
Tree-Adjoining Grammar Parsing and
Boolean Matrix Multiplication

G i o r g i o Sa t ta *t
Universita di Venezia

The computational problem of parsing a sentence in a tree-adjoining language is investigated. An
interesting relation is studied between this problem and the well-known computational problem of
Boolean matrix multiplication: it is shown that any algorithm for the solution of the former problem
can easily be converted into an algorithm for the solution of the latter problem. This result bears
on at least two important computational issues. First, we realize that a straightforward method
that improves the known upper bound for tree-adjoining grammar parsing is hard to find. Second,
we understand which features of the tree-adjoining grammar parsing problem are responsible for
the claimed difficulty.

1. Introduct ion

Among formalisms for the computation of syntactic description of natural language
sentences, Tree-Adjoining Grammars (TAG) play a major role. The class of TAG's was
first introduced in Joshi, Levy, and Takahashi (1975) and Joshi (1985); since then, formal
and computational properties of this class have been extensively investigated, and the
linguistic relevance of TAGs has been discussed in the literature as well. The reader
who is interested in these topics is referred to some of the most recent works, for
example Schabes (1990) and Frank (1992), and to the references therein.

Both in a theoretical vein and in view of possible natural language processing
applications, the recognition and parsing problems for TAGs have been extensively
studied and many algorithms have been proposed for their solution. On the basis of
tabular techniques, the least time upper bound that has been attested is O(I G II w I 6) for
the random-access model of computation, I GI being the size of the input grammar and
I wl the length of the input string. In recent years, improvement of such a worst-case
running time has been a common goal for many researchers, but up to the present
time the TAG parsing problem has strongly resisted all such attempts. Because of the
record of all these efforts, the task of improving the above upper bound is actually
regarded as a difficult one by many researchers.

In support of such a common feeling, in this paper we restate the TAG parsing
problem as a search problem and relate it to the well-known computational prob-
lem of Boolean matrix multiplication. This is done in such a way that time upper
bounds for TAG parsing can be transferred to time upper bounds for the latter prob-
lem. More precisely, we show that any algorithm for TAG parsing that improves the
O(IGIJwl 6) time upper bound can be converted into an algorithm for Boolean ma-
trix multiplication running in less than O(m 3) time, m being the order of the input

• Universita di Venezia, Scienze dell'Informazione, via Torino, 155, 30172 Mestre-Venezia, Italy. E-mail:
satta@moo.dsi.unive.it.

t This research was done while the author was a post-doctoral fellow at the Institute for Research in
Cognitive Science, University of Pennsylvania, 3401 Walnut Street, Philadelphia, PA 19104~228, USA.

(~) 1994 Association for Computational Linguistics

Computational Linguistics Volume 20, Number 2

matrices. Crucially, Boolean matrix multiplication has been the object of ~nvestigation
for many Years: methods that are asymptotically faster than O(m 3) are known, but
the more considerable the improvement turned out to be, the more complex the in-
volved computation was found to be. At the present time, the asymptotically fastest
algorithms for Boolean matrix multiplication are considered to be only of theoretical
interest, because the huge constants involved in the running time of these methods
render prohibitive any practical application, given current computer hardware.

As a matter of fact, the design of practical algorithms for Boolean matrix multi-
plication that considerably improve the cubic time upper bound is regarded as a very
difficult enterprise. A consequence of the results presented in this paper is that TAG
parsing should also be considered as having the status of a problem that is "hard to
improve," and there is enough evidence to think that methods for TAG parsing that
are asymptotically faster than O(] G I[w]6) a r e unlikely to be of any practical interest,
i.e., will involve very complex computations.

The remaining part of this paper is organized as follows. The next section presents
the definition of tree-adjoining grammar and introduces the two computational prob-
lems that are to be related. Section 3 establishes the main result. Section 4 draws on
the computational consequences of such a result and reports some discussion. Finally,
Section 5 concludes by indicating how similar results can be found for variants of the
TAG parsing problem that have been recently discussed in the literature.

2. Preliminaries

This section introduces the Boolean matrix multiplication problem and the tree-adjoin-
ing grammar parsing problem, along with the definition of tree-adjoining grammar.
The notation presented here will be used throughout the paper.

2.1 Boolean Matrix Multiplication
Let/3 -- {0, 1} be the set of truth values. The logical symbols V,/x are defined as usual.
The set of Boolean square matrices Bin, m _> 1, is defined as the set of all m x m square
matrices whose elements belong to/3. Given a matrix A c Bm, we say that A has order
m; the element in the ith row and jth column of A is denoted by aij. In Bin, the product
of A and B, written A x B, is a Boolean matrix C such that:

m
CiJ ~- V aik /~ bkj, 1 <_ i , j <_ m. (1)

k~l

An instance of the Boolean matrix multiplication problem is therefore a pair (A, B)
and the solution to such an instance consists of the matrix C such that C = A x B. In
what follows BMM will denote the set of all possible instances of the Boolean matrix
multiplication problem.

2.2 Tree-Adjoining Grammars
The definition of TAG and the associated notion of derivation are briefly introduced
in the following; the reader is also referred to the standard literature (see, for instance,
Vijay-Shanker and Joshi [1985] or Joshi, Vijay-Shanker, and Weir [1991]).

A tree-adjoining grammar is a tree rewriting system denoted by a tuple G =
(VN, VT, S, I, A), where VN and VT are finite, disjoint sets of nonterminal and terminal
symbols respectively, S E VN is a distinguished symbol, and I and A are finite sets of
elementary trees. Trees in ! and A are called initial and auxiliary trees respectively
and meet the following specifications. Internal (nonleaf) nodes in an elementary tree

174

Giorgio Satta Tree-Adjoining Grammar Parsing

initial tree
S

<.

auxiliary tro~
A

,4 d d
terminal nodes

(a)

adjunction

,4

>

(b)

Figure 1
Definitions of (a) initial and auxiliary trees and (b) adjunction operation.

are labeled by symbols in VN. An initial tree has a root labeled by S and leaf nodes
labeled by symbols in VT U {¢}. An auxiliary tree has leaf nodes labeled by symbols
in VT U {C} with the addition of one node, called the foot node, having the same
nonterminal label as the root node (see Figure la). We define the size of G, written
I G], to be the total number of nodes in all the trees in the set I U A. In what follows
we will also denote by TAG the class of all tree-adjoining grammars.

In TAG, the notion of derivation is based on a composition operation called ad-
junction, defined in the following way. Let 3' be an auxiliary tree having its root (and
foot node) labeled by A E VN. Let also 3'' be any tree containing a node ~? labeled by
A, and let ~- be the subtree of 3'' rooted in 7. The adjunct ion of 3' into 3'' at node ~?
results in a tree specified as follows (see Figure lb):

(i) the subtree ~- is excised from 3`';

(ii) the auxiliary tree 3' replaces T in 3'', with the root of 3" replacing the
excised node ~?;

(iii) the subtree ~- is attached to the resulting tree, with the foot node of 3"
replacing ~/in T.

In TAG a derivation is the process of recursive composition of elementary trees using
the adjunction operation; the resulting trees are called derived trees. Since adjunctions
at different nodes can be performed in any order, we can adjoin derived trees into
derived trees without affecting our arguments.

175

Computational Linguistics Volume 20, Number 2

S

z2

Figure 2
Parse tree 3'' is included in a parse tree of string w = ZlXZ2yz3 in L(G). We say that the
derivation of string pair Ix, Y/is a subderivation of a sentential derivation of w.

2.3 Tree-Adjoining Grammar Parsing
In order to introduce the definition of the TAG pars ing p rob lem on which our results
are based, we define in the fol lowing the string language der ived f rom a TAG and
discuss the not ion of parse forest a long wi th the impor tan t issue of its representat ion.
Given an a lphabet V, we denote b y V* the set of all finite strings over V (null string

c included).
Al though TAG is a class of tree rewri t ing systems, a der ivat ion relation can be

defined on strings in the fol lowing way. Let 3' be an e lementa ry tree and let "7' be
a tree obtained f rom "7 by means of zero or more adjunction operat ions. If the yield
of "7' is a string x E V~, that is -y E /, we say that "7 derives x in G. If the yield of
3, / is a string xAy E V,~VNV,~, that is "y E A, we say that 3, der ives the pair (x,y) in
G. In particular, the set of all strings in V~ that can be der ived in G is denoted by
L(G). In this perspect ive then, an e lementary or a der ived tree is seen as a structural
descript ion of a string (a pair of strings) der ived by the g rammar ; such a descript ion
is called a parse tree. The space of all parse trees associated with a given string by the
g r a m m a r is called a parse forest.

We introduce n o w the not ion of subderivat ion. Let w be a sentence in L(G) and
let ~, E A derive the pair (xt Y / in G, x, y E V~, wi th an associated parse tree -y'. If 7' is
included in a parse tree of w, we have that w = ZlXZ2yz3 for some zl, z2~ z3 E V~ (see
Figure 2). Parse tree "7' represents the contr ibut ion of auxil iary tree 3' to a der ivat ion
of w; we say therefore that the der ivat ion of /x~ Y/ f rom "7 is a subde r iva t i on of a
sentential der ivat ion of w. As a consequence of the definition of parse forest, we have
that all subder ivat ions of the sentential der ivat ions of w can be read off f rom the parse
forest of w. Part of this informat ion will be used to establish our result, as precisely
stated in the next definition. We need some addit ional notation. Let w =- dld2""dn,
n > 0, be a string over some alphabet; symbol pWq denotes the substr ing dpdp+l ... dq
for 1 _< p < q < n and is undef ined otherwise.

Definition 1
Let G = (VN, VTt St It A) be a tree-adjoining g r a m m a r and w E V~ be an input string,
I wI = n, n > 0. A parse relation Rp C A x {1..n} 4 associated with the pair /G, w / is
specified as follows. For every auxiliary tree "y in G and for natural number s p, q~ r and

176

Giorgio Satta Tree-Adjoining Grammar Parsing

s, 1 < p < q < r < s < n, Rp(7,p,q,r ,s) holds if and only if:

(i)

(ii)

the pair (pWq~ rWs) can be derived by 7 in G, and

the derivation in (i) is a subderivation of a sentential derivation of w in G.

The goal of a parsing algorithm for TAG is one of constructing a "suitable" rep-
resentation for the parse forest of a given string, with respect to a given grammar.
However, there is no common agreement in the literature on the requirements that
such a representation should meet; therefore the issue of the representation of a parse
forest deserves some discussion here.

There seems to be a trade-off between computational t imeand space in choosing
among different representations of a parse forest. Note that, from an extreme perspec-
tive, the input itself can be considered as a highly compressed representation of the
parse forest--one that needs a time-expensive process for parse tree retrieval. 1 More
explicit representations offer the advantage of time-efficient retrieval of parse trees,
at the cost of an increase in storage resources. In practice, most commonly used al-
gorithms solve the parsing problem for TAGs by computing a superset of a parse
relation (defined as above) and by representing it in such a way that its instances
can be tested in constant time; such a condition is satisfied by the methods reported
in Vijay-Shanker and Joshi (1985), Schabes and Joshi (1988), Palis, Schende, and Wei
(1990), Schabes (1991), Lavelli and Satta (1991), Lang (1992), and Vijay-Shanker and
Weir (1993). From such a representation, time-efficient computations can be used later
to retrieve parse structures of the input string.

On the basis of the previous observation, we assume in the following that the
solution of the parsing problem involves (at least) the computation of a representation
for Rp such that its instances can be tested in constant time: we base our results on
such an assumption. More precisely, an input instance of the tree-adjoining grammar
parsing problem is defined to be any pair (G, w), and the unique solution of such an
instance is provided by an explicit representation of relation (set) Rp associated with
(G, w) as in Definition 1. In what follows, TGP will represent the set of all instances
of the tree-adjoining grammar parsing problem.

3. Technical Part

In this section the Boolean matrix multiplication problem is related to the tree-adjoining
grammar parsing problem, establishing the major result of this paper. A precise spec-
ification of the studied reduction is preceded by an informal discussion of the general
idea underlying the construction.

3.1 The Basic Approach
Two maps ~ and ~ will be studied in this section. Map ~c establishes a correspondence
between the set BMM and a proper subset of TGP containing, in some sense, its most
difficult instances. Conversely, map ~ is defined on the set of solutions of all TGP
problems in the image of Y', and gives values in the set of Boolean square matrices.
Maps ~ and G are defined in such a way that, given any algorithm for the solution
of the TGP problem, we can effectively construct an algorithm for the solution of the
BMM problem using the commutative diagram shown in Figure 3.

1 I owe this observation to Bernard Lang (personal communication).

177

Computational Linguistics Volume 20, Number 2

multiplication
<,4, B> in B M M " C = A × B

parsing
<G, w> in TGP , Rp

Figure 3
Maps ~- and ~ define a commutative diagram with respect to any algorithm for Boolean
matrix multiplication and any parsing algorithm for tree-adjoining grammars.

Both the BMM and the TGP problems are viewed here as search problems whose
solutions are obtained by exploring a search space of elementary combinations. In
the case of the BMM problem, the elementary combinations are the combinations
of elements of the input matrices. If m is the order of these matrices, the solution
of the problem requires the specification of O(m 2) elements of the product matrix,
where each element depends upon O(m) elementary combinations (see relation (1)).
Therefore the problem involves a search in a space of O(m 3) different combinations.
On the other hand, in the TGP problem the elementary combinations are taken to
be single applications of the adjunction operation. In parsing a string w of length n
according to a tree-adjoining grammar G, we have to construct a parse relation of
size O(I G In 4) (see Definition 1), and there are O(n 2) distinguishable combinations in
which each element of the relation can be obtained. In the general case then, a number
O(I G In 6) of distinguishable combinations are involved in the parsing problem, and
we have to perform a search within an abstract space of this size.

In order to achieve our result, we then establish a size preserving correspondence
between the two search spaces above. There is no way of representing matrices A
and B within string w without blowing up the search space associated with the target
parsing problem. Our choice will then be to represent the input matrices by means
of grammar G, which fixes I GI to a quantity O(m2). This forces the choice of n to a
quantity O(m~), obtaining therefore the desired relation I G In 6 = O(1/'/3).

The general idea underlying the construction is the following one. Observe that
non-null elements aik and bk,j in the input matrices force element cij to value 1 in the
product matrix if and only if k = k t. The check of such a condition can be transferred
to the computation of an adjunction operation in the target parsing problem using the
following encoding method. We fix a positive integer b to a (rounded) quantity m~.
Then we encode each index i of the input matrices by means of positive integers il,
/2, and i3, such that il is O(b 4) and i2, is are O(b). Condition k = k t above is therefore
reduced to the three tests kh = k~, 1 < h < 3, which can be performed independently.
The test kl = k~ is precompiled into some auxiliary tree of G; the tests k2 = k~ and
k3 = k~ are performed by the parser using the input string, as explained below.

Map ~- constructs a string w of distinguishable symbols by concatenating six
"slices" w (h), 1 < h < 6, each slice of length O(b). Map ~- also encodes the input
matrices A and B within the target grammar G; it does so by transforming each non-
null element in the input matrices into an auxiliary tree of G in the following way.
Non-null element aik is mapped into an auxiliary tree "~1 having its root (and foot node)

178

Giorgio Satta Tree-Adjoining Grammar Parsing

! i

, , X 2 ! I

k; /
k3+l

J3

1
Y2 ,

\
J2

F i g u r e 4
String w is composed of six slices, and auxiliary trees corresponding to non-null elements aik
and bk'j derive string pairs (xl, yl} and (x2, y2} matching the slices of w as shown above;
integers are used to indicate the position within a single slice of the boundary symbols in
strings xl, yl, x2, and y2. The figure depicts the case k = k', resulting in the exact nesting of the
two derived trees.

labeled by a symbol including integers i1 and kl. Moreover, 3'1 will eventually derive
a string pair (xl, yl) with the following property. String xl is the smallest substring of
w including the symbol in the /3th position within slice w (1) and the symbol in the
k3th position within slice w (2). Furthermore, string yl is the smallest substring of w
including the symbol in the (k2 + 1)-th position within slice w (5) and the symbol in the
/2th position within slice w (6). This is schematically shown in Figure 4.

At the same time 5 r maps non-null element bk,j into an auxiliary tree 3'2 having
its root labeled by a symbol including integers k~ and jl. Crucial to our construction,
3̀ 2 will derive a pair of strings (x2~y2> with the following property. String x2 is the
smallest substring of w including the symbol in the (k~ + 1)-th position within slice
w (2) and the symbol in the j3th position within slice w (3). Furthermore, string y2 is the
smallest substring of w including the symbol in the j2th position within slice w (4) and
the symbol in the k~th position within slice w (s). Let us call 3'~ and 3,~ the derived trees
obtained from 3,1 and 3"2 as above. Observe that k2 = k~ and k3 = k~ if and only if the
yields of 3"~ and 3̀ ~ are exactly nested within w; see again Figure 4.

To complete the construction of G, map 5 v provides an auxiliary tree 3,3 with the
following property. Tree 3,3 can contribute to a sentential derivation of w in G if and
only if 3"~ and 3"~ can be adjoined to it. This is in turn possible just in case integer kl in
the root of 3"1 and integer k~ in the root of 3̀ 2 coincide, as specified by the adjunction
sites in 3'3, and the yields of 3̀~ and 3"~ are exactly nested within w. It follows that, by
deciding whether 3'3 contributes to a sentential derivation of w, the parser is able to
perform the required test k = k'. Finally, index k in its coded form is discarded in the
derivation process above, while indices i and j are preserved in such a way that map

can eventually recover non-null element Cq by reading off the parse relation.

179

Computational Linguistics Volume 20, Number 2

Table 1
Values o f f (b) (i) for b = 3 and 1 < i < 15.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

f(b)(i) 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2
f(2b)(i) 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2
f(b)(i) 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

The next section presents a detailed specification of maps ~" and G and proves
the above claimed properties. As we will see, the search space defined by the result-
ing instance of the TAG parsing problem includes the solution of the source matrix
multiplication problem.

3.2 The Two Maps
The goal of this subsection is to establish a mapping between comparisons of matrix
indices in Boolean matrix multiplication and instances of the adjunction operation in
tree-adjoining grammar parsing. As already ment ioned in the previous subsection,
this result is achieved by encoding natural numbers using three positive integers. The
encoding is then used to chop off matrix indices into smaller numbers that will be
processed independently. This is explained in detail in the following.

For pairs of integers i and b, let qn(i, b) and rm(i, b) be the quotient and the
remainder respectively of the integer division of i by b. We define qn+(i, b) = qn(i, b)+ l
whenever rm(i, b) • 0 and qn+(i, b) = qn(i, b) otherwise; we also define rm+(i, b) =
rm(i,b) whenever rm(i,b) ~ 0, and rm+(i,b) = b otherwise. Note that, for i > 1,
qn+ (i, b) > 1 and 1 < rm+ (i, b) G b.

Definit ion 2
Let b > I be an integer. We associate with b a func t ionf (b) defined on the set of positive
natural numbers, specified as follows:

where

f(b)(i) = (f~b)(i),f(2b)(i),f(3b)(i)} ,

f(lb)(i) = qn+(i, b2),

f(2 b)(i) = qn+(rm+(i, b2),b),

f(3 b) (i) = rm+ (i, b).

Table 1 shows some values o f f (b) for the case b = 3.

Observe that, for i > 1, f(3 b) and f(2 b) give values in the range {1..b}, while f(1 b)
can give any positive integer. It is not difficult to see that function fib) establishes a
one-to-one correspondence between the set N of positive natural numbers and the

set N x {1..b} x {1..b}. In an informal way, we will often refer to value f(1 b) (i) as the

most significant digit corresponding to i, and to values f(2 b) (i) and f(3 b) (i) as the least
significant digits corresponding to i. In the following, the superscript in fib) will be
omitted whenever b can be understood from the context.

We are now in a position to define in detail the maps F and G involved in the
diagram of Figure 3 discussed in Section 3.1. As a first step, we s tudy map ~- that
takes as input an instance of BMM and returns an instance of TGP.

180

Giorgio Satta Tree-Adjoining Grammar Parsing

FI(n)
<A,u, v>

dq dr
<A,u, v>

F2(n)
<B, U, V>

d ~ ~ D ds

dq dr
<B, u, v>

F3(n). _(n)
• ~¢n) IS : D
<C, u, v> t4 :

I c
<A, u, t> [dla D

<B, t, v> I D

<C, u, v> D dp

Figure 5
Definition of families of auxiliary trees F~ n), n > 1 and 1 < h < 6. Each tree in some class is
specified by the values of the integer parameters corresponding to that class.

Let n > 1 be an integer. In the following we will refer to sets of terminal symbols

VT (")={dp I' 1 G p _ < 6 (n + 1) } ,

and to sets of nonterminal symbols

V(N n)= {(A,u,v) ,(B,u,v) ,(C,u,v)] l < u < v < n 4 } U { C , D , S } .

Based on these sets, Figure 5 defines families of auxiliary trees F~ n), 1 (h _ 6. For

example, an auxiliary tree 7(P, q, r, s, u, v) C 1~ ") will be specified by providing actual
values for the integer parameters p, q, r, s, u, and v, consistently with the definitions

of sets V(T n) and V(N n). In the following we will also use the initial tree % depicted in
Figure 6.

The next definition introduces map ~ , which is the core component of the pro-
posed reduction. The definition is rather technical: it will be fol lowed by a more
intuitive example.

Def in i t ion 3
Let (A, B) be an instance of BMM, m the order of matrices A and B. Let also n = Lm~/+1
and ~r -- n + 1. A map ~c is specified in such a way that YZ((A, B)) = (G, w), where

G =- (w(n)~ V(Tn)~ S~ I1 a (n)) a n d w = dld2 ... d6~. Set I contains the only initial tree %; set

181

Computational Linguistics Volume 20, Number 2

Ys: S

I
D

I
C

I
D

I
E

Figure 6
Definition of initial tree %.

A (n) contains all and only the following elementary trees (f(h n) =fh, 1 < h < 3):

(i) for every aq = 1 in A, the auxiliary tree

7(p,q,r,s,u,v) E P~ n)
belongs to A (n), where

; ---- f3(/), q ---- cr +f3(J),
r = 4or +f2(j) + 1, s = 5cr +f2(i),
U = A(i), V= A(J);

(ii) for every bq -- 1 in B, the auxiliary tree

7(p,q,y,s,u,v) E F~ n)
belongs to A (n), where

p = a + f 3 (i) + l , q = 2cr+f3(j),
r = 3a+f2(j) , s = 4or +f2(i),
u = A(i), v = A(J);

(iii) for every pair (A, u, t), (B, t, v) E V(N n), the auxiliary trees

7(u,t,v) E C~ "),

7(u, v) E r~ ")
belong to A(nJ;

(iv) for every 1 < p < 6a, the auxiliary trees
n),

7(p) E r (n)
6

belong to A(").

In order to have a better unders tanding of map 9 r and of the idea under lying grammar
G and string w, we discuss in the following a simple example, adding more details to
the informal discussion presented in Section 3.1.

Let us define a Boolean matrix by specifying only its non-null elements. Assume
then that an input instance (A, B / of the BMM problem consists of two matrices of

182

Giorgio Satta Tree-Adjoining Grammar Parsing

a2,15

1

B:

C:

i
b 153

I multiplication

c23

mapping

Y I : Y3: <C,l,l>
<A,1,2> [

d 2 ~ d 2 0 + 1 <,4,1,2>1

d d 4+3 <A,1,2> 16+2+1 <B,2,1>
I

<C,1,1>
Y2:

<8,2,1>

d 4 + 3 + 1 " ~ / ~ d16+ 2

d s + t <B2,I> d12+3

Y4" C

I
<C,I,I>

I
c

C
I

<C,I,I>

d 2 d8+ 1 C d12+3 d20+ 1

(a) (b)

Figure 7
Part (a) shows how non-null elements a2,15 and b15,7 in matrices A and B combine together,
forcing element c2,7 in matrix C to value 1; each array element is represented as an arc in a
directed graph. Correspondingly, trees 3`1, 3`2, 3'3 and 3'4 in (b) are introduced in G by map ~-.
These trees can be composed, using adjunction, with trees in p~3) and r~ 3), in such a way that
a derived tree is obtained that matches string w and encodes the indices of c2,7.

order m = 64, specified as

A = {a2,15}~ B :- {b15,7}.

The multiplication of matrices A and B results in matrix C consisting of the only non-
null e lement Ca, 7. As already ment ioned in Section 3.1, the multiplication process can
be seen as a test for equality per formed on the second index of a2~ls and the first index
of b15,7; in the following these indices will be called "intermediate" indices. Element
c2,7 in the product matrix is forced to value I if this test succeeds, and the intermediate
indices are discarded in the process. See Figure 7a for a schematic representat ion of
such an operation.

In performing an adjunction operation, two requirements must be satisfied. First,
the nonterminal label at the adjunction site must match the nonterminal label at the
root (and foot node) of the adjoined tree; and second, adjunction must compose trees
in such a way that the der ived string is compatible with w. In the proposed reduc-
tion, each test for equality per formed on some pair of intermediate indices by matrix
multiplication is transferred to an adjunction operat ion by map ~ , using as targets the
two requirements just described. This is exemplified in the following.

183

Computational Linguistics Volume 20, Number 2

According to Definition 3, we find n = 3 and cr = 4. Map J: then constructs
a string w = dld2...d24, which can be thought of as composed of six slices w (h) =
4(h-1)+lW4h, 1 _< h _< 6. Each element in a single slice will be used as a placeholder
to record information about matrix indices. Furthermore, map jv exploits func t ion f (3)
(see Table 1) in order to map each non-null element of the input matrices to an auxiliary

tree in I~ 3) or F~ 3) (steps (i) and (ii) in Definition 3). More specifically, each index of a
non-null element is converted into three digits: the most significative one is encoded
as part of the nonterminal symbols, and the two least significative digits are encoded
by the terminal symbols in the target tree. Trees ")'1 and "/2 obtained in this way from
non-null elements a2,15 and b15,7 respectively have been depicted in Figure 7b. Two

additional trees "Y3 E F~ 3) and "Y4 E 1~ 3) have been reported in the figure, that are also
added to G by J: (step (iii) in Definition 3).

Crucial to our construction, the test on the intermediate indices of elements a2,15
and b15,7 has been reduced to three independent tests involving smaller integers. More
precisely, the equality test on the most significative digits obtained from the intermedi-
ate indices has been transferred to the requirement on the matching of the nonterminal
labels of the nodes involved in the adjunction. In fact, "Yl and "Y2 can be adjoined into
")/3 just in case such a test is satisfied. At the same time, the equality test on the
least significative digits obtained from the intermediate indices has been transferred
to the requirement on the matching of the derived string with w. In fact, after the
adjunction of "/1 and "/2 into ")'3 takes place, no terminal symbol can intervene between
the internal boundaries of the yield of "Y1 and the external boundaries of the yield
of "Y2 in slices w (2) and w (s) (see again Figure 7b). Then "Y3 can participate in a sen-
tential derivation of w just in case all three equality tests above are simultaneously
satisfied.

The choice of the order of I wl has been dictated by general considerations on
the size of the search spaces associated with the two problems at hand, as already
discussed in Section 3.1. As a note, we observe that slices w (2) and w (s) are used in the
above construction to pair together least significative digits obtained from intermediate
indices. The fact that these indices have range in {1..n} forces the choice of the length
of these slices to ~r = n + 1; the example in Figure 7 actually uses the (n + 1)-th symbol
of w (2). For uniformity, this value has then been extended to all other slices, fixing I wl
to 6or.

In Lemma 1 below we will state in a more precise way the above arguments, and
we will also show how derivations of the kind outlined above are the only derivations
in G than can match string w, proving therefore the correctness of the reduction. To
complete the diagram of Figure 3, we now turn to the specification of map ~.

Definit ion 4
Let /G , w) be an instance of TGP in the image of map ~-, and let m, n, and cr be as in
Definition 3. Let also Rp be the parse relation that solves instance /G, w). A map G is
specified in such a way that G(Rp) = C, C a Boolean matrix of order m, and element cij

is non-null if and only if Rp('y, p, q, r, s) holds for an auxiliary tree ~/(u, v) E E~ n), where

(f(h n) = fh , 1 < h < 3)

p = f3 (i) , q = 2 ¢ + f 3 (j) ,
r = 3 r+f2(j), s = 5 c r + f 2 (i) ,

u = f l (i) , v = A (J) .

In the above definition, func t ionf (n) is used to retrieve the indices of non-null elements

184

Giorgio Satta Tree-Adjoining Grammar Parsing

il ,k l kl ,Yl

)2
i i i i

.wl2) . w 5).

k 3 / / \ ~ k2+ l

J3 h

Figure 8
Non-null elements aik and bkj are mapped into auxiliary trees 3'1 and 3"2 in G, and trees 3"~ and
3'~ can successively be obtained compatibly with string w. As a convention, symbols 6h,
6 E {i, k,j} and 1 < h < 3, denote integersfh(6), which indicate either positions within each
single slice or components of nonterminal symbols labeling tree nodes.

of matrix C. In this case also, the most significative digits associated with the retr ieved
indices are encoded within the nonterminal symbols of the auxiliary tree -y(u, v), while
the two least significative digits are encoded by the position of the yield boundar ies
of the string der ived from ~/(u, v) consistently with the input string w. To conclude our
previous example, we see that if we apply the relations in Definition 4 to the der ived
tree at the bot tom of Figure 7b, we get indices 2 and 7 of the only non-null e lement
inC.

The following result shows that any algori thm for the solution of a generic instance
of TGP can be conver ted into an algori thm for the solution of the BMM problem, via
the computat ion of maps 3 v and G. This concludes the present section.

L e m m a 1
Le t / A , B / be an instance of BMM and l e t /G , w / = ~-(/A, B/). Let also Rp be the parse
relation that solves/G~ w/. Then we have

A x B = G(Rp).

Proof
Assume that m is the order of the matrices A and B, n is the natural number associated
with m as in Definition 3, and ¢ = n + 1. Let C = A x B and C / = G(Rp).

To prove cij = 1 implies clj = 1, we go through a sentential derivation of w in G
and then apply the definition of G. If Cq = 1, then there exists k, 1 < k < m, such that
aik = bkj = 1. Let "Yl and "y2 be the unique auxiliary trees in G associated by map 3 v

185

Computational Linguistics Volume 20, Number 2

il ,k l k l , j l il ,Jl

h h

Figure 9
Tree 7~ is derived from trees "/~, 7~ and auxiliary trees in G. We use the same conventions as in
Figure 8.

with aik and bkj respectively (steps (i) and (ii) in Definition 3). Tree "71 has root (and
foot node) labeled by nonterminal (A,fl(i) , f l(k)); furthermore, the terminal symbols
in the yield of "Yl are (from left to right) d/B(i), d¢+/B(k), d4,+/a(k)+l and d5c,+f2(i). The only
pair of substrings of w that ~'1 can derive, by means of zero or more adjunctions of

trees in F~ n) and P(')6 , is

(f3(i)Wo-+f3(k)~ 4a+f2(k)+1W5o-+f2(i)) •

Call ~ a parse tree associated with such a derivation (see Figure 8). In a similar way,
auxiliary tree "Y2 has root labeled by nonterminal (B,fl(k);fl(j)) and derives pair

{o- +f3(k)+ l W2o" +f3(j) ~ 3cr +f2(j) W4cr +f2(k) }

of substrings of w. Call 3~ a parse tree associated with the derivation (see again Fig-
ure 8).

According to step (iii) in Definition 3, grammar G also includes auxiliary trees

"y3 = 7(f1(i)~fl (k),fl(j)) E p~n) and "/4 = 7 0 C l (/) ; A q)) C r~n). Note that the yields of trees
7~ and 7 / 2 are exactly nested within w; moreover, the root (and the foot) nodes of 71
and 72 have been preserved in the derivation. Therefore 3'I and V~ can be adjoined into
73 and the resulting tree 7~ can in turn be adjoined into 74. In this way, 74 derives the
pair of substrings of w

(f3 (i)W2cr +f3 (j), 3¢ q-f2 (j) W5~r q-f2 (i) } "

Call 7~ the resulting derived tree (see Figure 9). Since derived tree 71 can be adjoined
into % in G and a tree can be eventually derived for the input string w, we have

Re(v4,f3(i), 2e +f3(j), 3or +f2(j), 5~ +f2(i)),

and from the definition of ~ we get c;j = 1.

186

Giorgio Satta Tree-Adjoining Grammar Parsing

Assuming clj = 1, we now prove cij = 1; this is done by arguing that the only
sentential derivations for w that are al lowed by G are those of the kind outlined
above. From the definition of G we have that

Rp(%,f3(i) , 20 +f3 (j), 30 +f2(j), 50 +f2(i))

holds for the auxiliary tree 3'4 = 3'0cl (i),fl(j)) E F~ n). Equivalently, there exists at least
one derivation from '/4 of strings

(x ,y) = <f3(i)w2o-+f3(j)~3o.+f2~)w5o.+f2(i)) (2)

that participates in a sentential derivation of w. Fix such a derivation.
We first observe that, in order to derive any terminal symbol from '/4, auxiliary

trees in F~ n), F~ n) and F~ n) must be used. Any tree in F~ n) can only derive symbols

in slices w (h), h E {1,2, 5, 6}, and any tree i n F~ n) can only derive symbols in slices

w (h), h E {2, 3, 4, 5}. Therefore at least one tree in F~ n) and at least one tree in F~ n)
must be used in the derivation of (x, y), since (x, y) includes terminal symbols from

every slice of w. Furthermore, if more than one tree in F~ ") is used in a derivation in

G, the resulting string cannot match w. The same argument applies to trees in F~ n).

We must then conclude that exactly one tree in F~ "), one tree in F~ "), and one tree

in F~ n) have been used in the derivation of (x, y) from 74. Call the above trees 71 =
q'(p, k3, k2+1, s, u, kl) E F~ n), "/2 ~--" 7(k~+1, q, r, k~, k~, v) E F~ n), and "/3 = "/(u/, t, V') E F~ n).

As a second step, we observe that 73 can be adjoined into 74 only if u' = f l (i) and
v' = A q) and 3'3 can host 71 and "/2 just in case u' = u, v' = v, and k I = k~ = t . W e

also observe that, after these adjunctions take place, the leftmost terminal symbol in
the yield of 3'4 will be the leftmost terminal symbol in the yield of 71, that is dp. From
relation (2) we then conclude that p =f3(i). Similarly, we can argue that q = 20 +f3(j),
r = 3o +f2(j) and s = 50 +f2(i). Finally, adjunction of '/1 and "/2 into "/3 can match w
just in c a s e k 3 = k~ and k2 = k~.

From the relations inferred above, we conclude that we can rewrite 71 as 70c3(i), k3,

k2 + 1,5o +f2 (i),fl (i), kl) C F~ n) and '/2 as '/(k3 + 1, 20 +f3 (/'), 3o +f2(j), k2, kl,fl (j)) E F~ n) .

Sincef is one-to-one and k2, k3 c {1..n}, there exists k such that f (k) = (kl, k2, k3). From
steps (i) and (ii) in Definition 3, we then have that aik and bkj are non-null and then
cq = l . []

4. Computational Consequences

The results presented in the previous section are developed here under a computa-
tional perspective. Some interesting computational consequences will then be drawn
for the tree-adjoining grammar parsing problem. The following analysis assumes the
random-access machine as the model of computation.

4.1 Transferring of Time Upper Bounds
We show in the following how time upper bounds for the TGP problem can be trans-
ferred to time upper bounds for the BMM problem using the commutat ive diagram
studied in the previous section.

Let (A, B) be an instance of BMM and let (G, w} = .T((A, B)); m and n are specified
as in Definition 3. Observe that, since n 6 > m, func t ionf (n) maps set {1..m} into product
set {1..n 4} x {1..n} x {1..n}, in other words we have i <_fl(i) <_ n 4 and i <f2(i) , f3(i) < n

187

Computational Linguistics Volume 20, Number 2

for 1 < i < m. From the definition of ~', we see that G contains O(m 2) auxiliary trees

p(n) F~n) and p~n). This determines the size of G and we have from each of the classes -1 ,
I(G,w)] = O(/t/2), since]w] = O(n). Each auxiliary tree introduced in G at steps (i)
and (ii) of Definition 3 requires the computation of a constant number of instances of
functionf (n) on some integer i, 1 (i (m. Such a computation can be carried out in an
amount of time O(log2(m)) using standard algorithms for integer division. Summing
up, the entire computation of ~" on an instance (A, B) takes time O(m 2 log2(m)).

Let Rp be the parse relation that solves (G, w) = ~'((A, B)). From Definition 1 and

the above observations we have that]Rp] = O(m2n4), that is]Re] = O(m2+~). We can
compute C = G(Rp) in the following way. For every element cij we compute f(n)(i)
and f(n)(j) and then check Rp according to Definition 4. (Recall also our assumption
that an instance of Rp can be tested in constant time.) Again we find that the entire

computation takes an amount of time O (m 2 log 2 (m)). We observe that the computation
of ~r and G takes an amount of time (asymptotically) very close to the one needed to
store (A,B) or C.

As a consequence of the above discussion and of Lemma 1, we have that any time
upper bound for the TGP problem can be transferred to an upper bound for the BMM
problem, down to the time needed for the computation of transformations ~- and ~.
The following statement gives an example.

Theorem 1
Let Ap be an algorithm for the solution of the TGP problem having running time
O([GlPlwlq). Then any instance of BMM can be solved in time O(max{m 2p+q,
m 2 log2(m)}), where m is the order of the input matrices.

Proof
From Lemma 1 and from the previous discussion we have that two Boolean matrices
of order m can be multiplied in time O(I G IPl w I q + m 2 log2(m)), where]G I = O(m 2)

and Iwl = O(m~). []

Observe that, according to our definition, the TGP problem has a trivial time lower
bound O(IR p I), since this is the amount of time needed in the worst case to store a
representation for Rp that can be accessed in constant time. In practice this means that

the upper bound transfer stated by the above result is effective down to O(m 2+2).

4.2 Time Upper Bounds for TGP
In previous sections we have related the complexity of tree-adjoining grammar pars-
ing to the complexity of Boolean matrix multiplication. Here we speculate on the
consequences of the presented result.

As a computational problem, Boolean matrix multiplication has been an object of
investigation for many years. Researchers have tried to improve the well-known O(m 3)
time upper bound, m the order of the input matrices, and methods were found that
work asymptotically faster than the standard cubic time algorithm. Strassen's divide
and conquer algorithm that runs in time O(m 2sl) (see for instance Cormen, Leiserson,
and Rivest [1990]) has been the first one in the series, and the best time upper bound
known to date is approximately 0(m2"376), a s reported in Coppersmith and Winograd
(1990). It is worth noting here that the closer researchers have come to the O(m 2) trivial
time lower bound, the more complex the computation involved in these methods has
become. In fact, if Strassen's algorithm outperforms the O(m 3) standard algorithm only

188

Giorgio Satta Tree-Adjoining Grammar Parsing

for input matrices of order greater than 45 or so (see again Cormen, Leiserson, and
Rivest [1990]), recently discovered methods that are asymptotically faster are definitely
prohibitive, given current computer hardware. At present, no straightforward method
is known for Boolean matrix multiplication that considerably improves the cubic upper
bound and that can be used in practical cases. Also, there is enough evidence that, if
such a method exists, its discovery should be a very difficult enterprise.

Let us now turn to the TAG parsing problem. Many algorithms have been pro-
posed for its solution and an O(I G III U A I] w 16) time upper bound has been given
in the literature; see for instance Schabes (1990). We remark here that the depen-
dency on the grammar size can be further improved using techniques similar to the
one proposed in Graham, Harrison, and Ruzzo (1980) for the context-free grammar
recognition/parsing problem: this results in an O(I G II w 16) time upper bound for the
general case. Theorem 1 can be used to transfer this upper bound to an upper bound
for Boolean matrix multiplication, finding the already mentioned O(m 3) result.

More interestingly, Theorem 1 implies that any method for the solution of the
tree-adjoining grammar parsing problem having running time O(I G II w I s) will give us
a method for Boolean matrix multiplication having running time O(m2"83). Likewise,

any O(I G I]wl 4) time method for the former problem will result in an O(m 2'~) time
method for Boolean matrix multiplication. Even if the involved constants hidden in
the studied construction are large, the resulting methods will still be competitive with
known methods for Boolean matrix multiplication that improve the cubic time upper
bound. We conclude then that the TAG parsing problem should also be considered
as having the status of a problem that is "difficult" to improve, and we have enough
evidence to think that methods for TAG parsing that are asymptotically faster than
O(I G II w I 6) are unlikely to be practical, i.e., will involve rather complex computations.

5. Remarks and Conclus ion

Polynomial time reductions between decision/search problems are commonly used
in providing hardness results for complexity classes not known to be included in P
(P is the class of all languages decidable in deterministic polynomial time). We have
studied here a polynomial time reduction between Boolean matrix multiplication and
TAG parsing, two problems already known to be in P. However, the choice of the
mapping allows one to transfer upper bounds from the first problem to the other. In
this way TAG parsing inherits from Boolean matrix multiplication the reputation of
being a problem tough to improve. We comment in the following on the significance
of this result.

As already discussed, the notion of the parse forest is an informal one, and there
is no common agreement on which specifications such a structure should meet. The
obtained results are based on the assumption that a parsing algorithm for TAG should
be able to provide a representation for a parse forest such that instances of the parse
relation Rp in Definition I can be retrieved in constant time. Whatever the specifications
of the output parse forest structure will be, it seems quite reasonable to require that an
explicit representation of relation Rp can be extracted from the output in linear time
with respect to the size of the output itself, therefore without affecting the overall
running time of the method. This requirement is satisfied by all TAG parsers that
have been presented to date in the literature.

As a second point, the studied construction provides an interesting insight into
the structure of the TAG parsing problem. We see for instance that the major source of

189

Computational Linguistics Volume 20, Number 2

complexity derives from cases of properly nested adjunction operations. Such cases are
responsible for a bounded amount of nondeterminism in the computation: to detect
how a string divides into subparts according to the adjunction of a derived tree into
another, we have to consider many possibilities in general, as much as we do to detect
a non-null element within a product Boolean matrix. A closer look at the studied
construction reveals also that the parsing problem for linear TAG does not seem easier
than the general case, since ~ maps instances of BMM to instances of TGP restricted
to such a class (a linear TAG is a TAG whose elementary trees allow adjunction only
into nodes along a single spine). This contrasts with the related case of context-free
grammar parsing, where the restriction of the problem to linear grammars can be
solved in time O(I G II w 12) but no method is known for the general case working with
this bound. As expected from our result, the techniques that are used for linear context-
free grammar parsing cannot be easily generalized to improve the parsing problem
for linear TAGs with respect to the general case.

Finally, we want to discuss here an interesting extension of the studied result.
The TAG parsing problem can be generalized to cases in which the input is a lattice
representation of a string of terminal symbols along with a partially specified parse
relation associated with it. This has many applications for ill-formed input and error-

correcting parsing. The TAG lattice parsing problem can still be solved in O(I G[I w I 6)
time: the general parsing method provided in Lang (1992) can be used to this purpose,
and already known tabular methods for TAG parsing can be easily adapted as well.

Without giving the technical details of the argument, we sketch here how Boolean
matrix multiplication can be related to TAG lattice parsing. For order m matrices, one

can use an encoding function f/(n), where n = [ml/2j + 1, mapping set {1..m} into
product set {1..n} x {1..n}. This allows a direct encoding of any instance (A, B) of
the BMM problem into a word lattice wl consisting of 6(n + 1) nodes and O(m 2) arcs,
where some arcs involve four nodes and represent a derived tree corresponding to
a non-null element in either A or B. Then we can use a grammar G in the target
instance of the TAG lattice problem that is defined independently of (A, B) and there-

fore has constant size. (Such a grammar can be obtained from families F~ n) and F~ n)
defined in Section 3 by deleting the integer components in each nonterminal sym-
bol.) The construction obtained in this way relates therefore the BMM problem to the
fixed grammar parsing problem, and provides a result even stronger than the one
presented in Theorem 1. We have in fact that any algorithm for TAG lattice parsing
having running time O(IG IP[w I q) can be converted into an algorithm for Boolean ma-
trix multiplication running in time O(max{m~, malog2(m)}), independently of p. As
an example, O(I G IPl w 14) for TAG lattice parsing becomes O(m 2 log2(m)) for matrix
multiplication, for any p. Since many tabular methods for TAG parsing can be easily
extended to TAG lattice parsing, this means that the chances of getting an 0(I G IPlw 14)
time upper bound for the TAG parsing problem itself by means of these techniques
are really small.

Acknowledgments
I am indebted to Yves Schabes who
suggested to me the original idea of relating
a standard computational problem to the
tree-adjoining grammar parsing problem. I
want to thank Bernard Lang, Owen
Rambow, and Yves Schabes, who have
provided, directly or indirectly, important
suggestions for the development of the

ideas in this paper. Comments from two
anonymous referees have also been very
helpful in improving the exposition of the
results reported in this paper. Finally, I am
grateful to Aravind Joshi for his support in
this research. None of these people is
responsible for any error in this work. This
research was partially funded by the
following grants: ARO grant DAAL

190

Giorgio Satta Tree-Adjoining Grammar Parsing

03-89-C-0031, DARPA grant
N00014-90-J-1863, NSF grant IRI 90-16592,
and Ben Franklin grant 91S.3078C-1.

References
Coppersmith, D., and Winograd, S. (1990).

"Matrix multiplication via arithmetic
progression." Journal of Symbolic
Computation, 9(3), 251-280. Special Issue
on Computational Algebraic Complexity.

Cormen, T. H.; Leiserson, C. E.; and Rivest,
R. L. (1990). Introduction to Algorithms. The
MIT Press.

Frank, R. (1992). Syntactic locality and tree
adjoining grammar: grammatical, acquisition
and processing perspectives. Doctoral
dissertation, University of Pennsylvania.

Graham, S. L.; Harrison, M. A.; and Ruzzo,
W. L. (1980). "An improved context-free
recognizer." ACM Transactions on
Programming Languages and Systems, 2(3),
415-462.

Joshi, A. K. (1985). "How much
context-sensitivity is necessary for
characterizing structural
descriptions--tree adjoining grammars. In
Natural Language Processing--Theoretical,
Computational and Psychological Perspectives,
edited by D. Dowty, L. Karttunen, and
A. Zwicky, 206-250. Cambridge
University Press. Originally presented in
a Workshop on Natural Language Parsing
at Ohio State University, Columbus, Ohio,
May 1983.

Joshi, A. K.; Levy, L. S.; and Takahashi, M.
(1975). "Tree adjunct grammars." Journal
of Computer System and Science, 10(1),
136-163.

Joshi, A.; Vijay-Shanker, K.; and Weir, D.
(1991). "The convergence of mildly
context-sensitive grammatical
formalisms." In Foundational Issues in
Natural Language Processing, edited by

S. Shieber and T. Wasow, 31-82. MIT
Press.

Lang, B. (1992). "Recognition can be harder
than parsing." Abstract submitted to the
Second TAG Workshop, June 1992.

Lavelli, A., and Satta, G. (1991).
"Bidirectional parsing of lexicalized tree
adjoining grammars." In Proceedings, Fifth
Conference of the European Chapter of the
Association for Computational Linguistics,
Berlin, 1991, 27-32.

Palis, M. A.; Shende, S.; and Wei, D. S. L.
(1990). "An optimal linear-time parallel
parser for tree-adjoining languages."
SIAM Journal on Computing, 19(1), 1-31.

Schabes, Y. (1990). Mathematical and
computational aspects of lexicalized grammars.
Doctoral dissertation, University of
Pennsylvania. Available as technical
report (MS-CIS-9048, LINC LAB179) from
the Department of Computer Science.

Schabes, Y. (1991). "The valid prefix
property and left to right parsing of
tree-adjoining grammar." In Proceedings,
Second International Workshop on Parsing
Technologies, Cancun, Mexico, February
1991, 21-30.

Schabes, Y., and Joshi, A. K. (1988). "An
Earley-type parsing algorithm for tree
adjoining grammars." In Proceedings, 26th
Meeting of the Association for Computational
Linguistics, Buffalo, June 1988, 258-269.

Vijay-Shanker, K., and Joshi, A. K. (1985).
"Some computational properties of tree
adjoining grammars." In Proceedings, 23rd
Meeting of the Association for Computational
Linguistics, Chicago, July 1985, 82-93.

Vijay-Shanker, K., and Weir, D. J. (1993).
"The use of shared forests in TAG
parsing." In Proceedings, Sixth Conference of
the European Chapter of the Association for
Computational Linguistics, Utrecht, 1993,
384-393.

191

