
Squibs and Discuss ions

Storing Logical Form in a Shared-Packed
Forest

M a r y P. H a r p e r •
Purdue University

1. Introduction

There are several types of ambiguity in natural languages, including lexical ambigu-
ity, syntactic (or structural) ambiguity, quantifier scope ambiguity, and anaphora (or
ambiguity of reference). Each type of ambiguity must be resolved for a natural lan-
guage understanding program to be effective. Since syntax often limits the possible
meanings of a sentence (and the words in the sentence), natural language processing
programs often analyze the structure of a sentence before attempting to determine its
meaning. However, additional knowledge sources must often be used in understand-
ing, including selectional restrictions, world knowledge, and contextual information.
The use of world knowledge and contextual information often requires inference and
hence access to the representations of the sentence and possibly its components. But
at the same time, because of ambiguity, a program might not be able to enumerate all
of the possible representations for a sentence and its components, since just listing all
possible structural analyses for syntactically ambiguous sentences can be impractical,
and each structural analysis of a sentence typically produces at least one additional
meaning.

In this paper, we will focus on the problem of efficiently maintaining syntactic am-
biguity while determining the logical representation for a sentence. In particular, we
describe an approach that combines shared-packed parse forests with semantic con-
struction routines. This approach allows a program attempting to eliminate ambiguity
from a sentence to apply higher level knowledge sources to the logical representations
of desired constituents in the parse forest (e.g., it could eliminate alternative parses for
a noun phrase (NP) whose representation does not match objects in a world model).

2. Methods of Handling Syntactic Ambiguity

Tree structures, called parse trees, are often used to represent the structural properties
of a sentence. Because language is often syntactically ambiguous, it is common for
a particular sentence to have more than one parse tree. For example, the sentence,
Every man saw the boy with his binoculars, has two potential parses. In one parse, the
prepositional phrase (PP) with his binoculars is attached to the verb phrase (VP). In the
other, it is attached to the object (NP). These two structures give rise to very different
meanings for the sentence. In the first case, every man is using the binoculars to see
the boy; whereas in the second, the boy has the binoculars.

One way to enable a natural language program to process the meanings of syn-
tactically ambiguous sentences is to incorporate semantic construction routines into a

* School of Electrical Engineering, 1285 Electrical Engineering Building, Purdue University, West
Lafayette, IN 47907-1285, USA.

Q 1994 Association for Computational Linguistics

Computational Linguistics Volume 20, Number 4

parser that produces each structural analysis for a sentence, one parse tree at a time,
and maps each tree to a separate logical representation. The program must then at-
tempt to determine which meaning for the sentence is the in tended one. One problem
with this approach is that the number of parse trees produced for some ambiguous
sentences is quite large. For example, a parser analyzing sentences with multiple PPs
can produce a prohibit ively large number of possible parses for the sentence. As the
number of PPs in a sentence increases, the number of possible parse trees and their
corresponding representations grows as the Catalan numbers, C,, = [2n~ 1 (Church

\ n ,' n + l
and Patil 1982). For example, a sentence with one object and four post-object PPs (i.e.,
n = 5) has 42 parses. Since the number of parses for a sentence with multiple PPs
grows faster than exponential ly (Knuth 1975), the time to list all possible trees and
their corresponding meanings can be prohibitive. A one-parse-tree-at-a-time approach
that uses no mechanism for storing subresults from a parse (e.g., a chart or parse
forest) is inefficient because it cannot reuse the results of the semantic and contextual
tests made on a subtree of a rejected parse dur ing the evaluation of an alternative
parse tree. The need for efficiency dictates the need for another approach to manage
the ambiguity of a sentence.

The efficiency of this approach can be improved by resolving each indeterminacy
in the parse as soon as it arises to prevent backtracking (Briscoe 1987). However , this
requires that enough information be available at that point in the parse to select among
the alternatives. In many cases, this requirement cannot be met; words occurring later
in the sentence or possibly in subsequent sentences may be needed to resolve the
ambiguity. A slightly different alternative is to work with the highest preference choice
only (Alshawi 1990; Briscoe and Carroll 1993). Al though this approach is efficient, it
provides only the most likely parse (independent ly of context), not necessarily the
correct parse.

An alternative scheme for coping with syntactic ambigui ty is to change the gram-
mar rules so that they provide a single parse tree for a syntactically ambiguous sen-
tence and then wait for the semantic routines to pinpoint the parse. To illustrate this
strategy, consider a common way to write a rule for an NP with noun modifiers:

NP --+ DET N1

N1 --+ NOU N

N1 --+ N1 N1

This g r a m m a r generates a very large number of possible structures for NPs like the
computer science school book. However , it also eliminates f rom consideration impossible
noun modifier structures by not allowing crossover be tween modifiers. For example,
the grammar would never allow a structure such that computer modifies school, which
modifies book, and science modifies book. On the other hand, an alternative rule can be
used to generate a single structural analysis for the sentence, as shown below:

NP --+ DET NOUN* N O U N

This rule ignores the structure of noun modifiers of a head noun, placing them all
at the same level in the parse tree. Without a structure to limit the possible modifier
relations, a semantic routine might incorrectly allow a noun modifier to modify any of
the nouns that follow it. To work correctly, the semantic routines would have to encode
information already contained in the first set of rules in order to prevent impossible
modifications.

Another possibility is to use a least commitment g rammar that provides only one
of the possible modifier structures for an NP. To allow an interpretation based on one

650

Mary P. Harper Storing Logical Form in a Shared-Packed Forest

24 ((S-MAJ16 S-MAJ) (DOWN (21 23)))
23 ((.8 FINALPUNC .) (DOWN T))
22 ((NP14 NP) (DOWN (7 8 19)))
21 (($13 S) (DOWN (3 20)))
20 ((VP12 VP) (DOWN (6 9 19) (6 22)))
19 ((PP+11 PP+ NIL) (DOWN (18)))
18 ((PP10 PP NIL) (DOWN (12 17)))
17 ((NP9 NP) (DOWN (16 15)))
16 ((POSS8 POSS) (DOWN (13)))
15 ((POSS-NOM7 POSS-NOM) (DOWN (14)))
14 ((BINOCULARS7 NOUN BINOCULARS)

(DOWN T))
13 ((HIS6 PRONOUN HIS) (DOWN T))
12 ((WITH5 PREP WITH) (DOWN T))
11 (($6 S) (DOWN (3 10)))
10 ((VP5 VP) (DOWN (6 9)))
9 ((NP4 NP) (DOWN (7 8)))
8 ((BOY4 NOUN BOY) (DOWN T))
7 ((THE3 DET THE) (DOWN T))
6 ((VERBS3 VERBS) (DOWN (5)))
5 ((TENSED-MAIN2 TENSED-MAIN) (DOWN (4)))
4 ((SAW2 VERB SEE) (DOWN T))
3 ((NP1 NP) (DOWN (1 2)))
2 ((MAN1 NOUN MAN) (DOWN T))
1 ((EVERY0 DET EVERY) (DOWN T))

Figure 1
The shared-packed parse forest for Every man saw the boy with his binoculars.

of the other possible syntactic structures, the semantic routines operating on the output
of a least commitment parser must be able to adapt the tree for other interpretations.

Description Theory (D-theory) (Marcus, Hindle, and Fleck 1983) uses the domi-
nation relation to specify structures of trees (rather than the parent relation), forming
the basis of a class of deterministic parsers that build partial descriptions of trees
rather than the trees themselves. D-theory parsers build structures that contain only
those relations that are common to all consistent trees such that the choice between
alternatives can be handled by higher level knowledge sources. However, D-theory
is a purely syntactic theory, which does not construct a semantic interpretation, and
in many cases it creates the same underspecified syntactic analysis for sentences that
require different types of interpretations. For example, compare I sailed the ship in the
ocean with Every man saw the boy with his binoculars. These sentences have very different
interpretive characteristics. In the first, the syntactic underspecification is matched by a
semantic underspecification; attaching the PP to the NP or VP does not alter the truth
value of the sentence. However, the second sentence has two distinct interpretations
depending on the resolution of the attachment ambiguity. Hence, for D-theory to be
useful in a system that does semantic interpretation, it would need to be coupled with
a semantic interpreter that recognizes the difference between these two examples.

The approach taken in this paper is to combine an all-path parsing algorithm
(Chester 1980; Earley 1970; Kay 1980; Seo and Simmons 1989; Tomita 1985) with rou-
tines for generating logical representations in order to create a shared-packed parse
forest annotated with the logical representations for the constituents in the forest (i.e.,
an annotated shared-packed parse forest). Before discussing the benefits of this ap-
proach, we describe the properties of a shared-packed parse forest (Seo and Simmons
1989; Tomita 1985, 1987).

A shared-packed parse forest is a data structure that stores all parses of a sentence
in a compact form. Consider the packed parse forest produced by an implementation of
Tomita's parser (Tomita 1985) for the sentence Every man saw the boy with his binoculars
shown in Figure 1. The forest stores both terminal and non-terminal nodes. Non-
terminal nodes contain lists of node numbers of the children that make up a parse

651

Computational Linguistics Volume 20, Number 4

of that constituent. The start symbol for the grammar is S-MAJ, which in the above
example consists of a non-terminal node for an S and a final punctuation terminal
node. Because a non-terminal node may have descendents with multiple parses, there
can be more than one parse tree for the constituent. This results from the fact that
the parser packs forest nodes together when they share a common state vertex and
have the same features. For example, in Figure 1, the VP with the index of 20 has two
parses, one consisting of nodes with indices 6, 9, and 19, and the other with indices 6
and 22. Early in the parse, node 20 had only one set of children (6 9 19). Later, after
node 22 was created, the parser added (6 22) to the list of children for the VP node.
This node packing occurs when the parser is preparing to reduce the phrase consisting
of the subtrees 6 and 22 using a VP rule. When the new constituent in the parse stack
has the same state vertex on its left and right as the item already stored in the forest,
the alternative parse is added to the list of possible children for the already stored
constituent. Note that nodes which never participate in a sentence parse can appear
in the forest (e.g., nodes 10 and 11). These useless nodes can be easily pruned after
parsing is complete by marking all nodes that participate in a parse beginning with
the start symbol, S-MAJ, and freeing those that are unmarked.

Seo and Simmons (1989) have introduced syntactic graphs, which are constructed
from shared-packed parse forests, to represent ambiguous parses for a sentence. The
syntactic graph encodes the modifier links between a head word and its modifiers.
An advantage of this approach is that words which participate in multiple parses (by
modifying different words in different ways) have multiple arcs entering the node.
For example, if a preposition (as head of a PP) can modify either a noun or a verb,
there would be two arcs entering the node for the preposition, one from the noun and
one from the verb. Hence, the point of ambiguity can be pinpointed to the attachment
decision. They claim that a parse forest does not give the same direct access to internal
ambiguity because ambiguous points can be detected only by traversing the forest.
Certainly, one cannot immediately detect that the ambiguity for the sentence resides
with the PP attachment by examining the forest shown in Figure 1. However, by
adding links between each of the nodes in the forest and its parent node and then
pruning the nodes that do not participate in a legal parse for the sentence, the forest
does give a better view of this ambiguity (see Figure 2). Nodes with more than one
parent participate in multiple parses for a sentence. In the example forest of Figure 2,
there are two different NPs that contain the and boy, and the PP+ constituent in node
17 is a member of either an NP or a VP. Though this is not quite as compact as a
syntactic graph for the same sentence, it does provide some very useful information
on the sources of ambiguity in the sentence. For example, if an NP containing the word
boy in Figure 2 can either have a PP+ attached to it (as in node 20) or not (as in node
9) and the world model does not support the attachment, then the forest can be easily
pruned of that possibility by deleting all references to the NP at node 20. The deletion
process removes node 20 from the up pointers of node 20's children (i.e., nodes 7, 8,
and 17) and deletes parses containing node 20 from node 20's parent node, 18. Once
the deletion is complete, the forest is no longer ambiguous, as shown in Figure 3.

Rather than transforming the parse forest to a parse graph to represent the syn-
tactic structure for ambiguous sentences, we prefer to store pointers to parent nodes
and utilize the shared-packed parse forest to store logical representations. Use of an
annotated shared-packed parse forest has the following benefits:

. It provides a space savings by packing duplicate nodes into a single
entry in the forest (Earley 1970; Seo and Simmons 1989; Tomita 1985),

652

Mary P. Harpe r Storing Logical Form in a Shared-Packed Forest

22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

((S-MAJ16 S-MAJ) (DOWN (19 21)) (UP T))
((.8 FINALPUNC .) (DOWN T) (UP 22))
((NP14 NP) (DOWN (7 8 17)) (UP 18))
(($13 S) (DOWN (3 18)) (UP 22))
((VP12 VP) (DOWN (6 9 17) (6 20)) (UP 19))
((PP+11 PP+ NIL) (DOWN (16)) (UP 18 20)) ; attatch to an NP or VP
((PP10 PP NIL) (DOWN (10 15)) (UP 17))
((NP9 NP) (DOWN (14 13)) (UP 16))
((POSS8 POSS) (DOWN (11)) (UP 15))
((POSS-NOM7 POSS-NOM) (DOWN (12)) (UP 15))
((BINOCULARS7 NOUN BINOCULARS) (DOWN T) (UP 13))
((HIS6 PRONOUN HIS) (DOWN T) (UP 14))
((WITH5 PREP WITH) (DOWN T) (UP 16))
((NP4 NP) (DOWN (7 8)) (UP 18))
((BOY4 NOUN BOY) (DOWN T) (UP 9 20)) ; in two different NPs
((THE3 DET THE) (DOWN T) (UP 9 20)) ; in two different NPs
((VERBS3 VERBS) (DOWN (5)) (UP 18))
((TENSED-MAIN2 TENSED-MAIN) (DOWN (4)) (UP 6))
((SAW2 VERB SEE) (DOWN T) (UP 5))
((NP1 NP) (DOWN (1 2)) (UP 19))
((MAN1 NOUN MAN) (DOWN T) (UP 3))
((EVERY0 DET EVERY) (DOWN T) (UP 3))

Figure 2
The pruned shared-packed parse forest for Every man saw the boy with his binoculars with
pointers to parent nodes.

22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

Figure 3
An unambiguous parse

((S-MAJ16 S-MAJ) (DOWN (19 21)) (UP T))
((.8 FINALPUNC .) (DOWN T) (UP 22))
((NP14 NP) (DOWN (7 8 17)) (UP 18))
((S13 S) (DOWN (3 18)) (UP 22))
((VP12 VP) (DOWN (6 9 17)) (UP 19))
((PP+11 PP+ NIL) (DOWN (16)) (UP 18))
((PP10 PP NIL) (DOWN (10 15)) (UP 17))
((NP9 NP) (DOWN (14 13)) (UP 16))
((POSS8 POSS) (DOWN (11)) (UP 15))
((POSS-NOM7 POSS-NOM) (DOWN (12)) (UP 15))
((BINOCULARS7 NOUN BINOCULARS) (DOWN T) (UP 13))
((HIS6 PRONOUN HIS) (DOWN T) (UP 14))
((WITH5 PREP WITH) (DOWN T) (UP 16))
((NP4 NP) (DOWN (7 8)) (UP 18))
((BOY4 NOUN BOY) (DOWN T) (UP 9))
((THE3 DET THE) (DOWN T) (UP 9))
((VERBS3 VERBS) (DOWN (5)) (UP 18))
((TENSED-MAIN2 TENSED-MAIN) (DOWN (4)) (UP 6))
((SAW2 VERB SEE) (DOWN T) (UP 5))
((NP1 NP) (DOWN (1 2)) (UP 19))
((MAN1 NOUN MAN) (DOWN T) (UP 3))
((EVERY0 DET EVERY) (DOWN T) (UP 3))

; can delete node

; attatch to a VP

for Every man saw the boy with his binoculars given a certain wor ld model .

.

.

thus reducing the overhead w h e n it is necessary to keep all parses until it
is possible to make an informed choice a m o n g the alternative meanings .

It provides a direct method for focusing on the points of ambigui ty in a
sentence w h e n parent l inks are included for each node.

It is able to reuse the semantic decis ions m a d e for a subtree of a rejected
parse tree. When a node in the forest is l imited to a single parse, it is

6 5 3

Computational Linguistics Volume 20, Number 4

limited for all parses of the sentence containing that node (unlike
one-parse-tree-at-a-time methods).

Because of these benefits, we have designed a program to generate a shared-
packed parse forest annotated with the logical form developed by Harper (1990, 1992).
We augmented a Tomita-style LR parser with the necessary routines for constructing
the logical form representation. Tomita's parser is a bottom-up LR(k)-based parser
that constructs a forest of all possible parses while using a graph-structured stack and
breadth-first search to handle non-determinism in the parse. In the next section, we
describe three methods for interfacing our logical form routines with Tomita's parser.
The conclusions we draw can also be applied to more efficient parsers (Earley 1970;
Schabes 1991) that produce other logical representations (e.g., Alshawi and Crouch
1992; Hirst 1987; Weischedel 1989) in more compact forests (Nederhof 1993).

3. Combining Logical Form with Forests: A Case Study

Previously, our logical form routines were interfaced with a one-parse-tree-at-a-time,
top-down ATN parser (Harper 1990, 1992). This made it relatively easy to create com-
positional logical form routines and interface them with the parser. These routines
were developed to construct and store the logical forms for each major type of con-
stituent. Some routines created logical representations for the basic constituents like
nouns and verbs, whereas routines for more complex constituents, like VPs, NPs, and
sentences, combined the logical representations of several constituents into a larger
representation. Function calls for constructing the logical forms were then added to
the arcs in the grammar networks and were executed whenever the arc was success-
fully traversed (after constituent and feature tests succeeded). Since one parse tree
was built at a time, the logical form for each tree was constructed and stored before
another tree was produced by the parser's search mechanism; hence, none of the com-
plex logical form routines had to combine more than a single representation for each
of its constituents. The logical representations were easy to create in this approach,
but the parser was impractical because it generated a single parse tree at a time.

In the Tomita parser, the grammar rules consist of production rules containing a
left-hand side, a right-hand side, and a set of actions. These actions include feature
tests that must succeed for the reduce operation to proceed and routines for storing
feature values and for constructing and storing the logical form with a node in the
forest. For example, the following rule is used to parse a sentence consisting of an NP
and a VP:

(S --* (NP VP)
((== #$NP (get-the person of #$VP))
(=! #$PHRASE 'statement)
(logical-form 'sentence :np #$NP :vp #$VP)))

; Subject-verb agreement test
; Set the MOOD of the sentence
; Create the logical form

The left-hand side of this rule is S, and the right-hand side is a list consisting of an NP
and a VP. For the rule to succeed during parsing, the right-hand side of the rule must
match, and the subject-verb agreement test must return true. If it does, a parse node is
created with a list of children consisting of #$NP and #$VP, the node numbers of the
two constituents that make up the S. Additionally, the feature information and logical
forms for the constituent are stored in the node created for the forest. To simplify
the forests in examples, we omit the feature information stored on nodes and simply
indicate the number of logical forms stored for a node, not the actual representation.

654

Mary P. Harper Storing Logical Form in a Shared-Packed Forest

Unlike the ATN parser used by Harper (1990, 1992), the Tomita parser is a bottom-
up, all-path parsing algorithm that creates a parse forest by packing parse nodes to-
gether to save space and time. Because nodes with two alternative parses often produce
two different semantic representations, our logical form construction routines must be
able to store and retrieve multiple logical forms for ambiguous constituents in the
forest. This requirement introduces two problems. First, packed nodes in a forest rep-
resent multiple parses, which produce multiple representations; hence, our routines for
constructing logical forms for sentences (and other complex constituents) may have to
combine multiple representations for each of their constituents. Second, the annotated
shared-packed parse forest cannot store every representation of a highly ambiguous
sentence without using a prohibitively large amount of space. Any approach that
uses a parse forest to store logical representations for the constituents of a sentence
will have to address these problems. We will describe three methods for interfacing
the LR parser with logical form routines and illustrate the differences between these
approaches by using the parse of the sentence, Fred saw frogs in cars with Bill.

The first and simplest method is to prevent two nodes from being packed together
(except for the start symbol), if they have different logical forms, as shown in Figure 4.
Notice that there are five parses for the S-MAJ at node 36 (i.e., (20 35), (24 35), (26 35),

(32 35), and (34 35)) and five logical forms. All other nodes have a single parse and a
single logical form. This approach is similar to the method employed by the ATN to
generate the logical forms for a sentence and is equivalent to mapping an individual
parse tree to a logical representation. This method is easy to implement, but it does
not take advantage of the shared-packed parse forest for compactly storing the logical
forms. And because different structural variations typically map to different logical
representations, the number of nodes in the forest can be exponential (or worse) for
some ambiguities.

The second approach is to store the logical representation directly in the shared-
packed parse forest, as shown in Figure 5. The syntactic ambiguity in the structure of
a child node must affect the ambiguity of the logical representation of ancestor nodes.
If a parent node consists of two constituents, one with three logical forms and another
with two, the construction routines must be able to store the six logical forms for that
constituent. This requires that the logical form routines be constructed to combine the
logical forms for constituents with more than a single representation. Node packing
provides an additional challenge. When a new node is packed with an already existing
node in the forest, the logical representation for the new structure must be stored for
that constituent. Also, all of the ancestors of a newly packed node must update their
lists of logical representations to reflect the addition of the new parse, since packing
of a node can occur after many of its ancestors are already members of the forest. In
Figure 5, when the second parse was added to node 21, a second logical form also had
to be added to the logical form list for that node and to the logical form lists of each
of its previously stored ancestors (i.e., 19, 20, and 22) for the forest to be complete.

In contrast to the first approach, this method does not increase the number of
nodes in the parse forest; however, an exponential number of logical representations
can be created for sentences in some ambiguous grammars. Some space savings can
be achieved by using pointers to the representations of a child node when creating
the representations of a parent node, because many of the nodes (and corresponding
logical forms) in a parse forest are shared by multiple parses. However, for multiple
logical representations to share the logical representation of a child node, that repre-
sentation cannot be affected by the process of constructing the logical form for the
parent node, an assumption that does not always hold (e.g., Harper 1990, 1992). If the
assumption does not hold, the logical form of a shared node would require copying

655

Computational Linguistics Volume 20, Number 4

36 ((S-MAJ62 S-MAJ) (DOWN (20 35) (24 35) (26 35) (32 35) (34 35)) (UP T))
; Store five representations for S-MAJ which combine single representations given the node pairs.
35 ((.7 FINALPUNC .) (DOWN T) (UP 36))
34 (($61 S) (DOWN (2 33)) (UP 36))
; Store an S representation which combines the representations in nodes 2 and 33.
33 ((VP60 VP) (DOWN (5 7 29)) (UP 34))
; Store a VP representation which combines the representations in nodes 5, 7, and 29.
32 (($55 S) (DOWN (2 31)) (UP 36))
; Store an S representation which combines the representations in nodes 2 and 31.
31 ((VP54 VP) (DOWN (5 30)) (UP 32))
; Store a VP representation which combines the representations in nodes 5 and 30.
30 ((NP51 NP) (DOWN (6 29)) (UP 31))
; Store a representation for an NP which combines the representations in nodes 6 and 29.
29 ((PP+48 PP+) (DOWN (28)) (UP 30 33))
; Store a representation for a PP+ given the representation in node 28.
28 ((PP47 PP) (DOWN (8 27)) (UP 29))
; Store a representation for the PP which combines the representations in nodes 8 and 27.
27 ((NP46 NP) (DOWN (9 18)) (UP 28))
; Store a representation for an NP which combines the representations in nodes 9 and 18.
26 (($45 S) (DOWN (2 25)) (UP 36))
; Store an S representation which combines the representations in nodes 2 and 25.
25 ((VP44 VP) (DOWN (5 7 21)) (UP 26))
; Store a VP representation which combines the representations in nodes 5, 7, and 21.
24 (($39 S) (DOWN (2 23)) (UP 36))
; Store an S representation which combines the representations in nodes 2 and 23.
23 ((VP38 VP) (DOWN (5 22)) (UP 24))
; Store a VP representation which combines the representations in nodes 5 and 22.
22 ((NP35 NP) (DOWN (6 21)) (UP 23))
; Store a representation for an NP which combines the representations in nodes 6 and 21.
21 ((PP+32 PP+) (DOWN (11 18)) (UP 22 25))
; Store a representation for a PP+ given the representation in nodes 11 and 18.
20 (($31 S) (DOWN (2 19)) (UP 36))
; Store an S representation which combines the representations in nodes 2 and 19.
19 ((VP30 VP) (DOWN (5 13 18)) (UP 20))
; Store a VP representation which combines the representations in nodes 5, 13, and 18.
18 ((PP+27 PP+) (DOWN (17)) (UP 19 21 27))
; Store a representation for a PP+ given the representation in node 17.
17 ((PP26 PP) (DOWN (14 16)) (UP 18))
; Store a representation for the PP which combines the representations in nodes 14 and 16.
16 ((NP25 NP) (DOWN (15)) (UP 17))
; Store a representation for an NP given the head noun in node 15.
15 ((FRED6 PROPERNOUN FRED) (DOWN T) (UP 16))
14 ((WITH5 PREP WITH) (DOWN T) (UP 17))
13 ((NP20 NP) (DOWN (6 12)) (UP 19))
; Store a representation for an NP given the representations in nodes 6 and 12.
12 ((PP+11 PP+) (DOWN (11)) (UP 13))
; Store a representation for a PP+ given the representation in node 11.
11 ((PP10 PP) (DOWN (8 10)) (UP 12 21))
; Store a representation for the PP which combines the representations in nodes 8 and 10.
10 ((NP9 NP) (DOWN (9)) (UP 11))
; Store a representation for an NP given the head noun in node 9.
9 ((CARS4 NOUN CAR) (DOWN T) (UP 10 27))
8 ((IN3 PREP IN) (DOWN T) (UP 11 28))
7 ((NP4 NP) (DOWN (6)) (UP 25 33))
; Store a representation for an NP given the head noun in node 6.
6 ((FROGS2 NOUN FROG) (DOWN T) (UP 7 13 22 30))
5 ((VERBS3 VERBS) (DOWN (4)) (UP 19 23 25 31 33))
; Store a representation given node 4.
4 ((TENSED-MAIN2 TENSED-MAIN) (DOWN (3)) (UP 5))
; Store a representation for the verb in 3.
3 ((SAW1 VERB SEE) (DOWN T) (UP 4))
2 ((NP1 NP) (DOWN (1)) (UP 20 24 26 32 34))
; Store a representation for an NP given the head noun in node 1.
1 ((FRED0 PROPERNOUN FRED) (DOWN T) (UP 2))

Figure 4
Method 1: Two nodes of the parse forest are not packed when they have different logical
forms.

656

Mary P. Harper Storing Logical Form in a Shared-Packed Forest

26 ((S-MAJ196 S-MAJ) (DOWN (20 25)) (UP T))
25 ((.7 FINALPUNC .) (DOWN T) (UP 26))
24 ((PP174 PP) (DOWN (8 23)) (UP 21))
; Store a representation for the PP which combines the representations in nodes 8 and 23.
23 ((NP165 NP) (DOWN (9 18)) (UP 24))
; Store a representation for an NP which combines the representations in nodes 9 and 18.
22 ((NP130 NP) (DOWN (6 21)) (UP 19))
; Store two representations for an NP which combine the representation in node 6 with the
; two representation in node 21.
21 ((PP+113 PP+) (DOWN (11 18) (24)) (UP 22 19))
; Store two representations of PP+, one which combines the representations of nodes 11 and 18,
; and the other which is the representation stored in node 24.
20 ((S106 S) (DOWN (2 19)) (UP 26))
; Store five representations of S which combine the representation of node 2 with the
; five representations of node 19.
19 ((VP95 VP) (DOWN (5 13 18) (5 22) (5 7 21)) (UP 20))
; Store five representations for the VP, one which combines the representations
; in nodes 5, 13, and 18, two which combine the representation in node 5
; with the two representations in node 22, and two which combine the representation
; of node 5 with the representation of node 7 and the two representations of node 21.
18 ((PP+84 PP+) (DOWN (17)) (UP 19 21 23))
; Store a representation for a PP+ given the representation in node 17.
17 ((PP79 PP) (DOWN (14 16)) (UP 18))
; Store a representation for a PP which combines the representations in node 14 and 16.
16 ((NP76 NP) (DOWN (15)) (UP 17))
; Store a representation for an NP given the head noun in node 15.
15 ((BILL6 PROPERNOUN BILL) (DOWN T) (UP 16))
14 ((WITH5 PREP WITH) (DOWN T) (UP 17))
13 ((NP56 NP) (DOWN (6 12)) (UP 19))
; Store a representation for an NP which combines the representations in nodes 6 and 12.
12 ((PP+31 PP+) (DOWN (11)) (UP 13))
; Store a representation fo~' a PP+ given the representation in node 11.
11 ((PP26 PP) (DOWN (8 10)) (UP 12 21))
; Store a representation for the PP which combines the representations in nodes 8 and 10.
10 ((NP23 NP) (DOWN (9)) (UP 11))
; Store a representation for an NP given the head noun in node 9.
9 ((CARS4 NOUN CAR) (DOWN T) (UP 10 23))
8 ((IN3 PREP IN) (DOWN T) (UP 11 24))
7 ((NP10 NP) (DOWN (6)) (UP 19))
; Store a representation for an NP given the head noun in node 6.
6 ((FROGS2 NOUN) (DOWN T) (UP 7 13 22))
5 ((VERBS7 VERBS) (DOWN (4)) (UP 19))
; Store a representation given node 4.
4 ((TENSED-MAIN4 TENSED-MAIN) (DOWN (3)) (UP 5))
; Store a representation for the verb in 3.
3 ((SAW1 VERB SEE) (DOWN T) (UP 4))
2 ((NP1 NP) (DOWN (1)) (UP 20))
; Store a representation for an NP given the head noun in node 1.
1 ((FRED0 PROPERNOUN) (DOWN T) (UP 2))

Figure 5
Method 2: Directly store multiple logical forms in a packed forest.

and modification before being used in the logical representation of a parent node. If
all logical representations are copied and modified as they are combined into higher
logical representations, the parse forest could grow quite large. However, even if the
elements of a logical representation do not require copying, the number of represen-
tations created for a sentence using the second approach is precisely the number of
parses for the sentence, which can be exponential in number.

A third approach is to store a procedure call for creating the logical form of a
constituent in the forest and to delay the creation of the logical form, as shown in

657

Computat ional Linguistics Volume 20, Number 4

26 ((S-MAJ196 S-MAJ) (DOWN (20 25)) (UP T) (CREATE-S-MAJ-LF :S 20 :PUNC 25))
25 ((.7 FINALPUNC .) (DOWN T) (UP 26))
24 ((PP174 PP) (DOWN (8 23)) (UP 21) (CREATE-PP-LF :PREP 8 :OBJ 23))
23 ((NP165 NP) (DOWN (9 18)) (UP 24) (CREATE-NP-LF :NOUN 9 :POSTNOUN-MODS 18))
22 ((NP130 NP) (DOWN (6 21)) (UP 19) (CREATE-NP-LF :NOUN 6 :POSTNOUN-MODS 21))
21 ((PP+113 PP+) (DOWN (11 18) (24)) (UP 22 19)

(CREATE-PP+-LF :PP 11 :PP+ 18)
(CREATE-PP+-LF :PP 24))

20 (($106 S) (DOWN (2 19)) (UP 26) (CREATE-S-LF :NP 2 :VP 19))
19 ((VP95 VP) (DOWN (5 13 18) (5 22) (5 7 21)) (UP 20)

(CREATE-VP-LF :VERB 5 :OBJ1 13 :PP+ 18 :SUBCAT 'TRANS)
(CREATE-VP-LF :VERB 5 :OBJ1 22 :SUBCAT 'TRANS)
(CREATE-VP-LF :VERB 5 :OBJ1 7 :PP+ 21 :SUBCAT 'TRANS))

18 ((PP+84 PP+) (DOWN (17)) (UP 19 21 23) (CREATE-PP+-LF :PP 17))
17 ((PP79 PP) (DOWN (14 16)) (UP 18) (CREATE-PP-LF :PREP 14 :OBJ 16))
16 ((NP76 NP) (DOWN (15)) (UP 17) (CREATE-PROPERNOUN-LF :PROPERNOUN 15))
15 ((BILL6 PROPERNOUN BILL) (DOWN T) (UP 16))
14 ((WITH5 PREP WITH) (DOWN T) (UP 17))
13 ((NP56 NP) (DOWN (6 12)) (UP 19) (CREATE-NP-LF :NOUN 6 :POSTNOUN-MODS 12))
12 ((PP+31 PP+) (DOWN (11)) (UP 13) (CREATE-PP+-LF :PP 11))
11 ((PP26 PP) (DOWN (8 10)) (UP 12 21) (CREATE-PP-LF :PREP 8 :OBJ 10))
10 ((NP23 NP) (DOWN (9)) (UP 11) (CREATE-NP-LF :NOUN 9))
9 ((CARS4 NOUN CAR) (DOWN T) (UP 10 23))
8 ((IN3 PREP IN) (DOWN T) (UP 11 24))
7 ((NP10 NP) (DOWN (6)) (UP 19) (CREATE-NP-LF :NOUN 6))
6 ((FROGS2 NOUN) (DOWN T) (UP 7 13 22))
5 ((VERBS7 VERBS) (DOWN (4)) (UP 19) (CREATE-VERBS-LF :VERBS 4))
4 ((TENSED-MAIN4 TENSED-MAIN) (DOWN (3)) (UP 5) (CREATE-VERB-ONLY-LF :VERB 3))
3 ((SAW1 VERB SEE) (DOWN T) (UP 4))
2 ((NP1 NP) (DOWN (1)) (UP 20) (CREATE-PROPERNOUN-LF :PROPERNOUN 1))
1 ((FRED0 PROPERNOUN) (DOWN T) (UP 2))

Figure 6
Method 3: Store procedure calls to create logical forms in the packed forest.

Number Number Forest Size Forest Size Forest Size Forest Size
of PPs of Parses for No LF for Method 1 for Method 2 for Method 3

0 1 1,184 (11) 3,450 (11) 3,450 (11) 1,353 (11)
1 2 1,803 (19) 9,971 (21) 9,748 (19) 2,200 (19)
2 5 2,660 (30) 32,043 (42) 30,704 (30) 3,370 (30)
3 14 3,703 (44) 108,291 (93) 107,716 (44) 5,043 (44)
4 42 5,003 (61) 389,499 (233) 388,671 (61) 7,114 (61)
5 132 6,526 (81) 1,477,644 (651) 1,475,418 (81) 9,658 (81)

Figure 7
The size of the parse forest in bytes and number of nodes for each method.

F i g u r e 6. K e y w o r d p a r a m e t e r s a re u s e d to m a k e the p r o c e d u r e cal ls m o r e m e a n i n g f u l .
O n c e the p a r s e fores t is c o m p l e t e , the log ica l f o r m for a n y n o d e can be c r e a t e d b y
e v a l u a t i n g the s t o r e d p r o c e d u r e call. If the n o d e has m u l t i p l e pa r ses , t hen m u l t i p l e
log ica l f o r m s wi l l be c r ea t ed b y the r o u t i n e s au toma t i ca l ly . H e n c e , the log ica l f o r m
r o u t i n e s u s e d in th is a p p r o a c h m u s t be ab le to c o m b i n e p r o p e r l y the m u l t i p l e log ica l
f o r m s for i ts c o n s t i t u e n t s (just as in the s e c o n d a p p r o a c h) . A l l of the log ica l f o r m s
for the s en t ence can be p r o d u c e d b y e v a l u a t i n g the log ica l f o r m r o u t i n e s t o r e d w i t h
the S-MAJ, r e su l t i ng in a p o t e n t i a l l y l a rge n u m b e r of r e p r e s e n t a t i o n s . H o w e v e r , s ince
the p r o c e d u r e cal ls s t o r e d w i t h a n y of the n o d e s in the fores t can be e v a l u a t e d as
n e e d e d , the p r o g r a m is ab le to g e n e r a t e a n d e x a m i n e o n l y the r e p r e s e n t a t i o n s of

658

Mary P. Harper Storing Logical Form in a Shared-Packed Forest

the constituents associated with points of ambiguity. This feature can be used by a
semantic processing module to determine which of the NPs in the forest make sense
given the world model. For example, in Figure 6, the head nouns in nodes 6 and 9
have pointers to five different NPs, whose logical forms can be created and tested
against the model. This approach is somewhat reminiscent of the freeze predicate in
logic programming, which specifies that some logic clauses should be solved only after
others have already been solved. In our system, however, the order of evaluation can
be dynamic and context dependent.

The previously described methods for generating logical form were each imple-
mented and evaluated. Figure 7 compares the memory size of the forests in bytes along
with the number of nodes generated in the forest (shown in parentheses) for each of
the three methods. The ambiguity in all cases resulted from PP attachment. The num-
ber of nodes and the size of the forest when no logical representation is constructed
have also been included as a baseline. The third method is superior to the other two
methods for the following reasons: the forest contains the same number of nodes as
the original forest without logical form; the size of the forest augmented with logical
form is much closer to the size of the original forest; and the logical forms for any of
the nodes in the forest can still be accessed by executing the function call(s) stored in
that node, providing a flexible tool for higher level processing.

4. Conclusion

We have modified an all-path context-free grammar parser to generate a shared-packed
parse forest that provides useful information on the points of ambiguity in a sentence.
This forest was also augmented with function calls to construct logical representations
for the constituents of the forest, providing a compact data structure that contains
multiple sentence parses and access to their corresponding logical representations.
Once constructed, this annotated shared-packed parse forest can be utilized by a higher
level module to provide logical representations for pieces of the sentence or for the
entire sentence. In case of ambiguity, representations for the ambiguous constituents
of the sentence can be constructed and tested for validity against a world model, and
the annotated forest can then be pruned incrementally.

Acknowledgments
This work was supported in part by Purdue
Research Foundation and NSF grant
number IRI-9011179. I would also like to
thank Paul Harper and Carl Mitchell for
their critical reading of this paper and the
referees for their helpful comments.

References
Alshawi, Hiyan (1990). "Resolving quasi

logical forms." Computational Linguistics
16:133-144.

Alshawi, Hiyan, and Crouch, Richard
(1992). "Monotonic semantic
interpretation." In Proceedings, 30th Annual
Meeting of the Association for Computational
Linguistics, 32-39.

Briscoe, Edward J. (1987). Modelling Human
Speech Comprehension: A Computational
Approach. Ellis Horwood and Wiley.

Briscoe, Ted, and Carroll, John (1993).
"Generalized probabilistic LR parsing of
natural language (corpora) with
unification-based grammars."
Computational Linguistics 19:25-59.

Chester, Daniel (1980). "A parsing algorithm
that extends phrases." American Journal of
Computational Linguistics 6:87-96.

Church, Kenneth, and Patil, Ramesh (1982).
"Coping with syntactic ambiguity or how
to put the block in the box on the table."
Computational Linguistics 8:139-149.

Earley, Jay C. (1970). "An efficient
context-free parsing algorithm."
Communications of the ACM, 13:94-102.

Harper, Mary P. (1990). "The representation
of noun phrases in logical form."
Doctoral dissertation, Brown University,
Providence, Rhode Island.

Harper, Mary P. (1992). "Ambiguous noun
phrases in logical form." Computational

659

Computational Linguistics Volume 20, Number 4

Linguistics 18:419-465.
Hirst, Graeme (1987). Semantic Interpretation

and the Resolution of Ambiguity. Cambridge:
Cambridge University Press.

Kay, Martin (1980). "Algorithm schemata
and data structures in syntactic
processing." Technical Report CSL-80-12,
Xerox Corporation, Palo Alto, California.

Knuth, Donald E. (1975)o The Art of Computer
Programming, Volume I. Reading,
Massachusetts: Addison-Wesley.

Marcus, Mitchell P., Hindle, Donald, and
Fleck, Margaret (1983). "D-theory: Talking
about talking about trees." In Proceedings,
21st Annual Meeting of the Association for
Computational Linguistics, 129-136.

Nederhof, Mark-Jan (1993). "Generalized
lefbcorner parsing." In Proceedings, Sixth
Conference of the European Chapter of the
Association for Computational Linguistics,
305-314.

Schabes, Yves (1991). "Polynomial time and

space shift-reduce parsing of arbitrary
context-free grammars." In Proceedings,
29th Annual Meeting of the Association for
Computational Linguistics, 106-113.

Seo, Jungyun, and Simmons, Robert F.
(1989). "Syntactic graphs: A
representation for the union of all
ambiguous parse trees." Computational
Linguistics 15:19-32.

Tomita, Masaru (1985). Efficient Parsing for
Natural Language. Boston: Kluwer
Academic Publishers.

Tomita, Masaru (1987). "An efficient
augmented context-free parsing
algorithm." Computational Linguistics
13:31-46.

Weischedel, Ralph (1989). "A hybrid
approach to representation in the JANUS
natural language processor." In
Proceedings, 27th Annual Meeting of the
Association for Computational Linguistics,
193-202.

660

