The tree u ~ mus t be different f rom the trees that are
genera ted by subst i tut ing t in other trees u, because u ~ contains complete informat ion
about the trees it was created from. The tree u r mus t not be in I U A. If it were, there
would be mul t ip le der ivat ions for some tree in G---one involving u ~ and one involving
u and t. Finally, u ~ mus t be different f rom t, because it mus t be larger than t.

If there is only one w a y to der ive a g iven tree in G, the m a p p i n g s be tween deriva-
tions in G ~ and G are one-to-one and there is therefore only one w a y to der ive a given
tree in G/. E3

L e m m a 4
Let G = (G, NT, LA, S) be a TIG and X E NT be a nonterminal . Let T C I be the set of
every e lementa ry initial tree t such that the root of t and the lef tmost n o n e m p t y frontier
node of t are both labeled X. Suppose that every node labeled X where adjunction can
occur is the root of an initial tree in I. Suppose also that there is no tree in A whose
root is labeled X. Let T ~ be the set of r ight auxil iary trees created by mark ing the first
n o n e m p t y frontier node of each e lement of T as a foot ra ther than for substitution.
Define G' = (~, NT, I - T, A U T', S).

Then, G / generates exactly the same trees as G. Further, if there is only one w a y
to generate each tree genera ted by G, then there is only one w a y to generate each tree
genera ted by GC

496

Schabes and Waters Tree Insertion Grammar

Proof
Note that w h e n conver t ing the trees in T into trees in T ~, every initial tree is conver ted
into a different auxil iary tree. Therefore, there is a one-to-one m a p p i n g be tween trees
in T and T'. Further, since there are no X-rooted trees in A, A N T' = {}.

Since in G, every node labeled X where adjunction can occur is the root of an
initial tree i n / , it mus t be the case that in G', every node labeled X where adjunction
can occur is the root of an initial tree in I', because the construction of T t did not
create any new nodes labeled X where adjunction can occur. Therefore, the only w a y
that any e lement of T' can be used in a der ivat ion in G' is by adjoining it on the root
of an initial tree u. The effect of this adjunction is exactly the same as substi tut ing
the corresponding t E I in place of u and then subst i tut ing u for the first n o n e m p t y
frontier node of t.

Any complete der ivat ion in G can be conver ted into exactly one der ivat ion in G'
as follows: Every instance of a tree in T has to occur in a substi tut ion chain. The
chain consists of some n u m b e r of instances h, t2 , tm of trees in T, wi th each tree
subst i tuted for the leftmost n o n e m p t y frontier node of the next. The top of the chain
tm is either not subst i tuted anywhere (i.e., only if X = S) or subst i tuted at a node that
is not the leftmost n o n e m p t y node of a tree in T. The bo t tom tree in the chain tl has
some tree u ~ T subst i tuted for its leftmost n o n e m p t y frontier node. Since there are no
X-rooted trees in A, there cannot be any adjunction on the root of u or on the roots of
any of the trees in the chain. The chain as a whole can be replaced by the s imul taneous
adjunction of the corresponding trees ' ' ' in T t tl, t 2 t m on the root of u, wi th u used
in the same w a y that tm was used.

Any der ivat ion in G' can be conver ted into a der ivat ion in G by doing the reverse
of the conversion above. Each use of a tree in T' mus t occur as par t of the s imul taneous
adjunction of one or more auxil iary trees on the root of some initial tree u, because
there are no other nodes at which this tree can be adjoined. Since the trees in T' are the
only X-rooted trees in A ~, all the trees being s imul taneously adjoined mus t be instances
of trees in T t. The s imul taneous adjunction can be replaced with a substi tut ion chain
combining the corresponding trees in T, with u subst i tuted into the tree at the bo t tom
of the chain and the top of the chain used however u was used.

Further, if there is only one w a y to der ive a given tree in G, there is no ambigui ty
in the m a p p i n g f rom derivat ions in G' to G, because there is no ambigui ty in the
m a p p i n g of the t; to trees in G. If there is only one way to der ive a given tree in G,
the mapp ings be tween derivat ions in G ~ and G are one-to-one and there is therefore
only one w a y to derive a given tree in GL []

After an appl icat ion of L e m m a s 2-4, a TIG m a y no longer be in reduced form;
however , it can be brought back to reduced form by discarding any unnecessary ele-
men ta ry trees. For instance, in L e m m a 2, if # is the only substi tut ion node labeled X
and X ~ S, then when t is discarded, every X-rooted initial tree can be discarded as
well.

5.1.2 Construct ing an LTIG. Using the above lemmas , an LTIG corresponding to a
CFG can be constructed.

T h e o r e m 2
If G = (G, NT, P,S) is a finitely ambiguous CFG that does not generate the e m p t y
string, then there is an LTIG G' = (G, NT, I ' ,A' , S) generat ing the same language and
tree set as G with each tree der ivable in only one way. Fur thermore , G' can be chosen

497

Computational Linguistics Volume 21, Number 4

so that all the auxiliary trees are right auxiliary trees and every e lementary tree is left
anchored.

Proof
To prove the theorem, we first prove a somewhat weaker theorem and then extend
the proof to the full theorem. We assume for the momen t that the set of rules for G
does not contain any empty rules of the form A ~ ¢.

The proof proceeds in four steps. At each step, none of the modifications made
to the grammar change the tree set p roduced nor introduce more than one way to
derive any tree. Therefore, the degree of ambigui ty of each string is preserved by the
constructed LTIG.

An ordering {A1 Am} of the nonterminals NT is assumed.

• Step 1: Using Lemma 1, we first convert G into an equivalent TIG
(Y~,NT, I, {}, S), generat ing the same trees. Because G does not contain
any empty rules, the set of initial trees created does not contain any
empty trees.

• Step 2: In this step, we modi fy the grammar of Step 1 so that every
initial tree t E I satisfies the following proper ty fL Let the label of the
root of t be Ai. The tree t must either:

(i)

(ii)

be left anchored, i.e., have a terminal as its first nonempty
frontier node; or
have a first nonempty frontier node labeled Aj where i < j.

We modify the grammar to satisfy f~ inductively for increasing values
of i. Consider the Al-rooted initial trees that do not satisfy Ft. Such trees
must have their first nonempty frontier node labeled with A1. These
initial trees are conver ted into right auxiliary trees as specified by
Lemma 4. The applicability of Lemma 4 in this case is guaranteed since,
after Step 1, there are no auxiliary trees, no interior nodes, and TIG
prohibits adjunction at frontier nodes.

We now assume inductively that Ft holds for every Ai rooted initial
tree t where i < k.

Step 2a: Consider the Ak-rooted initial trees that fail to satisfy Ft.
Each one must have a first nonempty frontier node # labeled
with Aj where j _< k. For those where j < k, we generate a new
set of initial trees by substituting other initial trees for # in
accordance with Lemma 2.

By the inductive hypothesis, the substitutions specified by
Lemma 2 result in trees that are either left anchored, or have
first nonempty frontier nodes labeled with A l where I > j. For
those trees where 1 ~ k, substitution as specified by Lemma 2 is
applied again.

After at most k - 1 rounds of substitution, we reach a
situation where every Ak-rooted initial tree that fails to satisfy Ft
has a first nonempty frontier node labeled with Ak.
Step 2b: The Ak-rooted initial trees where the first n o n em p ty
frontier node is labeled with Ak are then conver ted into right
auxiliary trees as specified by Lemma 4. The applicability of

498

Schabes and Waters Tree Insertion Grammar

Lemma 4 in this situation is guaranteed by the following facts.
First, there cannot have previously been any Ak-rooted auxiliary
trees, because there were none after Step 1, and every auxiliary
tree previously introduced in this induction has a root labeled Ai
for some i < k. Second, there cannot be any internal nodes in
any elementary tree labeled Ak, because there were none after
Step 1, and all subsequent substitutions have been at nodes
labeled Ai where i < k.

Steps 2a and 2b are applied iteratively for each i, 1 < i _< m until every
initial tree satisfies f~.

• Step 3: In this step, we modify the set of initial trees further until every
one is left anchored. We modify the grammar to satisfy this proper ty
inductively for decreasing values of i.

According to proper ty f~, every Am-rooted initial tree is left anchored,
because there are no higher indexed nonterminals.

We now assume inductively that every Ai rooted initial tree t where
i > k is left anchored.

The Ak rooted initial-trees must be left anchored, or have leftmost
nonempty frontier nodes labeled with Aj, where j > k. When the label is
Aj, we generate new initial trees using Lemma 2. These new rules are all
left anchored, because by the induction hypothesis, all the trees u
substi tuted by Lemma 2 are left anchored.
The above is repeated for each i until i = 1 is reached.

• Step 4: Finally, consider the auxiliary trees created above. Each is a right
auxiliary tree. If an auxiliary tree t is not left anchored, then the first
nonempty frontier element after the foot is labeled with some
nonterminal Ai. There must be some nonempty frontier element after the
foot of t because G is not infinitely ambiguous. We can use Lemma 2 yet
again to replace t with a set of left anchored right auxiliary trees. All the
trees produced must be left anchored because all the initial trees
resulting from Step 3 are left anchored.

• Empty rules: The auxiliary assumption that G does not contain empty
rules can be dispensed with.

If G contains empty rules, then the TIG created in Step 1 will contain
empty trees. These trees can be eliminated by repeated application of
Lemma 3. Let t be an empty tree. Since G does not derive the empty
string, the label of the root of t is not S. The tree t can be eliminated by
applying Lemma 3. This can lead to the creation of new empty trees.
However , these can be eliminated in turn using Lemma 3. This process
must terminate because G is finitely ambiguous.

Mark all the interior nodes in all the initial trees created by Lemma 3
as nodes where adjunction cannot occur. With the inclusion of these
adjoining constraints, the procedure above works just as before. []

In the worst case, the number of e lementary trees created by the LTIG procedure
above can be exponential ly greater than the number of product ion rules in G. This
explosion in numbers comes from the compounding of repeated substitutions in Steps
2 & 3 .

499

Computational Linguistics Volume 21, Number 4

CFG
A1 ~ A2A2

A2 --* A1A2IA2AIIa

Step 1 A1 A2 A2 A2

/ N / N / N I
A25 A25 A15 A25 A25 A15 a

Step 2

A1 A2 A2 A2

/ N / N / N I
A25 A25 A 1 A25 A2* A15 a

/ N
A2* A25

Step 3

AI A2 A 2 A2

A 2 A25 A 1 A25 A2* AI$ a

I / N
a A2* A25

Step 4 (final LTIG)

A1 A2 A2 A2

/ N / N / N I
A 2 A25 A 1 A25 A2* A 1 a

I / N / N
a A2* A 2 A 2 A25

I I
a a

Figure 12
Example of the operation of the LTIG procedure.

However, as noted at the end of Section 4, counting the number of elementary
trees is not an appropriate measure of the size of an LTIG. The compounding of
substitutions in the LTIG procedure causes there to be a large amount of sharing
between the elementary trees. Taking advantage of this sharing can counteract the
exponential growth in the number of rules completely. In particular, if the CFG does
not have any empty rules or sets of mutually left recursive rules involving more than
one nonterminal, then the size of the LTIG created by the procedure of Theorem 2 will
be smaller than the size of the original CFG.

On the other hand, if a grammar has many sets of mutually left recursive rules
involving more than one nonterminal, even taking advantage of sharing cannot stop
an exponential explosion in the size of the LTIG. In the worst case, a grammar with
m nonterminals can have m! sets of mutually left recursive rules, and the result LTIG
will be enormous.

5.1.3 An Example. Figure 12 illustrates the operation of the LTIG procedure. Step 1
of the procedure converts the CFG at the top of the figure to the TIG shown on the
second line.

500

Schabes and Waters Tree Insertion Grammar

In Step 2, no change is necessary in the Al-initial tree. However, the first A2-initial
tree has the Al-initial tree substituted into it. After that, the first two A2-initial trees
are converted into auxiliary trees as shown on the third line of Figure 12.

In step 3, the Al-initial tree is lexicalized by substituting the remaining A2-initial
tree into it. Step 4 creates the final LTIG by lexicalizing the auxiliary trees. The Al-initial
tree is retained under the assumption that A1 is the start symbol of the grammar.

5.1.4 LTIG Strongly Lexicalized TIG. It has been shown (Joshi and Schabes 1992;
Schabes 1990) that TAG extended with adjoining constraints not only strongly lexical-
izes CFG, but itself as well. We conjecture that our construction can be extended so
that given any TIG as input, an LTIG generating the same trees could be produced. As
with TAGs, adjoining constraints forbidding the adjunction of specific auxiliary trees
on specific nodes can be required in the resulting LTIG.

5.2 Comparison of the LTIG, GNF, and Rosenkrantz Procedures
5.2.1 The GNF Procedure. The LTIG procedure of Theorem 2 is related to the proce-
dure traditionally used to create GNF (see, for example, Harrison, 1978). This proce-
dure is referred to below as the GNF procedure. This procedure is not the procedure
originally developed by Greibach (1965). Rather, it is very similar to the procedure
developed shortly thereafter by Abbott and Kuno (1965). The main part of the GNF
procedure operates in three steps that are similar to Steps 2, 3, & 4. However, there
are five important differences between the LTIG and GNF procedures.

First, in lieu of Step 1, the GNF procedure converts the input into Chomsky normal
form. This eliminates infinite ambiguity and empty rules, and puts the input grammar
in a very specific form. The elimination of infinite ambiguity is essential, because the
GNF procedure will not operate if infinite ambiguity is present. The elimination of
empty rules is also essential, because empty rules in the input to the rest of the GNF
procedure lead to empty rules in the output. However, the remaining changes caused
by putting the input in Chomsky normal form are irrelevant to the basic goal of cre-
ating a left anchored output. A more compact left anchored grammar can typically
be produced by eliminating infinite ambiguity and empty rules without making the
other changes necessary to put the input in Chomsky normal form. In the follow-
ing discussion, we assume a modified version of the GNF procedure that takes this
approach.

Second, the GNF procedure can reduce the ambiguity of the input grammar. This
is due to loss of information when the same rule is derived in more than one way
by the GNF procedure. Ambiguity can be retained simply by retaining any duplicate
rules that are derived (Abbott and Kuno 1965).

Third, the GNF procedure changes the trees produced. This is an essential dif-
ference and cannot be avoided. However, as shown by Abbott and Kuno (1965), it
is possible to transform parse trees created using the GNF into the parse trees that
would have been obtained using the original grammar, based on a record of exactly
how each GNF rule was derived. In contrast to LTIG, which derives the correct trees
in the first place, this transformation requires a separate post phase after parsing.

The fourth important difference between the LTIG and GNF procedures is the way
they handle left recursive rules. The LTIG procedure converts them into right auxiliary
trees. In contrast, the GNF procedure converts them into right recursive rules. That is
to say, the GNF procedure converts rules of the form Ak --+ AkO~ I fl into rules of the
form Ak --~ fl [flZk and Zk ~ ~ [C~Zk. This is the source of the most radical changes in
the trees produced.

501

Computational Linguistics Volume 21, Number 4

A1 ~ A2A2
CFG

A2 ~ A1A21A2Alla

A1 --~ A2A2

Step2 A2 ~ aZ2[a

Z 2 ---+ AllA2A2]A2A2Z2]A1Z2

A1 ~ aA2IaZ2A2

Step 3 A2 --* aZ21a

Z2 ---+ A2A21AllAaA2Z21AIZ2

A1 ~ aA21aZ2A2

GNF A2 --~ aZ21a

Z 2 ----+ aA2]aA2Z2]aZ2A21aZ2A2Z2
Figure 13
Example of the operation of the GNF procedure.

A1 --* aZ2A2

A2 ~ ag2

Z2 ---+ aZ2A2Z2]c
Figure 14
The LTIG of Figure 12 converted into a CFG.

Figure 13 illustrates the operation of the GNF procedure when applied to the same
CFG as in Figure 12. Since the input grammar is finitely ambiguous and has no empty
rules, it can be operated on as is.

The step of the GNF procedure corresponding to Step 2 of the LTIG procedure
converts the CFG at the top of Figure 13 into the rules shown in the second part of
the figure. No change is necessary in the A1 rule. However, the first A2 rule has the A1
rule substituted into it. After that, the left recursive A2 rules are converted into right
recursive rules utilizing a new nonterminal Z2.

The step of the GNF procedure corresponding to Step 3 of the LTIG procedure
lexicalizes the A1 rule by substituting the A2 rules into it.

The final step of the GNF procedure lexicalizes the Z2 rules as shown at the bottom
of Figure 13. Note that there are eight ways of substituting an A1 or A2 rule into the first
position of a Z2 rule, but they yield only four distinct rules. For example, substituting
A1 ---* aA2 into Z2 --* A1 yields the same result as substituting A2 ~ a into Z2 --+ A2A2.

If the LTIG created in Figure 12 is converted into a CFG as specified in Theorem 1,
the rules in Figure 14 are obtained. Ambiguity is lost in this transformation, because
both auxiliary trees turn into the same rule. If the empty rule in Figure 14 is eliminated
by substitution, a grammar identical to the one at the bottom of Figure 13 results.

We conjecture that there is, in general, an exact correspondence between the output
of the LTIG procedure and the GNF procedure. In particular, if (a) the LTIG procedure
is applied to a CFG in Chomsky normal form, (b) the LTIG is converted into a CFG
as specified in Theorem 1, and (c) any resulting empty rules are eliminated by substi-
tution, the result is always the same CFG as that produced by the GNF procedure.

The fifth important difference between the LTIG and GNF procedures is that the

502

Schabes and Waters Tree Insertion Grammar

output of the LTIG procedure can be represented compactly. There are two reasons
for this. To start with, the use of auxiliary trees in an LTIG can allow it to be expo-
nentially smaller than the equivalent GNF. To see this, note that the elimination of
empty rules required when converting an LTIG into a GNF can cause an exponential
increase in the number of rules. Furthermore, the trees created by the LTIG proce-
dure have an extremely repetitive structure. As a result, node sharing can typically be
used to represent the LTIG compactly--it is often smaller than the original CFG (see
Section 6.1).

5.2.2 The Rosenkrantz Procedure. Another point of comparison with the LTIG proce-
dure is the CFG lexicalization procedure of Rosenkrantz (1967). This procedure oper-
ates in a completely different way from Greibach's procedure--simultaneously elimi-
nating all leftmost derivation paths of length greater than one, rather than shortening
derivation paths one step at a time via substitution and eliminating left recursive rules
one nonterminal at a time.

One consequence of the simultaneous nature of the Rosenkrantz procedure is that
one need not select an order of the nonterminals. This contrasts with the Greibach and
LTIG procedures where the order chosen can have a significant impact on the number
of elementary structures in the result.

As with the GNF procedure, one typically begins the Rosenkrantz procedure by
converting the input to Chomsky normal form. This is necessary to remove infinite
ambiguity and empty rules. However, it is also needed to remove chain rules, which
would otherwise lead to nonlexicalized rules in the output. The conversion to Chore-
sky normal form makes a lot of other changes as well, which are largely counterpro-
ductive if one wants to construct a left anchored grammar.

Also like the GNF procedure, ambiguity can be reduced and the trees derived are
changed. However, the ambiguity can be retained if duplicate rules are maintained.
It should also be possible to convert the resulting parse trees into parse trees in the
original grammar. This could be a complicated process, however, since the Rosenkrantz
algorithm alters the trees more radically than the GNF procedure.

A key advantage of the Rosenkrantz procedure is that, unlike the Greibach and
LTIG procedures, the output it produces cannot be exponentially larger than the in-
put. In particular, the growth in the number of rules is at worst O(mS), where m is
the number of nonterminals. However, the Rosenkrantz procedure typically produces
grammars that are less compact than those created by the LTIG procedure (see Sec-
tion 6.1).

It may be useful to develop a formalism and procedure that bare the same relation-
ship to the Rosenkrantz procedure that TIG and the LTIG procedure bare to the GNF
procedure. Given the fundamental advantages of the Rosenkrantz procedure over the
GNF procedure, this might lead to a result that is superior to the LTIG procedure.

5.3 Variants of the LTIG Procedure
The LTIG procedure above creates a left anchored LTIG that uses only right auxiliary
trees. As shown in Section 6.3, this is quite an advantageous form. However, other
forms might be more advantageous in some situations. Many variants of the LTIG
procedure are possible. For example, everywhere in the procedure, the word "right"
can be replaced by "left" and vice versa. This results in the creation of a right anchored
LTIG that uses only left auxiliary trees. This could be valuable when processing a
language with a fundamentally left recursive structure.

A variety of steps can be taken to reduce the number of elementary trees produced
by the LTIG procedure. To start with, the choice of an ordering {A1 Am} for the

503

Computational Linguistics Volume 21, Number 4

Nonterminals Terminals Rules Size

Tomita I 5 4 8 22
Tomita II 13 9 43 133
Tomita III 38 54 224 679
Tomita IV 45 32 394 1,478
Treebank 200 11 31 200 689
Treebank 500 14 36 500 1,833
Treebank 1000 16 36 1,000 3,919
Mike 25 102 145 470

Left Cycles of Length Right Cycles of Length

1 2 > 2 1 2-9 > 9

Tomita I 2 0 0 0 1 0
Tomita II 7 0 0 8 3 0
Tomita III 10 0 0 11 2,260 12,595
Tomita IV 13 0 0 11 3,453 5,964
Treebank 200 5 0 0 5 15 0
Treebank 500 9 1 0 9 945 44
Treebank 1000 11 2 0 10 14,195 5,624
Mike 0 0 0 1 1 0

Figure 15
Properties of the Grammars used as test cases.

nonterminals is significant. In the presence of sets of mutual ly left recursive rules
involving more than one nonterminal (i.e., sets of rules of the form {A ~ Bfl, B
Ac~}), choosing the best ordering of the relevant nonterminals can greatly reduce the
number of trees produced.

If one abandons the requirement that the g rammar must be left anchored, one can
sometimes reduce the number of e lementary trees p roduced dramatically. The reason
for this is that instead of being forced to lexicalize each rule in G at the first position on
its right hand side, one is free to choose the position that minimizes the total number
of e lementary trees eventual ly produced. However , one must be careful to meet the
requirements imposed by TIG while doing this. In particular, one must create only
left and right auxiliary trees as opposed to wrapping auxiliary trees. The search space
of possible alternatives is so large that it is not practical to find an optimal LTIG;
however, by means of simple heuristics and hill climbing, significant reductions in the
number of e lementary trees can be obtained.

Finally, one can abandon the requirement that there be only one way to derive
each tree in the LTIG. This approach is discussed in Schabes and Waters 1993c. In
the presence of sets of mutual ly left recursive rules involving more than one nonter-
minal, allowing increased ambiguity can yield significant reduct ion in the number of
e lementary trees.

It should be noted that while exploring ways to create LTIGs with small numbers
of e lementary trees is interesting, it may not be of practical significance because the
number of e lementary trees is not a good measure of the size of a TIG. In particular,
if a decreased number of e lementary trees is accompanied by decreased sharing, this
can lead to an increase in the g rammar size, rather than a decrease. As illustrated in
Section 6.1, the opportuni t ies for sharing between the e lementary trees in the LTIGs
created by the LTIG procedure is so high that the grammars p roduced are often smaller
than alternatives that have many fewer e lementary trees.

504

Schabes and Waters Tree Insertion Grammar

6. Experimental Results

The experiments below use eight grammars for fragments of English as test cases
(see Figure 15). The first four grammars are the test CFGs used by Tomita (1985).
The next three grammars are derived from the Treebank corpus (Brill et al. 1990)
of hand-parsed sentences from the Wall Street Journal. Each "Treebank n" grammar
corresponds to the n most commonly occurring local rules in the corpus that form a
CFG with no useless productions. 8 The eighth grammar is a CFG grammar used in the
natural language processing component of a simple interactive computer environment.
It supports conversation with an animated robot called Mike (Rich et al. 1994a and
1994b).

The grammars are all finitely ambiguous and none generates the empty string. The
Tomita III grammar contains an empty rule. The relative size and complexity of the
grammars is indicated at the top of Figure 15. The size [G[is computed as appropriate
for an Earley-style CFG parser--i.e., as the number of possible dotted rules, which is
the sum, over all the rules, of: one plus the number of elements on the right-hand side
of the rule.

The bottom of Figure 15 summarizes the left and right recursive structure of the
test grammars. The grammars have very few sets of mutually left recursive rules
involving more than one nonterminal. In contrast, all but the smallest grammars have
many sets of mutually right recursive rules involving significant numbers of different
nonterminals. This reflects the fact that English is primarily right recursive in nature.

Due to the unbalanced recursive nature of the test grammars, left anchored lexical-
izations are more compact than right anchored ones. For languages that are primarily
left recursive in nature, the situation would be reversed.

The experiments below are based on parsing a corpus of randomly generated
sentences. For each test grammar, four sentences were generated of each possible
length from 1-25. The top of Figure 16 shows the average number of parses of these
sentences versus sentence length. The ambiguity varies by five orders of magnitude
across the test corpus.

The bottom of Figure 16 shows the average number of chart states created when
parsing the test sentences using a standard Earley-style CFG parser. As is to be ex-
pected, the number of chart states rises significantly with the complexity of the gram-
mars, varying by two orders of magnitude. The number of chart states also grows
with the length of the sentences, but not much faster than linearly.

6.1 The Size of LTIG Grammars
The top of Figure 17 shows the number of elementary initial and auxiliary trees in
grammars created by the LTIG procedure given the various test grammars. Because
most of the test grammars do not have sets of mutually left recursive rules involving
more than one nonterminal, the order chosen for the nonterminals typically has no
effect on the output. However, for the grammars where there is an effect, the ordering
that lead to the smallest number of elementary trees was automatically chosen.

The middle portion of the table summarizes the left anchored LTIGs created by
the procedure of Theorem 2. The rightmost portion summarizes unconstrained LTIGs
created by a hill-climbing algorithm that attempts to minimize the number of elemen-

8 A local rule encodes the relationship between a node in a tree and its immediate children. For example,
the second tree on the last line of Figure 12 corresponds to three local rules A 2 ~ AIA2, A1 --* A2A2,
and A 2 ---+ a.

505

Computational Linguistics Volume 21, Number 4

1-5 6-10 11-15 16-20 21-25

Tomita I 1 4 25 174 3,696
Tomita II 1 2 3 50 46
Tomita III 1 2 6 66 58
Tomita IV 1 11 25 140 624
Treebank 200 1 1 3 8 36
Treebank 500 1 4 20 218 1,721
Treebank 1000 2 36 1,376 23,106 279,656
Mike 1 1 1 1 1

1-5 6-10 11-15 16-20 21-25

Tomita I 23 51 88 135 205
Tomita II 145 308 461 698 898
Tomita III 304 577 1,026 1,370 1,788
Tomita IV 827 1,436 2,311 3,192 4,146
Treebank 200 526 1,054 1,500 2,171 2,717
Treebank 500 1,193 2,762 4,401 6,712 8,566
Treebank 1000 3,795 8,301 15,404 23,689 32,633
Mike 124 163 264 334 435

Figure 16
Properties of the sentences used as test cases versus sentence length. Top: average ambiguity.
Bottom: average chart size.

CFG Left LTIG LTIG

Rules Initial Auxiliary Initial Auxiliary

Tomita I 8 6 2 5 1
Tomita II 43 905 7 87 8
Tomita III 224 1,790 45 522 51
Tomita IV 394 40,788 469 1,456 201
Treebank 200 200 648 77 284 76
Treebank 500 500 9,558 4,497 794 698
Treebank 1000 1 ,000 1,050,343 667,972 2,792 3,306
Mike 145 626 0 267 0

CFG Left LTIG LTIG

Figure 17

Tomita I 22 16 21
Tomita II 133 115 125
Tomita III 679 528 665
Tomita IV 1,478 1,263 1,438
Treebank 200 689 517 677
Treebank 500 1,833 1,427 1,801
Treebank 1000 3,919 3,146 3,839
Mike 470 356 470

Properties of LTIGS corresponding to the test grammars. Top: numbers of elementary trees.
Bottom: grammar size IGI.

tary trees produced. It can be seen that the left anchored LTIG cor responding to a CFG
can have m a n y more e lementary trees than an uncons t ra ined LTIG.

The bo t tom of Figure 17 shows the sizes of the var ious LTIGS. The sizes are
smaller than the number s of trees, because there is a large a m o u n t of sharing be tween

506

Schabes and Waters Tree Insertion Grammar

CFG Left LTIG Rosenkrantz GNF

Tomita I 8 8 16 19
Tomita II 43 912 861 10,848
Tomita III 224 1,835 3,961 4,931
Tomita IV 394 41,257 45,834 243,374
Treebank 200 200 725 2,462 1,723
Treebank 500 500 14,055 20,896 149,432
Treebank 1000 1,000 1,718,315 133,170 > 10 s
Mike 145 626 656 843

CFG Left LTIG Rosenkrantz GNF

Tomita I 22 16 54 68
Tomita II 133 115 3,807 100,306
Tomita III 679 528 16,208 29,622
Tomita IV 1,478 1,263 257,206 2,461,556
Treebank 200 689 517 11,104 9,546
Treebank 500 1,833 1,427 106,812 1,591,364
Treebank 1000 3,919 3,146 766,728 > 10 9

Mike 470 356 2,439 4,384
Figure 18
Comparison of the LTIG, Rosenkrantz,
structures. Bottom: grammar size.

and GNF procedures. Top: number of elementary

the elementary structures in the LTIGs. In fact, there is so much sharing that the LTIGs
are smaller than the corresponding CFGs.

The left anchored LTIGs are also smaller than the unconstrained LTIGs. This is
possible because of the small number of sets of mutually left recursive rules involving
more than one nonterminal in the test grammars. If there were many such sets, the
left anchored LTIGs could be larger than the unconstrained ones; and it might be
fruitful to consider using a right anchored LTIG. If there were many sets of mutually
left recursive rules and many sets of mutually right recursive rules, then every LTIG
might be large.

6.2 The GNF and Rosenkrantz Procedures
As a basis for comparison with the LTIG procedure, the GNF and Rosenkrantz proce-
dures were implemented as well. To minimize the size of the grammars produced by
these latter procedures, the input grammars were not converted to Chomsky normal
form, but rather only modified to the minimal extent required by the procedures (see
Section 5.2). This yielded savings that were almost always significant and sometimes
dramatic. In the case of the GNF procedure, the order of nonterminals was chosen so
as to minimize the number of rules produced.

The top of Figure 18 compares the grammars produced by the three procedures in
terms of the number of elementary structures. Except for Treebank 200, the Rosenkrantz
procedure created fewer rules than the GNF procedure and on the larger grammars,
dramatically fewer. The LTIG procedure created somewhat fewer elementary structures
than the Rosenkrantz procedure, except that for Treebank 1000, the LTIG has thirteen
times more elementary structures than the Rosenkrantz grammar. Assumedly, the large
size of the LTIG for Treebank 1000 reflects the fundamentally exponential behavior of
the LTIG procedure in comparison to the polynomial behavior of the Rosenkrantz
procedure.

The bottom of Figure 18 takes sharing into account and compares the sizes of the
various grammars. It reveals that the LTIGs are much more compact than the other
grammars, particularly for the larger test grammars.

The entries in Figure 18 for the Treebank 1000 GNF grammar are only approxi-

507

Computational Linguistics Volume 21, Number 4

CFG Left LTIG Rosenkrantz GNF

Tomita I 1.00 0.69 0.94 0.95
Tomita II 1.00 0.31 0.39 2.14
Tomita III 1.00 0.09 0.08 0.13
Tomita 1V 1.00 0.14 0.28
Treebank 200 1.00 0.12 0.15 0.53
Treebank 500 1.00 0.13 0.27
Treebank 1000 1.00 0.19
Mike 1.00 0.21 0.17 0.19

CFG Left LTIG Rosenkrantz GNF

Tomita I 1.0 1.0
Tomita II 1.0 1.0
Tomita III 1.0 1.0
Tomita IV 1.0 1.0
Treebank 200 1.0 1.0
Treebank 500 1.0 1.0
Treebank 1000 1.0 1.0
Mike 1.0 1.0

Figure 19
Parsing properties of LTIG, Rosenkrantz, and
Bottom: relative ambiguity.

1.0 1.0
1.0 1.0
0.7 0.7
0.8
1.0 0.9
0.8

1.0 1.0

GNF grammars. Top: relative chart sizes.

mate, because this grammar is too large to be practically computed, given the facilities
available to the authors. We had to estimate the number of rules based on the number
of substitutions called for by the GNF procedure.

6.3 Parsing with LTIG
To evaluate parsing with LTIG, three experimental parsers were implemented using
the deductive engine developed by Shieber, Schabes, and Pereira (1995). The test gram-
mars were parsed using a standard Earley-style CFG parser. The grammars created
by the Greibach and Rosenkrantz procedures were parsed using an Earley-style CFG
parser adapted to take full advantage of left anchored CFG grammars. The grammars
produced by the LTIG procedure were parsed with the parser of Section 4 extended
in all the ways discussed in Section 4.2 so that it takes full advantage of sharing and
the left anchored nature of these LTIGs. Every effort was extended to make the three
parsers as identical as possible, so that any differences in parsing would be due to the
grammars used, rather than the parsers.

The top of Figure 19 compares the number of chart states required when parsing
using the various grammars. The numbers are averages over all the test sentences of
the ratio of the number of chart states created using Various grammars to the chart
states created when parsing using the original CFG.

Chart states, instead of parsing times, are used as a basis for comparison because
they can be more reliably and repeatably obtained than parsing times and because they
allow the easy comparison of parsers implemented using different technologies. Chart
states should be a particularly accurate basis for comparison in this case, because
the overhead per chart element is essentially identical for the three parsers being
compared.

The second column in the table at the top of Figure 19 shows that in all cases,
parsing with LTIG requires fewer chart states than parsing with the original CFG.
Except for the Tomita I grammar, which is a toy example, the reduction is by a factor
of at least 3 and typically in the range of 5-10. This benefit is obtained without changing
the trees produced and without increasing the grammar size. The benefit is as great,

508

Schabes and Waters Tree Insertion Grammar

1-5 6-10 11-15 16-20 21-25

Tomita I 0.43 0.60 0.69 0.76 0.86
Tomita II 0.28 0.30 0.30 0.34 0.35
Tomita III 0.06 0.08 0.10 0.10 0.11
Tomita IV 0.11 0.14 0.15 0.15 0.17
Treebank 200 0.08 0.11 0.12 0.14 0.14
Treebank 500 0.08 0.11 0.13 0.16 0.16
Treebank 1000 0.10 0.15 0.21 0.25 0.33
Mike 0.14 0.23 0.21 0.22 0.21

1 2-10 11-100 101-1000 > 1000

Tomita I 0.44 0.61 0.73 0.80 0.90
Tomita II 0.28 0.32 0.36
Tomita III 0.06 0.09 0.13
Tomita IV 0.11 0.13 0.16 0.18
Treebank 200 0.09 0.13 0.15
Treebank 500 0.07 0.12 0.15 0.18 0.20
Treebank 1000 0.08 0.13 0.17 0.22 0.30
Mike 0.20

Figure 20
Ratio of Left LTIG to CFG chart states. Top: versus sentence length. Bottom: versus sentence
ambiguity.

or greater, for large grammars like Tomita IV and Treebank 1000 as for small ones like
Tomita II and Mike.

The grammars generated by the Rosenkrantz and GNF procedures also yield re-
ductions in the number of chart states. However , the reduction is not as great as for the
LTIG, and is only obtained at the cost of changing the trees produced and increasing
the grammar size.

With the Rosenkrantz and GNF procedures, the size of the g rammar can be a
significant problem in two ways. First, the grammar can be so large that even with
left anchored parsing, an unreasonably large number of chart states is created. In
Figure 19, this happens with the GNF for Tomita II. Second, the grammar can be too
large to parse with at all. Several of the entries in Figure 19 are left blank, because
using our experimental deduct ion-based parser, it was not possible for us to parse
with grammars larger than 100, 000 or so. It is not clear whether any practical parser
could handle the grammar that the GNF procedure creates for Treebank 1000.

The bot tom of Figure 19 shows the average relative ambiguity of the grammars
produced by the three procedures when applied to the test sentences. Each number
is the average ambiguity of the sentences under the grammar in question divided by
their ambiguity under the original CFG. The LTIG always has the same ambigui ty as
the CFG. The other procedures often create grammars with less ambiguity.

The tables in Figure 20 provide a more detailed analysis of the reduction in chart
states obtained via the LTIG procedure. As in the top of Figure 19, the numbers are
ratios of the number of chart states created by the LTIG parser to the number of chart
states created by the CFG parser, for sentences with the indicated properties.

The top of Figure 20 shows that the benefit obtained by using LTIG declines
with longer sentences, but continues to be significant. The bot tom of Figure 20 shows
that the benefit obtained by using LTIG also declines with higher ambiguity, but not
dramatically. The missing entries in the table stem from the fact that some of the
grammars do not generate significant numbers of highly ambiguous sentences.

509

Computational Linguistics Volume 21, Number 4

7. A Future Direct ion

In the preceding, TIG is primarily presented as an alternative to CFG. Another
perspective on TIG is as an alternative to TAG. To explore the possibilities in this
regard, we investigated the extent to which the lexicalized tree adjoining grammar
(LTAG) for English being developed at the University of Pennsylvania (XTAG Research
Group 1995) is consistent with LTIG.

The current English LTAG consists of 392,001 elementary trees. These trees are all
lexicalized and contain a total of 54,777 different words. At first glance, it might seem
impractical to parse using such an enormous grammar expressed in any formalism.
However, because the elementary trees are lexicalized and there are so many terminal
symbols, only a small fraction of the elementary trees needs to be considered when
parsing any one sentence. In particular, there are on average only 7 elementary trees
for each word. Therefore, only on the order of 100 elementary trees need be considered
when parsing any one ten to twenty word sentence.

In the context of this paper, the most striking aspect of the current English LTAG
is that it is nearly an LTIG (see Figure 21). In particular, the current English LTAG con-
tains almost 100,000 elementary left and right auxiliary trees but only 109 elementary
wrapping auxiliary trees. Further, the vast majority of the ways the auxiliary trees can
be used are also consistent with the restrictions imposed by TIG. The only exceptions
are the small number of situations where an elementary wrapping auxiliary tree can
be adjoined and the even smaller number of situations where an elementary left aux-
iliary tree can be adjoined on the spine of an elementary right auxiliary tree and vice
versa.

Figure 21 is suggestive, but it has several shortcomings. The figure implicitly as-
sumes that every elementary tree and every interaction between them is equally im-
portant. It is entirely possible that some of the non-LTIG adjunctions occur frequently
or are linguistically essential, or both.

More importantly, the figure considers only simple, unconstrained adjunction.
However, the current English LTAG makes use of adjoining constraints and the propa-
gation of attributes during parsing. To capture this additional information, one would
have to use an extension of LTIG supporting adjoining constraints and the propaga-
tion of attributes. Due to the switch from adjoining on the roots of auxiliary trees in
LTAG to multiple simultaneous adjunction in LTIG, the constraints and propagation
of attributes would have to operate very differently. Further research is needed to
determine whether equivalent operation can be obtained in all situations.

Given the above, there is no reason to believe that it would be easy to convert the
current English LTAG entirely into an LTIG. However, there is every reason to believe
that it would be worthwhile to try. Given that no effort was expended to date, yet the
grammar is close to an LTIG, the grammar could probably be brought much closer to
an LTIG. If complete conversion is not possible, one could consider implementing a
combined parser for TIG and TAG that would apply TIG parsing to the TIG subset of

Number Incompatible With LTIG

initial trees 294,568 0 0%
auxiliary trees 97,433 109 .11%
possible adjunctions 45,962,478,485 49,840,130 .11%

Figure 21
Most of the current LTAG for English is consistent with LTIG.

510

Schabes and Waters Tree Insertion Grammar

a TAG and full TAG parsing to the rest. For a grammar that was mostly a TIG, such
a parser should be almost as fast as a TIG parser.

8. Conclusion

A variety of lexicalization procedures for CFG have previously been developed. How-
ever, they all have significant disadvantages. The approaches of Greibach and Rosen-
krantz, which produce a CFG in Greibach normal form, are only weak lexicalization
procedures since they do not guarantee that the same trees are produced. In addition,
these approaches often produce very large output grammars. TAG allows strong lex-
icalization that preserves the trees produced; however, because it uses an operation
deriving context-sensitive languages, TAG entails larger computation costs than CFGs.

Tree insertion grammar (TIG) is a restricted form of tree adjoining grammar (TAG)
that is O(ng)-time parsable, generates context-free languages, and yet allows the strong
lexicalization of CFG. The main results of this paper are an efficient Earley-style parser
for TIG and a procedure that converts any CFG into a left anchored lexicalized TIG
(LTIG) that produces the same trees with the same degree of ambiguity. By taking
advantage of the sharing between trees, these LTIGs can be represented compactly.

Experiments with grammars for subsets of English show that the corresponding
LTIGs are often even smaller than the original CFGs. Most importantly, by taking
advantage of the left anchored nature of the LTIG, it is possible to avoid on the order
of 80-90% of the chart states required when parsing with the original CFG. Given that
the per-chart-state cost of TIG and CFG parsers are essentially identical, this should
translate directly into an 80-90% decrease in parsing time.

A possible future use of TIG is as an alternative for TAG. TIG is not as powerful as
TAG, but it includes a number of the features of TAG. Further, at least in the current
English LTAG, the features of TAG that are included in TIG are used more often than
the features that are not included in TIG. As a result, it may be possible to use TIG
instead of TAG in some situations, thereby gaining O(n 3) parsability.

The uses for TIG discussed in this paper all involve starting with an existing
grammar and converting it into a TIG. An important area for further investigation
is using TIG as the original formalism for constructing grammars. This is potentially
valuable because TIG allows greater derivational freedom than CFG, without any
additional parsing cost. For instance, one can require that the grammar be lexicalized,
without placing any limits on the parse trees produced. This could result in grammars
that are better motivated from a linguistic standpoint, or faster to parse, or both.

Acknowledgments
We thank John Coleman, Aravind Joshi,
Esther K6nig, Fernando Pereira, Stuart
Shieber and B. Srinivas for valuable
discussions. We thank the anonymous
referees for a number of insightful
comments and suggestions. We thank
Masaru Tomita for making his test
grammars available to us.

References
Abbott, Russell, and Kuno, Susumu. (1965).

"The predictive analyzer and context-free
grammars." Harvard University Technical
Report of the Machine Translation Project.

Bar-Hillel, Yoshua. (1964). "On categorial
and phrase structure grammars." In
Language and Information, 99-115.
(Addison-Wesley, First appeared in the
Bulletin of the Research Council of Israel,
vol. 9F, 1-16 (1960).)

Brill, Eric; Magerman, David; Marcus,
Mitchell; and Santorini, Beatrice. (1990).
"Deducing linguistic structure from the
statistics of large corpora." In DARPA
Speech and Natural Language Workshop.
Morgan Kaufmann, Hidden Valley, PA,
June.

Chomsky, Noam. (1981). Lectures on
Government and Binding. Foris, Dordrecht.

Earley, Jay C. (1968). An Efficient Context-Free

511

Computational Linguistics Volume 21, Number 4

Parsing Algorithm. Doctoral dissertation,
Carnegie-Mellon University, Pittsburgh,
PA.

Earley, Jay C. (1970). "An efficient
context-free parsing algorithm." Commun.
ACM, 13(2), 94-102.

Gazdar, Gerald; Klein, Ewan H.; Pullum,
Geoffrey. K.; and Sag, Ivan. A. (1985).
Generalized Phrase Structure Grammars.
Blackwell Publishing, Oxford. Also
published by Harvard University Press,
Cambridge, MA.

Graham, Susan L.; Harrison, Michael A.;
and Ruzzo, Walter L. (1980). "An
improved context-free recognizer." ACM
Transactions on Programming Languages and
Systems, 2(3), 415--462, July.

Greibach, Sheila A. (1965). "A new
normal-form theorem for context-free
phrase-structure grammars." J. ACM, 12,
42-52.

Gross, Maurice' (1984). "Lexicon-grammar
and the syntactic analysis of French." In
Proceedings, 10 th International Conference on
Computational Linguistics (COLING'84),
Stanford.

Harrison, Michael A. (1978). Introduction to
Formal Language Theory. Addison-Wesley,
Reading, MA.

Joshi, Aravind K. (1985). "How much
context-sensitivity is necessary for
characterizing structural
descriptions--Tree Adjoining Grammars."
In D. Dowty, L. Karttunen, and
A. Zwicky, editors, Natural Language
Processing--Theoretical, Computational and
Psychological Perspectives. Cambridge
University Press, New York.

Joshi, Aravind K., and Schabes, Yves (1992).
"Tree-adjoining grammars and lexicalized
grammars." In Maurice Nivat and
Andreas Podelski, editors, Tree Automata
and Languages. Elsevier Science.

Kaplan, Ronald, and Bresnan, Joan (1983).
"Lexical-functional grammar: A formal
system for grammatical representation."
In J. Bresnan, editor, The Mental
Representation of Grammatical Relations. MIT
Press, Cambridge MA.

Karttunen, Lauri (1986). "Radical
lexicalism." Technical Report CSLI-86-68,
CSLI, Stanford University, 1986. Also in
Alternative Conceptions of Phrase Structure,
University of Chicago Press, Baltin, M.
and Kroch A., Chicago.

Lang, Bernard (1990). "The systematic
constructions of Earley parsers:
Application to the production of O(n 6)
Earley parsers for Tree Adjoining
Grammars." In Proceedings, 1st

International Workshop on Tree Adjoining
Grammars, Dagstuhl Castle, FRG.

Pollard, Carl, and Sag, Ivan A. (1987).
Information-Based Syntax and Semantics.
Vol. 1: Fundamentals. CSLI.

Rich, Charles; Waters, Richard C.; Schabes,
Yves; Freeman, William T.; Torrance,
Mark C.; Golding, Andrew R.; and Roth,
Michal (1994a). "An animated on-line
community with artificial agents." IEEE
Multimedia, 1(4), 32-42, Winter 1994.

Rich, Charles; Waters, Richard C.;
Strohecker, Carol; Schabes, Yves; Freeman,
William T.; Torrance, Mark C.; Golding,
Andrew R.; and Roth, Michal (1994b).
"Demonstration of an interactive
multimedia environment." IEEE Computer,
27(12), 15-22, December 1994.

Rosenkrantz, Daniel J. (1967). "Matrix
equations and normal forms for
context-free grammars." Journal of the
Association for Computing Machinery, 14(3),
501-507.

Schabes, Yves (1990). Mathematical and
Computational Aspects of Lexicalized
Grammars. Doctoral dissertation,
University of Pennsylvania, Philadelphia,
PA. Available as technical report
(MS-CIS-90-48, LINC LAB179) from the
Department of Computer Science.

Schabes, Yves (1991). "The valid prefix
property and left to right parsing of
tree-adjoining grammar." In Proceedings,
Second International Workshop on Parsing
Technologies, 21-30, Cancun, Mexico.

Schabes, Yves; Abeill6, Anne; and Joshi,
Aravind K. (1988). "Parsing strategies
with 'lexicalized' grammars: Application
to tree adjoining grammars." In
Proceedings, 12 th International Conference on
Computational Linguistics (COLING'88),
Budapest, Hungary.

Schabes, Yves, and Waters, Richard C.
(1993a). "Lexicalized context-free
grammars." In 21 st Meeting of the
Association for Computational Linguistics
(ACL'93), 121-129, Columbus, OH, June.

Schabes, Yves, and Waters, Richard C.
(1993b). "Stochastic lexicalized
context-free grammars." In Proceedings,
Third International Workshop on Parsing
Technologies, 257-266, Tilburg (the
Netherlans) and Durbuy (Belgium),
August.

Schabes, Yves, and Waters, Richard C.
(1993c). "Lexicalized context-free
grammar: A cubic-time parsable
formalism that strongly lexicalizes
context-free grammar." Technical Report
93-04, Mitsubishi Electric Research
Laboratories, 201 Broadway. Cambridge,

512

Schabes and Waters Tree Insertion Grammar

MA 02139.
Schabes, Yves, and Shieber, Stuart (1994).

"An alternative conception of
tree-adjoining derivation." Computational
Linguistics, 20(1), 91-124, March.

Shieber, Stuart M.; Schabes, Yves; and
Pereira, Fernando C.N. (1995). "Principles
and implementation of deductive
parsing." Journal of Logic and Computation,
24 (1&2), 3-36.

Steedman, Mark (1987). "Combinatory
grammars and parasitic gaps." Natural
Language and Linguistic Theory, 5, 403-439.

Thatcher, James W. (1971). "Characterizing
derivations trees of context free grammars
through a generalization of finite automata
theory." Journal of Computer and System
Sciences, 5, 365-396.

Tomita, Masaru (1985). Efficient Parsing for
Natural Language, A Fast Algorithm for
Practical Systems. Kluwer Academic
Publishers.

Vijay-Shanker, K. (1987). A Study of Tree
Adjoining Grammars. Doctoral dissertation,
Department of Computer and Information

Science, University of Pennsylvania.
Vijay-Shanker, K., and Joshi, Aravind K.

(1985). "Some computational properties of
Tree Adjoining Grammars." In 23 rd
Meeting of the Association for Computational
Linguistics, 82-93, Chicago, Illinois.

Vijay-Shanker, K., and Weir, David (1993).
"Parsing some constrained grammar
formalisms." Computational Linguistics,
19(4), 591-636.

Vijay-Shanker, K.; Weir, David J.; and Joshi,
Aravind K. (1986). "Tree adjoining and
head wrapping." In Proceedings, 11 th
International Conference on Computational
Linguistics (COLING'86).

Weir, David J. (1988). Characterizing Mildly
Context-Sensitive Grammar Formalisms.
Doctoral dissertation, Department of
Computer and Information Science,
University of Pennsylvania.

XTAG Research Group (1995). "A
Lexicalized Tree Adjoining Grammar for
English." IRCS technical report 95-03.
Institute for Research in Cognitive
Science. University of Pennsylvania,
Philadelphia, PA 19104.

Appendix A: No wrapping trees can be built in TIG

In this appendix, we give a proof that given a TIG (G, NT, L A, S), it is not possible to
create wrapping auxiliary trees.

Proof
The only e lementary trees allowed are left auxiliary trees, right auxiliary trees and
initial trees. A case-by-case analysis reveals that every possible combination of these
kinds of trees yields a new tree in one of the three categories. Therefore, no derivat ion
can ever create a wrapping auxiliary tree.

Substitution of an initial tree in an initial tree yields an initial tree.
Adjunction of a left or right auxiliary tree in an initial tree yields an initial tree.
Substitution of an initial tree in a left (right) auxiliary tree yields a left (right)

auxiliary tree, because by definition the node marked for substitution must be left
(right) of the foot and therefore all the new frontier nodes must be added left (right)
of the foot.

Adjunction of a left (right) auxiliary tree S in a right (left) auxiliary tree T yields a
right (left) auxiliary tree, because by definition the node adjoined upon must be to the
right (left) of the spine of T and therefore all the new frontier nodes must be added
right (left) of the foot of T.

Adjunction of a left (right) auxiliary tree S in a left (right) auxiliary tree T yields
a left (right) auxiliary tree, for the same basic reason as above except that the node
adjoined upon can be o n t h e spine of T. However , since all the nonempty structure
in S is left (right) of the spine of S, even in this case, all the new nonempty frontier
nodes are added to the left (right) of the foot of T. []

513

