
An Alternative Conception of
Tree-Adjoining Derivation

Yves Schabes*
Mitsubishi Electric Research Laboratory

Stuart M. Shieber t
Harvard University

The precise formulation of derivation for tree-adjoining grammars has important ramifications
for a wide variety of uses of the formalism, from syntactic analysis to semantic interpretation and
statistical language modeling. We argue that the definition of tree-adjoining derivation must be
reformulated in order to manifest the proper linguistic dependencies in derivations. The particular
proposal is both precisely characterizable through a definition of TAG derivations as equivalence
classes of ordered derivation trees, and computationally operational, by virtue of a compilation
to linear indexed grammars together with an efficient algorithm for recognition and parsing
according to the compiled grammar.

1. Introduct ion

In a context-free grammar, the derivation of a string in the rewriting sense can be cap-
tured in a single canonical tree structure that abstracts all possible derivation orders.
As it turns out, this derivation tree also corresponds exactly to the hierarchical structure
that the derivation imposes on the string, the derived tree structure of the string. The
formalism of tree-adjoining grammars (TAG), on the other hand, decouples these two
notions of derivation tree and derived tree. Intuitively, the derivation tree is a more
finely grained structure than the derived tree, and as such can serve as a substrate
on which to pursue further analysis of the string. This intuitive possibility is made
manifest in several ways. Fine-grained syntactic analysis can be pursued by imposing
on the derivation tree further combinatorial constraints, for instance, selective adjoin-
ing constraints or equational constraints over feature structures. Statistical analysis
can be explored through the specification of derivational probabilities as formalized
in stochastic tree-adjoining grammars. Semantic analysis can be overlaid through the
synchronous derivations of two TAGs.

All of these methods rely on the derivation tree as the source of the important
primitive relationships among trees. The decoupling of derivation trees from derived
trees thus makes possible a more flexible ability to pursue these types of analyses. At
the same time, the exact definition of derivation becomes of paramount importance.
In this paper, we argue that previous definitions of tree-adjoining derivation have not
taken full advantage of this decoupling, and are not as appropriate as they might be
for the kind of further analysis that tree-adjoining analyses could make possible. In
particular, the standard definition of derivation, attributable to Vijay-Shanker (1987),

• Cambridge, MA 02139
t Division of Applied Sciences, Cambridge, MA 02138

(~) 1994 Association for Computational Linguistics

Computational Linguistics Volume 20, Number 1

requires that auxil iary trees be adjoined at distinct nodes in e lementary trees. However ,
in certain cases, especially cases characterized as linguistic modification, it is more
appropr ia te to al low mult iple adjunctions at a single node.

In this pape r we propose a redefinition of TAG der ivat ion along these lines,
whereby mult iple auxiliary trees of modificat ion can be adjoined at a single node,
whereas only a single auxil iary tree of predicat ion can. The redefinition consti tutes a
new definition of der ivat ion for TAG that we will refer to as extended derivation. For
such a redefinition to be serviceable, however , it is necessary that it be bo th precise
and operational. In service of the former, we p rov ide a formal definit ion of ex tended
der ivat ion using a new approach to represent ing der ivat ions as equivalence classes of
ordered der ivat ion trees. With respect to the latter, we p rov ide a me thod of compi-
lation of TAGs into cor responding linear indexed g r a m m a r s (LIG), which makes the
der ivat ion structure explicit; and show h o w the genera ted LIG can dr ive a pars ing
a lgor i thm that recovers, either implicitly or explicitly, the extended der ivat ions of the
string.

The pape r is organized as follows. First we rev iew Vijay-Shanker 's s tandard defi-
nition of TAG der ivat ion and introduce the mot iva t ion for ex tended derivations. Then
we present the extended not ion of der ivat ion and its formal definition. The original
compila t ion of TAGs to LIGs p rov ided by Vijay-Shanker and Weir and our var iant for
extended derivat ions are both described. Finally, we discuss a pars ing a lgor i thm for
TAG that operates by a var iant of Earley pars ing on the cor responding LIG. The set
of extended der ivat ions can subsequent ly be recovered f rom the set of Earley i tems
genera ted by the algori thm. The resultant a lgor i thm is fur ther modif ied so as to build
an explicit der ivat ion tree incremental ly as pars ing proceeds; this modification, which
is a novel result in its o w n right, al lows the pars ing a lgor i thm to be used by sys tems
that require incremental processing with respect to tree-adjoining g rammars .

2. The Standard Definition of Derivation

To exempl i fy the distinction be tween s tandard and extended derivations, we exhibit
the TAG of Figure 1.1 This g r a m m a r derives some s imple noun phrases such as
"roasted red peppe r " and "baked red potato." The former, for instance, is associated
with the der ived tree in Figure 2(a). The tree can be v iewed as being der ived in two
ways: 2

Dependent: The auxil iary tree,,flro is adjoined at the root node (address C) 3 of fire.
The resultant tree is adjoined at the N node (address 1) of initial tree ape.
This der ivat ion is depicted as the der ivat ion tree in Figure 3(a).

Independent: The auxiliary trees flro and fire are adjoined at the N node (address
1) of the initial tree ape. This der ivat ion is depicted as the der ivat ion tree
in Figure 3(b).

1 Here and elsewhere, we conventionally use the Greek letter c~ and its subscripted and primed variants
for initial trees, fl and its variants for auxiliary trees, and ~, and its variants for elementary trees in
general. The foot node of an auxiliary tree is marked with an asterisk ('*').

2 We ignore here the possibility of another dependent derivation wherein adjunction occurs at the foot
node of an auxiliary tree. Because this introduces yet another systematic ambiguity, it is typically
disallowed by stipulation in the literature on linguistic analyses using TAGs.

3 The address of a node in a tree is taken to be its Gorn number, that sequence of integers specifying
which branches to traverse in order starting from the root of the tree to reach the node. The address of
the root of the tree is therefore the empty sequence, notated ¢. See the appendix for a more complete
discussion of notation.

92

Yves Schabes and Stuart M. Shieber Tree-Adjoining Derivation

NP NP

L I
N N

I
potato pepper

N N

Adj N* Adj N*

I I
roasted red

N

/ N
Adj N*

I
baked

%0) (%) (fl ro) (t~re)

Figure 1
A sample tree-adjoining grammar.

NP

N

Adj N

roasted Adj N

f I
red pepper

NP

L
N

/ N
Adj N

red Adj N

I
roasted pepper

(a) (b)

Figure 2
Two trees derived by the grammar of Figure 1.

o~ pe

1 I

~ro

t~ pe

J ~
~ro ge

(a) (b)

Figure 3
Derivation trees for the derived tree of Figure 2(a) according to the grammar of Figure 1.

93

Computational Linguistics Volume 20, Number 1

In the independent derivation, two trees are separately adjoined at one and the same
node in the initial tree. In the dependent derivation, on the other hand, one auxiliary
tree is adjoined to the other, the latter only being adjoined to the initial tree. We will
use this informal terminology uniformly in the sequel to distinguish the two general
topologies of derivation trees.

The standard definition of derivation, as codified by Vijay-Shanker, restricts deriva-
tions so that two adjunctions cannot occur at the same node in the same elementary tree. The
dependent notion of derivation (Figure 3(a)) is therefore the only sanctioned derivation
for the desired tree in Figure 2(a); the independent derivation (Figure 3(b)) is disal-
lowed. Vijay-Shanker's definition is appropriate because for any independent deriva-
tion, there is a dependent derivation of the same derived tree. This can be easily seen
in that any adjunction of f12 at a node at which an adjunction of fll occurs could instead
be replaced by an adjunction of f12 at the root of ill.

The advantage of this standard definition of derivation is that a derivation tree in
this normal form unambiguously specifies a derived tree. The independent derivation
tree, on the other hand, is ambiguous as to the derived tree it specifies in that a
notion of precedence of the adjunctions at the same node is unspecified, but crucial to
the derived tree specified. This follows from the fact that the independent derivation
tree is symmetric with respect to the roles of the two auxiliary trees (by inspection),
whereas the derived tree is not. By symmetry, therefore, it must be the case that the
same independent derivation tree specifies the alternative derived tree in Figure 2(b).

3. Motivation for an Extended Definition of Derivation

In the absence of some further interpretation of the derivation tree nothing hinges on
the choice of derivation definition, so that the standard definition disallowing inde-
pendent derivations is as reasonable as any other. However, tree-adjoining grammars
are almost universally extended with augmentations that make the issue apposite.
We discuss three such variations here, all of which argue for the use of independent
derivations under certain circumstances. 4

3.1 Adding Adjoining Constraints
Already in very early work on tree-adjoining grammars (Joshi, Levy, and Takahashi
1975) constraints were allowed to be specified as to whether a particular auxiliary
tree may or may not be adjoined at a particular node in a particular tree. The idea
is formulated in its modern variant as selective-adjoining constraints (Vijay-Shanker and
Joshi 1985). As an application of this capability, we consider the traditional grammatical
view that directional adjuncts can be used only with certain verbs. 5 This would account

4 The formulation of derivation for tree-adjoining grammars is also of significance for other grammatical
formalisms based on weaker forms of adjunction such as lexicalized context-free grammar (Schabes
and Waters 1993a) and its stochastic extension (Schabes and Waters 1993b), though we do not discuss
these arguments here.

5 For instance, Quirk, Greenbaum, Leech, and Svartvik (1985, page 517) remark that "direction adjuncts
of both goal and source can normally be used only with verbs of motion." Although the restriction is
undoubtedly a semantic one, we will examine the modeling of it in a TAG deriving syntactic trees for
two reasons. First, the problematic nature of independent derivation is more easily seen in this way.
Second, much of the intuition behind TAG analyses is based on a tight relationship between syntactic
and semantic structure. Thus, whatever scheme for semantics is to be used with TAGs will require
appropriate derivations to model these data. For example, an analysis of this phenomenon by adjoining
constraints on the semantic half of a synchronous TAG would be subject to the identical argument. See
Section 3.3.

94

Yves Schabes and Stuart M. Shieber Tree-Adjoining Derivation

for the felicity distinctions between the following sentences:

. a .

b.
Brockway walked his Labrador towards the yacht club.

Brockway resembled his Labrador towards the yacht club.

This could be modeled by disallowing through selective adjoining constraints the
adjunction of the elementary tree corresponding to a towards adverbial at the VP node
of the elementary tree corresponding to the verb resembles. 6 However, the restriction
applies even with intervening (and otherwise acceptable) adverbials.

. a .

b.

3. a.
b.

Brockway walked his Labrador yesterday.
Brockway walked his Labrador yesterday towards the yacht club.

Brockway resembled his Labrador yesterday.
Brockway resembled his Labrador yesterday towards the yacht club.

Under the standard definition of derivation, there is no direct adjunction in the latter
sentence of the towards tree into the resembles tree. Rather, it is dependently adjoined
at the root of the elementary tree that heads the adverbial yesterday, the latter directly
adjoining into the main verb tree. To restrict both of the ill-formed sentences, then,
a restriction must be placed not only on adjoining the goal adverbial in a resembles
context, but also in the yesterday adverbial context. But this constraint is too strong, as
it disallows sentence (2b) above as well.

The problem is that the standard derivation does not correctly reflect the syn-
tactic relation between the adverbial modifier and the phrase it modifies when there
are multiple modifications in a single clause. In such a case, each of the adverbials
independently modifies the verb, and this should be reflected in their independent
adjunction at the same point. But this is specifically disallowed in a standard deriva-
tion.

Another example along the same lines follows from the requirement that tense
as manifested in a verb group be consistent with temporal adjuncts. For instance,
consider the following examples:

4. a. Brockway
b. # Brockway

5. a. # Brockway
b. Brockway

walked his Labrador yesterday.
will walk his Labrador yesterday.

walked his Labrador tomorrow.
will walk his Labrador tomorrow.

Again, the relationship is independent of other intervening adjuncts.

6. a. Brockway
b. # Brockway

7. a. # Brockway
b. Brockway

walked his Labrador towards the yacht club yesterday.
will walk his Labrador towards the yacht club yesterday.

walked his Labrador towards the yacht club tomorrow.
will walk his Labrador towards the yacht club tomorrow.

It is important to note that these arguments apply specifically to auxiliary trees that
correspond to a modification relationship. Auxiliary trees are used in TAG typically

6 Whether the adjunction occurs at the VP node or the S node is immaterial to the argument.

95

Computational Linguistics Volume 20, Number 1

for predication relations as well, 7 as in the case of raising and sentential complement
constructions, s Consider the following sentences. (The brackets mark the leaves of the
pertinent trees to be combined by adjunction in the assumed analysis.)

. a .

b.

9. a.
b.

10. a.
b.

11. a.
b.

Brockway assumed that Harrison wanted to walk his Labrador.
[Brockway assumed that] [Harrison wanted] [to walk his Labrador]

Brockway wanted to try to walk his Labrador.
[Brockway wanted] [to try] [to walk his Labrador]

Harrison wanted Brockway tried to walk his Labrador.
[Harrison wanted] [Brockway tried] [to walk his Labrador]

Harrison wanted to assume that Brockway walked his Labrador.
[Harrison wanted] [to assume that] [Brockway walked his Labrador]

Assume (following, for instance, the analysis of Kroch and Joshi [1985]) that the trees
associated with the various forms of the verbs try , wan t , and assume all take senten-
tial complements, certain of which are tensed with overt subjects and others untensed
with empty subjects. The auxiliary trees for these verbs specify by adjoining constraints
which type of sentential complement they take: assume requires tensed complements,
w a n t and try untensed. Under this analysis the auxiliary trees must not be allowed to
independently adjoin at the same node. For instance, if trees corresponding to "Harri-
son wanted" and "Brockway tried" (which both require untensed complements) were
both adjoined at the root of the tree for "to walk his Labrador," the selective adjoin-
ing constraints would be satisfied, yet the generated sentence (10a) is ungrammatical.
Conversely, under independent adjunction, sentence (11a) would be deemed ungram-
matical, although it is in fact grammatical. Thus, the case of predicative trees is entirely
unlike that of modifier trees. Here, the standard notion of derivation is exactly what
is needed as far as interpretation of adjoining constraints is concerned.

An alternative would be to modify the way in which adjoining constraints are
updated upon adjunction. If after adjoining a modifier tree at a node, the adjoining
constraints of the original node, rather than those of the root and foot of the modifier
tree, are manifest in the corresponding nodes in the derived tree, the adjoining con-
straints would propagate appropriately to handle the examples above. This alternative
leads, however, to a formalism for which derivation trees are no longer context-free,
with concomitant difficulties in designing parsing algorithms. Instead, the extended
definition of derivation effectively allows use of a Kleene-* in the "grammar" of deriva-
tion trees.

Adjoining constraints can also be implemented using feature structure equations
(Vijay-Shanker and Joshi 1988). It is possible that judicious use of such techniques
might prevent the particular problems noted here. Such an encoding of a solution
requires consideration of constraints that pass among many trees just to limit the co-
occurrence of a pair of trees. However, it more closely follows the spirit of TAGs to
state such intuitively local limitations locally.

7 We use the term 'predication' in its logical sense, that is, for auxiliary trees that serve as logical
predicates over the trees into which they adjoin, in contrast to the term's linguistic sub-sense in which
the argument of the predicate is a linguistic subject.

8 The distinction between predicative and modifier trees has been proposed previously for purely
linguistic reasons by Kroch (1989), who refers to them as complement and athematic trees, respectively.
The arguments presented here can be seen as providing further evidence for differentiating the two
kinds of auxiliary trees. A precursor to this idea can perhaps be seen in the distinction between
repeatable and nonrepeatable adjunction in the formalism of string adjunct grammars, a precursor of
TAGs (Joshi, Kosaraju, and Yamada 1972b, pages 253-254).

96

Yves Schabes and Stuart M. Shieber Tree-Adjoining Derivation

In summary, the interpretation of adjoining constraints in TAG is sensitive to the
particular notion of derivation that is used. Therefore, it can be used as a litmus
test for an appropriate definition of derivation. As such, it argues for a nonstandard
independent notion of derivation for modifier auxiliary trees and a standard dependent
notion for predicative trees.

3.2 Adding Statistical Parameters
In a similar vein, the statistical parameters of a stochastic lexicalized TAG (SLTAG)
(Resnik 1992; Schabes 1992) specify the probability of adjunction of a given auxiliary
tree at a specific node in another tree. This specification may again be interpreted
with regard to differing derivations, obviously with differing impact on the resulting
probabilities assigned to derivation trees. (In the extreme case, a constraint prohibiting
adjoining corresponds to a zero probability in an SLTAG. The relation to the argument
in the previous section follows thereby.) Consider a case in which linguistic modifi-
cation of noun phrases by adjectives is modeled by adjunction of a modifying tree.
Under the standard definition of derivation, multiple modifications of a single NP
would lead to dependent adjunctions in which a first modifier adjoins at the root of
a second. As an example, we consider again .the grammar given in Figure 1, which
admits of derivations for the strings "baked red potato" and "baked red pepper."
Specifying adjunction probabilities on standard derivations, the distinction between
the overall probabilities for these two strings depends solely on the adjunction proba-
bilities of fire (the tree for red) into ~po and c~p¢ (those for potato and pepper, respectively),
as the tree fib for the word baked is adjoined in both cases at the root of fire in both
standard derivations. In the extended derivations, on the other hand, both modifying
trees are adjoined independently into the noun trees. Thus, the overall probabilities
are determined as well by the probabilities of adjunction of the trees for baked into the
nominal trees. It seems intuitively plausible that the most important relationships to
characterize statistically are those between modifier and modified, rather than between
two modifiers. 9 In the case at hand, the fact that one typically refers to the process
of cooking potatoes as "baking," whereas the appropriate term for the corresponding
cooking process applied to peppers is "roasting," would be more determining of the
expected overall probabilities.

Note again that the distinction between modifier and predicative trees is important.
The standard definition of derivation is entirely appropriate for adjunction probabili-
ties for predicative trees, but not for modifier trees.

3.3 Adding Semantics
Finally, the formation of synchronous TAGs has been proposed to allow use of TAGs
in semantic interpretation, natural language generation, and machine translation. In
previous work (Shieber and Schabes 1990), the definition of synchronous TAG deriva-
tion is given in a manner that requires multiple adjunctions at a single node. The need
for such derivations follows from the fact that synchronous derivations are intended
to model semantic relationships. In cases of multiple adjunction of modifier trees at

9 Intuition is an appropriate guide in the design of the SLTAG framework, as the idea is to set up a
linguistically plausible infrastructure on top of which a lexically based statistical model can be built. In
addition, suggestive (though certainly not conclusive) evidence along these lines can be gleaned from
corpora analyses. For instance, in a simple experiment in which medium frequency triples of exactly
the discussed form "(adjective) (adjective) (noun)" were examined, the mean mutual information
between the first adjective and the noun was found to be larger than that between the two adjectives.
The statistical assumptions behind this particular experiment do not allow very robust conclusions to
be drawn, and more work is needed along these lines.

97

Computational Linguistics Volume 20, Number 1

a single node, the appropriate semantic relationships comprise separate modifications
rather than cascaded ones, and this is reflected in the definition of synchronous TAG
derivation. 1° Because of this, a parser for synchronous TAGs must recover, at least
implicitly, the extended derivations of TAG-derived trees. Shieber (in press) provides
a more complete discussion of the relationship between synchronous TAGs and the
extended definition of derivation with special emphasis on the ramifications for formal
expressivity.

Note that the independence of the adjunction of modifiers in the syntax does not
imply that semantically there is no precedence or scoping relation between them. As
exemplified in Figure 5, the derived tree generated by multiple independent adjunc-
tions at a single node still manifests nesting relationships among the adjoined trees.
This fact may be used to advantage in the semantic half of a synchronous tree-adjoining
grammar to specify the semantic distinction between, for example, the following two
sentences: u

12. a.
b.

Brockway ran over his polo mallet twice intentionally.
Brockway ran over his polo mallet intentionally twice.

We hope to address this issue in greater detail in future work on synchronous tree-
adjoining grammars.

3.4 Desired Properties of Extended Derivations
We have presented several arguments that the standard notion of derivation does not
allow for an appropriate specification of dependencies to be captured. An extended
notion of derivation is needed that

1.

2.

3.

4.

differentiates predicative and modifier auxiliary trees;

requires dependent derivations for predicative trees;

allows independent derivations for modifier trees; and

unambiguously and nonredundantly specifies a derived tree.

Furthermore, following from considerations of the role of modifier trees in a grammar
as essentially optional and freely applicable elements, we would like the following
criterion to hold of extended derivations:

. If a node can be modified at all, it can be modified any number of times,
including zero times.

Recall that a derivation tree (as traditionally conceived) is a tree with unordered
arcs where each node is labeled by an elementary tree of a TAG and each arc is labeled
by a tree address specifying a node in the parent tree. In a standard derivation tree
no two sibling arcs can be labeled with the same address. In an extended derivation
tree, however, the condition is relaxed: No two sibling arcs to predicative trees can be

10 The importance of the distinction between predicative and modifier trees with respect to how
derivations are defined was not appreciated in the earlier work; derivations were taken to be of the
independent variety in all cases. In future work, we plan to remedy this flaw.

11 We are indebted to an anonymous reviewer of an earlier version of this paper for raising this issue
crisply through examples similar to those given here.

98

Yves Schabes and Stuart M. Shieber Tree-Adjoining Derivation

labeled with the same address. Thus, for any given address there can be at most one
predicative tree and several modifier trees adjoined at that node. As we have seen, this
relaxed definition violates the fourth desideratum above; for instance, the derivation
tree in Figure 3(b) ambiguously specifies both derived trees in Figure 2. In the next
section we provide a formal definition of extended derivations that satisfies all of the
criteria above.

4. Formal Definition of Extended Derivations

In this section we introduce a new framework for describing TAG derivation trees that
allows for a natural expression of both standard and extended derivations, and makes
available even more fine-grained restrictions on derivation trees. First, we define or-
dered derivation trees and show that they unambiguously but redundantly specify
derivations. 12 We characterize the redundant trees as those related by a sibling swap-
ping operation. Derivation trees proper are then taken to be the equivalence classes of
ordered derivation trees in which the equivalence relation is generated by the sibling
swapping. By limiting the underlying set of ordered derivation trees in various ways,
Vijay-Shanker's definition of derivation tree, a precise form of the extended definition,
and many other definitions of derivation can be characterized in this way.

4.1 Ordered Derivation Trees
Ordered derivation trees, like the traditional derivation trees, are trees with" nodes
labeled by elementary trees where each arc is labeled with an address in the tree for
the parent node of the arc. However, the arcs are taken to be ordered with respect to
each other.

An ordered derivation tree is well-formed if for each of its arcs, linking parent
node labeled 3̀ to child node labeled 3̀~ and itself labeled with address t, the tree 3"
is an auxiliary tree that can be adjoined at the node t in the tree 3'. (Alternatively, if
substitution is allowed, 3"~ may be an initial tree that can be substituted at the node t
in 3̀ . Later definitions ignore this possibility, but are easily generalized.)

We define the function/~ from ordered derivation trees to the derived trees they
specify, according to the following recursive definition:

/9(D) = {

3̀ if D is a trivial tree of one node labeled with the elementary tree 3'

3 ` [/ 9 (D l) / t 1 , 7 9 (D 2) / t 2 , . . . , ~D(Dk) /tk]
if D is a tree with root node labeled with the elementary tree 3̀

and with k child subtrees D1,. . . , Dk
whose arcs are labeled with addresses t l , . . . , tk.

Here 3`[A1/h,...,Ak/tk] specifies the simultaneous adjunction of trees A1 through Ak
at tl through tk, respectively, in 3'. It is defined as the iterative adjunction of the Ai in
order at their respective addresses, with appropriate updating of the tree addresses of
any later adjunction to reflect the effect of earlier adjunctions that occur at addresses
dominating the address of the later adjunction.

12 Historical precedent for independent derivation and the associated ordered derivation trees can be
found in the derivation trees postulated for string adjunct grammars (Joshi, Kosaraju, and Yamada
1972a, 99-100). In this system, siblings in derivation trees are viewed as totally, not partially, ordered.
The systematic ambiguity introduced thereby is eliminated by stipulating that the sibling order be
consistent with an arbitrary ordering on adjunction sites.

99

Computational Linguistics Volume 20, Number 1

4.2 Derivat ion Trees
It is easy to see that the derived tree specified by a given ordered derivation tree is
unchanged if adjacent siblings whose arcs are labeled with different tree addresses are
swapped. (This is not true of adjacent siblings whose arcs are labeled with the same
address.) That is, if t ~ t' then 3,[... ,Aft , B/t', . . .] = 7[. . . , B/t', Aft , . . .] . A graphical
"proof" of this intuitive fact is given in Figure 4. A formal proof, although tedious and
unenlightening, is possible as well. We provide it in an appendix, primarily because
the definitional aspects of the TAG formulation may be of some interest.

This fact about the swapping of adjacent siblings shows that ordered derivation
trees possess an inherent redundancy. The order of adjacent sibling subtrees labeled
with different tree addresses is immaterial. Consequently, we can define true derivation
trees to be the equivalence classes of the base set of ordered derivation trees under the
equivalence relation generated by the sibling subtree swapping operation above. This
is a well-formed definition by virtue of the proposition argued informally above.

This definition generalizes the traditional definition in not restricting the tree ad-
dress labels in any way. It therefore satisfies criterion (3) of Section 3.4. Furthermore, by
virtue of the explicit quotient with respect to sibling swapping, a derivation tree under
this definition unambiguously and nonredundantly specifies a derived tree (criterion
4). It does not, however, differentiate predicative from modifier trees (criterion (1)), nor
can it therefore mandate dependent derivations for predicative trees (criterion (2)).

This general approach can, however, be specialized to correspond to several pre-
vious definitions of derivation tree. For instance, if we further restrict the base set
of ordered derivation trees so that no two siblings are labeled with the same tree
address, then the equivalence relation over these ordered derivation trees allows for
full reordering of all siblings. Clearly, these equivalence classes are isomorphic to the
unordered trees, and we have reconstructed Vijay-Shanker's standard definition of
derivation tree.

If we instead restrict ordered derivation trees so that no two siblings corresponding
to predicative trees are labeled with the same tree address, then we have reconstructed
a version of the extended definition argued for in this paper. Under this restriction,
criteria (1) and (2) are satisfied, while maintaining (3) and (4).

By careful selection of other constraints on the base set, other linguistic restrictions
might be imposed on derivation trees, still using the same definition of derivation trees
as equivalence classes over ordered derivation trees. In the next section, we show that
the definition of the previous paragraph should be further restricted to disallow the
reordering of predicative and modifier trees. We also describe other potential linguistic
applications of the ability to finely control the notion of derivation through the use of
ordered derivation trees.

4.3 Further Restrictions on Extended Derivat ions
The extended definition of derivation tree given in the previous section effectively
specifies the output derived tree by adding a partial ordering on sibling arcs that
correspond to modifier trees adjoined at the same address. All other arcs are effectively
unordered (in the sense that all relative orderings of them exist in the equivalence
class).

Assume that in a given tree ~, at a particular address t, the k modifier trees #1, . . . , ~k
are directly adjoined in that order. Associated with the subtrees rooted at the k ele-
mentary auxiliary trees in this derivation are k derived auxiliary trees (A1,. . . ,Ak,
respectively). The derived tree specified by this derivation tree, according to the def-
inition of ~ given above, would have the derived tree A1 directly below A2 and so
forth, with Ak at the top. Now suppose that in addition, a predicative tree 7r is also

100

Yves Schabes and Stuart M. Shieber Tree-Adjoining Derivation

(a)

(b)

(c)

Figure 4
A graphical proof of the irrelevance of adjacent sibling swapping.

These diagrams show the effect of performing two adjunctions (of auxiliary trees depicted,
one as dark-shaded and one light-shaded), presumed to be specified by adjacent siblings in an
ordered derivation tree. The adjunctions are to occur at two addresses (referred to in this
caption as t and t', respectively). The two addresses must be such that either (a) they are
distinct but neither dominates the other, (b) t dominates t' (or vice versa), or (c) they are
identical. In case (a) the d iagram shows that either order of adjunction yields the same
derived tree. Adjunction at t and then t' corresponds to the upper arrows, adjunction at t ' and
then t the lower arrows. Similarly, in case (b), adjunction at t followed by adjunction at an
appropriate ly upda ted t' yields the same result as adjunction first at t ' and then at t. Clearly,
adjunctions occurring before these two or after do not affect the interchangeability. Thus, if
two adjacent siblings in a derivation tree specify adjunctions at distinct addresses t and t', the
adjunctions can occur in either order. Diagram (c) demonstrates that this is not the case when
t and t' are the same.

101

Computational Linguistics Volume 20, Number 1

Y

"'"]/1 "'"]'/k 7~ "'" /A~ ~

A AA
(a) (b) •

/¢-..

Figure 5
Schematic extended derivation tree and associated derived tree.

In a derived tree, the predicative tree adjoined at an address t is required to follow all
modifier trees adjoined at the same address, as in (a). The derived tree therefore appears as
depicted in (b) with the predicative tree outermost.

adjoined at address t. It must be ordered with respect to the #i in the derivat ion tree,
and its relative order determines where in the bot tom-to- top order in the der ived tree
the tree A,~ associated with the subderivat ion rooted at 7r goes.

The question that we raise here is whether all k + 1 possible placements of the tree
~r relative to the #i are linguistically reasonable. We might allow all k + 1 orderings
(as in the definition of the previous section), or we might restrict them by requiring,
say, that the predicative tree always be adjoined before, or perhaps after, any modif ier
trees at a given address. We emphasize that this is a linguistic question, in the sense
that the definition of extended derivat ion is well formed whatever decision is made
on this question.

Henceforth, we will assume that predicative trees are always adjoined after any
modifier trees at the same address, so that they appear above the modifier trees in the
der ived tree. We call this "outermost predication" because a predicative tree appears
w ra ppe d around the outside of the modifier trees adjoined at the same address. (See
Figure 5.) If we were to mandate innermost predication, in which a predicative tree
is always adjoined before the modifier trees at the same address, the predicative tree
would appear within all of the modifier trees, innermost in the der ived tree.

Linguistically, the outermost method specifies that if both a predicative tree and a
modifier tree are adjoined at a single node, then the predicative tree attaches higher
than the modifier tree; in terms of the der ived tree, it is as if the predicative tree
were adjoined at the root of the modifier tree. This accords with the semantic intuition
that in such a case (for English at least), the modifier is modifying the original tree,
not the predicative one. (The alternate "reading," in which the modifier modifies the
predicative tree, is still obtainable under an outermost-predicat ion s tandard by having
the modifier auxiliary tree adjoin dependent ly at the root node of the predicative tree.)

102

Yves Schabes and Stuart M. Shieber Tree-Adjoining Derivation

In contrast, the innermost-predication method specifies that the modifier tree attaches
higher, as if the modifier tree adjoined at the root of the predicative tree and was
therefore modifying the predicative tree, contra semantic intuitions.

For this reason, we specify that outermost predication is mandated. This is easily
done by further limiting the base set of ordered derivation trees to those in which
predicative trees are ordered after modifier tree siblings.

(From a technical standpoint, by the way, the outermost-predication method has
the advantage that it requires no changes to the parsing rules to be presented later,
but only a single addition. The innermost-predication method induces some subtle
interactions between the original parsing rules and the additional one, necessitating
a much more complicated set of modifications to the original algorithm. In fact, the
complexities in generating such an algorithm constituted the precipitating factor that
led us to revise our original innermost-predication attempt at redefining tree-adjoining
derivation. The linguistic argument, although commanding, became clear to us only
later.)

Another possibility, which we mention but do not pursue here, is to allow for
language-particular precedence constraints to restrict the possible orderings of deriva-
tion-tree siblings, in a manner similar to the linear precedence constraints of ID/LP
format (Gazdar, Klein, Pullum, and Sag 1985) but at the level of derivation trees.
These might be interpreted as hard constraints or soft orderings depending on the
application. This more fine-grained approach to the issue of ordering has several ap-
plications. Soft orderings might be used to account for ordering preferences among
modifiers, such as the default ordering of English adjectives that accounts for the typ-
ical preference for "a large red ball" over "? a red large ball" and the typical ordering
of temporal before spatial adverbial phrases in German.

Similarly, hard constraints might allow for the handling of an apparent counter-
example to the outermost-predication rule. 13 One natural analysis of the sentence

13. At what time did Brockway say Harrison arrived?

would involve adjunction of a predicative tree for the phrase "did Brockway say" at
the root of the tree for "Harrison arrived." A Wh modifier tree "at what time" must
be adjoined in as well. The example question is ambiguous, of course, as to whether
it questions the time of the saying or of the arriving. In the former case, the modifier
tree presumably adjoins at the root of the predicative tree for "did Brockway say" that
it modifies. In the latter case, which is of primary interest here, it must adjoin at the
root of the tree for "Harrison arrived." Thus, both trees would be adjoined at the same
address, and the outermost-predication rule would predict the derived sentence to be
"Did Brockway say at what time Harrison arrived." To get around this problem, we
might specify hard ordering constraints for English that place all Wh modifier trees
after all predicative trees, which in turn come after all non-Wh modifier trees. This
would place the Wh modifier outermost as required.

Although we find this extra flexibility to be an attractive aspect of this approach,
we stay with the more stringent outermost-predication restriction in the material that
follows.

13 Other solut ions are possible that do not require ex tended der ivat ions or linear precedence constraints.
For instance, we migh t postula te an e lementa ry tree for the verb arrived that includes a subst i tu t ion
node for a fronted adverbial Wh phrase .

103

Computational Linguistics Volume 20, Number 1

5. Compilation of TAGs to Linear Indexed Grammars

In this section we present a technique for compiling tree-adjoining grammars into
linear indexed grammars such that the linear indexed grammar makes explicit the
extended derivations of the TAG. This compilation plays two roles. First, it provides
for a simple proof of the generative equivalence of TAGs under the standard and
extended definitions of derivation, as described at the end of this section. Second, it
can be used as the basis for a parsing algorithm that recovers the extended derivations
for strings. The design of such an algorithm is the topic of Section 6.

Linear indexed grammars (LIG) constitute a grammatical framework based, like
context-free, context-sensitive, and unrestricted rewriting systems, on rewriting strings
of nonterminal and terminal symbols. Unlike these systems, linear indexed grammars,
like the indexed grammars from which they are restricted, allow stacks of marker
symbols, called indices, to be associated with the nonterminal symbols being rewritten.
The linear version of the formalism allows the full index information from the parent
to be used to specify the index information for only one of the child constituents.
Thus, a linear indexed production can be given schematically as:

No[..~o] --+ Nl[fl l] . .-Ns_l[fls_l] Ns[..~s] Ns+l[~s+l]. . "Nk[flk]

The Ni are nonterminals, the fli. strings of indices. The ".." notation stands for the
remainder of the stack below the given string of indices. Note that only one element
on the right-hand side, Ns, inherits the remainder of the stack from the parent. (This
schematic rule is intended to be indicative, not definitive. We ignore issues such as
the optionality of the inherited stack how terminal symbols fit in, and so forth. Vijay-
Shanker and Weir [1990] present a complete discussion.)

Vijay-Shanker and Weir (1990) present a way of specifying any TAG as a linear
indexed grammar. The LIG version makes explicit the standard notion of derivation
being presumed. Also, the LIG version of a TAG grammar can be used for recognition
and parsing. Because the LIG formalism is based on augmented rewriting, the parsing
algorithms can be much simpler to understand and easier to modify, and no loss of
generality is incurred. For these reasons, we use the technique in this work.

The compilation process that manifests the standard definition of derivation can
be most easily understood by viewing nodes in a TAG elementary tree as having
both a top and bottom component, identically marked for nonterminal category, that
dominate (but may not immediately dominate) each other. (See Figure 6.) The rewrite
rules of the corresponding linear indexed grammar capture the immediate domination
between a bottom node and its child top nodes directly, and capture the domination
between top and bottom parts of the same node by optionally allowing rewriting from
the top of a node to an appropriate auxiliary tree, and from the foot of the auxiliary
tree back to the bottom of the node. The index stack keeps track of the nodes on which
adjunction has occurred so that the recognition to the left and the right of the foot
node will occur under identical assumption of derivation structure.

The TAG grammar is encoded as a LIG with two nonterminal symbols t and b cor-
responding to the top and bottom components, respectively, of each node. The stack
indices correspond to the individual nodes of the elementary trees of the TAG gram-
mar. Thus, there are as many stack index symbols as there are nodes in the elementary
trees of the grammar, and each such index (i.e., node) corresponds unambiguously to
a single address in a single elementary tree. (In fact, the symbols can be thought of as
pairs of an elementary tree identifier and an address within that tree, and our imple-
mentation encodes them in just that way.) The index at the top of the stack corresponds

104

Yves Schabes and Stuart M. Shieber Tree-Adjoining Derivation

Type 4

~ ~-t[~. r]

"~i'~ ~ ~ - - ~ Type3 / / ~

/ Type btnfl

Figure 6
Schematic structure of adjunction with top and bottom of each node separated.

7/I 7/2 /7/3

Figure 7
A stack of indices [717273] captures the adjunction history that led to the reaching of the node
73 in the parsing process.

Parsing of an elementary tree c~ proceeded to node 71 in that tree, at which point
adjunction of the tree containing 72 was pursued by the parser. When the node 72 was
reached, the tree containing 73 was implicitly adjoined. Once this latter tree is completely
parsed, the remainder of the tree containing 72 can be parsed from that point, and so on.

to the node being rewritten. Thus, a LIG nonterminal with stack t[~] corresponds to
the top component of node 7, and b[~]1712~]3] corresponds to the bot tom component of
73- The indices ~h and 7/2 capture the history of adjunctions that are pending comple-
tion of the tree in which 73 is a node. Figure 7 depicts the interpretation of a stack of
indices.

In summary, given a tree-adjoining grammar, the following LIG rules are gener-
ated:

. Immediate domination dominating foot: For each auxiliary tree node 7 that
dominates the foot node, with children 71 , . . . , 7 s , . . . , ~n, where 7]s is the
child that also dominates the foot node, include a product ion

b[..,] --* t[71]'"" t[7s-,]t[..71s]t[~ls+l]'" t[7n].

105

Computational Linguistics Volume 20, Number 1

.

.

Immediate domination not including foot: For each elementary tree node ~/
that does not dominate a foot node, with children ~/1,..., ~/n, include a
production

b[,] --* t [, ,] . . , t[,n].

No adjunction: For each elementary tree node ~/that is not marked for
substitution or obligatory adjunction, include a production

t[..,] b[..,].

.

.

.

Start root ofadjunction: For each elementary tree node ~ on which the
auxiliary tree fl with root node ~r can be adjoined, include the following
production:

t[..,] --* t[..,,r].

Start foot ofadjunction: For each elementary tree node ~ on which the
auxiliary tree fl with foot node ~//can be adjoined, include the following
production:

b[..,,f] ~ b[..~/].

Start substitution: For each elementary tree node ~ marked for
substitution on which the initial tree c~ with root node ?~r can be
substituted, include the production

t[,] --* t[,r].

We will refer to productions generated by Rule i above as Type i productions. For
example, Type 3 productions are of the form t[..~/] --* b[..~]. For further information
concerning the compilation see Vijay-Shanker and Weir (1990). For present purposes, it
is sufficient to note that the method directly embeds the standard notion of derivation
in the rewriting process. To perform an adjunction, we move (by Rule 4) from the
node adjoined at to the top of the root of the auxiliary tree. At the root, additional
adjunctions might be performed. When returning from the foot of the auxiliary tree
back to the node where adjunction occurred, rewriting continues at the bottom of the
node (see Rule 5), not the top, so that no more adjunctions can be started at that node.
Thus, the dependent nature of predicative adjunction is enforced because only a single
adjunction can occur at any given node.

In order to permit extended derivations, we must allow for multiple modifier tree
adjunctions at a single node. There are two natural ways this might be accomplished,
as depicted in Figure 8.

1. Modified start foot ofadjunction rule: Allow moving from the bottom of the
foot of a modifier auxiliary tree to the top (rather than the bottom) of the
node at which it adjoined (Figure 8b).

2. Modified start root of adjunction rule: Allow moving from the bot tom (rather
than the top) of a node to the top of the root of a modifier auxiliary tree
(Figure 8c).

As can be seen from the figures, both of these methods allow recursion at a node,
unlike the original method depicted in Figure 8a. Thus multiple modifier trees are
allowed to adjoin at a single node. Note that since predicative trees fall under the
original rules, at most a single predicative tree can be adjoined at a node. The two

106

Yves Schabes and Stuart M. Shieber Tree-Adjoining Derivation

(a) ~ / ~ predicative

/

L.S
~ e

Figure 8
Schematic structure of possible predicative and modifier adjunctions with top and bottom of
each node separated.

methods correspond exactly to the innermost- and outermost-predication methods
discussed in Section 4.3. For the reasons described there, the latter is preferred. TM

In summary, independent derivation structures can be allowed for modifier aux-
iliary trees by starting the adjunction process from the bottom, rather than the top of
a node for those trees. Thus, we split Type 4 LIG productions into two subtypes for
predicative and modifier trees, respectively.

4a.

4b.

Start root of predicative adjunction: For each elementary tree node 7/on
which the predicative auxiliary tree fl with root node T]F can be adjoined,
include the following production:

t[..,] ~ t[..~p?~].

Start root of modifier adjunction: For each elementary tree node ~/on which
the modifier auxiliary tree fl with root node ~/r can be adjoined, include
the following production:

b[..~/] ~ t[.3l~lr].

Once this augmentat ion has been made, we no longer need to allow for adjunctions at
the root nodes of modifier auxiliary trees, as repeated adjunction is now allowed for

14 The more general definition allowing predicative trees to occur anywhere within a sequence of
modifier adjunctions would be achieved by adding both types of rules.

107

Computational Linguistics Volume 20, Number 1

by the new rule 4b. Consequently, grammars should forbid adjunction of a modifier
tree fll at the root of a modifier tree f12 except where fll is intended to modify /32
directly.

This simple modification to the compilation process from TAG to LIG fully spec-
ifies the modified notion of derivation. Note that the extra criterion (5) noted in Sec-
tion 3.4 is satisfied by this definition: modifier adjunctions are inherently repeatable
and eliminable as the movement through the adjunction "loop" ends up at the same
point that it begins. The recognition algorithms for TAG based on this compilation,
however, must be adjusted to allow for the new rule types.

This compilation makes possible a simple proof of the weak-generative equiva-
lence of TAGs under the standard and extended derivations, is Call the set of languages
generable by a TAG under the standard definition of derivation TALs and under the
extended definition TALe. Clearly, TALs c TALe since the standard definition can be
mimicked by making all auxiliary trees predicative. The compilation above provides
the inclusion TALe C LIL, where LIL is the set of linear indexed languages. The final
inclusion LIL C_ TALs has been shown indirectly by Vijay-Shanker (1987) using em-
bedded push-down automata and modified head grammars as intermediaries. From
these inclusions, we can conclude that TALs = TALe.

6. Recognition and Parsing

A recognition algorithm for TAGs can be constructed based on the above translation
into corresponding LIGs as specified by Rules 1 through 6 in the previous section. The
algorithm is not a full recognition algorithm for LIGs, but rather, is tuned for exactly
the types of rules generated as output of this compilation process. In this section, we
present the recognition algorithm and modify it to work with the extended derivation
compilation.

We will use the following notations in this and later sections. The symbol P will
serve as a variable over the two LIG grammar nonterminals t and b. The substring of
the string wl . . . Wn being parsed between indices i and j will be notated as wi+t " . wj,
which we take to be the empty string when i is greater than or equal to j. We will use
p, A, and {9 for sequences containing terminals and LIG nonterminals with their stack
specifications. For instance, F might be t[rll]t[..rl2]t[rl3].

The parsing algorithm can be seen as a tabular parsing method based on deduction
of items, as in Earley deduction (Pereira and Warren 1983). We will so describe it, by
presenting inference rules over items of the form

(e[r/] --* r • A, i , j , k , l) .

Such items play the role of the items of Earley's algorithm. Unlike the items of Earley's
algorithm, however, an item of this form does not embed a grammar rule proper; that
is, P[7/] --+ pA is not necessarily a rule of the grammar. Rather, it is what we will call
a reduced rule; for reasons described below, the nonterminals in F and A as well as
the nonterminal P[~/] record only the top element of each stack of indices. We will use
the notation P[~] --+ pA for the unreduced form of the rule whose reduced form is
p[~/] --+ pA. For instance, the rule specified by the notation t[~/1] --+ t[712] might be the
rule t[..~l] --+ t[..~1~]2]. The reader can easily verify that the TAG to LIG compilation is
such that there is a one-to-one correspondence between the generated rules and their
reduced form. Consequently, this notation is well defined.

15 We are grateful to K. Vijay-Shanker for br ing ing this point to our attention.

108

Yves Schabes and Stuart M. Shieber Tree-Adjoining Derivation

The dot in the items is analogous to that found in Earley and LR items as well. It
serves as a marker for how far recognition has proceeded in identifying the subcon-
stituents for this rule. The indices i, j, k, and l specify the portion of the string Wl .. • w~
covered by the recognition of the item. The substring between i and 1 (i.e., wi+ 1 " ' " W l)

has been recognized, perhaps with a region between j and k where the foot of the tree
below the node ~ has been recognized. (If the foot node is not dominated by F, we
take the values of j and k to be the dummy value '-'.)

6.1 The Inference Rules
In this section, we specify several inference rules for parsing a LIG generated from a
TAG, which we recall in this section. One explanatory comment is in order, however,
before the rules are presented. The rules of a LIG associate with each constituent a
nonterminal and a stack of indices. It seems natural for a parsing algorithm to maintain
this association by building items that specify for each constituent the full information
of nonterminal and index stack. However, this would necessitate storing an unbounded
amount of information for each potential constituent, resulting in a parsing algorithm
that is potentially quite inefficient when nondeterminism arises during the parsing
process, and perhaps noneffective if the grammar is infinitely ambiguous. Instead, the
parse items manipulated by the inference rules that we present do not keep all of
this information for each constituent. Rather, the items keep only the single top stack
element for each constituent (in addition to the nonterminal symbol). This drastically
decreases the number of possible items and accounts for the polynomial character of
the resultant algorithm. 16 Side conditions make up for some of the loss of information,
thereby maintaining correctness. For instance, the Type 4 Completor rule specifies a
relation between ~ and ~/f that takes the place of popping an element off of the stack
associated with ~. However, the side conditions are strictly weaker than maintaining
full stack information. Consequently, the algorithm, though correct, does not maintain
the valid prefix property. See Schabes (1991) for further discussion and alternatives.

Scanning and prediction work much as in Earley's original algorithm.

• Scanner:

(b[,] -* F • aA, i ,j , k, l>
(b[7/] -* Fa • A, i ,j , k, l + 1> a ~- Wl+ 1

Note that the only rules that need be considered are those where the
parent is a bottom node, as terminal symbols occur on the right-hand
side only of Type 1 or 2 productions. Otherwise, the rule is exactly as
that for Earley's algorithm except that the extra foot indices (j and k) are
carried along.

• Predictor:

(P[~/] --* F • P'[~]'] A, i,j, k, l)
(P'[~/] -* • O, l, - , - , l)

P'[~'] ~ @

This rule serves to form predictions for any type production in the
grammar, as the variables P and P' range over the values t and b. In the

16 Vijay-Shanker and Weir (1990) first proposed the recording of only the top stack element in order to
achieve efficient parsing. The algorithm they presented is a bottom-up general LIG parsing algorithm.
Schabes (1991) sketches a proof of an O(n 6) bound for an Earley-style algorithm for TAG parsing that
is more closely related to the algorithm proposed here.

109

Computational Linguistics Volume 20, Number 1

predicted item, the foot is not dominated by the (empty) recognized
input, so that the d u m m y value '- ' is used for the foot indices. Note that
the predicted item records the reduced form of an unreduced rule
P'[~/'] --* (9 of the grammar.

Complet ion of items (moving of the dot from left to right over a nonterminal)
breaks up into several cases, depending on which production type is being completed.
This is because the addition of the extra indices and the separate interpretations for
top and bot tom productions require differing index manipulations to be performed.
We will list the various steps, organized by what type of product ion they participate
in the completion of. .

Productions that specify immediate dominat ion (from Rules I and 2) are completed
whenever the top of the child node is fully recognized.

• Type I and 2 Completor:

{b[,1] --* P • t [,] A , m , j ' , k ' , i } {t[,] ~ (9• , i , j ,k, l}
(b[~/1] --* rt[,] • A m,j U j', k U k', l}

Here, t[7/] has been fully recognized as the substring be tween i and I. The
item expecting t[~] can be completed. One of the two antecedent items
might also dominate the foot node of the tree to which ~/and 71 belong,
and wou ld therefore have indices for the foot substring. The operations
j U j' and k U k' are used to specify whichever of j or j' (and respectively
for k or k') contain foot substring indices. The formal definition of U is as
follows:

j i f j ' = -
j U j ' = J' i f j = -

j i f j ' = j
undefined otherwise

The remaining rules (3 through 6) are each completed by a particular complet ion
instance.

• Type 3 Completor:

{t[,] --* . b[~l], i, - , - , i} {b[~/] --* (9 - , i , j , k , l}
{t[~/] --* b[~/]. , i , j ,k, l}

This rule is used to complete a prediction that no (predicative)
adjunction occurs at node ~/. Once the part of the string dominated by
b[~/] has been found, as evidenced by the second antecedent item, the
prediction of no adjunction can be completed.

Type 4 Completor:

{till --* • t[~/~], i, --, --, i}
{t[~r] ~ (9 " , i,j, k, l}

{b[~/] ~ A . , j ,p,q,k}
{t[•] ~ t[~lr] " , i,p,q, I}

t[..,] --* t[..,~/r]

110

Yves Schabes and Stuart M. Shieber Tree-Adjoining Derivation

Here, an adjunction has been predicted at 7, and the adjoined der ived
tree (between t[~] and b[~]) and the der ived material that r] itself
dominates (below b[r]]) have both been completed. Thus t[~] is
completely recognized. Note that the side condition (the unreduced form
of the reduced rule in the first antecedent item) is placed merely to
guarantee that ~/r is the root node of an adjoinable auxiliary tree.

Type 5 Completor:

(b[@ --+ * b[rl], i, - , - , i) (b[,] -+ 0 • , i , j , k , l)
(b[*lf] --+ b[r]] • , i, i, 1,1)

b[..rl~f] ~ b[..,]

When adjunction has been per formed and recognition up to the foot
node ~f has been performed, it is necessary to recognize all the material
under the foot node. When that is done, the foot node prediction can be
completed. Note that it must be possible to have adjoined the auxiliary
tree at node r /as specified in the product ion in the side condition.

• Type 6 Completor:

(t[,] --~ , t [~] , i , - , - , i) (t[~r] --+ O , , i , - , - , l)
(t[,] ---+ t [, r] . , i , - , - , l)

t[,] --* t[rlr]

Complet ion of the material below the root node ~r of an initial tree
allows for the complet ion of the node at which substitution occurred.

The recognition process for a string wl • .. Wn starts with some items that serve as
axioms for these inference rules. For each rule t[~ls] --* F where ~s is the root node of
an initial tree whose node is labeled with the start nonterminal , the item (t[~s] -~ • F,
0, - , - , 0) is an axiom. If from these axioms an item of the form (t[~s] --~ P • , 0, - , - , n) can
be proved according to the rules of inference above, the string is accepted; otherwise
it is rejected.

Alternatively, the axioms can be stated as if there were extra rules S --* t[r/s] for
each ~/s a start-nonterminal-labeled root node of an initial tree. In this case, the axioms
are items of the form (S --~ • t[~s], 0, - , - , 0) and the string is accepted upon proving
IS --+ t[~/s] • , 0 , - , - , n). In this case, an extra prediction and complet ion rule is needed
just for these rules, since the normal rules do not allow S on the left-hand side. This
point is taken up further in Section 6.4.

Generat ion of items can be cached in the s tandard way for inference-based parsing
algorithms (Shieber 1992); this leads to a tabular or chart-based parsing algorithm.

6.2 The Algorithm Invariant
The algori thm maintains an invariant that holds of all items added to the chart. We
will describe the invariant using some additional notational conventions. Recall that
P[~] -+ 1 ~ is the LIG product ion in the grammar whose reduced form is P[~] --+ P. The
notation F[7] where 7 is a sequence of stack symbols (i.e., nodes), specifies the sequence
F with 7 replacing the occurrence of .. in the stack specifications. For example, if P
is the sequence t[rll]t[..rl2]t[~13], then F[3,] = t[r]l]t['yrl2]t[~3]. A single LIG derivat ion step
will be notated with ~ and its reflexive transitive closure with 3 * .

11i

Computational Linguistics Volume 20, Number 1

The invariant specifies that (P[~] ~ E • A, i,j, k, 1) is in the chart only if 17

1. If node ~ dominates the foot node ~f of the tree to which it belongs, then
there exists a string of stack symbols (i.e., nodes) "y such that

(a) P[~] --. PA is a LIG rule in the grammar, where E is the
unreduced form of F.

(b) F[Tz/] o* • W i + 1 . . w j b [v ? ~ f] W k + I . . . W l

(c) b{Tnr] o* wj+t...wk

2. If node ~ does not dominate the foot node ~f of the tree to which it
belongs or there is no foot node in the tree, then

(a) P[7/] --. PA is a LIG rule in the grammar, where F is the
unreduced form of E.

(b) F =:k* W i + I " ' ' W 1

(c) j and k are not bound.

According to this invariant, for a node ~/s that is the root of an initial tree, the item
(t[z]s] --+ P . , 0 , - , - , n) is in the chart only if t[~?s] ~ E ~* W l ' ' " W n. Thus, soundness of
the algorithm as a recognizer follows.

6.3 Modifications for Extended Derivations
Extending the algorithm to allow for the new types of production (specifically, as
derived by Rule 4b) requires adding a completion rule for Type 4b productions. For
the new type of production, a completion rule of the following form is required:

• Type 4b Completor:

• t[Zlr] i , - , - , i)
(t[Zlr] --* (9 . ,i,j,k l)

(b[,] --* A . ,j,p q,k)
(b[z/] --~ t[~/~]., i,p,q, l)

b[..z]] --+ t [. . , Z l r]

In addition to being able to complete Type 4b items, we must also be able to
complete other items using completed Type 4b items. This is an issue in particular for
completor rules that might move their dot over a b[~] constituent; in particular, the
Type 3 and 5 Completors. However, these rules have been stated so that the antecedent
item with right-hand side b[~] already matches Type 4b items. Furthermore, the general
statement, including index manipulation is still appropriate in the context of Type 4b
productions. Thus, no further changes to the recognition inference rules are needed
for this purpose.

17 The invariant is not stated as a biconditional because this would require strengthening of the
antecedent condition. The natural strengthening, following the standard for Earley's algorithm, would
be to add a requirement that the item be consistent with left context, as

(d) 7/s ~ * W l " " wiP[7"q]

but this is too strong. This condition implies that the algorithm possesses the valid prefix property,
which it does not. The exact statement of the invariant condition that would allow for exact
specifications of the item semantics is the topic of ongoing research. However, the current specification
is sufficient for proving soundness of the algorithm.

112

Yves Schabes and Stuart M. Shieber Tree-Adjoining Derivation

However, a bit of care must be taken in the interpretation of the Type 1/2 Com-
pletor. Type 4b items that require completion bear a superficial resemblance to Type 1
and 2 items, in that both have a constituent of the form t[_] after the dot. In Type 4b
items, the constituent is tier], in Type 4a items t[71]. But it is crucial that the Type 1/2
Completor not be used to complete Type 4b items. A simple distinguishing character-
istic is that in Type 1 and 2 items to be completed, the node ~/after the dot is never a
root node (as it is immediately dominated by 71), whereas in Type 4b items, the node
~r after the dot is always a root node (of a modifier tree). Simple side conditions can
distinguish the cases.

Figure 9 contains the final versions of the inference rules for recognition of LIGs
corresponding to extended TAG derivations.

6.4 Maintaining Derivation Structures
One of the intended applications for extended derivation TAG parsing is the parsing
of synchronous TAGs. Especially important in this application is the ability to generate
the derivation trees while parsing proceeds.

A synchronous TAG is composed of two base TAGs (which we will call the source
TAG and the target TAG) whose elementary trees have been paired one-to-one. A syn-
chronous TAG whose source TAG is a grammar for a fragment of English and whose
target TAG is a grammar for a logical form language may be used to generate logical
forms for each sentence of English that the source grammar admits (Shieber and Sch-
abes 1990). Similarly, with source and target swapped, the synchronized grammar may
be used to generate English sentences corresponding to logical forms (Shieber and Sch-
abes 1991). If the source and target grammars specify fragments of natural languages,
an automatic translation system is specified (Abeill6, Schabes, and Joshi 1990).

Abstractly viewed, the processing of a synchronous grammar proceeds by parsing
an input string according to the source grammar, thereby generating a derivation
tree for the string; mapping the derivation tree into a derivation tree for the target
grammar; and generating a derived tree (hence, derived string) according to the target
grammar.

One frequent worry about synchronous TAGs as used in their semantic interpreta-
tion mode is whether it is possible to perform incremental interpretation. The abstract
view of processing just presented seems to require that a full derivation tree be de-
veloped before interpretation into the logical form language can proceed. Incremental
interpretation, on the other hand, would allow partial interpretation results to guide
the parsing process on-line, thereby decreasing the nondeterminism in the parsing
process. Whether incremental interpretation is possible depends precisely on the ex-
tent to which the three abstract phases of synchronous TAG processing can in fact be
interleaved. In previous work we left this issue open. In this section, we allay these
worries by showing how the extended TAG parser just presented can build derivation
trees incrementally as parsing proceeds. Once this has been demonstrated, it should
be obvious that these derivation trees could be transferred to target derivation trees
during the parsing process and immediately generated from. Thus, incremental inter-
pretation is demonstrated to be possible in the synchronous TAG framework. In fact,
the technique presented in this section has allowed for the first implementation of syn-
chronous TAG processing, by Onnig Dombalagian. This implementation was directly
based on the inference-based TAG parser mentioned in Section 6.5 and presented in
full elsewhere (Schabes and Shieber 1992).

We associate with each item a set of operations that have been implicitly carried
out by the parser in recognizing the substring covered by the item. An operation can
be characterized by a derivation tree and a tree address at which the derivation tree is

113

Computa t ional Linguistics Volume 20, N u m b e r 1

• Scanner:

• Predictor:

(b[r/] --+ F • aA, i,j, k, I)
(b[z/] ~ r a . A , i , j , k , l + l)

(P[r/] --, P • P' [r/lA, i,j, k, I)
(P'[r/']--~ • O,/, - , - , l)

Type 1 and 2 Completor:

(b[rh] -+ r • t[r/]A, m,j' , k', i) (t[rl] -+ 0 • , i,j, k, l)
(b[rh] -+ Pt[r/] • A , m , j U j ' , k U k ' , l)

• Type 3 Completor:

• Type 4a Completor:

a ~ Wl+l

P' [~/'] ~ 0

(t[~] ---+ • b [~] , i , - , - , i) (b[,] --+ O , , i , j ,k , l)
(t[~] ---+b[,] • , i , j ,k , l)

(t[r/] --+ • t [,r] , i , - , - , i)
(tier] --+ 0 • ,i,j,k,l)

(b M --+ A • ,j,p,q,k)
(t[~] - + t[~r] • ,i,p,q,l)

• Type 4b Completor:

(b[~] -+ • t [, r] , i , - - , - - , i)
(t[rlr] --+ 0 • , i , j ,k , l)

(b[,] --+ A • , j ,p ,q ,k)
(b[w] -+ t[Wr] • , i ,p ,q , l)

• Type 5 Completor:

(b[r/f] --+ • b[~/], i, - , - , i) (b[~/] --+ 0 • , i,j, k, I i
(bit/f] --+ b[r/] • , i, i, l, l)

• Type 6 Completor:

(t[r/] --+ . t [~ ,] , i , - , - , i) (t[n,] --+ o • , i , - , - , l)
(t[r/] ---+ t[,r] • , i , - - , - - , l)

Figure 9
Inference rules for extended derivation TAG recognition.

~/not a root node

t[..,] --+ t[..~lrlr]

b[. . r]] --~ t[..rlrlr]

b[..~lrlf] --+ b[..~]

t[,] --+ t[,r]

to be p l a c e d ; it c o r r e s p o n d s r o u g h l y to a b r a n c h of a d e r i v a t i o n tree. P r e d i c t i o n i t ems
h a v e the e m p t y set of o p e r a t i o n s . T y p e 4 a n d 6 c o m p l e t i o n s t eps b u i l d n e w e l e m e n t s
of the sets as t h e y c o r r e s p o n d to a c t u a l l y c a r r y i n g o u t a d j u n c t i o n a n d s u b s t i t u t i o n
o p e r a t i o n s , respec t ive ly . O t h e r c o m p l e t i o n s t eps m e r e l y p o o l the o p e r a t i o n s f r o m the i r
c o n s t i t u e n t par t s .

In d e s c r i b i n g the b u i l d i n g of d e r i v a t i o n trees, w e wi l l u se n o r m a l set n o t a t i o n for
the sets of d e r i v a t i o n trees. We wil l a s s u m e tha t for e a c h n o d e r/, t he r e a re f u n c t i o n s
tree(rl) a n d addr(rl) t ha t specify, respec t ive ly , the init ial t ree t ha t ~ o c c u r s in a n d its
a d d r e s s in tha t tree. Finally, w e wi l l u se a c o n s t r u c t o r f u n c t i o n for d e r i v a t i o n t rees

114

Yves Schabes and Stuart M. Shieber Tree-Adjoining Derivation

deriv(% S), where "7 specifies an elementary tree and S specifies a set of operations on
it. An operation is built with op(t, D) where t is a tree address and D is a derivation
tree to be operated at that address.

Figure 10 lists the previously presented recognition rules augmented to build
derivation structures as the final component of each item. The axioms for this in-
ference system are items of the form (S --* • t[~ls], 0 , - , - , 0, {}), where we assume as in
Section 6.1 that there are extra rules S ~ t[~s] for each ~s a start-nonterminal-labeled
root node of an initial tree. We require an extra rule for prediction and completion to
handle this new type of rule. The predictor rule is the obvious analog:

• Start Rule Predictor:

(S ~ r • P '[~ ']A, i , j , k , l ,S)
(P'[,'] • e,t , - , - ,1, {}) P'[,'] e

In fact, the existing predictor rule could have been easily generalized to handle this
case.

The completor for these start rules is the obvious analog to a Type 6 completor,
except in the handling of the derivation. It delivers, instead of a set of derivation
operations, a single derivation tree.

• Start Rule Completor:

iS ---+ • t[os], i , - , - , i, {}) (tit/s] --* O - , i , - , - , l, S)
(S -+ t[rls] . , i , - , - , I, deriv(treeO7s), S))

The string is accepted upon proving (S-+ t[r/s]. , 0 , - , - , n, D), where D is the
derivation developed during the parse.

6.5 Complexity Considerations
The inference system of Section 6.3 essentially specifies a parsing algorithm with com-
plexity of O(n 6) in the length of the string. Adding explicit derivation structures to the
items, as in the inference system of the previous section, eliminates the polynomial
character of the algorithm in that there may be an unbounded number of derivations
corresponding to any given item of the original sort. Even for finitely ambiguous
grammars, the number of derivations may be exponential. Nonetheless, this fact does
not vitiate the usefulness of the second algorithm, which maintains derivations ex-
plicitly. The point of this augmentation is to allow for incremental interpretation--for
interleaved processing of a post-syntactic sort--so as to guide the parsing process in
making choices on-line. By using the extra derivation information, the parser should
be able to eliminate certain nondeterministic paths of computation; otherwise, there
is no reason to do the interpretation incrementally. But this determinization of choice
presumably decreases the complexity. Thus, the extra information is designed for use
in cases where the full search space is not intended to be explored.

Of course, a polynomial shared-forest representation of the exponential number
of derivations could have been maintained (by maintaining back pointers among the
items in the standard fashion). For performing incremental interpretation for the pur-
pose of determinization of parsing, however, the non-shared representation is suffi-
cient, and preferable on grounds of ease of implementation and expository conve-
nience.

115

Computa t iona l Linguistics Volume 20, N u m b e r 1

• Scanner:

(b[~] --* F o a A , i , j , k , l , S)
(b [,] - - - , F a . A , i , j , k , l + l , S) a ~ W l + l

° Predictor:

(P[r/] --* F • P'[7/']A, i,j, k, l, S)
(P' [7/'] --* • O,l , - , - , l , {})

P,[~,] ~ e

Type I and 2 Completor:

(b[,1] - - . P o t [,] A , m , j ' , k ' , i , S1) (t[,] --~ (9° , i , j ,k , l , S2)
(b[,1] --~Ft[,] o A, m , j u j ' , k u k q , l, S1 US21

Type 3 Completor:

(t[7/] --* • b[~/], i, - , - , i, {}} (b[n] --* O o , i,j, k, l, S)
(t[~/] --* b[~?] ° , i , j , k , l ,S)

Type 4a Completor:

(t[7/] --* • t[~/~], i, - , - , i, {})
(t[7/r] --~ O • , i , j ,k , l ,S~)

(b[~/] ~ A . , j ,p ,q,k , $2)
(t[n] -* t[nr] ° , i, p, q, 1, {op(addr(n), deriv(tree(nr), S~)) } U $2)

Type 4b Completor:

(b[zl] --* • t[~/r], i, - , - , i, {}}
(t[Zlr] ~ 0 . , i , j ,k , l , S1)

(b[,] --* A . , j ,p ,q ,k , S2)
(t[,] ---* t[Zlr] " , i, p, q, 1, {op(addr(,), deriv(treeO?r), S~))} U $2)

Type 5 Completor:

(b[zlf] ---* . b [~ l] , i , - , - , i , { }) (b[z/] --* O . , i , j , k , l ,S)
(b[~f] ---+ b[~/]. , i, i, I, 1, S)

Type 6 Completor:

(t[~/] ~ • tic?r], i, - , - , i, {}) (t[rlr] ~ 0 "~ i~ -~ -~ l, S)
(t[7/] --* t[Z]r] " ~ i, --, --, I, {op(addr01), deriv(treeO?~), S))}}

Figure 10
Inference rules for ex tended der iva t ion TAG parsing.

Z/ not a root node

t[..~?] ~ t[..,~/r]

b[..~?] ~ t[..~p/r]

b[..~/r/f] --~ b[..r/]

t[,] --* t[~r]

A s a p r o o f of c o n c e p t , t h e p a r s i n g a l g o r i t h m jus t d e s c r i b e d w a s i m p l e m e n t e d in
P r o l o g o n t o p of a s i m p l e , g e n e r a l - p u r p o s e , a g e n d a - b a s e d i n f e r e n c e e n g i n e . E n c o d -
i n g s o f exp l i c i t i n f e r e n c e r u l e s a re e s s e n t i a l l y i n t e r p r e t e d b y t h e i n f e r e n c e e n g i n e . T h e
P r o l o g d a t a b a s e is u s e d a s t h e cha r t ; i t e m s n o t a l r e a d y s u b s u m e d b y a p r e v i o u s l y g e n -
e r a t e d i t e m a re a s s e r t e d to t h e d a t a b a s e as t h e p a r s e r r uns . A n a g e n d a of p o t e n t i a l n e w
i t e m s is m a i n t a i n e d . I t e m s a re a d d e d to t h e a g e n d a as i n f e r e n c e r u l e s a re t r i g g e r e d b y
i t e m s a d d e d to t h e char t . B e c a u s e t h e i n f e r e n c e r u l e s a r e s t a t e d expl ic i t ly , t h e r e l a t i o n
b e t w e e n t h e a b s t r a c t i n f e r e n c e r u l e s d e s c r i b e d in th i s p a p e r a n d t h e i m p l e m e n t a t i o n
is e x t r e m e l y t r a n s p a r e n t . A s a m e t a - i n t e r p r e t e r , t h e p r o t o t y p e is n o t p a r t i c u l a r l y effi-

116

Yves Schabes and Stuart M. Shieber Tree-Adjoining Derivation

cient. (In particular, the implementat ion does not achieve the theoretical O(n 6) bound
on complexity, because of a lack of appropriate indexing.) Code for the proto type
implementat ion is available for distribution electronically from the authors.

7. Conclusion

The precise formulat ion of derivation for tree-adjoining grammars has important rami-
fications for a wide variety of uses of the formalism, f rom syntactic analysis to semantic
interpretation and statistical language modeling. We have argued that the definition of
tree-adjoining derivation must be reformulated in order to take greatest advantage of
the decoupling of derivation tree and der ived tree by manifesting the proper linguistic
dependencies in derivations. The particular proposal is both precisely characterizable
through a definition of TAG derivations as equivalence classes of ordered derivation
trees and computat ional ly operational by virtue of a compilation to linear indexed
grammars together with an efficient algori thm for recognition and parsing according
to the compiled grammar.

Acknowledgments
Order of authors is not intended as an
indication of precedence of authorship.
Much of the work reported in this paper
was performed while the first author was at
the Department of Computer and
Information Science, University of
Pennsylvania, Philadelphia, PA. The first
author was supported in part by DARPA
Grant N0014-90-31863, ARO Grant
DAAL03-89-C-0031, and NSF Grant
IRI-90-16592. The second author was
supported in part by Presidential Young
Investigator award IRI-91-57996 from the
National Science Foundation and a
matching grant from Xerox Corporation.
The authors wish to thank Aravind Joshi for
his support of the research, and Aravind
Joshi, Judith Klavans, Anthony Kroch,
Shalom Lappin, Kathy McCoy, Fernando
Pereira, James Pustejovsky, and
K. Vijay-Shanker for their helpful
discussions of the issues involved. We are
indebted to David Yarowsky for aid in the
design of the experiment mentioned in
footnote 9 and for its execution.

References
Abeill6, Anne; Schabes, Yves; and Joshi,

Aravind K. (1990). "Using lexicalized tree
adjoining grammars for machine
translation." In Proceedings, 13th
International Conference on Computational
Linguistics, Volume 3, 1-6, Helsinki,
Finland.

Gazdar, Gerald; Klein, Ewan; Pullum,
Geoffrey K.; and Sag, Ivan A. (1985).
Generalized Phrase Structure Grammar.
Blackwell.

Joshi, A. K.; Kosaraju, S. R.; and Yamada,
H.M. (1972a). "String adjunct grammars:
I. Local and distributed adjunction."
Information and Control, 21(2), 93-116.

Joshi, A. K.; Kosaraju, S. R.; and Yamada,
H. M. (1972b). "String adjunct grammars:
II. Equational representation, null
symbols, and linguistic relevance."
Information and Control, 21 (3), 235-260.

Joshi, Aravind K.; Levy, L. S.; and
Takahashi, M. (1975). "Tree adjunct
grammars." Journal of Computer and System
Sciences, 10(1), 136-163.

Kroch, Anthony S. (1989). "Asymmetries in
long distance extraction in a TAG
grammar." In Alternative Conceptions of
Phrase Structure, edited by M. Baltin and
A. Kroch, 66-98. University of Chicago
Press.

Kroch, Anthony S., and Joshi, Aravind K.
(1985). "The linguistic relevance of tree
adjoining grammar." Technical Report
MS-CIS-85-18, Department of Computer
and Information Science, University of
Pennsylvania, Philadelphia, PA.

Pereira, Fernando C. N., and Warren, David
H. D. (1983). "Parsing as deduction." In
Proceedings, 21st Annual Meeting of the
Association for Computational Linguistics,
137-144. Cambridge, MA.

Quirk, Randolph; Greenbaum, Sidney;
Leech, Geoffrey; and Svartvik, Jan (1985).
A Comprehensive Grammar of the English
Language. Longman.

Resnik, Philip (1992). "Probabilistic
tree-adjoining grammar as a framework
for statistical natural language
processing." In Proceedings, 14th
International Conference on Computational
Linguistics, 418-424. Nantes, France.

117

Computational Linguistics Volume 20, Number 1

Schabes, Yves (1991). "The valid prefix
property and left to right parsing of
tree-adjoining grammar." In Proceedings,
Second International Workshop on Parsing
Technologies, 21-30. Cancun, Mexico.

Schabes, Yves (1992). "Stochastic lexicalized
tree-adjoining grammars." In Proceedings,
14th International Conference on
Computational Linguistics, 426-432. Nantes,
France.

Schabes, Yves, and Shieber, Stuart M. (1992).
"An alternative conception of
tree-adjoining derivation." Technical
Report 08-92, Harvard University,
Cambridge, MA.

Schabes, Yves, and Waters, Richard C.
(1993a). "Lexicalized context-free
grammars." In Proceedings, 31st Annual
Meeting of the Association for Computational
Linguistics, 121-129. Columbus, OH.

Schabes, Yves, and Waters, Richard C.
(1993b). "Stochastic lexicalized
context-free grammars." In Proceedings,
Third International Workshop on Parsing
Technologies, 257-266. Tilburg, The
Netherlands and Durbuy, Belgium.

Shieber, Stuart M. (1992). Constraint-Based
Grammar Formalisms. MIT Press.

Shieber, Stuart M. (in press). "Restricting the
weak-generative capacity of synchronous
tree-adjoining grammars." Computational
Intelligence.

Shieber, Stuart M., and Schabes, Yves (1990).
"Synchronous tree-adjoining grammars."
In Proceedings, 13th International Conference
on Computational Linguistics, Volume 3,
253-258. Helsinki, Finland.

Shieber, Stuart M., and Schabes, Yves (1991).
"Generation and synchronous tree
adjoining grammars." Computational
Intelligence, 4(7), 220-228.

Vijay-Shanker, K. (1987). A Study of Tree
Adjoining Grammars. Doctoral dissertation,
Department of Computer and
Information Science, University of
Pennsylvania, Philadelphia, PA.

Vijay-Shanker, K., and Joshi, Aravind K.
(1985). "Some computational properties of
tree adjoining grammars." In Proceedings,
23rd Annual Meeting of the Association for
Computational Linguistics, 82-93. Chicago,
IL.

Vijay-Shanker, K., and Joshi, Aravind K.
(1988). "Feature structure based tree
adjoining grammars." In Proceedings, 12th
International Conference on Computational
Linguistics, 714--719. Budapest, Hungary.

Vijay-Shanker, K., and Weir, David J. (1990).
"Polynomial parsing of extensions of
context-free grammars." In Current Issues
in Parsing Technologies, edited by Masaru
Tomita, 191-206. Kluwer Academic
Publishers.

118

Yves Schabes and Stuart M. Shieber Tree-Adjoining Derivation

Appendix A: Proof of Redundancy of Adjacent Sibling Swapping

A.1 Preliminaries
A.1.1 Tree Addresses. We define tree addresses (variables over which are convention-
ally notated p~q,...~ t, u~v and their subscripted and pr imed variants) as the finite,
possibly empty, sequences of positive integers (conventionally i~j~ k), with _._ as the
sequence concatenation operator. We uniformly abuse notation by conflating the dis-
tinction between singleton sequences and their one element.

We use the notation p -~ q to notate that tree address p is a proper prefix of q,
and p -~ q for improper prefix. When p _ q, we write q - p for the (possibly empty)
sequence obtained from q by removing p from the front, e.g., 1 - 2 . 3 . 4 - 1 • 2 --- 3 . 4 .

A.1.2 Trees. We will take trees (conventionally A, B, E, T; also ~, r , 3' in the prior text)
to be finite partial functions from tree addresses to symbols, such that the functions
are

Prefix closed: For any tree T, if T(p. i) is defined then T(p) is defined.

Left closed: For any tree T, if T(p • i) is defined and i > 1 then T(p • (i - 1)) is
defined.

We will refer to the domain of a tree T, the tree addresses for which T is defined,
as the nodes of T. A node p of T is a frontier node if T(p. i) is undef ined for all i. A node
of T is an interior node if it is not a frontier node. We say that a node p of T is labeled
with a symbol s if T(p) = s.

A.2 Tree-Adjoining Grammars and Derivations
A.2.1 Tree-Adjoining Grammars. In the following definitions, we restrict attention to
tree-adjoining grammars in which adjunction is the only operation; substitution is not
allowed. The definitions are, however, easily augmented to include substitution. We
define a tree-adjoining grammar to be given by a quintuple/G~ N,/7, ~4~ S) where

• P, is a finite set of terminal symbols.

• N is a finite set of nonterminal symbols disjoint from P,.

• (V = G U N is the vocabulary of the grammar.)

• S is a distinguished nonterminal symbol, the start symbol.

• /7 is a finite set of trees, the initial trees, where

- - in te r ior nodes are labeled by nonterminal symbols, and
frontier nodes are labeled by terminal symbols or the special
symbol c. (We require that e ~g V, as e intuitively specifies the
empty string.)

• ~4 is a finite set of trees, the auxiliary trees, where

- - in te r ior nodes are labeled by nonterminal symbols, and
- - f ront ie r nodes are labeled by terminal symbols or e, except for

one node, called the foot node, which is labeled with a
nonterminal symbol.

• (g = /7 tO A is the set of elementary trees of the grammar.)

By convention, the address of the foot node of a tree A is notated fa.

119

Computational Linguistics Volume 20, Number 1

A.2.2 Adjunct ion. The adjunction of an auxiliary tree A at address t in tree E notated
E[A/t] is defined to be the smallest (least defined) tree T such that

E(r) if t 74 r (1)
T(r) = A (u) if r = t . u and fA 74 U (2)

E(t . u) if r = t . fa . u (3)

These cases ~ire disjoint except at addresses t and t . fA. We have

by clause (1), and

by clause (2). Similarly, we have

by clause (2) and

T(t) -- E(t)

T(t) -- A(t)

T(t . fA) = Aria)

T(t "fA) = E(t)

by clause (3). So for an adjunction to be well defined, it must be the case that

E(t) = A(t) = Aria)

that is, the node at which adjunction occurs must have the same label as the root and
foot of the auxiliary tree adjoined. This is, of course, s tandard in definitions of TAG.

Alternatively, this constraint can be added as a stipulation and the definition mod-
ified as follows:

E(F) if t Z r
T(r) = A(u) if r = t . u and fA Z U

E(t . u) if r = t . fA . U

We will use this latter definition below.

A.2.3 Orde red Der iva t ion Trees. Ordered derivat ion trees are ordered trees composed
of nodes, conventional ly notated as ~/, possibly in its subscripted and pr imed variants.
(For ordered derivat ion trees, we will be less formal as to their mathematical structure.
In particular, the formalization of the previous section need not apply; the definitions
that follow define all of the structure that we will need.) The parent of a node ~/
in a derivat ion tree will be wri t ten parent(q), and the tree in g that the node marks
adjunction of will be notated tree(~l). The tree tree(q) is to be adjoined into its parent
tree(parent(q)) at an address specified on the arc in the tree linking the two; this address
is notated addrO1). (Of course, the root node has no parent or address; the parent and
addr functions are partial.)

An ordered derivat ion tree is well formed if for each arc in the derivat ion tree
f rom ~ to parent(q) labeled with addr(~), the tree tree(q) is an auxiliary tree that can be
adjoined at the node addrO?) in tree(parent01)).

We repeat f rom Section 4.1 the definition of the f u n c t i o n /) f rom derivat ion trees
to the der ived trees they specify, in the notation of this appendix:

"D(D) = {

treeO?) if D is a trivial tree of one node ~/

tree(,)[~D(D1) / h , "D(Da) /t2~ . . . , ~)(Dk) /tk]
if D is a tree with root node ~/

and with k child subtrees D 1 , . . . , Dk
whose arcs are labeled with addresses t l , . . . , tk.

120

Yves Schabes and Stuart M. Shieber Tree-Adjoining Derivation

As in Section 4.1, E[A1 /h , . . . ,Ak / t k] specifies the simultaneous adjunction of trees
A1 through Ak at tl through tk, respectively, in E. It is defined as the iterative adjunction
of the Ai in order at their respective addresses, with appropriate updat ing of the tree
addresses of later adjunctions to reflect the effect of earlier adjunctions. In particular,
the following inductive definition suffices; the base case holds for the adjunction of
zero auxiliary trees.

where

El] = E
E[A1/ tl , A2/ t2, . . . , Ak / tk]

(E[A1/tl]) [A2/update(t2 ~ A1, t l) , . . . ~ Ak/update(tk , A1, tl)]

update(s, A, t) = { s if t 74 s
t . f A ' (S - - t) i f t - ~ s

In the following section, we leave out parentheses in specifying sequential ad-
junctions such as (E[A1/tl]) [A2/t2] under a convent ion of left associativity of the [_/_]
operator.

A.3 Effect o f S i b l i n g S w a p s
In this section, we show that the der ived tree specified by a given ordered deriva-
tion tree is unchanged if adjacent siblings whose arcs are labeled with different tree
addresses are swapped. This will be shown as the following proposition.

P r o p o s i t i o n
If t ~ t' then E l . . . , A/ t , B / t ' , . . .] = E l . . . , B/if , A / t , . . .] .

We start with a lemma, the case for only two adjunctions.

L e m m a
If t ~ t' then E[A/t, B/t'] = E[B/t ' ,A/ t] .

P r o o f
There are three major cases, depending on the relationship of t and t':

Case t -~ t': Let s = t ~ - t. Then

E[A/t, B/t'](r) = E[A/t][B/update(t', A, t)](r)
= E[A/t][B/t "fa" s](r)

E[A/t](r)
= B(u)

E[A/t](t . fA" s
E(r) if
a(v)
E(t-v)
B(u)
E(t. s-u)
E(r)
A(v)
E(t. v)
B(u)
E(t. s . u)

if t . f a . s ;~ r
if r = t .fA .S. U andfB ~ u

• u) if r = t ' fa'S'fB" U
t . f A . s ~ r and t ~ r

if t-fA "S :~ r and r = t - v
if t . f a . s ~ r and r = t . f a ' v
if r = t . f a . s . u andfB :~ u
i f r = t . f a . s . f B . u
if t ;~ r
i f r = t . v
if s ~ v and r = t .fA "v
if r = t . f a . s . u andfB :~ u
if r = t ' f a ' S ' f B " U

121

Computational Linguistics Volume 20, Number 1

If s ibl ings are s w a p p e d ,

= E[B/t'] [A/update(t,
= E[B/t'][A/t](r)

E[B/t . s](r)
= A(v)

E[B/t . s](t. v)
E(r) if
A(v) if

= E(t . v) if
B(u) if
E(t . s . u) if
E(r) if
A(v) if

= E(t . v) if
B(u) if
E(t . s . u) if

E[B/tI ,A/t](r)

Case t / -~ t: Ana logous ly .

Case t 74 t' and t' 74 t:

E[A/tt B/t'] (r)

B,t')](r)

i f t ~ r
if r = t . v a n d fA ~ V
if r = t ' fA .V

:~ r
= t . v

= t ' f A
= t ' f A
= t ' f A
;~r
~ - t . v
:~ v a n d r = t . fA . v
= t ' f A "S" U a n d f B :~ u
= t ' f A ' S ' f B ' U

= E[A/t] [B/update(Y, A,
= E[A/tl[B/t'](r)

E[A/t](r)
= B(u)

E[A/t](t ' . u)
E(r) if t'
A(v) if t'
E(t . v) if t' :~ r
B(u) if r = t'
E(t ' . u) if r = t'

• v a n d t . s ~ t . v
• v a n d t - v = t . s . u a n d f B :~ u
. v a n d t . v = t . f B . u

t)](r)

if t' ~ r
i f r = t ' . u a n d f B ~ u
if r = t' . fB " U

r a n d t :~ r
a n d r = t . v a n d fA ;~ V
a n d r = t . fA " V
• U a n d f B ~ U
"fB "U

N o t e tha t this is u n c h a n g e d (up to va r i ab le r e n a m i n g) u n d e r s w a p p i n g of
A for B a n d t for t ' . Tha t is E[A/t, B/t'](r) = E[B/t ' ,A/ t](r) . []

We n o w r e tu rn to the m a i n propos i t ion•

P ropos i t i on
If t ~ t ' t hen E [. . . , A / t , B / t ' , . . .] = E [. . . , B / t ' , A / t t . . .] .

Proof
The effect of the ad junc t ions before the t w o speci f ied in the s w a p is o b v i o u s l y the
s a m e on all fo l lowing ad junc t ions , so w e n e e d on ly s h o w tha t

E[A/t, B/t ' , C 1 / t l , . . . t Ck/tk] = E[B/t', A / t , C 1/tlt . . . t Ck/tk]

w i t h o u t loss of general i ty . We e x a m i n e the effect of the A a n d B ad junc t ions on the
tree a d d r e s s ti for each Ci separa te ly . In the case of the f o r m e r ad junc t ion o rde r

E [A / t , B / t ' , . . . , C d t i t . . .]
= E[A/t] [B/update(t't A, t) , . . . , Ci/update(ti, A, t) , . . .]
= E[A/t][B/update(t', At t)] [. . . , Q/update(update(tit A, t), B, update(t', A, t)) t . . .]
= E[A/t, B/t'] [. . . t Ci/update(update(ti, At t), Bt update(Y, A, t)) , . . .]

122

Yves Schabes and Stuart M. Shieber Tree-Adjoining Derivation

a n d for t he l a t t e r a d j u n c t i o n o rde r :

E[B/t', A / t , . . . , Ci/t i , . . .]
= E[B/t'] [A/update(t, B, t ') , . . . , Ci/update(ti, B, t ') , . . .]
= E[B/t'] [A/update(t, B, t ')] [. . . , Ci/update(update(ti, B, t ') , A, update(t, B, t ')) , . . .]
= E[B/t', A / t][. . . , Ci/update(update(ti, B, t ') , A, update(t, B, t ')) , . . .]
= E[A/t, B/t'] [. . . , Ci/update(update(ti, B, t ') , A, update(t, B, t ')) , . . .]

Th i s las t s t ep h o l d s b y v i r t u e o f t he l e m m a .
Thus , it suff ices to s h o w tha t

update(update(ti, A, t), B, update(t', A, t)) = update(update(ti, B, t ') , A, update(t, B, t '))

Aga in , w e p e r f o r m a case ana ly s i s d e p e n d i n g o n t he p re f ix r e l a t i o n s h i p s of t, Y,
a n d ti. N o t e tha t w e m a k e u se o f t he fac t t ha t if t -~ t ~ t h e n (Y - t) • s = t r • s - t.

Case t -~ Y:

Subcase t ~ -~ ti:

update(update(ti, A, t) , B, update(t', A, t))
= update(t "fA" (ti -- t), B, t ' fA" (t ' -- t))
= t ' fA" (t ' -- t)"fB" (t i - t ')
= t ' fA" (t ' "fB" (ti-- t') -- t)
= update(t' "fB" (t i - t ') ,A, t)
= update(update(ti, B, t ') , A, update(t, B, t '))

Subcase t ~ 74 ti and t -~ ti:

update(update(ti, A, t), B, update(t', A, t))
= update(t "fA" (t i - t), B, t ' fA" (t ' -- t))
= t . f A . (ti-- t)
= update(ti, A , t)
= update(update(ti, B, t ') , A, update(t, B, t '))

Subcase t' 74 ti and t 74 ti:

update(update(ti, A, t), B, update(t', A, t))
= update(ti, B, t ' fA" (t ' -- t))
-= ti
= update(ti, A, t . f B . (t ' - t))
= update(update(ti, B, t ') , A, update(t, B, t '))

Case t p < t: T h e p r o o f is as fo r t he p r e v i o u s case w i t h t fo r t r a n d v ice versa .

Case t 74 t ~ a n d t ~ 74 t:

Subcase t ~ ti: We can c o n c l u d e f r o m the a s s u m p t i o n s t ha t Y 74 ti.
T h e n

update(update(ti, A, t), B, update(t', A, t))
= update(t, fA" (ti -- t), B, t ')
~- t . fA . (ti - t)
= update(ti, A, t)
= update(update(ti, B, t ') , A, update(t, B, t '))

123

Computational Linguistics Volume 20, Number 1

Subcase t 74 ti and t ~ -~ ti'- The proof is as for the previous subcase
with t for t ~ and vice versa.

Subcase t 74 ti and t' 74 ti:

update(update(G A, t) , Be update(t'~ A, t))
= update(ti, B, t')

= update(G A, t)
= update(update(ti, B~ t'), As update(t, B, t'))

[]

124

