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1. Introduction 

There are several types of ambiguity in natural languages, including lexical ambigu- 
ity, syntactic (or structural) ambiguity, quantifier scope ambiguity, and anaphora (or 
ambiguity of reference). Each type of ambiguity must be resolved for a natural lan- 
guage understanding program to be effective. Since syntax often limits the possible 
meanings of a sentence (and the words in the sentence), natural language processing 
programs often analyze the structure of a sentence before attempting to determine its 
meaning. However, additional knowledge sources must often be used in understand- 
ing, including selectional restrictions, world knowledge, and contextual information. 
The use of world knowledge and contextual information often requires inference and 
hence access to the representations of the sentence and possibly its components. But 
at the same time, because of ambiguity, a program might not be able to enumerate all 
of the possible representations for a sentence and its components, since just listing all 
possible structural analyses for syntactically ambiguous sentences can be impractical, 
and each structural analysis of a sentence typically produces at least one additional 
meaning. 

In this paper, we will focus on the problem of efficiently maintaining syntactic am- 
biguity while determining the logical representation for a sentence. In particular, we 
describe an approach that combines shared-packed parse forests with semantic con- 
struction routines. This approach allows a program attempting to eliminate ambiguity 
from a sentence to apply higher level knowledge sources to the logical representations 
of desired constituents in the parse forest (e.g., it could eliminate alternative parses for 
a noun phrase (NP) whose representation does not match objects in a world model). 

2. Methods of Handling Syntactic Ambiguity 

Tree structures, called parse trees, are often used to represent the structural properties 
of a sentence. Because language is often syntactically ambiguous, it is common for 
a particular sentence to have more than one parse tree. For example, the sentence, 
Every man saw the boy with his binoculars, has two potential parses. In one parse, the 
prepositional phrase (PP) with his binoculars is attached to the verb phrase (VP). In the 
other, it is attached to the object (NP). These two structures give rise to very different 
meanings for the sentence. In the first case, every man is using the binoculars to see 
the boy; whereas in the second, the boy has the binoculars. 

One way to enable a natural language program to process the meanings of syn- 
tactically ambiguous sentences is to incorporate semantic construction routines into a 
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parser that produces each structural analysis for a sentence, one parse tree at a time, 
and maps  each tree to a separate logical representation. The program must  then at- 
tempt  to determine which meaning for the sentence is the in tended one. One problem 
with this approach is that the number  of parse trees produced  for some ambiguous 
sentences is quite large. For example, a parser analyzing sentences with multiple PPs 
can produce  a prohibit ively large number  of possible parses for the sentence. As the 
number  of PPs in a sentence increases, the number  of possible parse trees and their 
corresponding representations grows as the Catalan numbers,  C,, = [2n~ 1 (Church 

\ n ,' n + l  
and Patil 1982). For example,  a sentence with one object and four post-object PPs (i.e., 
n = 5) has 42 parses. Since the number  of parses for a sentence with multiple PPs 
grows faster than exponential ly (Knuth 1975), the time to list all possible trees and 
their corresponding meanings can be prohibitive. A one-parse-tree-at-a-time approach 
that uses no mechanism for storing subresults from a parse (e.g., a chart or parse 
forest) is inefficient because it cannot reuse the results of the semantic and contextual 
tests made  on a subtree of a rejected parse dur ing the evaluation of an alternative 
parse tree. The need for efficiency dictates the need for another  approach to manage  
the ambiguity of a sentence. 

The efficiency of this approach can be improved by resolving each indeterminacy 
in the parse as soon as it arises to prevent  backtracking (Briscoe 1987). However ,  this 
requires that enough information be available at that point  in the parse to select among 
the alternatives. In many  cases, this requirement  cannot  be met; words  occurring later 
in the sentence or possibly in subsequent  sentences may  be needed  to resolve the 
ambiguity. A slightly different alternative is to work with the highest preference choice 
only (Alshawi 1990; Briscoe and Carroll 1993). Al though this approach is efficient, it 
provides only the most  likely parse ( independent ly  of context), not necessarily the 
correct parse. 

An alternative scheme for coping with syntactic ambigui ty  is to change the gram- 
mar rules so that they provide  a single parse tree for a syntactically ambiguous  sen- 
tence and then wait  for the semantic routines to pinpoint  the parse. To illustrate this 
strategy, consider a common  way to write a rule for an NP with noun  modifiers: 

NP --+ DET N1 

N1 --+ NOU N  

N1 --+ N1 N1 

This g r a m m a r  generates a very  large number  of possible structures for NPs like the 
computer science school book. However ,  it also eliminates f rom consideration impossible 
noun modifier  structures by not allowing crossover be tween modifiers. For example,  
the grammar  would  never  allow a structure such that computer modifies school, which 
modifies book, and science modifies book. On the other  hand,  an alternative rule can be 
used to generate a single structural analysis for the sentence, as shown below: 

NP --+ DET NOUN* N O U N  

This rule ignores the structure of noun modifiers of a head noun,  placing them all 
at the same level in the parse tree. Without a structure to limit the possible modifier  
relations, a semantic routine might  incorrectly allow a noun  modifier  to modify  any of 
the nouns that follow it. To work  correctly, the semantic routines would  have to encode 
information already contained in the first set of rules in order  to prevent  impossible 
modifications. 

Another  possibility is to use a least commitment  g rammar  that provides  only one 
of the possible modifier  structures for an NP. To allow an interpretation based on one 
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24 ((S-MAJ16 S-MAJ) (DOWN (21 23))) 
23 ((.8 FINALPUNC .) (DOWN T)) 
22 ((NP14 NP) (DOWN (7 8 19))) 
21 (($13 S) (DOWN (3 20))) 
20 ((VP12 VP) (DOWN (6 9 19) (6 22))) 
19 ((PP+11 PP+ NIL) (DOWN (18))) 
18 ((PP10 PP NIL) (DOWN (12 17))) 
17 ((NP9 NP) (DOWN (16 15))) 
16 ((POSS8 POSS) (DOWN (13))) 
15 ((POSS-NOM7 POSS-NOM) (DOWN (14))) 
14 ((BINOCULARS7 NOUN BINOCULARS) 

(DOWN T)) 
13 ((HIS6 PRONOUN HIS) (DOWN T)) 
12 ((WITH5 PREP WITH) (DOWN T)) 
11 (($6 S) (DOWN (3 10))) 
10 ((VP5 VP) (DOWN (6 9))) 
9 ((NP4 NP) (DOWN (7 8))) 
8 ((BOY4 NOUN BOY) (DOWN T)) 
7 ((THE3 DET THE) (DOWN T)) 
6 ((VERBS3 VERBS) (DOWN (5))) 
5 ((TENSED-MAIN2 TENSED-MAIN) (DOWN (4))) 
4 ((SAW2 VERB SEE) (DOWN T)) 
3 ((NP1 NP) (DOWN (1 2))) 
2 ((MAN1 NOUN MAN) (DOWN T)) 
1 ((EVERY0 DET EVERY) (DOWN T)) 

Figure 1 
The shared-packed parse forest for Every man saw the boy with his binoculars. 

of the other possible syntactic structures, the semantic routines operating on the output 
of a least commitment parser must be able to adapt the tree for other interpretations. 

Description Theory (D-theory) (Marcus, Hindle, and Fleck 1983) uses the domi- 
nation relation to specify structures of trees (rather than the parent relation), forming 
the basis of a class of deterministic parsers that build partial descriptions of trees 
rather than the trees themselves. D-theory parsers build structures that contain only 
those relations that are common to all consistent trees such that the choice between 
alternatives can be handled by higher level knowledge sources. However, D-theory 
is a purely syntactic theory, which does not construct a semantic interpretation, and 
in many cases it creates the same underspecified syntactic analysis for sentences that 
require different types of interpretations. For example, compare I sailed the ship in the 
ocean with Every man saw the boy with his binoculars. These sentences have very different 
interpretive characteristics. In the first, the syntactic underspecification is matched by a 
semantic underspecification; attaching the PP to the NP or VP does not alter the truth 
value of the sentence. However, the second sentence has two distinct interpretations 
depending on the resolution of the attachment ambiguity. Hence, for D-theory to be 
useful in a system that does semantic interpretation, it would need to be coupled with 
a semantic interpreter that recognizes the difference between these two examples. 

The approach taken in this paper is to combine an all-path parsing algorithm 
(Chester 1980; Earley 1970; Kay 1980; Seo and Simmons 1989; Tomita 1985) with rou- 
tines for generating logical representations in order to create a shared-packed parse 
forest annotated with the logical representations for the constituents in the forest (i.e., 
an annotated shared-packed parse forest). Before discussing the benefits of this ap- 
proach, we describe the properties of a shared-packed parse forest (Seo and Simmons 
1989; Tomita 1985, 1987). 

A shared-packed parse forest is a data structure that stores all parses of a sentence 
in a compact form. Consider the packed parse forest produced by an implementation of 
Tomita's parser (Tomita 1985) for the sentence Every man saw the boy with his binoculars 
shown in Figure 1. The forest stores both terminal and non-terminal nodes. Non- 
terminal nodes contain lists of node numbers of the children that make up a parse 

651 



Computational Linguistics Volume 20, Number 4 

of that constituent. The start symbol for the grammar is S-MAJ, which in the above 
example consists of a non-terminal node for an S and a final punctuation terminal 
node. Because a non-terminal node may have descendents with multiple parses, there 
can be more than one parse tree for the constituent. This results from the fact that 
the parser packs forest nodes together when they share a common state vertex and 
have the same features. For example, in Figure 1, the VP with the index of 20 has two 
parses, one consisting of nodes with indices 6, 9, and 19, and the other with indices 6 
and 22. Early in the parse, node 20 had only one set of children (6 9 19). Later, after 
node 22 was created, the parser added (6 22) to the list of children for the VP node. 
This node packing occurs when the parser is preparing to reduce the phrase consisting 
of the subtrees 6 and 22 using a VP rule. When the new constituent in the parse stack 
has the same state vertex on its left and right as the item already stored in the forest, 
the alternative parse is added to the list of possible children for the already stored 
constituent. Note that nodes which never participate in a sentence parse can appear 
in the forest (e.g., nodes 10 and 11). These useless nodes can be easily pruned after 
parsing is complete by marking all nodes that participate in a parse beginning with 
the start symbol, S-MAJ, and freeing those that are unmarked. 

Seo and Simmons (1989) have introduced syntactic graphs, which are constructed 
from shared-packed parse forests, to represent ambiguous parses for a sentence. The 
syntactic graph encodes the modifier links between a head word and its modifiers. 
An advantage of this approach is that words which participate in multiple parses (by 
modifying different words in different ways) have multiple arcs entering the node. 
For example, if a preposition (as head of a PP) can modify either a noun or a verb, 
there would be two arcs entering the node for the preposition, one from the noun and 
one from the verb. Hence, the point of ambiguity can be pinpointed to the attachment 
decision. They claim that a parse forest does not give the same direct access to internal 
ambiguity because ambiguous points can be detected only by traversing the forest. 
Certainly, one cannot immediately detect that the ambiguity for the sentence resides 
with the PP attachment by examining the forest shown in Figure 1. However, by 
adding links between each of the nodes in the forest and its parent node and then 
pruning the nodes that do not participate in a legal parse for the sentence, the forest 
does give a better view of this ambiguity (see Figure 2). Nodes with more than one 
parent participate in multiple parses for a sentence. In the example forest of Figure 2, 
there are two different NPs that contain the and boy, and the PP+ constituent in node 
17 is a member of either an NP or a VP. Though this is not quite as compact as a 
syntactic graph for the same sentence, it does provide some very useful information 
on the sources of ambiguity in the sentence. For example, if an NP containing the word 
boy in Figure 2 can either have a PP+ attached to it (as in node 20) or not (as in node 
9) and the world model does not support the attachment, then the forest can be easily 
pruned of that possibility by deleting all references to the NP at node 20. The deletion 
process removes node 20 from the up pointers of node 20's children (i.e., nodes 7, 8, 
and 17) and deletes parses containing node 20 from node 20's parent node, 18. Once 
the deletion is complete, the forest is no longer ambiguous, as shown in Figure 3. 

Rather than transforming the parse forest to a parse graph to represent the syn- 
tactic structure for ambiguous sentences, we prefer to store pointers to parent nodes 
and utilize the shared-packed parse forest to store logical representations. Use of an 
annotated shared-packed parse forest has the following benefits: 

. It provides a space savings by packing duplicate nodes into a single 
entry in the forest (Earley 1970; Seo and Simmons 1989; Tomita 1985), 
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22 
21 
20 
19 
18 
17 
16 
15 
14 
13 
12 
11 
10 
9 
8 
7 
6 
5 
4 
3 
2 
1 

((S-MAJ16 S-MAJ) (DOWN (19 21)) (UP T)) 
((.8 FINALPUNC .) (DOWN T) (UP 22)) 
((NP14 NP) (DOWN (7 8 17)) (UP 18)) 
(($13 S) (DOWN (3 18)) (UP 22)) 
((VP12 VP) (DOWN (6 9 17) (6 20)) (UP 19)) 
((PP+11 PP+ NIL) (DOWN (16)) (UP 18 20)) ; attatch to an NP or VP 
((PP10 PP NIL) (DOWN (10 15)) (UP 17)) 
((NP9 NP) (DOWN (14 13)) (UP 16)) 
((POSS8 POSS) (DOWN (11)) (UP 15)) 
((POSS-NOM7 POSS-NOM) (DOWN (12)) (UP 15)) 
((BINOCULARS7 NOUN BINOCULARS) (DOWN T) (UP 13)) 
((HIS6 PRONOUN HIS) (DOWN T) (UP 14)) 
((WITH5 PREP WITH) (DOWN T) (UP 16)) 
((NP4 NP) (DOWN (7 8)) (UP 18)) 
((BOY4 NOUN BOY) (DOWN T) (UP 9 20)) ; in two different NPs 
((THE3 DET THE) (DOWN T) (UP 9 20)) ; in two different NPs 
((VERBS3 VERBS) (DOWN (5)) (UP 18)) 
((TENSED-MAIN2 TENSED-MAIN) (DOWN (4)) (UP 6)) 
((SAW2 VERB SEE) (DOWN T) (UP 5)) 
((NP1 NP) (DOWN (1 2)) (UP 19)) 
((MAN1 NOUN MAN) (DOWN T) (UP 3)) 
((EVERY0 DET EVERY) (DOWN T) (UP 3)) 

Figure 2 
The pruned shared-packed parse forest for Every man saw the boy with his binoculars with 
pointers to parent nodes. 

22 
21 
20 
19 
18 
17 
16 
15 
14 
13 
12 
11 
10 
9 
8 
7 
6 
5 
4 
3 
2 
1 

Figure 3 
An unambiguous parse 

((S-MAJ16 S-MAJ) (DOWN (19 21)) (UP T)) 
((.8 FINALPUNC .) (DOWN T) (UP 22)) 
((NP14 NP) (DOWN (7 8 17)) (UP 18)) 
((S13 S) (DOWN (3 18)) (UP 22)) 
((VP12 VP) (DOWN (6 9 17)) (UP 19)) 
((PP+11 PP+ NIL) (DOWN (16)) (UP 18)) 
((PP10 PP NIL) (DOWN (10 15)) (UP 17)) 
((NP9 NP) (DOWN (14 13)) (UP 16)) 
((POSS8 POSS) (DOWN (11)) (UP 15)) 
((POSS-NOM7 POSS-NOM) (DOWN (12)) (UP 15)) 
((BINOCULARS7 NOUN BINOCULARS) (DOWN T) (UP 13)) 
((HIS6 PRONOUN HIS) (DOWN T) (UP 14)) 
((WITH5 PREP WITH) (DOWN T) (UP 16)) 
((NP4 NP) (DOWN (7 8)) (UP 18)) 
((BOY4 NOUN BOY) (DOWN T) (UP 9)) 
((THE3 DET THE) (DOWN T) (UP 9)) 
((VERBS3 VERBS) (DOWN (5)) (UP 18)) 
((TENSED-MAIN2 TENSED-MAIN) (DOWN (4)) (UP 6)) 
((SAW2 VERB SEE) (DOWN T) (UP 5)) 
((NP1 NP) (DOWN (1 2)) (UP 19)) 
((MAN1 NOUN MAN) (DOWN T) (UP 3)) 
((EVERY0 DET EVERY) (DOWN T) (UP 3)) 

; can delete node 

; attatch to a VP 

for Every man saw the boy with his binoculars given  a certain wor ld  model .  

. 

. 

thus reducing the overhead w h e n  it is necessary to keep  all parses until  it 
is possible to make  an informed choice a m o n g  the alternative meanings .  

It provides  a direct method  for focusing on the points of  ambigui ty  in a 
sentence w h e n  parent l inks are included for each node.  

It is able to reuse the semantic  decis ions m a d e  for a subtree of a rejected 
parse tree. When  a node  in the forest is l imited to a single parse, it is 
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limited for all parses of the sentence containing that node (unlike 
one-parse-tree-at-a-time methods). 

Because of these benefits, we have designed a program to generate a shared- 
packed parse forest annotated with the logical form developed by Harper (1990, 1992). 
We augmented a Tomita-style LR parser with the necessary routines for constructing 
the logical form representation. Tomita's parser is a bottom-up LR(k)-based parser 
that constructs a forest of all possible parses while using a graph-structured stack and 
breadth-first search to handle non-determinism in the parse. In the next section, we 
describe three methods for interfacing our logical form routines with Tomita's parser. 
The conclusions we draw can also be applied to more efficient parsers (Earley 1970; 
Schabes 1991) that produce other logical representations (e.g., Alshawi and Crouch 
1992; Hirst 1987; Weischedel 1989) in more compact forests (Nederhof 1993). 

3. Combining Logical Form with Forests: A Case Study 

Previously, our logical form routines were interfaced with a one-parse-tree-at-a-time, 
top-down ATN parser (Harper 1990, 1992). This made it relatively easy to create com- 
positional logical form routines and interface them with the parser. These routines 
were developed to construct and store the logical forms for each major type of con- 
stituent. Some routines created logical representations for the basic constituents like 
nouns and verbs, whereas routines for more complex constituents, like VPs, NPs, and 
sentences, combined the logical representations of several constituents into a larger 
representation. Function calls for constructing the logical forms were then added to 
the arcs in the grammar networks and were executed whenever the arc was success- 
fully traversed (after constituent and feature tests succeeded). Since one parse tree 
was built at a time, the logical form for each tree was constructed and stored before 
another tree was produced by the parser's search mechanism; hence, none of the com- 
plex logical form routines had to combine more than a single representation for each 
of its constituents. The logical representations were easy to create in this approach, 
but the parser was impractical because it generated a single parse tree at a time. 

In the Tomita parser, the grammar rules consist of production rules containing a 
left-hand side, a right-hand side, and a set of actions. These actions include feature 
tests that must succeed for the reduce operation to proceed and routines for storing 
feature values and for constructing and storing the logical form with a node in the 
forest. For example, the following rule is used to parse a sentence consisting of an NP 
and a VP: 

(S --* (NP VP) 
((== #$NP (get-the person of #$VP)) 
(=! #$PHRASE 'statement) 
(logical-form 'sentence :np #$NP :vp #$VP))) 

; Subject-verb agreement test 
; Set the MOOD of the sentence 
; Create the logical form 

The left-hand side of this rule is S, and the right-hand side is a list consisting of an NP 
and a VP. For the rule to succeed during parsing, the right-hand side of the rule must 
match, and the subject-verb agreement test must return true. If it does, a parse node is 
created with a list of children consisting of #$NP and #$VP, the node numbers of the 
two constituents that make up the S. Additionally, the feature information and logical 
forms for the constituent are stored in the node created for the forest. To simplify 
the forests in examples, we omit the feature information stored on nodes and simply 
indicate the number of logical forms stored for a node, not the actual representation. 
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Unlike the ATN parser used by Harper (1990, 1992), the Tomita parser is a bottom- 
up, all-path parsing algorithm that creates a parse forest by packing parse nodes to- 
gether to save space and time. Because nodes with two alternative parses often produce 
two different semantic representations, our logical form construction routines must be 
able to store and retrieve multiple logical forms for ambiguous constituents in the 
forest. This requirement introduces two problems. First, packed nodes in a forest rep- 
resent multiple parses, which produce multiple representations; hence, our routines for 
constructing logical forms for sentences (and other complex constituents) may have to 
combine multiple representations for each of their constituents. Second, the annotated 
shared-packed parse forest cannot store every representation of a highly ambiguous 
sentence without using a prohibitively large amount of space. Any approach that 
uses a parse forest to store logical representations for the constituents of a sentence 
will have to address these problems. We will describe three methods for interfacing 
the LR parser with logical form routines and illustrate the differences between these 
approaches by using the parse of the sentence, Fred saw frogs in cars with Bill. 

The first and simplest method is to prevent two nodes from being packed together 
(except for the start symbol), if they have different logical forms, as shown in Figure 4. 
Notice that there are five parses for the S-MAJ at node 36 (i.e., (20 35), (24 35), (26 35), 

(32 35), and (34 35)) and five logical forms. All other nodes have a single parse and a 
single logical form. This approach is similar to the method employed by the ATN to 
generate the logical forms for a sentence and is equivalent to mapping an individual 
parse tree to a logical representation. This method is easy to implement, but it does 
not take advantage of the shared-packed parse forest for compactly storing the logical 
forms. And because different structural variations typically map to different logical 
representations, the number of nodes in the forest can be exponential (or worse) for 
some ambiguities. 

The second approach is to store the logical representation directly in the shared- 
packed parse forest, as shown in Figure 5. The syntactic ambiguity in the structure of 
a child node must affect the ambiguity of the logical representation of ancestor nodes. 
If a parent node consists of two constituents, one with three logical forms and another 
with two, the construction routines must be able to store the six logical forms for that 
constituent. This requires that the logical form routines be constructed to combine the 
logical forms for constituents with more than a single representation. Node packing 
provides an additional challenge. When a new node is packed with an already existing 
node in the forest, the logical representation for the new structure must be stored for 
that constituent. Also, all of the ancestors of a newly packed node must update their 
lists of logical representations to reflect the addition of the new parse, since packing 
of a node can occur after many of its ancestors are already members of the forest. In 
Figure 5, when the second parse was added to node 21, a second logical form also had 
to be added to the logical form list for that node and to the logical form lists of each 
of its previously stored ancestors (i.e., 19, 20, and 22) for the forest to be complete. 

In contrast to the first approach, this method does not increase the number of 
nodes in the parse forest; however, an exponential number of logical representations 
can be created for sentences in some ambiguous grammars. Some space savings can 
be achieved by using pointers to the representations of a child node when creating 
the representations of a parent node, because many of the nodes (and corresponding 
logical forms) in a parse forest are shared by multiple parses. However, for multiple 
logical representations to share the logical representation of a child node, that repre- 
sentation cannot be affected by the process of constructing the logical form for the 
parent node, an assumption that does not always hold (e.g., Harper 1990, 1992). If the 
assumption does not hold, the logical form of a shared node would require copying 
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36 ((S-MAJ62 S-MAJ) (DOWN (20 35) (24 35) (26 35) (32 35) (34 35)) (UP T)) 
; Store five representations for S-MAJ which combine single representations given the node pairs. 
35 ((.7 FINALPUNC .) (DOWN T) (UP 36)) 
34 (($61 S) (DOWN (2 33)) (UP 36)) 
; Store an S representation which combines the representations in nodes 2 and 33. 
33 ((VP60 VP) (DOWN (5 7 29)) (UP 34)) 
; Store a VP representation which combines the representations in nodes 5, 7, and 29. 
32 (($55 S) (DOWN (2 31)) (UP 36)) 
; Store an S representation which combines the representations in nodes 2 and 31. 
31 ((VP54 VP) (DOWN (5 30)) (UP 32)) 
; Store a VP representation which combines the representations in nodes 5 and 30. 
30 ((NP51 NP) (DOWN (6 29)) (UP 31)) 
; Store a representation for an NP which combines the representations in nodes 6 and 29. 
29 ((PP+48 PP+) (DOWN (28)) (UP 30 33)) 
; Store a representation for a PP+ given the representation in node 28. 
28 ((PP47 PP) (DOWN (8 27)) (UP 29)) 
; Store a representation for the PP which combines the representations in nodes 8 and 27. 
27 ((NP46 NP) (DOWN (9 18)) (UP 28)) 
; Store a representation for an NP which combines the representations in nodes 9 and 18. 
26 (($45 S) (DOWN (2 25)) (UP 36)) 
; Store an S representation which combines the representations in nodes 2 and 25. 
25 ((VP44 VP) (DOWN (5 7 21)) (UP 26)) 
; Store a VP representation which combines the representations in nodes 5, 7, and 21. 
24 (($39 S) (DOWN (2 23)) (UP 36)) 
; Store an S representation which combines the representations in nodes 2 and 23. 
23 ((VP38 VP) (DOWN (5 22)) (UP 24)) 
; Store a VP representation which combines the representations in nodes 5 and 22. 
22 ((NP35 NP) (DOWN (6 21)) (UP 23)) 
; Store a representation for an NP which combines the representations in nodes 6 and 21. 
21 ((PP+32 PP+) (DOWN (11 18)) (UP 22 25)) 
; Store a representation for a PP+ given the representation in nodes 11 and 18. 
20 (($31 S) (DOWN (2 19)) (UP 36)) 
; Store an S representation which combines the representations in nodes 2 and 19. 
19 ((VP30 VP) (DOWN (5 13 18)) (UP 20)) 
; Store a VP representation which combines the representations in nodes 5, 13, and 18. 
18 ((PP+27 PP+) (DOWN (17)) (UP 19 21 27)) 
; Store a representation for a PP+ given the representation in node 17. 
17 ((PP26 PP) (DOWN (14 16)) (UP 18)) 
; Store a representation for the PP which combines the representations in nodes 14 and 16. 
16 ((NP25 NP) (DOWN (15)) (UP 17)) 
; Store a representation for an NP given the head noun in node 15. 
15 ((FRED6 PROPERNOUN FRED) (DOWN T) (UP 16)) 
14 ((WITH5 PREP WITH) (DOWN T) (UP 17)) 
13 ((NP20 NP) (DOWN (6 12)) (UP 19)) 
; Store a representation for an NP given the representations in nodes 6 and 12. 
12 ((PP+11 PP+) (DOWN (11)) (UP 13)) 
; Store a representation for a PP+ given the representation in node 11. 
11 ((PP10 PP) (DOWN (8 10)) (UP 12 21)) 
; Store a representation for the PP which combines the representations in nodes 8 and 10. 
10 ((NP9 NP) (DOWN (9)) (UP 11)) 
; Store a representation for an NP given the head noun in node 9. 
9 ((CARS4 NOUN CAR) (DOWN T) (UP 10 27)) 
8 ((IN3 PREP IN) (DOWN T) (UP 11 28)) 
7 ((NP4 NP) (DOWN (6)) (UP 25 33)) 
; Store a representation for an NP given the head noun in node 6. 
6 ((FROGS2 NOUN FROG) (DOWN T) (UP 7 13 22 30)) 
5 ((VERBS3 VERBS) (DOWN (4)) (UP 19 23 25 31 33)) 
; Store a representation given node 4. 
4 ((TENSED-MAIN2 TENSED-MAIN) (DOWN (3)) (UP 5)) 
; Store a representation for the verb in 3. 
3 ((SAW1 VERB SEE) (DOWN T) (UP 4)) 
2 ((NP1 NP) (DOWN (1)) (UP 20 24 26 32 34)) 
; Store a representation for an NP given the head noun in node 1. 
1 ((FRED0 PROPERNOUN FRED) (DOWN T) (UP 2)) 

Figure 4 
Method 1: Two nodes of the parse forest are not packed when they have different logical 
forms. 
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26 ((S-MAJ196 S-MAJ) (DOWN (20 25)) (UP T)) 
25 ((.7 FINALPUNC .) (DOWN T) (UP 26)) 
24 ((PP174 PP) (DOWN (8 23)) (UP 21)) 
; Store a representation for the PP which combines the representations in nodes 8 and  23. 
23 ((NP165 NP) (DOWN (9 18)) (UP 24)) 
; Store a representation for an  NP which combines the representations in nodes 9 and  18. 
22 ((NP130 NP) (DOWN (6 21)) (UP 19)) 
; Store two representations for an  NP which combine the representation in node 6 with the 
; two representation in node 21. 
21 ((PP+113 PP+) (DOWN (11 18) (24)) (UP 22 19)) 
; Store two representations of PP+, one which combines the representations of nodes 11 and  18, 
; and the other which is the representation stored in node 24. 
20 ((S106 S) (DOWN (2 19)) (UP 26)) 
; Store five representations of S which combine the representation of node 2 with the 
; five representations of node 19. 
19 ((VP95 VP) (DOWN (5 13 18) (5 22) (5 7 21)) (UP 20)) 
; Store five representations for the VP, one which combines the representations 
; in nodes 5, 13, and  18, two which combine the representation in node 5 
; with the two representations in node 22, and  two which combine the representation 
; of node 5 with the representation of node 7 and  the two representations of node 21. 
18 ((PP+84 PP+) (DOWN (17)) (UP 19 21 23)) 
; Store a representation for a PP+ given the representation in node 17. 
17 ((PP79 PP) (DOWN (14 16)) (UP 18)) 
; Store a representation for a PP which combines the representations in node 14 and  16. 
16 ((NP76 NP) (DOWN (15)) (UP 17)) 
; Store a representation for an  NP given the head noun  in node 15. 
15 ((BILL6 PROPERNOUN BILL) (DOWN T) (UP 16)) 
14 ((WITH5 PREP WITH) (DOWN T) (UP 17)) 
13 ((NP56 NP) (DOWN (6 12)) (UP 19)) 
; Store a representation for an  NP which combines the representations in nodes 6 and  12. 
12 ((PP+31 PP+) (DOWN (11)) (UP 13)) 
; Store a representation fo~' a PP+ given the representation in node 11. 
11 ((PP26 PP) (DOWN (8 10)) (UP 12 21)) 
; Store a representation for the PP which combines the representations in nodes 8 and  10. 
10 ((NP23 NP) (DOWN (9)) (UP 11)) 
; Store a representation for an  NP given the head noun in node 9. 
9 ((CARS4 NOUN CAR) (DOWN T) (UP 10 23)) 
8 ((IN3 PREP IN) (DOWN T) (UP 11 24)) 
7 ((NP10 NP) (DOWN (6)) (UP 19)) 
; Store a representation for an  NP given the head noun in node 6. 
6 ((FROGS2 NOUN) (DOWN T) (UP 7 13 22)) 
5 ((VERBS7 VERBS) (DOWN (4)) (UP 19)) 
; Store a representation given node 4. 
4 ((TENSED-MAIN4 TENSED-MAIN) (DOWN (3)) (UP 5)) 
; Store a representation for the verb in 3. 
3 ((SAW1 VERB SEE) (DOWN T) (UP 4)) 
2 ((NP1 NP) (DOWN (1)) (UP 20)) 
; Store a representation for an  NP given the head noun in node 1. 
1 ((FRED0 PROPERNOUN) (DOWN T) (UP 2)) 

Figure 5 
Method 2: Directly store multiple logical forms in a packed forest. 

and modification before being used in the logical representation of a parent node. If 
all logical representations are copied and modified as they are combined into higher 
logical representations, the parse forest could grow quite large. However, even if the 
elements of a logical representation do not require copying, the number of represen- 
tations created for a sentence using the second approach is precisely the number of 
parses for the sentence, which can be exponential in number. 

A third approach is to store a procedure call for creating the logical form of a 
constituent in the forest and to delay the creation of the logical form, as shown in 
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26 ((S-MAJ196 S-MAJ) (DOWN (20 25)) (UP T) (CREATE-S-MAJ-LF :S 20 :PUNC 25)) 
25 ((.7 FINALPUNC .) (DOWN T) (UP 26)) 
24 ((PP174 PP) (DOWN (8 23)) (UP 21) (CREATE-PP-LF :PREP 8 :OBJ 23)) 
23 ((NP165 NP) (DOWN (9 18)) (UP 24) (CREATE-NP-LF :NOUN 9 :POSTNOUN-MODS 18)) 
22 ((NP130 NP) (DOWN (6 21)) (UP 19) (CREATE-NP-LF :NOUN 6 :POSTNOUN-MODS 21)) 
21 ((PP+113 PP+) (DOWN (11 18) (24)) (UP 22 19) 

(CREATE-PP+-LF :PP 11 :PP+ 18) 
(CREATE-PP+-LF :PP 24)) 

20 (($106 S) (DOWN (2 19)) (UP 26) (CREATE-S-LF :NP 2 :VP 19)) 
19 ((VP95 VP) (DOWN (5 13 18) (5 22) (5 7 21)) (UP 20) 

(CREATE-VP-LF :VERB 5 :OBJ1 13 :PP+ 18 :SUBCAT 'TRANS) 
(CREATE-VP-LF :VERB 5 :OBJ1 22 :SUBCAT 'TRANS) 
(CREATE-VP-LF :VERB 5 :OBJ1 7 :PP+ 21 :SUBCAT 'TRANS)) 

18 ((PP+84 PP+) (DOWN (17)) (UP 19 21 23) (CREATE-PP+-LF :PP 17)) 
17 ((PP79 PP) (DOWN (14 16)) (UP 18) (CREATE-PP-LF :PREP 14 :OBJ 16)) 
16 ((NP76 NP) (DOWN (15)) (UP 17) (CREATE-PROPERNOUN-LF :PROPERNOUN 15)) 
15 ((BILL6 PROPERNOUN BILL) (DOWN T) (UP 16)) 
14 ((WITH5 PREP WITH) (DOWN T) (UP 17)) 
13 ((NP56 NP) (DOWN (6 12)) (UP 19) (CREATE-NP-LF :NOUN 6 :POSTNOUN-MODS 12)) 
12 ((PP+31 PP+) (DOWN (11)) (UP 13) (CREATE-PP+-LF :PP 11)) 
11 ((PP26 PP) (DOWN (8 10)) (UP 12 21) (CREATE-PP-LF :PREP 8 :OBJ 10)) 
10 ((NP23 NP) (DOWN (9)) (UP 11) (CREATE-NP-LF :NOUN 9)) 
9 ((CARS4 NOUN CAR) (DOWN T) (UP 10 23)) 
8 ((IN3 PREP IN) (DOWN T) (UP 11 24)) 
7 ((NP10 NP) (DOWN (6)) (UP 19) (CREATE-NP-LF :NOUN 6)) 
6 ((FROGS2 NOUN) (DOWN T) (UP 7 13 22)) 
5 ((VERBS7 VERBS) (DOWN (4)) (UP 19) (CREATE-VERBS-LF :VERBS 4)) 
4 ((TENSED-MAIN4 TENSED-MAIN) (DOWN (3)) (UP 5) (CREATE-VERB-ONLY-LF :VERB 3)) 
3 ((SAW1 VERB SEE) (DOWN T) (UP 4)) 
2 ((NP1 NP) (DOWN (1)) (UP 20) (CREATE-PROPERNOUN-LF :PROPERNOUN 1)) 
1 ((FRED0 PROPERNOUN) (DOWN T) (UP 2)) 

Figure 6 
Method 3: Store procedure calls to create logical forms in the packed forest. 

Number  Number  Forest Size Forest Size Forest Size Forest Size 
of PPs of Parses for No LF for Method 1 for Method 2 for Method 3 

0 1 1,184 (11) 3,450 (11) 3,450 (11) 1,353 (11) 
1 2 1,803 (19) 9,971 (21) 9,748 (19) 2,200 (19) 
2 5 2,660 (30) 32,043 (42) 30,704 (30) 3,370 (30) 
3 14 3,703 (44) 108,291 (93) 107,716 (44) 5,043 (44) 
4 42 5,003 (61) 389,499 (233) 388,671 (61) 7,114 (61) 
5 132 6,526 (81) 1,477,644 (651) 1,475,418 (81) 9,658 (81) 

Figure 7 
The size of the parse forest in bytes and number  of nodes for each method. 

F i g u r e  6. K e y w o r d  p a r a m e t e r s  a re  u s e d  to m a k e  the  p r o c e d u r e  cal ls  m o r e  m e a n i n g f u l .  
O n c e  the  p a r s e  fores t  is c o m p l e t e ,  the  log ica l  f o r m  for a n y  n o d e  can  be  c r e a t e d  b y  
e v a l u a t i n g  the  s t o r e d  p r o c e d u r e  call.  If the  n o d e  has  m u l t i p l e  pa r ses ,  t hen  m u l t i p l e  
log ica l  f o r m s  wi l l  be  c r ea t ed  b y  the  r o u t i n e s  au toma t i ca l ly .  H e n c e ,  the  log ica l  f o r m  
r o u t i n e s  u s e d  in  th is  a p p r o a c h  m u s t  be  ab le  to c o m b i n e  p r o p e r l y  the  m u l t i p l e  log ica l  
f o r m s  for  i ts c o n s t i t u e n t s  (just  as  in the  s e c o n d  a p p r o a c h ) .  A l l  of  the  log ica l  f o r m s  
for  the  s en t ence  can  be  p r o d u c e d  b y  e v a l u a t i n g  the  log ica l  f o r m  r o u t i n e  s t o r e d  w i t h  
the  S-MAJ,  r e su l t i ng  in a p o t e n t i a l l y  l a rge  n u m b e r  of  r e p r e s e n t a t i o n s .  H o w e v e r ,  s ince  
the  p r o c e d u r e  cal ls  s t o r e d  w i t h  a n y  of  the  n o d e s  in the  fores t  can  be  e v a l u a t e d  as  
n e e d e d ,  the  p r o g r a m  is ab le  to g e n e r a t e  a n d  e x a m i n e  o n l y  the  r e p r e s e n t a t i o n s  of  
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the constituents associated with points of ambiguity. This feature can be used by a 
semantic processing module to determine which of the NPs in the forest make sense 
given the world model. For example, in Figure 6, the head nouns in nodes 6 and 9 
have pointers to five different NPs, whose logical forms can be created and tested 
against the model. This approach is somewhat reminiscent of the freeze predicate in 
logic programming, which specifies that some logic clauses should be solved only after 
others have already been solved. In our system, however, the order of evaluation can 
be dynamic and context dependent. 

The previously described methods for generating logical form were each imple- 
mented and evaluated. Figure 7 compares the memory size of the forests in bytes along 
with the number of nodes generated in the forest (shown in parentheses) for each of 
the three methods. The ambiguity in all cases resulted from PP attachment. The num- 
ber of nodes and the size of the forest when no logical representation is constructed 
have also been included as a baseline. The third method is superior to the other two 
methods for the following reasons: the forest contains the same number of nodes as 
the original forest without logical form; the size of the forest augmented with logical 
form is much closer to the size of the original forest; and the logical forms for any of 
the nodes in the forest can still be accessed by executing the function call(s) stored in 
that node, providing a flexible tool for higher level processing. 

4. Conclusion 

We have modified an all-path context-free grammar parser to generate a shared-packed 
parse forest that provides useful information on the points of ambiguity in a sentence. 
This forest was also augmented with function calls to construct logical representations 
for the constituents of the forest, providing a compact data structure that contains 
multiple sentence parses and access to their corresponding logical representations. 
Once constructed, this annotated shared-packed parse forest can be utilized by a higher 
level module to provide logical representations for pieces of the sentence or for the 
entire sentence. In case of ambiguity, representations for the ambiguous constituents 
of the sentence can be constructed and tested for validity against a world model, and 
the annotated forest can then be pruned incrementally. 
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