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We present an automatic method for weighting the contributions of preference functions used in 
disambiguation. Initial scaling factors are derived as the solution to a least squares minimization 
problem, and improvements are then made by hill climbing. The method is applied to disambiguat- 
ing sentences in the Air Travel Information System corpus, and the performance of the resulting 
scaling factors is compared with hand-tuned factors. We then focus on one class of preference 
function, those based on semantic lexical collocations. Experimental results are presented show- 
ing that such functions vary considerably in selecting correct analyses. In particular, we define a 
function that performs significantly better than ones based on mutual information and likelihood 
ratios of lexical associations. 

1. Introduction 

The importance of good preference functions for ranking competing analyses produced 
by language-processing systems grows as the coverage of these systems improves. 
Increasing coverage usually also increases the number of analyses for sentences previ- 
ously covered, bringing the danger of lower accuracy for these sentences. Large scale 
rule-based analysis systems have therefore tended to employ a collection of functions 
to produce a score for sorting analyses in a preference order. In this paper we address 
two issues relating to the application of preference functions. 

1.1 Combining Multiple Preference Functions 
The first problem we address is that of combining different functions, each of which is 
supposed to offer some contribution to selecting the best among a set of analyses of a 
sentence. Although multiple functions have been used in other systems (for example, 
McCord 1990; Hobbs and Bear 1990), little is typically said about how the functions 
are combined to produce the overall score for an analysis, the weights presumably 
being determined by intuition or trial and error. McCord (1993) gives very specific 
information about the weights he uses to combine preference functions, though these 
weights are chosen by hand. Selecting weights by hand, however, is a task for experts, 
which needs to be redone every time the system is applied to a new domain or corpus. 
Furthermore, there is no guarantee that the selected weights will achieve optimal or 
even near-optimal performance. 

The speech-processing community, on the other hand, has a longer history of using 
numerical evaluation functions, and speech researchers have used schemes for scoring 
recognition hypotheses that are similar to the one proposed here for disambiguation. 
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For example, Ostendorf et al. (1991) improve recognition performance by using a linear 
combination of several scoring functions. In their work the weights for the linear 
combination are chosen to optimize a generalized mean of the rank of the correct 
word sequence. 

In our case, the problem is formulated as follows. Each preference function is 
defined as a numerical (possibly real-valued) function on representations correspond- 
ing to the sentence analyses. A weighted sum of these functions is then used as the 
overall measure to rank the possible analyses of a particular sentence. We refer to the 
coefficients, or weights, used in this linear combination as the "scaling factors" for the 
functions. We determine these scaling factors automatically in order both to avoid the 
need for expert hand tuning and to achieve performance that is at least locally optimal. 
We start with the solution to minimizing a squared-error cost function, a well-known 
technique applied to many optimization and classification problems. This solution is 
then enhanced by application of a hill-climbing technique. 

1.2 Word Sense Collocation Functions 
Until recently, the choice of the various functions used in rule-based systems was 
made mainly according to anecdotal information about the effectiveness of, for ex- 
ample, various attachment preference strategies. There is now more empirical work 
comparing such functions, particularly in the case of functions based on statistical 
information about lexical or semantic collocations. Lexical collocation functions, espe- 
cially those determined statistically, have recently attracted considerable attention in 
computational linguistics (Calzolari and Bindi 1990; Church and Hanks 1990; Sekine 
et al. 1992; Hindle and Rooth 1993) mainly, though not exclusively, for use in dis- 
ambiguation. These functions are typically derived by observing the occurrences of 
tuples (usually pairs or triples) that summarize relations present in an analysis of a 
text, or their surface occurrences. For example, Hindle and Rooth (1993) and Resnik 
and Hearst (1993) give experimental results on the effectiveness of functions based on 
lexical associations, or lexical-class associations, at selecting appropriate prepositional 
phrase attachments. 

We have experimented with a variety of specific functions that make use of collo- 
cations between word senses. The results we present show that these functions vary 
considerably in disambiguation accuracy, but that the best collocation functions are 
more effective than a function based on simple estimates of syntactic rule probabilities. 
In particular, the best collocation function performs significantly better than a related 
function that defines collocation strength in terms of mutual information, reducing the 
error rate in a disambiguation task from approximately 30% to approximately 10%. 

We start by describing our experimental context and training data in Section 2. 
Then we address the issue of selecting scaling factors by presenting our optimization 
procedure in Section 3 and a comparison with manual scaling in Section 4. Finally, we 
take a close look at a set of semantic collocation functions, defining them in Section 5 
and comparing their effectiveness at disambiguation in Section 6. 

2. The Experimental Setup 

Disambiguation Task 
All the experiments we describe here were done with the Core Language Engine 
(CLE), a primarily rule-based natural language-processing system (Alshawi 1992). 
More specifically, the work on optimizing preference factors and semantic colloca- 
tions was done as part of a project on spoken language translation in which the CLE 
was used for analysis and generation of both English and Swedish (AgnSs et al. 1993). 
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The work presented here is all concerned with the English analysis side, though we 
see no reason why its conclusions should not be applicable to Swedish or other natural 
languages. 

In our experiments we made use of the Air T, avel Information System (ATIS) cor- 
pus of transcribed speech sentences. This application was chosen because the proposed 
method for automatic derivation of scaling factors requires a corpus of sentences that 
are representative of the sublanguage, together with some independent measure of the 
correctness or plausibility of analyses of these sentences. In addition, we had access 
to a hand-parsed subcollection of the ATIS corpus built as part of the Penn Treebank 
project (Marcus, Santorini, and Marcinkiewicz 1993). Another reason for choosing ATIS 
was that it consists of several thousand sentences in a constrained discourse domain, 
which helped avoid sparseness problems in training collocation functions} 

In the various experiments, the alternatives we are choosing between are analyses 
expressed in the version of quasi logical form (QLF) described by Alshawi and Crouch 
(1992). QLFs express semantic content, but are derived compositionally from complete 
syntactic analyses of a sentence and therefore mirror much syntactic structure as well. 
However, the use of QLF analyses is not central to our method: the important thing is 
that the representation used is rich enough to support a variety of preference functions. 
We have experimented with combinations of around 30 different functions and use 
20 of them in our spoken language translation system; the others contribute so little 
to overall performance that their computational cost cannot be justified. This default 
set of 20 was used throughout the scaling factor work described in Sections 3 and 
4. It consists of 1 collocation-based function and 19 non-collocation-based ones. The 
work described in Section 6 involved substituting single alternative collocation-based 
functions for the single one in the set of 20. 

Many (unscaled) preference functions simply return integers corresponding to 
counts of particular constructs in the representation, such as the number of expressions 
corresponding to adjuncts, unresolved ellipses, particular attachment configurations, 
or balanced conjunctions. There are also some real-valued functions, including the 
semantic collocation functions discussed in Section 5. 

To illustrate how the system works, consider the ATIS sentence "Do I get dinner 
on this flight?" The CLE assigns two analyses to this sentence; in one of them, QH, 
"on this flight" attaches high to "get," and in the other, QL, it attaches low to "dinner." 
Four functions return non-zero scores on these analyses. Two of them, Lowl and Low2, 
prefer low attachment; the difference between them is an implementation detail that 
can be ignored here. A third, SynRules, returns an estimate of the log probability of 
the syntactic rules used to construct the analysis. A fourth, SemColl, is a semantic 
collocation function. The scores, after multiplying by scaling factors, are as shown in 
Table 1. The SemColl function is the only one that prefers QH to QL. Because this 
function has a relatively large scaling factor, it is able to override the other four, which 
all prefer QL for syntactic reasons. 

2.1 Training Data 
The Penn Treebank contains around 650 ATIS trees, which we used during initial de- 
velopment of training and optimization software. Some of the results in these initial 
trials were encouraging, but most appeared to be below reasonable thresholds of sta- 

1 The hand-parsed sub-corpus was that on the ACL DCI CD-ROM 1 of September 1991. The larger 
corpus, used for the bulk of the work reported here, consisted of 4615 class A and D sentences from 
the ATIS-2 training corpus. These were all such sentences of up to 15 words  that we had access to at 
the time, excluding a set of randomly selected sentences that were set aside for other testing purposes.  
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Table 1 
Scaled preference scores for "Do I get 
dinner on this flight?" 

Function Score Score 
on QH on QL 

Lowi -9.08 -4.03 
Low2 -2.80 0.00 

SynRules -13.08 -12.78 
SemColl 24.32 3~38 

Total -0.64 -13.34 

tistical significance. So, we concluded that it was worthwhile to produce more training 
data. For this purpose, we developed a semiautomatic mechanism for producing skele- 
tal constituent structure trees directly from QLF analyses proposed by our analyser. To 
make these trees compatible with the treebank and to make them relatively insensi- 
tive to minor changes in semantic analysis, these QLF-induced trees consist simply of 
nested constituents with two categories, A (argument) and P (predication), correspond- 
ing to constituents induced by QLF term and form expressions, respectively. The tree 
for the example sentence used above is as follows: 

(p do 
(A I) 
get 
(A dinner) 
(P on 

(A this 
flight) ) ) 

The interactive software for producing the trees proposes constituents for confir- 
mation by a user and takes into account answers given, to minimize the number of 
interactive choices necessary. Of the 4615 sentences in our training set, the CLE pro- 
duced an acceptable constituent structure for 4092 (about 89%). A skeletal tree for each 
of these 4092 sentences was created in this way and used in the various experiments 
whose results are described below. We do not directly address here the problems of 
applying preference functions to select the best analysis when none is completely cor- 
rect; we assume, based on our experience with the spoken language translator, that 
functions and scaling factors trained on cases for which a completely correct analysis 
exists will also perform fairly well on cases for which one does not. 

2.2 Training Score 
Employing treebank analyses in the training process required defining a measure of 
the "'degree of correctness" of a QLF analysis under the assumption that the phrase- 
structure analysis in the treebank is correct. At first sight this might appear difficult, 
in that QLF is a logical formalism, but in fact it preserves much of the geometry of 
constituent structure. Specifically, significant (typically BAR-2 level) constituents tend 
to give rise to term (roughly argument) or form (roughly predication) QLF subexpres- 
sions, though the details do not matter here. It is thus possible to associate segments 
of the input with such QLF subexpressions and to check whether such a segment is 
also present as a constituent in the treebank analysis. The issues raised by measuring 
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QLF correctness in terms of agreement with structures containing less information 
than those QLFs are discussed further at the end of Section 4. 

The training score functions we considered for a QLF q with respect to a treebank 
tree t were functions of the form 

score(q, t) = a l lQ N T I - a21Q \ T] - a31T \ QI, 

where Q is the set of string segments induced by the term and form expressions of q; T 
is the set of constituents in t; al, a2, and a3 are positive constants; and the " \"  operator 
denotes set difference. The idea is to reward the QLF for constituents in common with 
the treebank and to penalize it for differences. Trial and error led us to choose 

a 1 = 1 ,  a2=10 ,  a 3 = 0 ,  

which penalizes hallucination of incorrect constituents (modeled by [Q \ T]) more 
heavily than a shortfall in completeness (modeled by IQ n TI). These constants were 
fixed before we carried out the experiments whose results are presented below. 

The explanation for setting a3 to 0 was that trees in the Penn Treebank contain 
many constituents that do not correspond to QLF form or term expressions; we had 
to avoid penalizing QLF analyses simply because the treebank uses a different kind of 
linguistic representation. For QLF-induced trees, in which the correspondence is one 
to one, it is also reasonable to set a3 to 0 because when IT \ Q I is non-zero, I Q A T I tends 
to be non-maximal. Among the 4092 sentences for which skeletal trees were derived, 
there were only 5 with alternative QLFs for which the training score value was the 
same with a3 = 0 but would be different if a3 were non-zero. 

3. Computing Scaling Factors 

When we first implemented a disambiguation mechanism of the kind described above, 
an initial set of scaling factors was chosen by hand according to knowledge of how 
the particular raw preference functions were computed and introspection about the 
"strength" of the functions as indicators of preference. These initial scaling factors 
were subsequently revised according to their observed behavior in ranking analyses, 
eventually leading to reasonably well-behaved rankings. 

However, as suggested earlier, there are a number of disadvantages to manual 
tuning of scaling factors. These include the effort spent in maintaining the parame- 
ters. This effort is greater for those with less knowledge of how the raw preference 
functions are computed, since this increases the effort for trial-and-error tuning. A 
point of diminishing returns is also reached, after which further attempts at improve- 
ment through hand tuning often turn out to be counterproductive. Another problem 
was that it became difficult to detect preference functions that were ineffective, or 
simply wrong, if they were given sufficiently low scaling factors. Probably a more 
serious problem is that the contributions of different preference functions to selecting 
the most plausible analyses seem to vary from one sublanguage to another. These 
disadvantages point to the need for automatic procedures to determine scaling factors 
that optimize preference function rankings for a particular sublanguage. 

In our framework, a numerical "preference score" is computed for each of the 
alternative analyses, and the analyses are ranked according to this score. As mentioned 
earlier, the preference score is a weighted sum of a set of preference functions: Each 
preference function f/ takes a complete QLF representation qi as input, returning a 
numerical score sq, the overall preference score being computed by summing over the 
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product of function scores with their associated scaling factors cj: 

ClSil q- . . . -}- CmSim 

3.1 Collection Procedure 
The training process begins by analyzing the corpus sentences and computing, for 
each analysis of each sentence, the training score of the analysis with respect to the 
manually approved skeletal tree and the (unscaled) values of the preference functions 
applied to that analysis. 

One source of variation in the data that we want to ignore in order to derive scaling 
factors appropriate for selecting QLFs is the fact that preference function values for an 
analysis often reflect characteristics shared by all analyses of a sentence, as much as 
the differences between alternative analyses. For example, a function that counts the 
occurrences of certain constructs in a QLF will tend to give higher values for QLFs 
for longer sentences. In the limit, one can imagine a function ~b that, for an N-word 
sentence, returned a value of N + G for a QLF with training score G with respect to the 
skeletal tree. Such a function, if it existed, would be extremely useful, but (if sentence 
length were not also considered) would not be a particularly accurate predictor of the 
QLF training score. 

To discount irrelevant intersentence variability, both the training score with respect 
to the skeletal tree and all the preference function scores are therefore relativized by 
subtracting from them the corresponding values for the analysis of that sentence which 
best matches the skeletal tree. If the best match is shared by several analyses, the 
average for those analyses is subtracted. The relativized training score is the distance 
function with respect to which the first stage of scaling factor calculation takes place. 
It can be seen that the relativized results of our hypothetical preference function 6 are 
a perfect predictor of the relativized training score. Consider, for example, a six-word 
sentence with three QLFs, two of which, ql and q2, have completely correct skeletal 
tree structures and the third of which, q3, does not. Suppose also that the training 
scores and the scores assigned by preference functions, G fl, and fz, are as follows: 

Training ~ fl f2 

ql 10 16 8 4 
q2 10 16 6 10 
q3 4 10 2 12 

After relativizing (subtracting the average of the ql and q2 values), we get 

Training ~ fl f2 

ql 0 0 1 -3  
q2 0 0 --1 3 

q3 --6 --6 --5 5 

3.2 Least Squares Calculation 
An initial set of scaling factors is calculated in a straightforward analytic way by 
approximating gi, the relativized training score of qi, by ~ j  cjzij, where cj is the scaling 
factor for preference function fj and zq is the relativized score assigned to qi by ~. We 
vary the values of cj to minimize the sum, over all QLFs for all training sentences, of 
the squares of the errors in the approximation 

2 
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Defining the error function as a sum of squares of differences in this way means that the 
minimum error is attained when the derivative with respect to each ck, --2 ~ i  Zik(gi -- 
y'~q CjZq), is zero. These linear simultaneous equations, one for each of cl . . .  c,,, can be 
solved by Gaussian elimination. (For a full explanation of this standard technique, see 
Moore and McCabe 1989, pp. 174ff and 680ff.) 

This least squares set of scaling factors achieves quite good disambiguation per- 
formance (see Section 4) but is not truly optimal because of the inherent nonlinearity 
of the goal, which is to maximize the proportion of sentences for which a correct QLF 
is selected, rather than to approximate training scores (even relativized ones). Suppose 
that a function M has a tendency to give high scores to correct QLFs when the contri- 
butions of other functions do not clearly favor any QLF, but that M tends to perform 
much less well when other functions come up with a clear choice. Then increasing the 
scaling factor on M from the least squares value will tend to improve system perfor- 
mance even though the sum of squares of errors is increased; M's tendency to perform 
well just when it is important to do so should be rewarded. 

3.3 Iterative Scaling Factor Adjustment 
The least squares scaling factors are therefore adjusted iteratively by a hill-climbing 
procedure that directly examines the QLF choices they give rise to on the training 
corpus. Scaling factors are altered one at a time in an attempt to locally optimize 2 the 
number of correct disambiguation decisions, i.e., the number of training sentences for 
which a QLF with a correct skeletal tree receives the highest score. 

A step in the iteration involves calculating the effect of an alteration to each factor 
in turn. 3 If factors Ck, k ~ j, are held constant, it is easy to find a set (possibly empty) 
of real-valued intervals [u/j, viii such that a correct choice will be made on sentence i 
if uij < cj <_ vii. By collecting these intervals for all the functions and for all the sen- 
tences in the training corpus, one can determine the effect on the number of correct 
disambiguation decisions of any alteration to any single scaling factor. The alteration 
selected is the one that gives the biggest increase in the number of sentences for which 
a correct choice is made. When no increase is possible, the procedure terminates. We 
found that convergence tends to be fairly rapid, with the number of steps seldom ex- 
ceeding the number of scaling factors involved (although the process does occasionally 
change a scaling factor it has previously altered, when intervening changes make this 
appropriate). 

One of the functions we used shows the limitations of least squares scaling factor 
optimization, alluded to above, in quite a dramatic way. The function in question 
returns the number of temporal modifiers in a QLE Its intended purpose is to favor 
readings of utterances like "Atlanta to Boston Tuesday," in which "Tuesday" is a 
temporal modifier of the (elliptical) sentence rather than a compound noun formed 
with "Boston." Linear scaling always gives this function a negative weight, causing 
temporal modifications to be downgraded, and in fact the relativized training score of 
a QLF turns out to be negatively correlated with the number of temporal modifiers it 
contains. However, the intuitions that led to the introduction of the function do seem 

2 Finding a global optimum would of course be desirable. However, inspection of the results, over 
various conditions, of the iterative scheme presented here did not suggest that the introduction of a 
technique such as simulated annealing, which in general can improve the prospect of finding a more 
global optimum, would have had much effect on performance. 

3 An algorithm based on gradient descent might appear preferable, on the grounds that it would alter all 
factors simultaneously and have a better chance of locating a global optimum. However, the objective 
function, the number of correct disambiguation decisions, varies discontinuously with the scaling 
factors, so no gradients can be calculated. 
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Table 2 
Performance of scaling factor sets 

Scaling factor set Number Percentage 
correct correct 

(Random baseline) 1949 47.6 
Normalized 3549 86.7 
Hand tuned 3717 90.8 
Least squares 3841 93.9 
Hill climbing 3857 94.3 

to hold for QLFs that are close to being correct, and therefore iterative adjustment 
makes the weight positive. 

4. Comparing Scaling Factor Sets 

The performance of the factors derived from least squares calculation and adjustment 
by hill climbing was compared with that of various other sets of factors. The factor sets 
considered, roughly in increasing order of their expected quality, were the following: 

• "Normalized" factors: the magnitude of each factor is the inverse of the 
standard deviation of the preference function in question, making each 
function contribute equally. A factor is positive if it correlates positively 
with training scores; otherwise it is negative. 

• Factors chosen and tuned by hand for ATIS sentences before the work 
described in this paper was done, or, for functions developed during the 
work described here, without reference to any automatically derived 
values. 

• Factors resulting from least squares calculation, as described in 
Section 3.2. 

• Factors resulting from least squares calculation followed by hill-climbing 
adjustment (Section 3.3). 

To provide a baseline, performance was also evaluated for the technique of a random 
selection of a single QLF for each sentence. 

The performance of each set of factors was evaluated as follows. The set of 4092 
sentences with skeletal trees was divided into five subsets of roughly equal size. Each 
subset was "held out" in turn: the functions and scaling factors were trained on the 
other four subsets, and the system was then evaluated on the held-out subset. The 
system was deemed to have correctly processed a sentence if the QLF to which it 
assigned the highest score agreed exactly with the corresponding skeletal tree. 

The numbers of correctly processed sentences (i.e., sentences whose selected QLFs 
had correct constituent structures) are shown in Table 2; because all the sentences 
involved were within coverage, the theoretical maximum achievable is 4092 (100%). 

We use a standard statistical method, the sign test (explained in, for example, 
Dixon and Massey 1968), to assess the significance of the difference between two 
factor sets, $1 and $2. Define Fi(x) to be the function that assigns 1 to a sentence x if 
Si makes the correct choice in disambiguating x and 0 if it makes the wrong choice. 
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Table 3 
Sign test comparisons of scaling factor sets 

S1 $2 + - #SDs 

Normalized Hand tuned 154 322 7.7 
Normalized Least squares 67 359 14.1 
Normalized Hill climbing 75 383 14.4 
Hand tuned Least squares 78 202 7.4 
Hand tuned Hill climbing 76 216 8.2 
Least squares Hill climbing 20 36 2.1 

The null hypothesis  is that F1 (x) and F2(x), treated as r andom variables over  x, have 
the same distribution, from which we would expect the difference between F1 (x) and 
F2(x) to be positive as often as it is negative. Table 3 gives the number  of cases in 
which this difference is positive or negative. As is usual for the sign test, the cases 
in which the difference is 0 do not need to be taken into account. The test is applied 
to compare six pairs of factor sets. The "#SDs" column in Table 3 shows the number  
of s tandard deviations represented by the difference between the "+" and " -"  figures 
under  the null hypothesis; a #SDs value of 1.95 is statistically significant at the 5% 
level (two tail), and a value of 3.3 is significant at the 0.1% level. 

Table 3 shows that, in terms of wrong  QLF choices, both sets of machine-opt imized 
factors perform significantly better than the hand-opt imized factors, to which consid- 
erable skilled effort had been devoted.  It is worth  emphasizing that the process of 
determining the machine-opt imized factors does not make use of the knowledge en- 
coded by hand optimization. The hill-climbing factor set, in turn, performs significantly 
better than the least squares set from which it is derived. 

A possible objection to this analysis is that, because QLFs are much richer struc- 
tures than consti tuent trees, it is possible for a QLF to match a tree perfectly but  have 
some other characteristic that makes it incorrect. In general, the principal source of 
such discrepancies is a wrong  choice of word sense, but  pure sense ambiguity (i.e., 
different predicates for the same syntactic behavior  of the same word) turns out  to 
be extremely rare in the ATIS corpus. An examination of the selected QLFs for the 
20 + 36 = 56 sentences making up the ÷ and - values for the comparison between the 
least squares and hill-climbing factor sets showed that in no case did a QLF have a 
correct consti tuent structure but  fail to be acceptable on other criteria. Thus al though 
the absolute percent  correctness figures for a set of scaling factors may  be very  slightly 
(perhaps up to 1%) overoptimistic, this has no noticeable effect on the differences be- 
tween factor sets. 

5. Lexical Semantic Collocations 

In this section we move  from the problem of calculating scaling factors to the other 
main topic of this paper, showing how our  experimental  f ramework can be used di- 
agnostically to compare  the utility of competing suggestions for preference functions. 
We refer to the variant of collocations we used as lexical semantic collocations because 
(i) they are collocations between word senses rather than lexical items, and (ii) the rela- 
tions used are often deeper  than syntactic relations (for example the relations between 
a verb and its subject are different for passive and active sentences). 

The semantic collocations extracted from QLF expressions take the form of (H1, R, 
H2) triples, in which H1 and H2 are the head predicates of phrases in a sentence 
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and R indicates the relation (e.g., a preposition or an argument position) between the 
two phrases in the proposed analysis. For this purpose, the triple derivation software 
abstracted away from proper names and some noun and verb predicates when they ap- 
peared as heads of phrases, replacing them by hand-coded class predicates. For exam- 
ple, predicates for names of meals are mapped onto the class name cc SpecificMeal 
on the grounds that their distributions in unseen sentences are likely to be very similar. 

Some of the triples for the high-attachment QLF for "Do I get dinner on this 
flight?" are as follows: 

(getAcquire, 2, personal) 
(getAcquire, 3, cc_Specif icMeal) 
(get_Acquire, on, f light_AirplaneTrip). 

The first two triples correspond to the agent and theme positions in the predicate for 
get, whereas the third expresses the vital prepositional phrase attachment. In the triple 
set for the other QLF, this triple is replaced by 

(cc_SpecificMeal, on, flight_AirplaneTrip). 

Data collection for the semantic collocation functions proceeds by deriving a set 
of triples from each QLF analysis of the sentences in the training set. This is followed 
by statistical analysis to produce the following functions of each triple in the observed 
triple population. The first two functions have been used in other work on collocation; 
some authors use simple pairs rather than triples (i.e., no relation, just two words) 
when computing collocation strengths, so direct comparisons are a little difficult. The 
third function is an original variant of the second; the fourth is original; and the fifth 
is prompted by the arguments of Dunning (1993). 

• Mutual information: this relates the probability Pl(a)P2(b)P3(c) of the 
triple (a, b~ c) assuming independence between its three fields, where 
P~(x) is the probability of observing x in position p, with the probability 
A estimated from actual observations of triples derived from analyses 
ranked highest (or joint highest) in training score. More specifically, we 
use ln{a/[P1 (a)Pa(b)P3(c)]}. 

• X2: compares the expected frequency E of a triple with the square of the 
difference between E and the observed frequency F of the triple. Here 
the observed frequency is in analyses ranked highest (or joint highest) in 
training score, and the "expected" frequency assumes independence 
between triple fields. More specifically we use IF - E] • (F - E)/E. This 
variant of X 2, in which the numerator is signed, is used so that the 
function is monotonic, making it more suitable in preference functions. 

• X: as X 2, but the quantity used is (F - E)/v"E, as large values of F - E 
have a tendency to swamp the X 2 function. 

• Mean distance: the average of the relativized training score for all QLF 
analyses (not necessarily the highest ranked ones) that include the 
semantic collocation corresponding to the triple. In other words, the 
mean distance value for a triple is the mean amount by which a QLF 
giving rise to that triple falls short of a perfect score. 

• Likelihood ratio: for each triple (HI~ R, H2), the ratio of the maximum 
likelihood of the triple, given the distribution of triples in correct 
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Table 4 
Performance of collocational and syntactic rule 
functions alone 

Function Number Percentage 
correct correct 

(Random baseline) 1949 47.6 
Mutual info 2817 68.9 
Syntactic rule cost 2913 71.2 
Likelihood ratio 3120 76.3 
X 2 3339 81.6 
X 3407 83.3 
Mean distance 3670 89.7 

analyses of the training data, on the assumption that H1 and H2 are 
independent  given R, to the maximum likelihood without  that 
assumption. (See Dunning 1993, for a fuller explanation of the use of 
likelihood ratios.) 

Computat ion of the mutual  information and •2 functions for triples involves the 
simple smoothing technique, suggested by  Ken Church, of adding 0.5 to actual counts. 

From these five functions on triples, we define five semantic collocation preference 
functions applied to QLFs, in each case by averaging over  the result of applying 
the function to each triple der ived from a QLE We refer to these functions by the 
same names as their under lying functions on triples. The collocation functions are 
normalized by mult iplying up  by the number  of words  in the sentence to which 
the function is being applied. This normalization keeps scores for QLFs in the same 
sentence comparable,  while at the same time ensuring that the triple function scores 
tend to grow with sentence length in the same way that the non-collocation functions 
tend to do. Thus the optimality of a set of scaling factors is relatively insensitive to 
sentence length. 

Our use of the mean distance function was motivated by the desire to take into 
account additional information from the training material that is not exploited by the 
other collocation functions. Specifically, it takes into account all analyses proposed 
by the system, as well as the magni tude  of the training score. In contrast, the other 
collocation functions make use only of the training score to select the best analysis 
of a sentence, discarding the rest. Another  way of put t ing this is that the mean dis- 
tance function is making use of negative examples and a measure of the degree of 
unacceptability of an analysis. 

6. Comparing Semantic Collocation Functions 

An evaluation of each function acting alone on the five held-out sets of test data 
yielded the numbers  of correctly processed sentences shown in Table 4. The figures 
for the r andom baseline are repeated from Table 2. We also show, for comparison,  
the results for a function that scores a QLF according to the sum of the logs of the 
estimated probabilities of the syntactic rules used in its construction. 4 

4 We estimate the probability of occurrence of a syntactic rule R as the number of occurrences of R 
leading to QLFs with correct skeletal trees, divided by the number of occurrences of all rules leading to 
such QLFs. 
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Table 5 
Performance of collocational functions with 
others 

Function Number Percentage 
correct correct 

X 2 3741 91.4 
X 3766 92.0 
Mean distance 3857 94.3 

In cases where a function judged N QLFs equally plausible, of which 0 < G < N 
were correct, we assigned a fractional count G/N to that sentence; a random choice 
among the N QLFs would pick a correct one with probability G/N. For significance 
tests, which require binary data, we took a function as performing correctly only if all 
the QLFs it selected were correct. Such ties did not occur at all for the other experiments 
reported in this paper. 

A pairwise comparison of the results shows that all the differences between collo- 
cational functions are statistically highly significant. The syntactic rule cost function is 
significantly worse than all the collocational functions except the mutual information 
one, for which the difference is not significant either way. (There may, of course, exist 
better syntactic functions than the one we have tried.) The mean distance function 
is much superior to all the others when acting alone. Presumably, this function has 
an edge over the other functions because it exploits the additional information from 
negative examples and degree of correctness. 

The difference in performance between our syntactic and semantic preference func- 
tions is broadly in line with the results presented by Chang, Luo, and Su (1992), who 
use probabilities of semantic category tuples. However, this similarity in the results 
should be taken with some caution, because our syntactic preference function is rather 
crude, and because our best semantic function (mean distance) uses the additional in- 
formation mentioned above. This information is not normally taken into account by 
direct estimates of tuple probabilities. 

When I collocation function is selected to act together with the 19 non-collocation- 
based functions from the default set (the set defined in Section 2 and used in the 
experiments on scaling factor calculation), the picture changes slightly. In this context, 
when scaling factors are calculated in the usual way, by least squares followed by hill 
climbing, the results for the best 3 of the above functions are as shown in Table 5. 

The difference between the mean distance function and the other 2 functions is 
still highly significant; therefore this function is chosen to be the only collocational one 
to be included in the default set of 20 (hence the "mean distance" condition here is the 
same as the "hill-climbing" condition in Section 4). However, the difference between 
the X and X 2 functions is no longer quite so clear cut, and the relative advantage of 
the mean distance function compared with the X function is less. It may be that other 
preference functions make up for some shortfall of the X function that is, at least in 
part, taken into account by the mean distance function. 

7. Conc lus ion  

We have presented a relatively simple analytic technique for automatically determining 
a set of scaling factors for preference functions used in semantic disambiguation. The 
initial scaling factors produced are optimal with respect to a score provided by a 
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training procedure  and are further  improved by comparison with instances of the task 
they are intended to perform. The experimental  results presented indicate that, by 
using a fairly crude training score measure (comparing only phrase structure trees) 
with a few thousand training sentences, the method can yield a set of scaling factors 
that are significantly better than those der ived by a labor-intensive hand-tuning effort. 

We have also confirmed empirically that considerable differences exist between the 
effectiveness of differently formulated collocation functions for disambiguation. The 
experiments provide a basis for selecting among different collocational functions and 
suggest that a collocation function must  be evaluated in the context of other functions, 
rather than on its own, if the correct selection is to be made. 

It should be possible to extend this work fruitfully in several directions, including 
the following. Training with a measure defined directly on semantic representations is 
likely to lead to a further  reduction in the disambiguation error rate. The method for 
comput ing scaling factors described here has more recently been applied to optimizing 
preference selection for the task of choosing between analyses arising from different 
word hypotheses  in a speech recognition system (Rayner et al. 1994) and is applica- 
ble to other problems, such as choosing between possible target representations in a 
machine translation system. Finally, it would  be interesting to combine the work on 
semantic collocation functions with that on similarity-based clustering (Pereira, Tishby, 
and Lee 1993; Dagan, Marcus, and Markovitch 1993), with the aim of overcoming the 
problem of sparse training data. If this is successful, it might make these functions 
suitable for disambiguation in domains with larger vocabularies than ATIS. 
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