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Stochastic approaches to natural language processing have often been preferred to rule-based 
approaches because of their robustness and their automatic training capabilities. This was the 
case for part-of-speech tagging until Brill showed how state-of-the-art part-of-speech tagging can 
be achieved with a rule-based tagger by inferring rules from a training corpus. However, current 
implementations of the rule-based tagger run more slowly than previous approaches. In this 
paper, we present a finite-state tagger, inspired by the rule-based tagger, that operates in optimal 
time in the sense that the time to assign tags to a sentence corresponds to the time required to 
follow a single path in a deterministic finite-state machine. This result is achieved by encoding 
the application of the rules found in the tagger as a nondeterministic finite-state transducer and 
then turning it into a deterministic transducer. The resulting deterministic transducer yields a 
part-of-speech tagger whose speed is dominated by the access time of mass storage devices. We 
then generalize the techniques to the class of transformation-based systems. 

1. Introduction 

Finite-state devices have important applications to many areas of computer science, in- 
cluding pattern matching, databases, and compiler technology. Although their linguis- 
tic adequacy to natural language processing has been questioned in the past (Chomsky, 
1964), there has recently been a dramatic renewal of interest in the application of finite- 
state devices to several aspects of natural language processing. This renewal of interest 
is due to the speed and compactness of finite-state representations. This efficiency is ex- 
plained by two properties: finite-state devices can be made deterministic, and they can 
be turned into a minimal form. Such representations have been successfully applied to 
different aspects of natural language processing, such as morphological analysis and 
generation (Karttunen, Kaplan, and Zaenen 1992; Clemenceau 1993), parsing (Roche 
1993; Tapanainen and Voutilainen 1993), phonology (Laporte 1993; Kaplan and Kay 
1994) and speech recognition (Pereira, Riley, and Sproat 1994). Although finite-state 
machines have been used for part-of-speech tagging (Tapanainen and Voutilainen 1993; 
Silberztein 1993), none of these approaches has the same flexibility as stochastic tech- 
niques. Unlike stochastic approaches to part-of-speech tagging (Church 1988; Kupiec 
1992; Cutting et al. 1992; Merialdo 1990; DeRose 1988; Weischedel et al. 1993), up to 
now the knowledge found in finite-state taggers has been handcrafted and was not 
automatically acquired. 

Recently, Brill (1992) described a rule-based tagger that performs as well as taggers 
based upon probabilistic models and overcomes the limitations common in rule-based 
approaches to language processing: it is robust and the rules are automatically ac- 
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quired. In addition, the tagger requires drastically less space than stochastic taggers. 
However, current implementations of Brill's tagger are considerably slower than the 
ones based on probabilistic models since it may require RKn elementary steps to tag 
an input of n words with R rules requiring at most K tokens of context. 

Although the speed of current part-of-speech taggers is acceptable for interac- 
tive systems where a sentence at a time is being processed, it is not adequate for 
applications where large bodies of text need to be tagged, such as in information re- 
trieval, indexing applications, and grammar-checking systems. Furthermore, the space 
required for part-of-speech taggers is also an issue in commercial personal computer 
applications such as grammar-checking systems. In addition, part-of-speech taggers 
are often being coupled with a syntactic analysis module. Usually these two modules 
are written in different frameworks, making it very difficult to integrate interactions 
between the two modules. 

In this paper, we design a tagger that requires n steps to tag a sentence of length 
n, independently of the number of rules and the length of the context they require. 
The tagger is represented by a finite-state transducer, a framework that can also be 
the basis for syntactic analysis. This finite-state tagger will also be found useful when 
combined with other language components, since it can be naturally extended by 
composing it with finite-state transducers that could encode other aspects of natural 
language syntax. 

Relying on algorithms and formal characterizations described in later sections, we 
explain how each rule in Brill's tagger can be viewed as a nondeterministic finite-state 
transducer. We also show how the application of all rules in Brill's tagger is achieved 
by composing each of these nondeterministic transducers and why nondeterminism 
arises in this transducer. We then prove the correctness of the general algorithm for 
determinizing (whenever possible) finite-state transducers, and we successfully apply 
this algorithm to the previously obtained nondeterministic transducer. The resulting 
deterministic transducer yields a part-of-speech tagger that operates in optimal time 
in the sense that the time to assign tags to a sentence corresponds to the time required 
to follow a single path in this deterministic finite-state machine. We also show how 
the lexicon used by the tagger can be optimally encoded using a finite-state machine. 

The techniques used for the construction of the finite-state tagger are then for- 
malized and mathematically proven correct. We introduce a proof of soundness and 
completeness with a worst-case complexity analysis for the algorithm for determiniz- 
ing finite-state transducers. 

We conclude by proving that the method can be applied to the class of transformation- 
based error-driven systems. 

2. Overview of Brill's Tagger 

Brill's tagger is comprised of three parts, each of which is inferred from a training cor- 
pus: a lexical tagger, an unknown word tagger, and a contextual tagger. For purposes 
of exposition, we will postpone the discussion of the unknown word tagger and focus 
mainly on the contextual rule tagger, which is the core of the tagger. 

The lexical tagger initially tags each word with its most likely tag, estimated by 
examining a large tagged corpus, without regard to context. For example, assuming 
that vbn is the most likely tag for the word "killed" and vbd for "shot," the lexical 
tagger might assign the following part-of-speech tags: 1 

1 The notation for part-of-speech tags is adapted from the one used in the Brown Corpus (Francis and 
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Figure 1 
Sample rules. 

1. vbn vbd PREVTAG np 
2. vbd vbn NEXTTAG by 

(1) 
(2) 
(3) 

Chapman/np killed/vbn John/np Lennon/np 
John/np Lennon/np was/bedz shot/vbd by~by Chapman/np 
He/pps witnessed/vbd Lennon/np killed/vbn by~by Chapman/np 

Since the lexical tagger does not use any contextual information, many  words can 
be tagged incorrectly. For example, in (1), the word "killed" is erroneously tagged as 
a verb in past participle form, and in (2), "shot" is incorrectly tagged as a verb in past 
tense. 

Given the initial tagging obtained by the lexical tagger, the contextual tagger ap- 
plies a sequence of rules in order and attempts to remedy the errors made by the initial 
tagging. For example, the rules in Figure 1 might be found in a contextual tagger. 

The first rule says to change tag vbn to vbd if the previous tag is np. The second 
rule says to change vbd to tag vbn if the next tag is by. Once the first rule is applied, 
the tag for "killed" in (1) and (3) is changed from vbn to vbd and the following tagged 
sentences are obtained: 

(4) 
(5) 
(6) 

Chapman/np killed/vbd John/np Lennon/np 
John/np Lennon/np was/bedz shot/vbd by~by Chapman/np 
He/pps witnessed/vbd Lennon/np killed/vbd by~by Chapman/np 

And once the second rule is applied, the tag for "shot" in (5) is changed from vbd 
to vbn, resulting in (8), and the tag for "killed" in (6) is changed back from vbd to vbn, 
resulting in (9): 

(7) 
(8) 
(9) 

Chapman/np killed/vbd John/np Lennon/np 
John/np Lennon/np was~be& shot/vbn by~by Chapman/np 
He/pps witnessed/vbd Lennon/np killed/vbn by~by Chapman/np 

It is relevant to our following discussion to note that the application of the NEXT- 
TAG rule must  look ahead one token in the sentence before it can be applied, and that 
the application of two rules may  perform a series of operations resulting in no net 
change. As we will see in the next section, these two aspects are the source of local 
nondeterminism in Brill's tagger. 

The sequence of contextual rules is automatically inferred from a training corpus. 
A list of tagging errors (with their counts) is compiled by comparing the output  of 
the lexical tagger to the correct part-of-speech assignment. Then, for each error, it is 
determined which instantiation of a set of rule templates results in the greatest error 
reduction. Then the set of new errors caused by applying the rule is computed and 
the process is repeated until the error reduction drops below a given threshold. 

Ku~era 1982): pps stands for singular nominative pronoun in third person, vbd for verb in past tense, np 
for proper noun, vbn for verb in past participle form, by for the word "by," at for determiner, nn for 
singular noun, and bedz for the word "was." 
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A B PREVTAG C 
A B PREVIOR2OR3TAG C 
A B PREVIOR2TAG C 
A B NEXTIOR2TAG C 
A B NEXTTAG C 
A B SURROUNDTAG C D 
A B NEXTBIGRAM C D 
A B PREVBIGRAM C D 

change A to B if previous tag is C 
change A to B if previous one or two or three tag is C 
change A to B if previous one or two tag is C 
change A to B if next one or two tag is C 
change A to B if next tag is C 
change A to B if surrounding tags are C and D 
change A to B if next bigram tag is C D 
change A to B if previous bigram tag is C D 

Figure 2 
Contextual rule templates. 

iii iilD ] C [C IA [ 
IclclAI 

ICIDIClClAI I C ID lii iiI ii iiiil 
IClCIAI IClClAI 

(1) (2) 
Figure 3 
Partial matches of A B PREVBIGRAM C C on the input C D C C A. 

(3) 

Using the set of contextual rule templates shown in Figure 2, after training on 
the Brown Corpus, 280 contextual rules are obtained. The resulting rule-based tagger 
performs as well as state-of-the-art taggers based upon probabilistic models. It also 
overcomes the limitations common in rule-based approaches to language processing: 
it is robust, and the rules are automatically acquired. In addition, the tagger requires 
drastically less space than stochastic taggers. However, as we will see in the next 
section, Brill's tagger is inherently slow. 

3. Complexity of Brill's Tagger 

Once the lexical assignment is performed, in Brill's algorithm, each contextual rule 
acquired during the training phase is applied to each sentence to be tagged. For each 
individual rule, the algorithm scans the input from left to right while attempting to 
match the rule. 

This simple algorithm is computationally inefficient for two reasons. The first rea- 
son for inefficiency is the fact that an individual rule is compared at each token of the 
input, regardless of the fact that some of the current tokens may have been previously 
examined when matching the same rule at a previous position. The algorithm treats 
each rule as a template of tags and slides it along the input, one word at a time. 
Consider, for example, the rule A B PREVBIGRAM C C that changes tag A to tag B if 
the previous two tags are C. 

When applied to the input CDCCA, the pattern CCA is compared three times to 
the input, as shown in Figure 3. At each step no record of previous partial matches 
or mismatches is remembered. In this example, C is compared with the second input 
token D during the first and second steps, and therefore, the second step could have 
been skipped by remembering the comparisons from the first step. This method is 
similar to a naive pattern-matching algorithm. 

The second reason for inefficiency is the potential interaction between rules. For 
example, when the rules in Figure 1 are applied to sentence (3), the first rule results 
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in a change (6) that is undone by the second rule as shown in (9). The algorithm may 
therefore perform unnecessary computation. 

In summary, Brill's algorithm for implementing the contextual tagger may require 
RKn elementary steps to tag an input of n words with R contextual rules requiring at 
most K tokens of context. 

4. Construction of the Finite-State Tagger 

We show how the function represented by each contextual rule can be represented 
as a nondeterministic finite-state transducer and how the sequential application of 
each contextual rule also corresponds to a nondeterministic finite-state transducer 
being the result of the composition of each individual transducer. We will then turn 
the nondeterministic transducer into a deterministic transducer. The resulting part- 
of-speech tagger operates in linear time independent of the number of rules and the 
length of the context. The new tagger operates in optimal time in the sense that the 
time to assign tags to a sentence corresponds to the time required to follow a single 
path in the resulting deterministic finite-state machine. 

Our work relies on two central notions: the notion of a finite-state transducer and 
the notion of a subsequential transducer. Informally speaking, a finite-state transducer 
is a finite-state automaton whose transitions are labeled by pairs of symbols. The first 
symbol is the input and the second is the output. Applying a finite-state transducer to 
an input consists of following a path according to the input symbols while storing the 
output symbols, the result being the sequence of output symbols stored. Section 8.1 
formally defines the notion of transducer. 

Finite-state transducers can be composed, intersected, merged with the union op- 
eration and sometimes determinized. Basically, one can manipulate finite-state trans- 
ducers as easily as finite-state automata. However, whereas every finite-state automa- 
ton is equivalent to some deterministic finite-state automaton, there are finite-state 
transducers that are not equivalent to any deterministic finite-state transducer. Trans- 
ductions that can be computed by some deterministic finite-state transducer are called 
subsequential functions. We will see that the final step of the compilation of our tag- 
ger consists of transforming a finite-state transducer into an equivalent subsequential 
transducer. 

We will use the following notation when pictorially describing a finite-state trans- 
ducer: final states are depicted with two concentric circles; e represents the empty 
string; on a transition from state i to state j, a/b indicates a transition on input symbol 
a and output symbol(s) b; a a question mark (?) on an input transition (for example 
labeled ?/b) originating at state i stands for any input symbol that does not appear as 
input symbol on any other outgoing arc from i. In this document, each depicted finite- 
state transducer will be assumed to have a single initial state, namely the leftmost 
state (usually labeled 0). 

We are now ready to construct the tagger. Given a set of rules, the tagger is 
constructed in four steps. 

The first step consists of turning each contextual rule found in Brill's tagger into a 
finite-state transducer. Following the example discussed in Section 2, the functionality 
of the rule vbn vbd PREVTAG np is represented by the transducer shown on the left of 
Figure 4. 

2 When multiple output symbols are emitted, a comma symbolizes the concatenation of the output 
symbols. 
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np/np vbn/vbd 

?/? (.~p/np 

Figure 4 
Left: Transducer T1 representing the contextual rule vbn vbd PREVTAG np. Right: Local 
extension LocExt(T1) of T1. 

bn 

Figure  5 
Left: Transducer T2 representing vbd vbn NEXTTAG by. Right: Local extension LocExt(T2) of T2. 

Each contextual rule is defined locally; that is, the transformation it describes must  
be applied at each position of the input sequence. For instance, the rule 

A B PREVIOR2TAG C, 

which changes A into B if the previous tag or the one before is C, must  be applied 
twice on C A A (resulting in the output  C B B). As we have seen in the previous section, 
this method is not efficient. 

The second step consists of turning the transducers produced by the preceding step 
into transducers that operate globally on the input in one pass. This transformation 
is performed for each transducer associated with each rule. Given a function fl that 
transforms, say, a into b (i.e. fl(a) = b), we want  to extend it to a function f2 such 
that f2(w) = w / where w' is the word built from the word w where each occurrence 
of a has been replaced by b. We say that f2 is the local extension 3 of fl, and we write 
f2 = LocExt(fl). Section 8.2 formally defines this notion and gives an algorithm for 
computing the local extension. 

Referring to the example of Section 2, the local extension of the transducer for the 
rule vbn vbd PREVTAG np is shown to the right of Figure 4. Similarly, the transducer for 
the contextual rule vbd vbn NEXTTAG by and its local extension are shown in Figure 5. 

The transducers obtained in the previous step still need to be applied one after 
the other. 

3 This notion was introduced by Roche (1993). 
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vbd/vbn 

~ ~ ~ 4  
Figure 6 
Composition T3 = LocExt(T1) o LocExt(T2). 

a : a  

Figure 7 
Example of a transducer not equivalent to any subsequential transducer. 

The third step combines all transducers into one single transducer. This corre- 
sponds to the formal operation of composition defined on transducers. The formaliza- 
tion of this notion and an algorithm for computing the composed transducer are well 
known and are described originally by Elgot and Mezei (1965). 

Returning to our running example of Section 2, the transducer obtained by com- 
posing the local extension of T2 (right in Figure 5) with the local extension of T1 (right 
in Figure 4) is shown in Figure 6. 

The fourth and final step consists of transforming the finite-state transducer ob- 
tained in the previous step into an equivalent subsequential (deterministic) transducer. 
The transducer obtained in the previous step may contain some nondeterminism. The 
fourth step tries to turn it into a deterministic machine. This determinization is not al- 
ways possible for any given finite-state transducer. For example, the transducer shown 
in Figure 7 is not equivalent to any subsequential transducer. Intuitively speaking, this 
transducer has to look ahead an unbounded distance in order to correctly generate 
the output. This intuition will be formalized in Section 9.2. 

However, as proven in Section 10, the rules inferred in Brill's tagger can always 
be turned into a deterministic machine. Section 9.1 describes an algorithm for deter- 
minizing finite-state transducers. This algorithm will not terminate when applied to 
transducers representing nonsubsequential functions. 

In our running example, the transducer in Figure 6 has some nondeterministic 
paths. For example, from state 0 on input symbol vbd, two possible emissions are 
possible: vbn (from 0 to 2) and vbd (from 0 to 3). This nondeterminism is due to the 
rule vbd vbn NEXTTAG by, since this rule has to read the second symbol before it can 
know which symbol must be emitted. The deterministic version of the transducer T3 is 
shown in Figure 8. Whenever nondeterminism arises in T3, the deterministic machine 
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Figure 8 
Subsequential form for T3. 

?/vbd,? 

emits the empty symbol ¢, and postpones the emission of the output symbol. For 
example, from the start state 0, the empty string is emitted on input vbd, while the 
current state is set to 2. If the following word is by, the two token string vbn by is 
emitted (from 2 to 0), otherwise vbd is emitted (depending on the input from 2 to 2 or 
from 2 to 0). 

Using an appropriate implementation for finite-state transducers (see Section 11), 
the resulting part-of-speech tagger operates in linear time, independently of the num- 
ber of rules and the length of the context. The new tagger therefore operates in optimal 
time. 

We have shown how the contextual rules can be implemented very efficiently. We 
now turn our attention to lexical assignment, the step that precedes the application of 
the contextual transducer. This step can also be made very efficient. 

5. Lexical Tagger 

The first step of the tagging process consists of looking up each word in a dictionary. 
Since the dictionary is the largest part of the tagger in terms of space, a compact rep- 
resentation is crucial. Moreover, the lookup process has to be very fast too---otherwise 
the improvement in speed of the contextual manipulations would be of little practical 
interest. 

To achieve high speed for this procedure, the dictionary is represented by a deter- 
ministic finite-state automaton with both fast access and small storage space. Suppose 
one wants to encode the sample dictionary of Figure 9. The algorithm, as described by 
Revuz (1991), consists of first building a tree whose branches are labeled by letters and 
whose leaves are labeled by a list of tags (such as nn vb), and then minimizing it into 
a directed acyclic graph (DAG). The result of applying this procedure to the sample 
dictionary of Figure 9 is the DAG of Figure 10. When a dictionary is represented as 
a DAG, looking up a word in it consists simply of following one path in the DAG. 
The complexity of the lookup procedure depends only on the length of the word; in 
particular, it is independent of the size of the dictionary. 

The lexicon used in our system encodes 54, 000 words. The corresponding DAG 
takes 360Kb of space and provides an access time of 12, 000 words per second. 4 

4 The size of the dictionary in plain text (ASCII form) is 742KB. 
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ads nns 
bag nn vb 
bagged vbn vbd 
bayed vbn vbd 
bids nns 

Figure 9 
Sample dictionary. 

a " ~ / d ~,O s ~ - ~  (nns) 

_ ~ , / ~  7 . ~ (nn,vb) 

~-~O----~ ~) (vbd,vbn) 
Figure 10 
DAG representation of the dictionary of Figure 9. 

6. Tagging Unknown Words 

The rule-based system described by Brill (1992) contains a module that operates after 
all known words--that is, words listed in the dictionary--have been tagged with their 
most frequent tag, and before contextual rules are applied. This module guesses a 
tag for a word according to its suffix (e.g. a word with an "ing" suffix is likely to be 
a verb), its prefix (e.g. a word starting with an uppercase character is likely to be a 
proper noun), and other relevant properties. 

This module basically follows the same techniques as the ones used to implement 
the lexicon. Because of the similarity of the methods used, we do not provide further 
details about this module. 

7. Empirical Evaluation 

The tagger we constructed has an accuracy identical s to Brill's tagger and comparable 
to statistical-based methods. However, it runs at a much higher speed. The tagger 
runs nearly ten times faster than the fastest of the other systems. Moreover, the finite- 
state tagger inherits from the rule-based system its compactness compared with a 
stochastic tagger. In fact, whereas stochastic taggers have to store word-tag, bigram, 
and trigram probabilities, the rule-based tagger and therefore the finite-state one only 
have to encode a small number of rules (between 200 and 300). 

We empirically compared our tagger with Eric Brill's implementation of his tagger, 
and with our implementation of a trigram tagger adapted from the work of Church 
(1988) that we previously implemented for another purpose. We ran the three programs 
on large files and piped their output into a file. In the times reported, we included 
the time spent reading the input and writing the output. Figure 11 summarizes the 
results. All taggers were trained on a portion of the Brown corpus. The experiments 
were run on an HP720 with 32MB of memory. In order to conduct a fair comparison, 
the dictionary lookup part of the stochastic tagger has also been implemented using 
the techniques described in Section 5. All three taggers have approximately the same 

5 Our current implementation is functionally equivalent to the tagger as described by Brill (1992). 
However, the tagger could be extended to include recent improvements described in more recent 
papers (Brill 1994). 
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Stochastic Tagger 
Speed 1,200 w / s  
Space 2,158KB 

Rule-Based Tagger 
500 w / s  
379KB 

Finite-State Tagger 
10,800 w / s  
815KB 

Figure 11 
Overall performance comparison. 

dict ionary lookup u n k n o w n  words  
Speed 12,800 w / s  16,600 w / s  
Percent of the time 85% 6,5% 

contextual 
125,100 w / s  
8.5% 

Figure 12 
Speeds of the different parts of the program. 

precision (95% of the tags are correct). 6 By design, the finite-state tagger produces  
the same output  as the rule-based tagger. The rule-based t agger - -and  the finite-state 
t agger - -do  not always produce  the exact same tagging as the stochastic tagger (they do 
not make the same errors); however,  no significant difference in performance between 
the systems was detected. 7 

Independently,  Cutting et aL (1992) quote a performance of 800 words  per second 
for their part-of-speech tagger based on h idden  Markov models. 

The space required by the finite-state tagger (815KB) is distr ibuted as follows: 
363KB for the dictionary, 440KB for the subsequential  t ransducer  and 12KB for the 
module  for unknown  words.  

The speeds of the different parts of our  system are shown in Figure 12. 8 
Our  system reaches a performance level in speed for which other, very  low-level 

factors (such as storage access) may  dominate  the computation.  At such speeds, the 
time spent  reading the input  file, breaking the file into sentences, breaking the sen- 
tences into words,  and writing the result into a file is no longer negligible. 

8. Finite-State Transducers 

The methods  used in the construction of the finite-state tagger described in the previ- 
ous sections were described informally. In the following section, the notion of finite- 
state t ransducer  and the notion of local extension are defined. We also provide  an 
algori thm for comput ing  the local extension of a finite-state transducer. Issues related 
to the determinizat ion of finite-state transducers are discussed in the section following 
this one. 

8.1 Definition of Finite-State Transducers 
A finite-state transducer T is a five-tuple (~, Q, i,F, E) where: G is a fn i t e  alphabet; Q is 
a finite set of states or vertices; i c Q is the initial state; F C Q is the set of final states; 
E c Q x (y, u {c}) x ~,* x Q is the set of edges or transitions. 

6 For evaluation purposes, we randomly selected 90% of the Brown corpus for training purposes and 
10% for testing. 

7 An extended discussion of the precision of the rule-based tagger can be found in Brill (1992). 
8 In Figure 12, the dictionary lookup includes reading the file, splitting it into sentences, looking up each 

word in the dictionary, and writing the final result to a file. The dictionary lookup and the tagging of 
unknown words take roughly the same amount of time, but since the second procedure only applies 
on unknown words (around 10% in our experiments), the percentage of time it takes is much smaller. 
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1 

Figure 13 
T4: Example of a finite-state transducer. 

For instance, Figure 13 is the graphical representation of the transducer: 

T4 = (Ca, b,c,h,e}, C 0,1, 2,3}, o, {3}, C(0,a, b, 1), (0,a, c, 2), (1, h, h, 3), (2, e, e, 3)}). 

A finite-state transducer T also defines a function on words in the following way: 
the extended set of edges F., the transitive closure of E, is defined by the following 
recursive relation: 

• i f e E E t h e n e E / ~  

• if (q,a,b,q'), (q',a',b',q") E E then (q, aa',bb',q") E E. 

Then the function f from G* to ~* defined byf (w)  = w' iff 3q E F such that (i,w,w',q) E 
/~ is the function defined by T. One says that T represents f and writes f = ITI. 
The functions on words that are represented by finite-state transducers are called 
rational functions. If, for some input w, more than one output  is allowed (e.g. f (w) = 
{Wl, w2 . . . .  }) then f is called a rational transduction. 

In the example of Figure 13, IT41 is defined by IT4i(ah) = bh and IT4i(ae) = ce. 
Given a finite-state transducer T = (~, Q, i,F, E), the following additional notions 

are useful: its state transition function d that maps Q x (G u {¢}) into 2 Q defined by 
d(q,a) = Cq' E Q I 3w' E G* and (q,a,w',q') E E}; and its emission function ~ that maps 
Q x (G u {~}) x Q into 2 ~" defined by 6(q,a,q') = {w' E G* I (q,a,w,',q') E E}. 

A finite-state transducer could be seen as a finite-state automaton, where each 
transition label is a pair. In this respect, T4 would be deterministic; however, since 
transducers are generally used to compute a function, a more relevant definition 
of determinism consists of saying that both the transition function d and the emis- 
sion function ~ lead to sets containing at most one element, that is, Id(q,a)I < 1 and 
I~(q, a, qt)l < 1 (and that these sets are empty for a = ~). With this notion, if a finite-state 
transducer is deterministic, one can apply the function to a given word by determin- 
istically following a single path in the transducer. Deterministic transducers are called 
subsequential transducers (Schfitzenberger 1977). 9 Given a deterministic transducer, we 
can define the partial functions q®a = q' iff d(q,a) ~ {q~} and q,a = w ~ iff 3q' E Q such 
that q @ a = q~ and 6(q, a, q~) = Cw~}. This leads to the definition of subsequential trans- 
ducers: a subsequential transducer T' is a seven-tuple (G, Q,/, F, ®, *, p) where: ~, Q, i, F 
are defined as above; ® is the deterministic state transition function that maps Q x 
on Q, one writes q®a = q~; * is the deterministic emission function that maps Q x ~ on 
Y,*, one writes q • a = w~; and the final emission function p maps F on G*, one writes 
, ( q )  = w .  

For instance, T4 is not deterministic because d(0,a) = C1,2}, but it is equivalent 
to T5 represented Figure 14 in the sense that they represent the same function, i.e. 

9 A sequential transducer is a determinis t ic  t ransducer  for which  all states are final. Sequential  t ransducers  
are also called generalized sequential machines (Eilenberg 1974). 
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Figure 14 
Subsequential transducer T5. 

h/bh 

0 a& 1 , / " " - " ~  2 

b,c 

Figure 15 
T6: a finite-state transducer to be extended. 

a a b c a b 

a a b c a b 
b c b c 

a a b c a b 
d c a 

Figure 16 
Top: Input. Middle: First factorization. Bottom: Second factorization. 

IT4] =]Ts[ .  T5 is def ined by  T5 = ({a ,b ,c ,h ,e} , (O,  1 , 2 } , O , { 2 } , ® , , , p )  where  0 ® a  = 1, 
0 , a  = ¢, 1 ® h  = 2, 1 , h  = bh, 1@e = 2, 1 , e  = ce, and p(2) = ~. 

8.2 Local  E x t e n s i o n  
In this section, we  will see h o w  a function that  needs  to be appl ied  at all input  posit ions 
can be t r ans formed  into a global function that  needs  to be  appl ied  once on the input.  
For instance, consider T6 of Figure 15. It represents  the function f6 = ]T6[ such that  
f6(ab) = bc and f6(bca) = dca. We want  to build the function that, g iven a word  w, each 
t ime w contains ab (i.e. ab is a factor of the word)  (resp. bca), this factor is t r ans formed 
into its image  bc (resp. dca). Suppose,  for instance, that  the input  word  is w = aabcab, as 
shown  in Figure 16, and  that the factors that  are in dom(f6) 1° can be found  according 
to two different factorizations: i.e. w I = a . w 2 .  c-W211, where  w2 -- ab, and wl = 
aa • w3 • b, where  w3 = bca. The local extension of f6 will be  the t ransduct ion that  takes 
each possible factorization and  t ransforms each factor according to f6, i.e. f6(w2) = 
bc and f6(w3) -= dca, and leaves the other  par ts  unchanged;  here this leads to two 
outputs:  abccbc according to the first factorization, and  aadcab according to the second 
factorization. 

The notion of local extension is formal ized th rough  the fol lowing definition. 

Def in i t ion  
If f is a rat ional  t ransduct ion f rom G* to G*, the local extension F = LocExt(f) is 

the rat ional  t ransduct ion f rom G* on G* defined in the fol lowing way:  if u = 
• ' ' .  ' F ( u )  if E ~* • albla2b2 • "anbnan+l E G* then v = a lb la2b  2 • "anbnan+l E ai - (G* 

dom(f) . ~*), bi c dom(f)  and b I c f(bi). 

10 dom(f) denotes  the domain of f ,  that  is, the set of words  that  have  at least  one ou tpu t  t h rough  f.  
11 If wi,  w2 C ~ * ,  W l  - W2 denotes  the  concatenat ion of Wl and  w 2. It m a y  also be wri t ten WlW 2, 
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Local Extension ( T' = (G, Q', i', F', E' ) , T = (~., Q, i, F, E ) ) 
1 C'[0] = ({i}, identity); q = 0; i' = 0; F' = O; E' = 0; Q' = 0; C'[1] = (0, transduction); n = 2; 
2 d o {  
3 (S, type)= C'[q];Q' = Q ' u  {q}; 
4 if (type = =  identity) 
5 F' = F 'U {q};E' = E' u {(q, ?, ?, i')}; 
6 for each w E (~. U {¢}) s.t. 3x E S, d(x,w) # 0 and Vy E S, d(y,w) NF = O 
7 if 3r E [0,n - 1] such that C'[r] = =  ({i} U Ud(x,w),identity) 

xES 
8 e=r;  
9 else 

10 C'[e = n + +] = ({i} U Ud(x,w),identity); 
xES 

11 E' = E' U {(q,w,w,e)}; 
12 for each (i, w, w', x) E E 
13 if 3r E [0, n - 1] such that C'[r] = =  ({x}, transduction) 
14 e = r ;  
15 else 
16 C'[e = n + +] = ({x}, transduction); 
17 E' = E' U {(q,w,w',e)}; 
18 for each w E (G U {c}) s.t. 3x E S d(x,w) MF # 0 then E' = E' U {(q,w,w, 1)}; 
19 else if (type = =  transduction) 
20 if 3Xl E Q s.t. S = =  {Xl} 
21 if (xi E F) then E' = E' U {(q,~,c,0)}; 
22 for each (xl, w, w', y) E E 
23 if 3r E [0, n -- 1] such that C'[r] = =  ({y}, transduction) 
24 e = r; 
25 else 
26 C'[e = n + +] = ({y}, transduction); 
27 E' = E' U {(q,w,w',e)}; 
28 q++; 
29 }while(q < n); 

Figure 17 
Local extension algorithm. 

Intuitively,  if F = LocExt(f) a nd  w E ~*, each factor  of  w in dom(f) is t r an s fo rmed  
into its image  b y  f and  the r ema in ing  pa r t  of  w is left u n c h a n g e d .  If f is r ep resen ted  
by  a finite-state t r ansduce r  T a nd  LocExt(f) is r ep resen ted  b y  a finite-state t r ansduce r  
T', one  wri tes  T' = LocExt(T). 

It cou ld  also be seen that  if "YT is the ident i ty  func t ion  on  •* - (~* • dom(T) • ~*), 
then  LocExt(T) = "Tr " (T .  "yw)*. 12 Figure  17 gives  an  a lgo r i thm that  c o m p u t e s  the local 
ex tens ion  directly. 

The idea is tha t  an  inpu t  w o r d  is p rocessed  nonde te rmin is t i ca l ly  f rom left to right.  
Suppose ,  for  instance,  that  we  have  the initial t r ansduce r  T7 of  Figure  18 and  that  w e  
w a n t  to bui ld  its local extension,  Ts of  Figure 19. 

W h e n  the i npu t  is read,  if a cur ren t  inpu t  letter canno t  be t r an s fo rmed  at the 
initial state of  T7 (the letter c for instance),  it is left u n c h a n g e d :  this is expressed  b y  
the l oop ing  t ransi t ion on  the initial state 0 of  Ts labeled ?/?.13 O n  the o ther  hand ,  

12 In this last formula,  the concatenat ion • s t ands  for the concatenat ion of the g raphs  of each function; 
that  is, for the concatenat ion of the t ransducers  v iewed  as au toma ta  whose  labels are of the form a/b. 

13 As  expla ined before, an  inpu t  transi t ion labeled by the symbol  ? s t ands  for all t ransi t ions labeled wi th  
a letter that  doesn ' t  appear  as i npu t  on  any  ou tgo ing  arc f rom this state. A transit ion labeled ?/? s t ands  
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Figure 18 
Sample transducer T7. 

F.dE 

?/? 
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Figure 19 
Local extension Ts of TT: T8 = LocExt(T7). 

if the input  symbol,  say a, can be processed at the initial state of T7, one doesn ' t  
know yet  whether  a will be the beginning of a word  that can be t ransformed (e.g. ab) 
or whether  it will be followed by a sequence that makes it impossible to apply  the 
t ransformation (e.g. ac). Hence one has to entertain two possibilities, namely (1) we 
are processing the input  according to T7 and the transitions should be a/b; or (2) we 
are within the identi ty and the transition should be a/a. This leads to two kind of 
states: the transduction states (marked transduction in the algorithm) and the identi ty 
states (marked identity in the algorithm). It can be seen in Figure 19 that this leads 
to a t ransducer  that has a copy of the initial t ransducer  and an additional part  that 
processes the identi ty while making sure it could not have been transformed. In other 
words,  the algori thm consists of building a copy of the original t ransducer  and at the 
same time the identi ty function that operates on ~* - ~* • dom(T) • Y,*. 

Let us now see how the algori thm of Figure 17 applies step by  step to the trans- 
ducer  T7 of Figure 18, producing the transducer T8 of Figure 19. 

In Figure 17, C'[0] = ({i}, identity) of line 1 states that state 0 of the t ransducer  to 
be built is of type identity and refers to the initial state i = 0 of T7. q represents the 
current  state and n the current  number  of states. In the loop do{.. .} while (q < n), one 
builds the transitions of each state one after the other: if the transition points to a state 
not  already built, a new state is added,  thus incrementing n. The program stops when  
all states have been inspected and when  no additional state is created. The number  of 
iterations is bounded  by 2 Ilz]l*2, where  [[T[I = [Q[ is the number  of states of the original 
transducer. 14 Line 3 says that the current  state within the loop is q and that this state 

for all the diagonal  pairs  a/a s.t. a is not  an  inpu t  symbol  on any  ou tgo ing  arc f rom this state. 
14 In fact, Qr c 2 Qx {transduction,identity}. Thus,  q ~ 2 2[Q[. 
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1 

?/? 

Figure 20 
Local extension T9 of T6:T9 = LocExt(T6). 

refers to the set of states S and  is m a rked  by  the type type. In our  example,  at the 
first occurrence of this line, S is instantiated to {0} and  type = identity. Line 5 adds  
the current  identi ty state to the set of final states and a transition to the initial state 
for all letters that do not  appea r  on any  outgoing arc f rom this state. Lines 6-11 build 
the transitions f rom and to the identi ty states, keeping track of where  this leads in the 
original transducer. For instance, a is a label that verifies the conditions of line 6. Thus 
a transition a/a is to be added  to the identity state 2, which refers to 1 (because of the 
transition a/b of T7) and to i = 0 (because it is possible to start  the t ransduct ion T7 
f rom any identi ty state). Line 7 checks that this state doesn ' t  a l ready exist and adds  it 
if necessary, e = n + + means  that the arrival state for this transition, i.e. d(q, w), will be 
the last added  state and  that the n u m b e r  of states being built has to be incremented.  
Line 11 actually builds the transition be tween 0 and e = 2 labeled a/a. Lines 12-17 
describe the fact that it is possible to start  a t ransduct ion f rom any  identity state. Here  
a transit ion is added  to a new state, i.e. a/b to 3. The next state to be considered is 2 
and  it is built  like state 0, except that the symbol  b should block the current  output .  In 
fact, state 1 means  that we  already read a with a as output ;  thus, if one reads b, ab is 
at the current  point,  and since ab should be t ransformed into bc, the current  identi ty 
t ransformat ion (that is a ~ a) should be blocked: this is expressed by  the transition b/b 
that leads to state 1 (this state is a " trash" state; that is, it has no outgoing transit ion 
and  it is not final). 

The fol lowing state is 3, which is marked  as being of type transduction, which 
means  that lines 19-27 should be applied.  This consists s imply  of copying  the transi- 
tions of the original transducer. If the original state was final, as for 4 = ({2}, transduction), 
an ~/~ transition to the initial state is added  (to get the behavior  of T+). 

The t ransducer  T9 = LocExt(T6) of Figure 20 gives a more  complete  (and slightly 
more  complex) example  of this algori thm. 
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9. Determinization 

The basic idea behind the determinizat ion a lgor i thm comes f rom Mehryar  Mohri.  is 
In this section, after giving a formalizat ion of the algori thm, we  introduce a proof  of 
soundness  and completeness ,  and  we s tudy  its worst-case complexity. 

9.1 Determinization Algorithm 
In the following, for Wl, w 2 E Y~,*, Wl /~ W2 denotes  the longest  c o m m o n  prefix of wl 
and  w2. 

The finite-state t ransducers  we  use in our  sys tem have  the p rope r ty  that they can be 
m a d e  deterministic; that is, there exists a subsequent ia l  t ransducer  that  represents  the 
same function. 16 If T = (~, Q, i, F, E) is such a finite-state transducer,  the subsequent ia l  
t ransducer  T' = (E, Q',  i', F', ®, , ,  p) def ined as follows will be later p roved  equivalent  
to T: 

Q~ c 2 QxE* . In fact, the determiniza t ion  of the t ransducer  is related to 
the determiniza t ion  of FSAs in the sense that  it also involves a p o w e r  set 
construction. The difference is that  one has to keep  track of the set of 
states of the original transducer, one migh t  be in and  also of the words  
whose  emission have  been pos tponed .  For instance, a state 
{(ql, Wl), (q2,w2)} means  that this state cor responds  to a pa th  that  leads 
to q~ and  q2 in the original t ransducer  and  that the emiss ion of wl (resp. 
w2) was  de layed  for ql (resp. q2). 

i' = {(i, ~)}. There is no pos tponed  emiss ion at the initial state. 

the emiss ion function is def ined by: 

S , a =  A A u.6(q,a,q') 
(q,u)~S q' Ed(q,a) 

This means  that, for a g iven symbol ,  the set of possible emissions is 
obta ined by  concatenat ing the pos tponed  emissions wi th  the emiss ion at 
the current  state. Since one wants  the transit ion to be  deterministic,  the 
actual emission is the longest  c o m m o n  prefix of this set. 

the state transit ion function is def ined by: 

S ® a =  U U {(q',(S*a)-l"u'6(q,a,q'))} 
(q,u)cS q,~d(q,a) 

Given u, v E E*, u - v denotes  the concatenat ion of u and  v and  
u -1 • v -- w, if w is such that  u - w -- v, u - I  • v = 0 if no such w exists. 

F ' = { S E Q ' I 3 ( q , u )  E S a n d q C F }  

if S E F t, p(S) = u s.t. 3q E F, (q, u) C S. We will see in the proof  of 
correctness that  p is p roper ly  defined. 

15 Mohri (1994b) also gives a formalization of the algorithm. 
16 As opposed to automata, a large class of finite-state transducers do not have any deterministic 

representation; they cannot be determinized. 
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The determinization algorithm of Figure 21 computes the above subsequential 
transducer. 

Let us now apply the determinization algorithm of Figure 21 on the finite-state 
transducer T4 of Figure 13 and show how it builds the subsequential transducer T10 
of Figure 22. Line 1 of the algorithm builds the first state and instantiates it with the 
pair {(0, e)}. q and n respectively denote the current state and the number of states 
having been built so far. At line 5, one takes all the possible input symbols w; here 
only a is possible, w' of line 6 is the output symbol, 

w ' =  e. ( A a(0,a,~')), 
~'E{1,2} 

thus w' = a(0,a, 1) A 6(0,a,2) = b A c = e. Line 8 is then computed as follows: 

s'= U U 
~ff{0} ~'E{1,2} 

thus S' = { (1, a (0, a, 1 )) } U { (2, 6 (0, a, 2) } = { (1, b), (2, c) }. Since no r verifies the condition 
on line 9, a new state e is created to which the transition labeled a/w = a/e points and 
n is incremented. On line 15, the program goes to the construction of the transitions 
of state 1. On line 5, d and e are then two possible symbols. The first symbol, h, at line 
6, is such that w' is 

w' = A b. 6(1,h,~')) = bh. 
F/'cd(1,h)={2} 

Henceforth, the computation of line 8 leads to 

S'= U U {(q ''(bh)-l"b'h)}={(2"e)}" 
qE{1} ~'E{2} 

State 2 labeled {(2, e)} is thus added, and a transition labeled h/bh that points to state 
2 is also added. The transition for the input symbol e is computed the same way. 

The subsequential transducer generated by this algorithm could in turn be min- 
imized by an~'algorithm described in Mohri (1994a). However, in our case, the trans- 
ducer is nearly minimal. 

9.2 Proof of Correctness 
Although it is decidable whether a function is subsequential or not (Choffrut 1977), 
the determinization algorithm described in the previous section does not terminate 
when run on a nonsubsequential function. 

Two issues are addressed in this section. First, the proof of soundness: the fact that 
if the algorithm terminates, then the output transducer is deterministic and represents 
the same function. Second, the proof of completeness: the algorithm terminates in the 
case of subsequential functions. 

Soundness and completeness are a consequence of the main proposition, which 
states that if a transducer T represents a subsequential function f, then the algorithm 
DeterminizeTransducer described in the previous section applied on T computes a sub- 
sequential transducer representing the same function. 

In order to simplify the proofs, we will only consider transducers that do not have 
e input transitions, that is E C Q x ~ x ~* x Q, and also without loss of generality, 
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DeterminizeTransducer(T' = (G, Q' ,  i', F ' ,  ®, , ,  p), T = (~I, Q, i, F, E)) 

9 
10 
11 
12 
13 
14 
15 
16 

i ' =  0;q = 0;n  = 1;C'[0] = {(0,~)};F '  = 0 ; Q ' =  0; 
do  { 

S = C'[q];Q' = Q ' u  {q}; 
if 3(~, u) ¢ S s.t. ~ ¢ F t hen  F'  = F' U {q} a n d  p(q) = u; 
foreach  w such  tha t  3(~,u)  E S and  d(~,w) • 0 { 

w , =  A A u 61, ,w, , ' l  
G,)es  ~'edGw) 

q * w = w ' ;  

s ' =  U U 
(~,u) es 7' edGw) 

if 3r E [0,n -- 1] such  tha t  C'[r] = =  S' 
e = r ;  

else 
C'[e = n + +] = S'; 

q @ w = e ;  
} 
q + + ;  

}while(q < n); 

Figure 21 
Determinization algorithm. 

h/bh 

Figure 22 
Subsequential transducer T10 such that IT10I = IT4I . 

t r a n s d u c e r s  tha t  are  r e d u c e d  a n d  tha t  are de te rmin i s t i c  in the  sense  of f ini te-state  
a u t o m a t a .  17 

In  o rde r  to p r o v e  this p ropos i t i on ,  w e  n e e d  to es tabl i sh  s o m e  p r e l i m i n a r y  no ta t ions  
a n d  l e m m a s .  

First  w e  ex tend  the  def in i t ion  of the  t rans i t ion  func t ion  d, the  emis s ion  func t ion  6, 
the  de te rmin i s t i c  t rans i t ion  func t ion  @, a n d  the de te rmin i s t i c  emi s s ion  func t ion  * on  
w o r d s  in the classical  way.  We then  h a v e  the fo l lowing  proper t i es :  

ab) = U a(q',b) 

6(ql,ab, q2) = U 6(ql, a, q ' ) .  6(q', b, q2) 
{q' Cd(ql,a) [q2 Cd(q',b ) } 

q ® a b  = ( q ® a ) ® b  

17 A transducer defines an automaton whose labels are the pairs "input/output"; this automaton is 
assumed to be deterministic. 
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q , a b  = ( q , a ) . ( q ® a ) , b  

For the following, it is useful to note that if IT I is a function, then 6 is a function 
too. 

The following lemma states an invariant that holds for each state S built within 
the algorithm. The lemma will later be used for the proof  of soundness. 

Lemma 1 
Let I = C'[0] be the initial state. At each iteration of the "do"  loop in Determinize-  
Transducer,  for each S --- C'[q] and for each w E ~* such that I ® w = S, the following 
holds: 

(i) I , w =  /~  6(i,w,q) 
qEd(i,w) 

(ii) S = I ® w = { ( q , u )  l q E d ( i , w ) a n d u = ( I * w ) - l . 6 ( i , w , q ) }  

Proof 
(i) and (ii) are obviously true for S = I (since d(i, ~) = i and ~(i, c, i) = c), and we 
will show that given some w E ~* if it is true for S = I ® w, then it is also true for 
$1 = S @ a = I Q wa for all a E Y.. 

Assuming that (i) and (ii) hold for S and w, then for each a E ~: 

A ~(i,w,q). ~(q,a,q') 
qEd(i,w),q' Ed(q,a) 

= ( I ,w ) .  A ') 
qEd( i,w),q' Ed(q,a ) 

= A 
(q,u ) ES=I®w,q' Ed(q,a) 

= ( I , w ) . ( S , a )  

= I , w . ( I ® w ) , a  

= I , w a  

This proves (i). 
We now turn to (ii). Assuming that (i) and (ii) hold for S and w, then for each 

a E ~, let $1 = S ® a; the algori thm (line 8) is such that 

$1 = ( (q ' ,u ' )  ] 3 (q ,u )  E S ,q '  E d(q ,a)  and u ' =  ( S , a )  -1 . u . 6 (q ,a ,q ' )  } 

Let 
$2 -- {(q',u') I q' E d(i, wa)  and u' = (I • wa)  - 1 .  6(i, wa, q ' )}  

We show that $1 c $2. Let (q',u') E $1, then 3 ( q , u )  E S s.t. q' E d(q ,a)  and 
u' = (S * a ) - l .  u .  6(q, a, q'). Since u = (I • w ) - I  . 6(i, w,  q), then u' = (S * a) - I  . (I * w)- I  . 
6 ( i , w , q ) .  6(q ,a ,q ' ) ;  that is, u' = ( I * w a )  - 1 .  6(i, wa, q'). Thus (q',u') E $2. Hence $1 c $2. 

We now show that $2 c $1. Let (q',u') E $2, and let q E d ( i , w )  be s.t. q' E d(q ,a)  
and u = ( I ,  w)  -1 . 6 ( i , w , q )  then (q,u) E S and since u' = ( I *  wa)  -1 • 6(i, wa,  q') = 
( s  , a )  -1  • u . ( q ' , u ' )  E s l  

This concludes the proof  of (ii). [] 
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The following lemma states a common property of the state S, which will be used 
in the complexity analysis of the algorithm. 

Lemma 2 
Each S = C'[q] built within the "do" loop is s.t. Vq E Q, there is at most one pair 
(q, w) c S with q as first element. 

Proof 
Suppose (q, wl) c S and (q, w2) c S, and let w be s.t. I ® w  = S. Then W l  = ( I • W )  - 1  ' 

fi(i, w, q) and w2 = (I • w)-I  . 6(i, w, q). Thus W 1 = W 2. [ ]  

The following lemma will also be used for soundness. It states that the final state 
emission function is indeed a function. 

Lemma 3 
For each S built in the algorithm, if (q, u), (q', u') c S, then q, q' E F ~ u = u' 

Proof 
Let S be one state set built in line 8 of the algorithm. Suppose (q, u), (q', u') E S and q, 
q' E F. According to (ii) of lemma 1, u = ( I , w )  -1 .6(i ,w,q) and u' = ( I ,w )  -1.6(i ,w,q ') .  
Since IT[ is a function and {6(i ,w,q) ,6(i ,w,q')}  E ITl(w) then 6(i,w,q) = 6(i,w,q'), 
therefore u = uq [] 

The following lemma will be used for completeness. 

Lemma 4 
Given a transducer T representing a subsequential function, there exists a bound M 
s.t. for each S built at line 8, for each (q,u) E S, lu[ < M. 

We rely on the following theorem proven by Choffrut (1978): 

Theorem 1 
A function f on G* is subsequential iff it has bounded  variations and for any rational 
language L C ~*, f-1 (L) is also rational. 

with the following two definitions: 

Definition 
The left distance between two strings u and v is I[u,v[I = [u[ + Iv[ - 2[u/~ v[. 

Definition 
A function f on G* has bounded  variations iff for all k ~ 0, there exists K > 0 s.t. 

u,v  C dom(f), [[u,v[[ <_ k ~ ][f(u),f(v)[[ <_ K. 

Proof of Lemma 4 
Let f = IT[. For each q E Q, let c(q) be a string w s.t. d(q,w) N F ~ 0 and s.t. [w[ is 
minimal among such strings. Note that [c(q)[ _< [IT[] where [IT[[ is the number  of states 
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in T. For each q c Q let s(q) E Q be a state s.t. s(q) c d(q,c(q)) AF. Let us fur ther  define 

M1 = maxl6(q,c(q),s(q))] 
qEQ 

M2 = max  Ic(q)l 
qEQ i % l ~  l 

Since f is subsequent ial ,  it is of b o u n d e d  variations,  therefore there exists K s.t. if 
][u, vi] ~ a M  2 then  I[f(u),f(v)] I G K. Let M = K + 2M1. 

Let S be a state set built  at line 8, let w be s.t. I®w = S and A = I ,w .  Let (ql, u) E S. 
Let (q2, v) C S be s.t. u A v = c. Such a pair  a lways  exists, since if not  

thus  [A. 

] A u'] > 0 
(q',u')ES 

A u'l = I A .x 'u ' l>l , ' , l  
(q',u')~s (q',u')cs 

Thus,  because of (ii) in L e m m a  1, 

I A 6(i,w,q')] > I I , w l  
q' Ed(i,w) 

which  contradicts  (i) in L e m m a  1. 
Let w = ~(ql, c(ql), s(ql)) and  a;' = 6(q2, c(q2), s(q2)). 
Moreover,  for any  a,b,c,d E ~*, Iia, ciI <_ ]lab, cd[I + Ibl + [d I. In fact, Ilab, cdiI = 

[ab[ + IcdI- 2Iab A cd I = lal + I c] + IbI + IdI -  2Iab A cd I = II a, c]I + 21a A c I + [b I + ]d I - 2 l a b  A cd I 
but  labAcd] <_ laAcI +Ib[+]d[ and  since ]Iab, cd[I = Ila, cI[-2([abAcd I -[aAc I - [b  I -IdI) - IbI- IdI 
one has Iia, cil < I]ab, cdll + Ib[ + Idl. 

Therefore,  in particular,  luI < ][Au, AvI[ < JiAua;,Avw'][ + ]0; I + Iw'I, thus  I u] < Iif(w • 
c(ql)) , f(w, c(q2))I] q- 2M1. But ][w. c(ql),W" c(q2)ll G ]c(ql)[ + Ic(q2)I ~ 2M2, thus  Iif(w • 
c(ql)),f(w" c(q2))[] < K and  therefore I u] < K + 2M 1 = M. [] 

The t ime is n o w  ripe for the ma in  proposi t ion,  which  proves soundness  and  com- 
pleteness. 

Proposition 
If a t ransducer  T represents  a subsequent ia l  funct ion f ,  then  the a lgor i thm Determinize- 
Transducer descr ibed in the previous  section appl ied on T computes  a subsequent ia l  
t ransducer  ~- represent ing the same function.  

Proof 
L e m m a  4 shows  that  the a lgor i thm a lways  terminates  if IT] is subsequential .  

Let us  s h o w  that  dom(iTI) c dom(iTI). Let w E ~* s.t. w is not  in dom(iTI), then  
d(i, w) M F = 0. Thus,  according to (ii) of L e m m a  1, for all (q, u) c I ® w, q is not  in F, 
thus  I ® w is no t  terminal  and  therefore w is no t  in dom(~-). 

Conversely,  let w E dom(iT[). There exists a qf C F s.t. IT](w) = 6(i,w, qf) and  s.t. 
qf C d(i,w). Therefore ]Zi(w ) = ( I ,  w) .  ( (I* w) -1-  6(i,w, qf)) and according to (ii) of 
L e m m a  1 (qf, (I * w) -I • 6(i,w, qf)) c I ® w and  since qf E F, L e m m a  3 shows  that  
p ( I® w) = ( I , w )  -1 .  ~(i,w, qf), thus  ITI(w) = ( I , w ) .  p( I® w) = ITi(w). [] 

247 



Computational Linguistics Volume 21, Number 2 

9.3 Worst-Case Complexity 
In this section we give a worst-case upper  bound of the size of the subsequential 
transducer in terms of the size of the input transducer. 

Let L = {w E G" s.t. Iw[ <__ M}, where M is the bound defined in the proof 
of Lemma 4. Since, according to Lemma 2, for each state set Q~, for each q E Q, Q' 
contains at most one pair (q, w), the maximal number  N of states built in the algorithm 
is smaller than the sum of the number  of functions from states to strings in L for each 
state set, that is 

N < ILl IQ't 
Q' E2Q 

we thus have N _< 2 IQI x ILl iQI -- 2 IQI x 2 [Qlxl°g2 iLl and therefore N _< 2 IQl(l+l°glLI). 
Moreover, 

M + '  - 1 
ILl = 1 + lye] + . . .  + ISl M - IS l  - 1 i f  I s ]  > 1 

and ILl = M + I  if = 1. In this last formula, M = K+2M1, as described in Lemma 4. 
Note that if P = MAXa~sl6(q,a, q')l is the maximal length of the simple transitions 
emissions, M1 ~ IQI x P, thus M _< K + 2 x IQI x P. 

Therefore, if [E I > 1, the number  of states N is bounded: 

i:gl(K+2 x IQI xP+1-1 ) 
N <_ 2 IQIx(l+l°g i~l-, 

and if lee = 1, N ~ 2 [QIx(l+l°g(K+2xiQLxP+l)) 

10. Subsequentiality of Transformation-Based Systems 

The proof of correctness of the determinization algorithm and the fact that the algo- 
ri thm terminates on the transducer encoding Brill's tagger show that the final function 
is subsequential and equivalent to Brill's original tagger. 

In this section, we prove in general that any transformation-based system, such as 
those used by Brill, is a subsequential function. In other words, any transformation- 
based system can be turned into a deterministic finite-state transducer. 

We define transformation-based systems as follows. 

Definition 
A transformation-based system is a finite sequence (f] , . . . , fn)  of subsequential func- 

tions whose domains are bounded.  

Applying a transformation-based system consists of applying each function fi one 
after the other. Applying one function consists of looking for the first position in 
the input at which the function can be triggered. When the function is triggered, 
the longest possible string starting at that position is transformed according to this 
function. After the string is transformed, the process is iterated starting at the end of 
the previously transformed string. Then, the next function is applied. The program 
ends when  all functions have been applied. 

It is not true that, in general, the local extension of a subsequential function is 
subsequential. TM For instance, consider the function fa of Figure 23. 

18 However ,  the local extens ions  of the funct ions  we  had  to compu te  were subsequent iaL 
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Figure 23 
Function fa. 

a:b a:b a:b 

The local extension of the function fa is not a function. In fact, consider the input  
string daaaad; it can be decomposed  either into d • aaa. ad or into da • aaa. d. The first 
decomposi t ion  leads to the ou tpu t  dbbbad, and the second one to the ou tpu t  dabbbd. 

The in tended use of the rules in the tagger defined by  Brill is to app ly  each 
function f rom left to right. In addit ion,  if several  decomposi t ions  are possible, the one 
that occurs first is the one chosen. In our  previous  example,  it means  that only the 
ou tpu t  dbbbad is generated.  

This notion is now defined precisely. 
Let a be the rational function defined by  a(a) = a for a c ~, a([) = a(]) = ~ on the 

addit ional  symbols  ' [ '  and '] ' ,  wi th  a such that a ( u .  v) = a ( u ) .  a(v).  

Definition 
Let Y c ~+ and X = ~* - ~*. Y. ~*, a Y-decomposi t ion of x is a string y E X. ([. Y. ]. X)* 

s.t. a(y)  = x 

For instance, if Y = dom(fa) -- {aaa}, the set of Y-decomposi t ions of x = daaad is 
{ d [aaa ]ad , da [aaa ] d }. 

Definition 
Let < be a total order  on P, and  let ~ = ~ U {[,]} be the al _phabet ~ with the two 

addit ional  symbols  '[' and '] ' .  Let extend the order  > to N by  Va E ~, ' [ ' <  a and 

a < '] ' .  < defines a lexicographic order  on ~* that we  also denote  <. Let Y c 2 + 
and x c N*, the minimal Y-decomposition of x is the Y-decomposi t ion which is 

min imal  in (~*, <). 

For instance, the minimal  dom(fa)-decomposi t ion of daaaad is d[aaa]ad. In fact, 
d[aaaJad < da[aaa]d. 

Proposition 
Given Y C ~+ finite, the function mdy that to each x c G* associates its minimal  
Y-decomposit ion,  is subsequential  and  total. 

Proof 
Let dec be defined by  dec(w) = u .  [. v .  1. dec((uv) -1 . w), where  u, v E P~* are s.t. v E Y, 
3v' c ~* with  w = uvv' and lul is minimal  a m o n g  such strings and  dec(w) -- w if no 
such u, v exists. The function mdy is total because the function dec always  returns an 
ou tpu t  that is a Y-decomposi t ion of w. 

We shall n o w  prove  that the function is rational and  then that it has b o u n d e d  
variations; this will p rove  according to Theorem 1 that the function is subsequential .  
In the following X = ~* - P,* • Y- P,*. The t ransduct ion Ty that generates  the set of 
Y-decomposi t ions is defined by  

Ty = I d x .  (ef t .  Idy-  c / ] .  Idx)* 

where  Idx (resp. Idy) s tands for the identi ty function on X (resp. Y). Fur thermore ,  
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Figure 24 
Transduction T~,>. 

C D 

the t r ansduc t ion  TU,> that  to each  s t r ing w E ~* associates the set of str ings strictly 

grea ter  than  w, tha t  is T~,>(w) = {w' E ~*I w < w'}, is de f ined  by  the t r ansduce r  of 
- -  - - 2  - -  

Figure  24, in wh ich  A = {(x,x)ix E G}, B = {(x,y)  E ~2[x < y}, C = G , D = {¢} x 
and  E = G x {c}.  19 

Therefore ,  the r igh t -min imal  Y-decompos i t ion  func t ion  mdy is de f ined  by  mdy -- 
Ty - (Tu,> o Ty), which  p roves  that  mdy is rational.  

L e t k  > 0. L e t K  = 6 x k + 6 x M ,  w h e r e M - -  maxx~yix  I. Let  u , v  E G* b e s . t .  
Iiu, vII _< k. Let  us  cons ider  two  cases: (i) I u A v I _< M and  (ii) lu A v I > M. 

(i): I u Av  I _< M, thus  [uHv I ~ I u Av  I + Iiu, v I [ <  M + k .  Moreover ,  for  each w E Y~*, 
for  each Y-decompos i t ion  w' of  w, Iw'[ _< 3 x ]w I. In fact, Y doesn ' t  conta in  ~, thus  the 
n u m b e r  of  [ (resp. l) in w' is smal ler  than  Iw[. Therefore ,  Imdy(u) I, Imdy(v)l <_ 3 x (M+k) 
thus  [Imdy(u),mdy(v)lI < K. 

(ii): u A v = ~ • a; wi th  [a; I = M. Let  #, v be s.t. u = &w# and  v = )~a;~. Let  )~', 
w', # ' ,  .~", a;" and  v"  be s.t. mdy(u) = )~ ' J# ' ,  mdy(v) -- )~"~;"~,", c~(~') = ~(,V') = ~, 
c~(a;') = c~(~o") = w, o~(#') = # and  ~(~,") = ~,. S u p p o s e  that  &' # &", for  ins tance  
) ,  < )i,. Let  i be  the first indice s.t. ( ;f) i  < ( , VI ) i .  20 We have  two  possible  si tuations:  
(ii.1) ()~r)i = [ and  ;~" E ~ or  (~ ' ) i  ---- ]. In that  case, since the length  of the e lements  in 

Y is smal ler  than  M = 1 4 ,  one  has  &'~;' = .~1[.~2],~3 wi th  [~ll = i, ;~2 ~ Y and  "~3 E . 

We also have  ) , 'w"  ' ' = /~1/~2/~ 3 with  c~()~) = c~(&2) and  the first let ter  of  "~2 is d i f ferent  
f rom [. Let  )~4 be  a Y-decompos i t ion  of  ~ 3 y, t hen  &1[~2] /~4  is a Y-decompos i t ion  of 
v strictly smal ler  than  ~1 &~)~L," = mdy (v), wh ich  cont radic ts  the min imal i ty  of  mdy (v). 
The  second  s i tua t ion is (ii.2): (&~)i E ~. and  (&')i = ], t hen  we  have  )~GJ = ~1[,~2,~3],~4 

s.t. I,~1[/~2I = i and  ), 'M" = .,~1[,~2],,~&~ s.t. C~(&~) = C~()~3) and  c~(&~) = c~(&4). Let  As be 
a Y-decompos i t ion  of ~ " ,  then  ;~ [/~2/~3]/~5 is a Y-decompos i t ion  of  v strictly smal ler  
than  ,V'w"~,", which  leads to the same  contradic t ion .  Therefore ,  &' = )~" and  since 
I#'[+1~,"1 _< 3 x  ( l # l + l ~ , l ) - - 3 x  Ilu, vll _< 3 x / ,  IImdyCu),mdy(v)ll <_ la; ' l+la;"l+l#' l+l~,r ' l  < 
2 x M + 3 x k _< K. This p roves  that  mdy has b o u n d e d  var ia t ions  and  therefore  tha t  it 
is subsequent ia l .  [] 

N 

We can n o w  def ine  precise ly  w h a t  is the effect of a func t ion  w h e n  one  appl ies  it 
f rom left to r ight ,  as was  d o n e  in the or iginal  tagger .  

19 This construction is similar to the transduction built within the proof of Eilenberg's cross section 
theorem (Eilenberg 1974). 

20 (w)i  refers to the i th letter in w. 
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Definition 
If f is a rational function with bounded domain, Y = dom(f) c ~.+, the right-minimal 

local extension of f, denoted RmLocExt(f), is the composition of a right-minimal 
Y-decomposition mdy with Ida, • ([/~. f .  ]/~. Ida,)*. 

RmLocExt being the composition of two subsequential functions, it is itself subse- 
quential; this proves the following final proposition, which states that given a rule- 
based system similar to Brill's system, one can build a subsequential transducer that 
represents it: 

Proposition 
If (fl . . . .  ,fn) is a sequence of subsequential functions with bounded domains and such 
that fi(~) = 0, then RmLocExt(h ) o . . .  o RmLocExt(fn) is subsequential. 

We have proven in this section that our techniques apply to the class of transformation- 
based systems. We now turn our attention to the implementation of finite-state trans- 
ducers. 

11. Implementation of Finite-State Transducers 

Once the final finite-state transducer is computed, applying it to an input is straight- 
forward: it consists of following the unique sequence of transitions whose left labels 
correspond to the input. However, in order to have a complexity fully independent of 
the size of the grammar and in particular independent of the number of transitions 
at each state, one should carefully choose an appropriate representation for the trans- 
ducer. In our implementation, transitions can be accessed randomly. The transducer 
is first represented by a two-dimensional table whose rows are indexed by states and 
whose columns are indexed by the alphabet of all possible input letters. The content 
of the table at line q and at column a is the word w such that the transition from q 
with the input label a outputs w. Since only a few transitions are allowed from many 
states, this table is very sparse and can be compressed. This compression is achieved 
while maintaining random access using a procedure for sparse data tables following 
the method given by Tarjan and Yao (1979). 

12. Conclusion 

The techniques described in this paper are more general than the problem of part-of- 
speech tagging and are applicable to the class of problems dealing with local transfor- 
mation rules. 

We showed that any transformation-based program can be transformed into a 
deterministic finite-state transducer. This yields to optimal time implementations of 
transformation based programs. 

As a case study, we applied these techniques to the problem of part-of-speech 
tagging and presented a finite-state tagger that requires n steps to tag a sentence of 
length n, independently of the number of rules and the length of the context they 
require. We achieved this result by representing the rules acquired for Brill's tagger 
as nondeterministic finite-state transducers. We composed each of these nondetermin- 
istic transducers and turned the resulting transducer into a deterministic transducer. 
The resulting deterministic transducer yields a part-of-speech tagger that operates in 
optimal time in the sense that the time to assign tags to a sentence corresponds to 
the time required to follow a single path in this deterministic finite-state machine. The 
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tagger outperforms in speed both Brill's tagger and stochastic taggers. Moreover, the 
finite-state tagger inherits from the rule-based system its compactness compared  with 
stochastic taggers. We also proved  the correctness and the generality of the methods.  

We believe that this finite-state tagger will also be found useful when  combined 
with other  language components ,  since it can be naturally extended by composing 
it with finite-state transducers that could encode other aspects of natural  language 
syntax. 
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