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In this paper we present some experiments on the use of a probabilistic model to tag English text, 
i.e. to assign to each word the correct tag (part of speech) in the context of the sentence. The main 
novelty of these experiments is the use of untagged text in the training of the model. We have 
used a simple triclass Marlcov model and are looking for the best way to estimate the parameters 
of this model, depending on the kind and amount of training data provided. Two approaches in 
particular are compared and combined: 

• using text that has been tagged by hand and computing relative frequency counts, 

• using text without tags and training the model as a hidden Markov process, 
according to a Maximum Likelihood principle. 

Experiments show that the best training is obtained by using as much tagged text as possible. They 
also show that Maximum Likelihood training, the procedure that is routinely used to estimate 
hidden Markov models parameters from training data, will not necessarily improve the tagging 
accuracy. In fact, it will generally degrade this accuracy, except when only a limited amount of 
hand-tagged text is available. 

1. Introduction 

A lot of effort has been devoted in the past to the problem of tagging text, i.e. assigning 
to each word the correct tag (part of speech) in the context of the sentence. Two main 
approaches have generally been considered: 

rule-based (Klein and Simmons 1963; Brodda 1982; Paulussen and 
Martin 1992; Brill et al. 1990) 

probabilistic (Bahl and Mercer 1976; Debili 1977; Stolz, Tannenbaum, and 
Carstensen 1965; Marshall 1983; Leech, Garside, and Atwell 1983; 
Derouault and Merialdo 1986; DeRose 1988; Church 1989; Beale 1988; 
Marcken 1990; Merialdo 1991; Cutting et al. 1992). 

More recently, some work has been proposed using neural networks (Benello, 
Mackie, and Anderson 1989; Nakamura and Shikano 1989). 
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Through these different approaches, some common points have emerged: 

For any given word, only a few tags are possible, a list of which can be 
found either in the dictionary or through a morphological analysis of the 
word. 

When a word has several possible tags, the correct tag can generally be 
chosen from the local context, using contextual rules that define the valid 
sequences of tags. These rules may be given priorities so that a selection 
can be made even when several rules apply. 

These kinds of considerations fit nicely inside a probabilistic formulation of the 
problem (Beale 1985; Garside and Leech 1985), which offers the following advantages: 

• a sound theoretical framework is provided 

• the approximations are clear 

• the probabilities provide a straightforward way to disambiguate 

• the probabilities can be estimated automatically from data. 

In this paper we present a particular probabilistic model, the triclass model, and 
results from experiments involving different ways to estimate its parameters, with the 
intention of maximizing the ability of the model to tag text accurately. In particular, 
we are interested in a way to make the best use of untagged text in the training of the 
model. 

2. The Problem of Tagging 

We suppose that the user has defined a set of tags (attached to words). Consider a 
sentence W = WlW2. . .  w , ,  and a sequence of tags T -- h t 2 . . ,  t , ,  of the same length. 
We call the pair (W, T) an alignment. We say that word wi has been assigned the tag ti 
in this alignment. 

We assume that the tags have some linguistic meaning for the user, so that among 
all possible alignments for a sentence there is a single one that is correct from a 
grammatical point of view. 

A tagging procedure is a procedure ~ that selects a sequence of tags (and so defines 
an alignment) for each sentence. 

~: W ~ T = ~(W) 

There are (at least) two measures for the quality of a tagging procedure: 

• at sentence level 

perfs(~) -- percentage of sentences correctly tagged 

• at word level 

perfw(~) = percentage of words correctly tagged 
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In practice, performance at sentence level is generally lower than performance at word 
level, since all the words have to be tagged correctly for the sentence to be tagged 
correctly. 

The standard measure used in the literature is performance at word level, and this 
is the one considered here. 

3. Probabilistic Formulation 

In the probabilistic formulation of the tagging problem we assume that the alignments 
are generated by a probabilistic model according to a probability distribution: 

p(W,T) 

In this case, depending on the criterion that we choose for evaluation, the optimal 
tagging procedure is as follows: 

• for evaluation at sentence level, choose the most probable sequence of 
tags for the sentence 

argmax argmax 
T p(T/W)= T p(W,T) 

We call this procedure Viterbi tagging. It is achieved using a dynamic 
programming scheme. 

for evaluation at word level, choose the most probable tag for each word 
in the sentence 

argmax argmax 
~(W)i = t p(ti = t/W) = t ~ p(W, T) 

T:ti=t 

where ~(W)i is the tag assigned to word wi by the tagging procedure ~b 
in the context of the sentence W, We call this procedure Maximum 
Likelihood (ML) tagging. 

It is interesting to note that the most commonly used method is Viterbi tagging 
(see DeRose 1988; Church 1989) although it is not the optimal method for evaluation 
at word level. The reasons for this preference are presumably that: 

• Viterbi tagging is simpler to implement than ML tagging and requires 
less computation (although they both have the same asymptotic 
complexity) 

• Viterbi tagging provides the best interpretation for the sentence, which is 
linguistically appealing 

• ML tagging may produce sequences of tags that are linguistically 
impossible (because the choice of a tag depends on all contexts taken 
together). 

However, in our experiments, we will show that Viterbi and ML tagging result in very 
similar performance. 
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Of course, the real tags have not been generated by a probabilistic model and, 
even if they had been, we would not be able to determine this model exactly be- 
cause of practical limitations. Therefore the models that we construct will only be 
approximations of an ideal model that does not exist. It so happens that despite these 
assumptions and approximations, these models are still able to perform reasonably 
well. 

4. The Triclass Model 

We have the mathematical expression: 

H 

p ( W ~  T )  = I I  P ( W i / W l t l  . . .  w i - l t i - l t i ) . p ( t i / w l t l  . .  . W i - l t i - 1 )  

i=1 

The triclass (or tri-POS [Derouault 1986], or tri-Ggram [Codogno et al. 1987], or 
HK) model is based on the following approximations: 

• The probability of the tag given the past depends only on the last two 
tags 

p ( t i / w l t l  . . . w i - l t i - 1 )  = h ( t i / t i _ a t i _ l )  

• The probability of the word given the past depends only on its tag 

p ( w i / w l t l  . . . W i - l t i - l t i )  = k ( w i / t i )  

(the name HK model comes from the notation chosen for these probabilities). 
In order to define the model completely we have to specify the values of all h and 

k probabilities. If Nw is the size of the vocabulary and N T  the number of different tags, 
then there are: 

• N T . N T . N T  values for the h probabilities 

• N w . N T  values for the k probabilities. 

Also, since all probability distributions have to sum to one, there are: 

• N T . N T  equations to constrain the values for the h probabilities 

• N T  equations to constrain the values for the k probabilities. 

The total number of free parameters is then: 

(Nw - 1).NT + ( N T  -- 1 ) . N T . N T .  

Note that this number grows only linearly with respect to the size of the vocabulary, 
which makes this model attractive for vocabularies of a very large size. 

The triclass model by itself allows any word to have any tag. However, if we 
have a dictionary that specifies the list of possible tags for each word, we can use this 
information to constrain the model: if t is not a valid tag for the word w, then we are 
sure that 

k ( w / t )  = O. 

There are thus at most as many nonzero values for the k probabilities as there are 
possible pairs (word, tag) allowed in the dictionary. 
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5. Training the Triclass Model 

We consider two different types of training: 

• Relative Frequency (RF) training 

• Maximum Likelihood (ML) training which is done via the 
Forward-Backward (FB) algorithm. 

5.1 Relative Frequency Training 
If we have some tagged text available we can compute the number  of times N(w, t) 
a given word w appears with the tag t, and the number  of times N(h, t2~ t3) the se- 
quence (tl~ t2~ t3) appears in this text. We can then estimate the probabilities h and k 
by computing the relative frequencies of the corresponding events on this data: 

N(h, t2~ t3) 
hrf(tB/tl~ t2) =f(tg/tl,  t2) - N(tl, t2) 

N(w,t) 
k r f (W/ t )=f (w/ t ) -  N(t) 

These estimates assign a probability of zero to any sequence of tags that did not 
occur in the training data. But such sequences may  occur if we consider other texts. 
A probability of zero for a sequence creates problems because any alignment that 
contains this sequence will get a probability of zero. Therefore, it may  happen that, 
for some sequences of words, all alignments get a probability of zero and the model 
becomes useless for such sentences. 

To avoid this, we interpolate these distributions with uniform distributions, i.e. 
we consider the interpolated model  defined by: 

where 

hinter(t3/tl~ t2) = ~.hrf(t3/tl~ t2) q- (1 - ),).hunid(t3/h, t2) 

kinter(W/t) =/~.krf(W/t) q- (1 -/~).kunif(w/t ) 

1 
hunif(t3/tl, t2) = ~TT 

1 
ku,if(w/t) = number  of words that have the tag t 

The interpolation coefficient ,~ is computed using the deleted interpolation algorithm 
(Jelinek and Mercer 1980) (it would  also be possible to use two coefficients, one for 
the interpolation on h, one for the interpolation on k). The value of this coefficient 
is expected to increase if we increase the size of the training text, since the rela- 
tive frequencies should be more reliable. This interpolation procedure is also called 
"smoothing." 

Smoothing is performed as follows: 

Some quantity of tagged text from the training data is no t  used in the 
computat ion of the relative frequencies. It is called the "held-out" data. 

The coefficient & is chosen to maximize the probability of emission of the 
held-out data by the interpolated model. 
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This maximization can be performed by the standard Forward-Backward 
(FB) or Baum-Welch algorithm (Baum and Eagon 1967; Jelinek 1976; 
Bahl, Jelinek, and Mercer 1983; Poritz 1988), by considering ~ and 1 - 
as the transition probabilities of a Markov model. 

It can be noted that more complicated interpolation schemes are possible. For 
example, different coefficients can be used depending on the count of (h, t2), with the 
intuition that relative frequencies can be trusted more when this count is high. Another 
possibilitity is to interpolate also with models of different orders, such as hrf(t3/t2) or 
hrf(t3). 

Smoothing can also be achieved with procedures other than interpolation. One 
example is the "backing-off" strategy proposed by Katz (1987). 

5.2 Maximum Likelihood Training 
Using a triclass model M it is possible to compute the probability of any sequence of 
words W according to this model: 

= Zp (w, T) 
T 

where the sum is taken over all possible alignments. The Maximum Likelihood (ML) 
training finds the model M that maximizes the probability of the training text: 

max I I  pM(W) 
M 

W 

where the product is taken over all the sentences W in the training text. This is the 
problem of training a hidden Markov model (it is hidden because the sequence of tags 
is hidden). A well-known solution to this problem is the Forward-Backward (FB) or 
Baum-Welch algorithm (Baum and Eagon 1967; Jelinek 1976; Bahl, Jelinek, and Mercer 
1983), which iteratively constructs a sequence of models that improve the probability 
of the training data. 

The advantage of this approach is that it does not require any tagging of the text, 
but makes the assumption that the correct model is the one in which tags are used to 
best predict the word sequence. 

6. Tagging Algorithms 

The Viterbi algorithm is easily implemented using a dynamic programming scheme 
(Bellman 1957). The Maximum Likelihood algorithm appears more complex at first 
glance, because it involves computing the sum of the probabilities of a large number 
of alignments. However, in the case of a hidden Markov model, these computations 
can be arranged in a way similar to the one used during the FB algorithm, so that the 
overall amount of computation needed becomes linear in the length of the sentence 
(Baum and Eagon 1967). 

7. Experiments 

The main objective of this paper is to compare RF and ML training. This is done in 
Section 7.2. We also take advantage of the environment that we have set up to perform 
other experiments, described in Section 7.3, that have some theoretical interest, but did 
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Table 1 
RF training on N sentences, Viterbi tagging. 

Training data Interpolation Nb of errors % correct 
(sentences) coefficient )~ (words) tags 

0 .0 10498 77.0 
100 .48 4568 90.0 

2000 .77 2110 95.4 
5000 .85 1744 96.2 

10000 .90 1555 96.6 
20000 .92 1419 96.9 

all .94 1365 97.0 

not bring any improvement in practice. One concerns the difference between Viterbi 
and ML tagging, and the other concerns the use of constraints during training. 

We shall begin by describing the textual data that we are using, before presenting 
the different tagging experiments using these various training and tagging methods. 

7.1 Text Data 
We use the "treebank" data described in Beale (1988). It contains 42,186 sentences 
(about one million words) from the Associated Press. These sentences have been tagged 
manually at the Unit for Computer Research on the English Language (University of 
Lancaster, U.K.), in collaboration with IBM U.K. (Winchester) and the IBM Speech 
Recognition group in Yorktown Heights (USA). In fact, these sentences are not only 
tagged but also parsed. However, we do not use the information contained in the 
parse. 

In the treebank 159 different tags are used. These tags were projected on a smaller 
system of 76 tags designed by Evelyne Tzoukermann and Peter Brown (see Appendix). 
The results quoted in this paper all refer to this smaller system. 

We built a dictionary that indicates the list of possible tags for each word, by 
taking all the words that occur in this text and, for each word, all the tags that are 
assigned to it somewhere in the text. In some sense, this is an optimal dictionary for 
this data, since a word will not have all its possible tags (in the language), but only 
the tags that it actually had within the text. 

We separated this data into two parts: 

a set of 40,186 tagged sentences, the training data, which is used to build 
the models 

a set of 2,000 tagged sentences (45,583 words), the test data, which is 
used to test the quality of the models. 

7.2 Basic Experiments 
RF training, Viterbi tagging 
In this experiment, we extracted N tagged sentences from the training data. We then 
computed the relative frequencies on these sentences and built a "smoothed" model 
using the procedure previously described. This model was then used to tag the 2,000 
test sentences. We experimented with different values of N, for each of which we 
indicate the value of the interpolation coefficient and the number and percentage of 
correctly tagged words. Results are indicated in Table 1. 
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As expected, as the size of the training increases, the interpolation coefficient in- 
creases and the quality of the tagging improves. 

When N = 0, the model is made up of uniform distributions. In this case, all 
alignments for a sentence are equally probable, so that the choice of the correct tag 
is just a choice at random. However, the percentage of correct tags is relatively high 
(more than three out of four) because: 

• almost half of the words of the text have a single possible tag, so that no 
mistake can be made on these words 

• about a quarter of the words of the text have only two possible tags so 
that, on the average, a random choice is correct every other time. 

Note that this behavior is obviously very dependent on the system of tags that is used. 
It can be noted that reasonable results are obtained quite rapidly. Using 2,000 

tagged sentences (less than 50,000 words), the tagging error rate is already less than 5%. 
Using 10 times as much data (20,000 tagged sentences) provides an improvement of 
only 1.5%. 

ML training, Viterbi tagging 
In ML training we take all the training data available (40,186 sentences) but we only 
use the word sequences, not the associated tags (except to compute the initial model, 
as will be described later). This is possible since the FB algorithm is able to train the 
model using the word sequence only. 

In the first experiment we took the model made up of uniform distributions as the 
initial one. The only constraints in this model came from the values k(w/t) that were 
set to zero when the tag t was not possible for the word w (as found in the dictionary). 
We then ran the FB algorithm and evaluated the quality of the tagging. The results 
are shown in Figure 1. (Perplexity is a measure of the average branching factor for 
probabilistic models.) 

This figure shows that ML training both improves the perplexity of the model and 
reduces the tagging error rate. However, this error rate remains at a relatively high 
level--higher than that obtained with a RF training on 100 tagged sentences. 

Having shown that ML training is able to improve the uniform model, we then 
wanted to know if it was also able to improve more accurate models. We therefore 
took as the initial model each of the models obtained previously by RF training and, 
for each one, performed ML training using all of the training word sequences. The 
results are shown graphically in Figure 2 and numerically in Table 2. 

These results show that, when we use few tagged data, the model obtained by 
relative frequency is not very good and Maximum Likelihood training is able to im- 
prove it. However, as the amount of tagged data increases, the models obtained by 
Relative Frequency are more accurate and Maximum Likelihood training improves 
on the initial iterations only, but after deteriorates. If we use more than 5,000 tagged 
sentences, even the first iteration of ML training degrades the tagging. (This number 
is of course dependent on both the particular system of tags and the kind of text used 
in this experiment). 

These results call for some comments. ML training is a theoretically sound pro- 
cedure, and one that is routinely and successfully used in speech recognition to es- 
timate the parameters of hidden Markov models that describe the relations between 
sequences of phonemes and the speech signal. Although ML training is guaranteed 
to improve perplexity, perplexity is not necessarily related to tagging accuracy, and 
it is possible to improve one while degrading the other. Also, in the case of tagging, 
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Figure 1 
ML training from uniform distributions. 

Table 2 
ML training from various initial points. 

Number of tagged sentences used for the initial model 

0 100 2000 5000 10000 20000 all 

Iter Correct tags (% words) after ML on 1M words 

0 77.0 90.0 95.4 96.2 96.6 96.9 97.0 
1 80.5 92.6 95.8 96.3 96.6 96.7 96.8 
2 81.8 93.0 95.7 96.1 96.3 96.4 96.4 
3 83.0 93.1 95.4 95.8 96.1 96.2 96.2 
4 84.0 93.0 95.2 95.5 95.8 96.0 96.0 
5 84.8 92.9 95.1 95.4 95.6 95.8 95.8 
6 85.3 92.8 94.9 95.2 95.5 95.6 95.7 
7 85.8 92.8 94.7 95.1 95.3 95.5 95.5 
8 86.1 92.7 94.6 95.0 95.2 95.4 95.4 
9 86.3 92.6 94.5 94.9 95.1 95.3 95.3 

10 86.6 92.6 94.4 94.8 95.0 95.2 95.2 
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Figure 2 
ML training from various initial points ( top  l ine  corresponds  to N = I O 0 ,  b o t t o m  l ine  to N=al l ) .  

the relations between words and tags are much more precise than the relations be- 
tween phonemes and speech signals (where the correct correspondence is harder to 
define precisely). Some characteristics of ML training, such as the effect of smoothing 
probabilities, are probably more suited to speech than to tagging. 

7.3 Extra Experiments 
Viterbi versus ML tagging 
For this experiment we considered the initial model built by RF training over the whole 
training data and all the successive models created by the iterations of ML training. 
For each of these models we performed Viterbi tagging and ML tagging on the same 
test data, then evaluated and compared the number of tagging errors produced by 
these two methods. The results are shown in Table 3. 

The models obtained at different iterations are related, so one should not draw 
strong conclusions about the definite superiority of one tagging procedure. However, 
the difference in error rate is very small, and shows that the choice of the tagging 
procedure is not as critical as the kind of training material. 

Constrained ML training 
Following a suggestion made by E Jelinek, we investigated the effect of constraining 
the ML training by imposing constraints on the probabilities. This idea comes from 
the observation that the amount of training data needed to properly estimate the 
model increases with the number of free parameters of the model. In the case of 
little training data, adding reasonable constraints on the shape of the models that are 
looked for reduces the number of free parameters and should improve the quality of 
the estimates. 
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Table 3 
Viterbi vs. ML tagging. 

Tagging errors out of 45,583 words  

Iter. Viterbi ML Vit. - ML 

0 % nb % nb nb 

0 97.01 1365 97.01 1362 3 
1 96.76 1477 96.75 1480 - 3 
2 96.44 1623 96.47 1607 16 
3 96.23 1718 96.23 1719 - 1 
4 96.00 1824 96.02 1812 12 
5 95.82 1906 95.85 1892 14 
6 95.66 1978 95.68 1970 8 
7 95.51 2046 95.54 2031 15 
8 95.39 2100 95.42 2087 13 
9 95.30 2144 95.31 2140 4 

10 95.21 2183 95.22 2177 6 

Table 4 
Standard ML vs. tw-constrained ML training. 

Tagging errors out of 45,583 words  

Iter. ML tw-c. ML 

0 % nb % nb 

0 97.01 1365 97.01 1365 
1 96.76 1477 96.87 1427 
2 96.44 1623 96.71 1501 
3 96.23 1718 96.57 1562 
4 96.00 1824 96.43 1626 
5 95.82 1906 96.36 1661 
6 95.66 1978 96.29 1690 
7 95.51 2046 96.22 1723 
8 95.39 2100 96.18 1741 
9 95.30 2144 96.12 1768 

10 95.21 2183 96.09 1784 

We t r i e d  t w o  d i f fe ren t  cons t ra in t s :  

• The  first  one  k e e p s  p(t/w) f ixed  if w is a f r e q u e n t  w o r d ,  in  o u r  case  one  
of  the  1,000 m o s t  f r e q u e n t  w o r d s .  We call  i t  tw-constraint. The  r a t i ona l e  is 
t ha t  if w is f r equen t ,  the  r e l a t ive  f r e q u e n c y  p r o v i d e s  a g o o d  e s t i m a t e  for  
p(t/w) a n d  the  t r a i n i n g  s h o u l d  n o t  c h a n g e  it. 

• The  s e c o n d  one  k e e p s  the  m a r g i n a l  d i s t r i b u t i o n  p(t) c o n s t a n t  a n d  is 
b a s e d  on  a s imi l a r  r ea son ing .  We call  it  t-constraint. 

t w - cons tra in t  
The  t w - c o n s t r a i n e d  M L  t r a i n i n g  is s imi l a r  to the  s t a n d a r d  M L  t r a in ing ,  excep t  tha t  the  
p r o b a b i l i t i e s  p(t/w) are  n o t  c h a n g e d  at  the  e n d  of  a n  i te ra t ion .  

The  r e su l t s  in  Table 4 s h o w  the  n u m b e r  of  t a g g i n g  e r ro r s  w h e n  the  m o d e l  is t r a i n e d  
w i t h  the  s t a n d a r d  or  t w - c o n s t r a i n e d  M L  t ra in ing .  T h e y  s h o w  tha t  the  t w - c o n s t r a i n e d  
M L  t r a i n i n g  sti l l  d e g r a d e s  the  RF t r a in ing ,  b u t  n o t  as  q u i c k l y  as  the  s t a n d a r d  ML. We 
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Table 5 
Standard ML vs. constrained ML training. 

Tagging errors out of 45,583 words (biclass model) 
Iter. ML t-c. ML 

0 % nb % nb 

0 96.87 1429 96.87 1429 
1 96.51 1592 96.54 1576 
2 96.18 1743 96.23 1718 
3 96.00 1824 96.03 1810 
4 95.84 1896 95.90 1871 
5 95.67 1972 95.77 1928 
6 95.52 2044 95.59 2009 
7 95.42 2087 95.50 2051 
8 95.33 2129 95.42 2087 
9 95.24 2171 95.34 2126 

10 95.18 2196 95.30 2141 

have not tested what happens when smaller training data is used to build the initial 
model. 

t-constraint 
This constraint is more difficult to implement than the previous one because the prob- 
abilities p ( t )  are not the parameters of the model, but a combination of these parame- 
ters. With the help of R. Polyak we have designed an iterative procedure that allows 
the likelihood to be improved while preserving the values of p ( t ) .  We do not have 
sufficient space to describe this procedure here. Because of its greater computational 
complexity, we have only applied it to a biclass model, i.e. a model where 

p ( t i / w l t l  . . . W i - l t i - 1 )  = h ( t i / t i - 1 ) .  

The initial model is estimated by relative frequency on the whole training data and 
Viterbi tagging is used. 

As in the previous experiment, the results in Table 5 show the number of tagging 
errors when the model is trained with the standard or t-constrained ML training. 
They show that the t-constrained ML training still degrades the RF training, but not 
as quickly as the standard ML. Again, we have not tested what happens when smaller 
training data is used to build the initial model. 

8. Conc lus ion  

The results presented in this paper show that estimating the parameters of the model 
by counting relative frequencies over a very large amount of hand-tagged text lead to 
the best tagging accuracy. 

Maximum Likelihood training is guaranteed to improve perplexity, but will not 
necessarily improve tagging accuracy. In our experiments, ML training degrades the 
performance unless the initial model is already very bad. 

The preceding results suggest that the optimal strategy to build the best possible 
model for tagging is the following: 

• get as much tagged (by hand) text as you can afford 
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compute  the relative frequencies f rom this data to build an initial model  

M0 

get as much  untagged text as you  can afford 

starting from M0, per form the Forward-Backward iterations. At each 
iteration, evaluate the tagging quality of the new model  Mi on some 
held-out  tagged text. Stop either when  you  have reached a preset 
number  of iterations or the model  Mi performs worse than Mi-1, 
whichever  occurs first. 
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Appendix A: List of Tags Used 

$* possessive marker ('s, ') 

APP$* possessive adjectives (my, your, our) 

AT* article (the, a, no) 

BOUNDARY_TAG end-of-sentence marker 

CCF* coordinating conjunction (and, or, but, so, yet, then) 

CS* subordinating conjunction (/f, because, unless) 

CT* that or whether as subordinating conjunctions 

D* determiner (all, any, enough) 

D*Q wh-determiner (which, what, whose) 

D*R comparative plural after-determiner (less, more) 

D*I determiner singular (this, that, little, much, former) 

D*2 determiner plural (these, few, several, many) 

DAT* superlative determiner (least, most) 

EX* existential there 

FW* foreign words (ipso, facto) 

I* preposition (general) 

ICS* preposition that can also be used as a conjunction (since, after) 

IF* the preposition for 

IO* the preposition of 

J* adjective (small, pretty) 

J*R comparative adjective (smaller, prettier) 

J*T superlative adjective (prettiest, nicest) 

LE* leading coordinator (both, either, neither) 

M* cardinal number 

MD* ordinal number (first, second) 

N* noun without number (english) 

N*I singular noun (cat, man) 

N*2 plural noun (cats, men) 

NPR* proper noun (paris, fred) 

NR* noun/adverb  of direction (south, west) or time (now, tomorrow, tuesday) 

P* non-nominative pronoun (none, anyone, oneself) 

P*Q who, whom, whoever, whomever 

PNXI* personal pronoun reflexive (himself) 
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PNI* indefinite pronoun (anyone, anybody) 

PP$* possessive pronoun (mine, yours) 

PP*O personal pronoun object (me, him) 

PP*S personal pronoun subject (I, you, we) 

PP*S3 personal pronotm subject 3rd person singular (he, she) 

PUNCTI* end of sentence (. ! ? - ) 

PUNCT2* non terminal punctuation (, : ;) 

QUOT* quote 

R* adverb (here, slowly) 

R*Q wh-adverb (where, when, why, how, whenever, wherever) 

R*R comparative adverb (better, longer) 

RG* degree adverb (very, so, too, enough, indeed) 

RGQ* wh-degree adverb (how) 

RGR* comparative degree adverb (more, less, worse) 

RP* adverb that can also serve as a preposition 

SIGN* sign ($, c., ct, %) 

TO* to as pre-infinitive 

UH* interjection (gee) 

VBDR* were 

VBDZ* was 

VBG* being 

VBI* infinitive form of be and imperative 

VBM* am 

VBN* been 

VBR* are 

VBZ* is 

VDG* doing 

VDN* past participial form of do (did) 

VDPAST* past form of do (did) 

VD0* do as a conjugated form and infinitive 

VDOZ* does as a conjugated form 

VHG* having 

VHN* past participial form of have (had) 

VHPAST* past form of have (had) 
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VH0* have as a conjugated fo rm 

VHOZ* has as a conjugated form 

VM* modals  (can, would, ought, used) 

VVG* non-aux verb  in -ing 

VVN* past  participial  fo rm of non-aux verb  

VVPAST* preteri t  of non-aux verb  

VV0* non- thi rd-person-s ingular  fo rm of non-aux verb  and  infinitive 

VVOZ* third-person-s ingular  fo rm of non-aux verb  

XX* not 
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