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From spring 1990 through fall 1991, we performed a battery of small experiments to test the 
effectiveness of supplementing knowledge-based techniques with probabilistic models. This paper 
reports our experiments in predicting parts of speech of highly ambiguous words, predicting the 
intended interpretation of an utterance when more than one interpretation satisfies all known 
syntactic and semantic constraints, and learning case frame information for verbs from example 
uses. 

From these experiments, we are convinced that probabilistic models based on annotated 
corpora can effectively reduce the ambiguity in processing text and can be used to acquire lexical 
information from a corpus, by supplementing knowledge-based techniques. 

Based on the results of those experiments, we have constructed a new natural language 
system (PLUM)for extracting data from text, e.g., newswire text. 

1. Introduction 

Natural language processing, and AI in general, have focused mainly on building 
rule-based systems with carefully handcrafted rules and domain knowledge. Our own 
natural language database query systems, JANUS (Weischedel et al. 1989), ParlanceTM, 1 
and Delphi (Stallard 1989), have used these techniques quite successfully. However, as 
we move from the application of understanding database queries in limited domains 
to applications of processing open-ended text, we found challenges that questioned 
our previous assumptions and suggested probabilistic models instead. 

1. We could no longer assume a limited vocabulary. Rather in the domain 
of terrorist incidents of the Third Message Understanding conference 
(MUC-3) (Sundheim 1991), roughly 20,000 vocabulary items appear in a 
corpus 430,000 words long. Additional text from that domain would 
undoubtedly contain new words. Probabilistic models offer a mathematically 
grounded, empirically based means of predicting the most likely interpretation. 

* BBN Systems and Technologies, 70 Fawcett Street, Cambridge MA 02138. 
t Sage Lab, Rensselaer Polytechnic Institute, Troy NY 12180. 
:~ Computer Science Department, Bowdoin College, Brunswick ME 04011. 
1 Parlance is a trademark of BBN Systems and Technologies. 

(~) 1993 Association for Computational Linguistics 



Computational Linguistics Volume 19, Number 2 

2. Having semantics for all (or even most) of the words of the vocabulary 
would violate the limited domain assumption, since roughly 50% of the 
message stream mentions no terrorist incident, and even those that do 
may be primarily about a different topic or topics. Therefore, the power 
of semantic constraints in limited domains would be diluted. Probability 
models could be employed where less knowledge was available. 

3. Given the vocabulary size, we could not expect to give full syntactic or 
semantic features. The labor for handcrafted definitions would not be 
warranted. Statistical language models have a learning component that might 
supplement handcrafted knowledge. 

4. Purely rule-based techniques seemed too brittle for dealing with the 
variety of constructions, the long sentences (averaging 29 words per 
sentence), and the degree of unexpected input. Statistical models based on 
local information (e.g., DeRose 1988; Church 1988) might operate effectively in 
spite of sentence length and unexpected input. 

To see whether our four hypotheses (in italics above) effectively addressed the 
four concerns above, we chose to test the hypotheses on two well-known problems: 
ambiguity (both at the structural level and at the part-of-speech level) and inferring 
syntactic and semantic information about unknown words. 

Guided by the past success of probabilistic models in speech processing, we have 
integrated probabilistic models into our language processing systems. Early speech 
research used purely knowledge-based approaches, analogous to knowledge-based 
approaches in NLP systems today. These required much detailed, handcrafted knowl- 
edge from several sources (e.g., acoustic and phonetic). However, when it became clear 
that these techniques were too brittle and not scalable, speech researchers turned to 
probabilistic models. These provided a flexible control structure for combining mul- 
tiple sources of knowledge (providing improved accuracy and ability to deal with 
more complex domains) and algorithms for training the system on large bodies of 
data (providing reduced cost in moving the technology to a new application domain). 

Since probability theory offers a general mathematical modeling tool for estimating 
how likely an event is, probability theory may be applied at all levels in natural 
language processing, because some set of events can be associated with each algorithm. 
For example, in morphological processing in English (Section 2), the events are the use 
of a word with a particular part of speech in a string of words. At the level of syntax 
(Section 3), an event is the use of a particular structure; the model predicts what the 
most likely rule is given a particular situation. One can similarly use probabilities for 
assigning semantic structure (Section 4). 

We report in Section 2 on our experiments on the assignment of part of speech to 
words in text. The effectiveness of such models is well known (DeRose 1988; Church 
1988; Kupiec 1989; Jelinek 1985), and they are currently in use in parsers (e.g. de Mar- 
cken 1990). Our work is an incremental improvement on these models in three ways: 
(1) Much less training data than theoretically required proved adequate; (2) we inte- 
grated a probabilistic model of word features to handle unknown words uniformly 
within the probabilistic model and measured its contribution; and (3) we have applied 
the forward-backward algorithm to accurately compute the most likely tag set. 

In Section 3, we demonstrate that probability models can improve the performance 
of knowledge-based syntactic and semantic processing in dealing with structural am- 
biguity and with unknown words. Though the probability model employed is not new, 
our empirical findings are novel. When a choice among alternative interpretations pro- 
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duced by a unification-based parser and semantic interpreter must be made, a simple 
context-free probability model reduced the error rate by a factor of two compared with 
using no model. It is well known that a unification parser can process an unknown 
word by collecting the assumptions it makes while trying to find an interpretation 
for a sentence. As a second result, we found that adding a context-free probability 
model improved the unification predictions of syntactic and semantic properties of an 
unknown word, reducing the error rate by a factor of two compared with no model. 

In Section 4, we report an experiment in learning case frame information of un- 
known verbs from examples. The probabilistic algorithm is critical to selecting the 
appropriate generalizations to make from a set of examples. The effectiveness of the 
semantic case frames inferred is measured by testing how well those case frames pre- 
dict the correct attachment point for prepositional phrases. In this case, a significant 
new model synthesizing both semantic and syntactic knowledge is employed. 

2. POST: Using Probabilities to Tag Part of Speech 

Identifying the part of speech of a word illustrates both the problem of ambiguity and 
the problem of unknown words. Many words are ambiguous in several ways, as in 
the following: 

a round table: adjective 

a round of cheese: noun 

to round out your interests: verb 

to work the year round: adverb 

Even in context, part of speech can be ambiguous, as in the famous example: "Time 
flies like an arrow," where the first three words are ambiguous in two ways, result- 
ing in four grammatical interpretations of the sentence. In processing text such as 
newswire, ambiguity at the word level is high. In an analysis of texts from the Wall 
Street Journal (wsJ), we found that the average number of parts of speech per word 
was approximately two. 

Determining the part of speech of an unknown word can help the system to know 
how the word functions in the sentence; for instance, that it is a verb stating an action 
or state of affairs, that it is a common noun stating a class of persons, places, or things, 
that it is a proper noun naming a particular person, place, or thing, etc. If it can do 
that well, then more precise classification and understanding is feasible. 

The most critical feature to us is to have local criteria for ranking the alternative 
parts of speech, rather than relying solely on a globally correct parse. The probability 
model we selected offers these features. 

The name of our component for part of speech is POST (part-of-speech tagger). 

2.1 The n-Gram Model 
In our work, we have used well-known probability models known as Hidden Markov 
Models; therefore, none of the background in Section 2.1 is novel. If we want to 
determine the most likely syntactic part of speech or tag for each word in a sentence, 
we can formulate a probabilistic tagging model. Let us assume that we want to know 
the most likely tag sequence, T = {h, t2, . . . ,  tn}, given a particular word sequence, 
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W = {wl, w2,. . .  Wn}. Using Bayes' rule we know that 

p(T [ W) - p(T)p(W ] T) 
p(W) 

where p(T) is the a priori probability of tag sequence T, p(W ] T) is the conditional 
probability of word sequence W occurring given that a sequence of tags T occurred, 
and p(W) is the unconditioned probability of word sequence W. Then, in principle, 
we can consider all possible tag sequences, evaluate p(T ] W) of each, and choose the 
tag sequence T that is most likely, i.e., the sequence that maximizes p(T I W). Since W 
is the same for all hypothesized tag sequences, we can disregard p(W). 

We can rewrite the probability of each sequence as a product of the conditional 
probabilities of each word or tag given all of the previous tags. 

p(T ] W)p(W)--  h p ( t i  ] ti_l,ti_2~...~tl)p(wi ] t i . . . t l~wi -1 . . .w l )  
i=1 

Typically, one makes two simplifying assumptions to cut down on the number 
of probabilities to be estimated. Rather than assuming wi depends on all previous 
words and all previous tags, one assumes wi depends only on ti. This independence 
assumption, of course, is not correct. Yet, it so reduces the number of probabilities that 
must be estimated and therefore so reduces the amount of data needed to estimate 
probabilities, that it is a worthwhile simplifying assumption. It is an empirical issue 
whether alternative assumptions would yield significantly better performance. 

Second, rather than assuming the tag ti depends on the full sequence of previous 
tags, we can assume that local context is sufficient. Typically, individuals have assumed 
tag ti depends only on ti-1 and ti_ 2 (a tri-tag model) or only on ti-1 (a bi-tag model). 
This assumed locality is termed a Markov independence assumption. 

Using a tri-tag model, we then have the following: 

n 

p(T [ W)p(W) = p(tl)p(t2 ] tl) I-I p(ti ] ti_l,ti_2) p(wi [ ti) 
i=3 

If we have sufficient training data, we can estimate the tag n-gram sequence of 
probabilities and the probability of each word given a tag (lexical probabilities). Using 
a tagged corpus to train the model is called "supervised training," since a human has 
prepared the correct training data. We conducted supervised training to derive both a 
bi-tag and a tri-tag model based on a corpus from the University of Pennsylvania, which 
was created as part of the TREEBANK project (Santorini 1990) consisting of Wall Street 
Journal (WSJ) articles, texts from the Library of America, transcribed radio broadcasts, 
and transcribed dialogues. The full TREEBANK consists of approximately 4 million 
words of text. Of the 47 parts of speech, 36 are word tags, and 11 are punctuation tags. 
Of the word tags, 22 are tags for open class words and 14 for closed class words. Each 
word or punctuation mark has been tagged, as shown in the following example, where 
NNS is plural noun; VBD is past tense verb; RB is adverbial; VBN is past participle 
verb. 

Terms / NNS  were / VBD not / RB disclosed / VBN . / . 

A bi-tag model predicts the relative likelihood of a particular tag given the pre- 
ceding tag, e.g., how likely is the tag VBD on the second word in the above example, 
given that the previous word was tagged NNS. A tri-tag model predicts the relative 
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likelihood of a particular tag given the two preceding tags, e.g., how likely is the tag 
RB on the third word in the above example, given that the two previous words were 
tagged NNS and VBD. While the bi-tag model is faster at processing time, the tri-tag 
model has a lower error rate. 

The algorithm for supervised training is straightforward. One counts for each 
possible pair of tags, the number of times that the pair was followed by each possible 
third tag. The number of times a given third tag t' occurs after tags tl and t2 divided 
by the number of times tl and t2 are followed by any third tag is an estimate of the 
probability of p(t' I t2~ tl). 

One also estimates from the training data the conditional probability of each par- 
ticular word given a known tag (e.g., how likely is the word "terms" if the tag is 
NNS); this is called the "word emit" probability. This is simply the number of times 
a particular word appears as part of speech t, divided by the number of times part of 
speech t appears in the corpus. 

No matter how large the training corpus, one may not see all pairs or triples of 
tags, nor all words used in each part of speech possible in the language, nor all words. 
It seems unwise to assume that the probability of an unseen event is zero. To deal 
with the previously unseen, one employs one of several estimation techniques called 
"padding." Thus far, we have employed the simplest of these techniques for estimating 
p(t3 [ t2tl) if tlt2t3 was not present in the training corpus. Suppose triples beginning 
with ht2 appear m times in the corpus. Suppose further that for j distinct tags t, tlt2t' 
was not present in the corpus. Then, we estimate p(t I t2tl) = 1/m (as if it actually 
had been seen once). So that the probability of tags given tit2 sum to one, we subtract 
1/ jm from the probability of each triple that actually was observed in the corpus, i.e., 
if ht2t ~ was observed k times in the corpus, then we estimate p(t ~ I ht2) = k /m  - 1/jm. 

Given these probabilities, one can then find the most likely tag sequence for a 
given word sequence. Using the Viterbi algorithm, we selected the path whose overall 
probability was highest, and then took the tag predictions from that path. We replicated 
the earlier results that this process is able to predict the parts of speech with only a 
3-4% error rate when the possible parts of speech of each of the words in the corpus 
are known. This is in fact about the rate of discrepancies among human taggers on 
the TREEBANK project (Marcus, Santorini, and Magerman 1990). 

2.2 How Much Training Data Is Required? 
While supervised training is shown here to be very effective, it requires a correctly 
tagged corpus. How much manually annotated data is required? 

In our experiments, we demonstrated that the training set can, in fact, be much 
smaller than might have been expected. One rule of thumb suggests that the training 
set needs to be large enough to contain on average ten instances of each type of tag 
sequence that occurs. This would imply that a tri-tag model using 47 possible parts 
of speech would need a bit more than 1 million words of training, if all possible tag 
sequences occur. However, we found that much less training data is necessary, since 
many possible sequences do not occur. 

It can be shown that if the average number of tokens of each tri-gram that has 
been observed is ten, then the lower bound on the probability of new tri-grams is 
1/10. Thus the likelihood of a new tri-gram is fairly low. 

While theoretically the set of possible events is all permutations of the tags, in 
practice only a relatively small number of tri-tag sequences actually occur. Out of 
about 97,000 possible triples, we found only 6,170 unique triples when we trained 
on 64,000 words, and about 10,000 when we trained on 1,000,000 words. Thus, even 
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Figure 1 
Size of tri-tag training sets. 

though an additional 4,000 sequences are observed in the full training set, they are so 
rare (0.4%) that they do not significantly affect the overall accuracy. 

In our initial experiments, which were limited to known words, the error rate for 
a supervised tri-tag model increased only from 3.30% to 3.87% when the size of the 
training set was reduced from 1 million words to 64,000 words (see Figure 1). All that 
is really necessary, recalling the rule of thumb, is enough training to allow for ten of 
each of the tag sequences that do occur. 

This result is applicable to new tag sets, subdomains, or languages. We simply 
continue to increase the amount of training data until the number of training tokens is 
at least ten times the number of different sequences observed so far. Alternatively, we 
can stop when the singleton events account for a small enough percentage (say 5%) 
of the total data. Thus, in applications such as tagging, where a significant number 
of the theoretically possible events do not occur in practice, we can use supervised 
training of probabilistic models without needing prohibitively large corpora. 

Of course, performance of POST is also affected by the estimates of p(wi I ti) for 
known words and unknown words. How to estimate p(wi ] ti) for unknown words 
is covered in the next section. For an observed word, a small training set of 64,000 
words may still be adequate for estimates of p(wi I ti). We found that by treating words 
observed only once as if they had not been observed at all (and are thus handled 
by the probabilistic models for unknown words) that performance actually increased 
slightly. This suggests that adequate performance can be obtained from a relatively 
small training set. 

We are not aware of any other published studies documenting empirically the 
impact of training set size on performance. 

2.3 U n k n o w n  Words 
Sources of open-ended text, such as a newswire, present natural language processing 
technology with a major challenge: what to do with words the system has never seen 
before. Current technology depends on handcrafted linguistic and domain knowledge. 
For instance, the system that performed most successfully in the evaluation of software 
to extract data from text at the Second Message Understanding Conference held at the 
Naval Ocean Systems Center, June 1989, would simply halt processing a sentence 
when a new word was encountered. 
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Using the UPenn set of parts of speech, unknown words can be in any of 22 
categories. A tri-tag model can be used to estimate the most probable one. Random 
choice among the 22 open classes would be expected to show an error rate for new 
words of 95%. The best previously reported error rate based on probabilistic models 
was 75% (Kuhn and DeMori 1990). 

In our first tests using the tri-tag model we showed an error rate of only 51.6%. 
However, this model only took into account the context of the word, and no informa- 
tion about the word itself. In many languages, including English, word endings give 
strong indicators of the part of speech. Furthermore, capitalization information, when 
available, can help to indicate whether a word is a proper noun. 

We have developed a novel probabilistic model that takes into account features of 
the word in determining the likelihood of the word given a part of speech. This was 
used instead of the "word emit" probabilities p(wi I ti) for known words. To estimate 
p(wi I ti) for an unknown word, we first determined the features we thought would 
distinguish parts of speech. There are four independent categories of features: inflec- 
tional endings, derivational endings, hyphenation, and capitalization; these are not 
necessarily independent, though we are treating them as such for our tests. Our initial 
test had 3 inflectional endings (-ed, -s, -ing), and 32 derivational endings (including 
-ion, -al, -ive, -ly). Capitalization has four values, in our system (+ initial + capitalized, 
- initial + capitalized, etc.) in order to take into account the first word of a sentence. 
We can incorporate these features of the word into the probability that this particular 
word will occur given a particular tag using the following: 

p(wi I ti) = p(unknown-word I ti) • p(Capital - feature I ti) • p(endings/hyph I ti) 

We estimate the probability of each ending for each tag directly from supervised 
training data. While these probabilities are not strictly independent, the approximation 
is good enough to make a marked difference in classification of unknown words. As 
the results in Figure 2 show, the use of orthographic endings of words reduces the 
error rate on the unknown words by a factor of three. 

We tested capitalization separately, since some data, such as that in the Third Mes- 
sage Understanding Conference (Sundheim 1991) is uppercase only. Titles and bibli- 
ographies will cause similar distortions in a system trained on mixed case and using 
capitalization as a feature. Furthermore, some languages, such as Japanese, have no 
explicit marking of proper nouns. Interestingly, the capitalization feature contributed 
very little to the reduction in error rates, whereas using the word features contributed 
a great deal. However, it does undeniably reduce confusion with respect to the proper 
noun category. 

Some well-known previous efforts (Church 1988; de Marcken 1990) have dealt with 
unknown words using various heuristics. For instance, Church's program PARTS has 
a prepass prior to applying the tri-tag probability model that predicts proper nouns 
based on capitalization. The new aspects of our work are (1) incorporating the treat- 
ment of unknown words uniformly within the probability model, (2) approximating 
the component probabilities for unknowns directly from the training data, and (3) mea- 
suring the contribution of the tri-tag model, of the ending, and of capitalization. 

In sum, adding a probability model of typical endings of words to the tri-tag model 
has yielded an accuracy of 82% for unknown words. Adding a model of capitalization 
to the other two models further increased the accuracy to 85%. The total effect of BBN's 
model has been a reduction of a factor of five in the error rate of the best previously 
reported performance. 
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Figure 2 
Decreasing error rate with use of word features. 

2.4 K-best  Tag Sets  
An alternative mode of running POST is to return the set of most likely tags for each 
word, rather than a single tag for each. 

In our first test, the system returned the sequence of most likely tags for the 
sentence. This has the advantage of eliminating ambiguity; however, even with a 
rather low error rate of 3.7%, there are cases in which the system returns the wrong 
tag, which can be fatal for a parsing system trying to deal with sentences averaging 
more than 20 words in length. 

De Marcken (1990) developed an approximate method for finding multiple tags 
for each word given the preceding words and one following word. We addressed this 
problem by adding the ability of the tagger to return for each word an ordered list 
of tags, marked by their probability using the Forward Backward algorithm (Baum 
and Eagon 1967). That yields a more precise method of determining the probability of 
each possible tag since it sums over all possible tag sequences, taking into account the 
entire sentence and not just the preceding tags. The Forward Backward algorithm is 
normally used in unsupervised training to estimate the model that finds the maximum 
likelihood of the parameters of that model. The exact probability of a particular tag 
given a particular word is computed directly by the product of the "forward" and 
"backward" probabilities to that tag, divided by the probability of the word sequence 
given this model. 

Figure 3 shows k-best tagging output, with the correct tag for each word marked 
in bold. Note that the probabilities are in natural log base e. Thus for each difference 
of 1, there is a factor of 2.718 in the probability. 

In two of the words ("Controls" and "computerized"), the first tag is not the 
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Bailey Controls, based in Wickliffe Ohio, makes computerized industrial controls systems. 

Bailey (NP. -1.17) (RB. -1.35) (FW. -2.32) (N'N. -2.93) (NI~. -2.95) (JJS. -3.06) (JJ. -3.31) (LS. -3.41) (JJR 

• -3.70) (NNS. -3.73) (VBG, -3.91)... 

Controls (VBZ. -0.19) (NNS. -1.93) (NIPS. -3.75) (N-P. -4.97) 

based (VBN. -0.0001) 

in (IN. -.001) (RBV. -7.07) (N-P• -9.002) 

Wickliffe (NIP. -0.23) (NPS. -1.54) 

Ohio (NIP. -0.0001) 

makes (VBZ.-0.0001) 

computerized (VBN. -0.23) (J J,&- 1.56) 

industrial (J$. -0.19) (NP. -1.73) 

controls (NNS. -0.18) (VBZ. -1.77) 

systems (NNS. -0.43) (NPS. -1.56) (NP. -1.95) 

Figure 3 
K-best tags and probabilities. 

correct one. However, in all instances the correct tag is included in the set. Note the 
first word, "Bailey," is unknown to the system, therefore, all of the open class tags are 
possible. 

In order to reduce the ambiguity further, we tested various ways to limit how 
many tags were returned based on their probabilities. Often one tag is very likely 
and the others, while possible, are given a low probability, as in the word "in" above. 
Therefore, we tried removing all tags whose probability was less than some arbitrary 
threshold (similar to de Marcken's "factor"), for example removing all tags whose 
likelihood is more than e 2 less likely than the most likely tag. So only tags within the 
threshold 2.0 of the most likely would be included (i.e., if the most likely tag had a 
log probability of -0.19, only tags with a log probability greater than -2.19 would be 
included)• This reduced the ambiguity for known words from 1.93 tags per word to 
1.23, and for unknown words, from 15.2 to 2.0. 

However, the negative side of using cutoffs is that the correct tag may be excluded. 
Note that a threshold of 2.0 would exclude the correct tag for the word "Controls" 
above. By changing the threshold to 4.0, we are sure to include all the correct tags in 
this example, but the ambiguity for known words increases from 1.23 to 1.24, and for 
unknown words from 2.0 to 3.7, for an ambiguity rating of 1.57 overall. 

We are continuing experiments to determine the most effective way of limiting 
the number of tags returned, and hence decreasing ambiguity, while ensuring that the 
correct tag is likely to be in the set. Balancing the tradeoff between ambiguity and 
accuracy is very dependent on the use the tagging will be put to. It is dependent 
both on the component that the tagged text directly feeds into, such as a parser that 
can efficiently follow many parses, but cannot recover easily from errors versus one 
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capable of returning a partial parse, and on the application, such as an application 
requiring high accuracy (database query) versus one requiring high speed (processing 
newswire text as it comes in). 

2.5 Moving to a New Domain 
In all of the tests discussed so far, we both trained and tested on sets of articles in the 
same domain, the Wall Street Journal subset of the Penn TREEBANK Project. However, 
an important measure of the usefulness of the system is how well it performs in other 
domains. While we would not expect high performance in radically different kinds of 
text, such as transcriptions of conversations or technical manuals, we would hope for 
similar performance on newspaper articles from different sources and on other topics. 

We tested this hypothesis using data from the Third Message Understanding Con- 
ference (MUC-3). The goal of MUC-3 was to extract data from texts on terrorism in 
Latin American countries. The texts are a mixture of news, interviews, and speeches. 
The University of Pennsylvania TREEBANK project tagged 400 MUC messages (ap- 
proximately 100,000 words), which we divided into 90% training and 10% testing. 

For our first test, we used the original probability tables trained from the Wall 
Street Journal articles, but tested on MUC messages. We then retrained the probabilities 
on the MUC messages and ran a second test on MUC messages, with an average 
improvement of three percentage points in both bi- and tri- tags. The full results are 
shown in Figure 4; 8.5% of the words in the test were unknown: 

While the results using the new tables are an improvement in these first-best tests, 
we saw the best results using K-best mode, which obtained a .7% error rate. We ran 
several tests using our K-best algorithm with various thresholds. As described in Sec- 
tion 2.4, the threshold limits how many tags are returned based on their probabilities. 
While this reduces the ambiguity compared to considering all possibilities, it also in- 
creases the error rate. Figure 5 shows this tradeoff from effectively no threshold, on 
the right-hand side of the graph (shown in the figure as a threshold of 12), which 
has a .7% error rate and an ambiguity of 3, through a cutoff of 2, which has an error 
rate of 2.9, but an ambiguity of nearly zero--i.e., one tag per word. (Note that the far 
left of the graph is the error rate for a cutoff of 0, that is, only considering the first 
of the k-best tags, which is approximately the same as the bi-tag error rate shown in 
Figure 4.) 

2.6 Using Dictionaries 
In all of the results reported here, we are using word/part-of-speech tables derived 
from training, rather than on-line dictionaries to determine the possible tags for a 
given word. The advantage of the tables is that the training provides the probability 
of a word given a tag, whereas the dictionary makes no distinctions between common 
and uncommon uses of a word. The disadvantage of this is that uses of a word that 
did not occur in the training set will be unknown to the system. For example, in the 
training portion of the WSJ corpus, the word "put" only occurred as a verb. However, 
in our test set, it occurred as a noun in the compound "put option." Since for efficiency 
reasons, we only consider those tags known to be possible for a word, this will cause 
an error. 

We have since integrated on-line dictionaries into the system, so that alternative 
word senses will be considered, while still not opening the set of tags considered for 
a known word to all open class tags. This will not completely eliminate the problem, 
since words are often used in novel ways, as in this example from a public radio plea 
for funds: "You can Mastercard your pledge." 
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BI-TAGS: TEST 1 TEST 2 

Overall error rate: 8.5 5.6 

Number of correct tags: 10340 10667 

Number of incorrect tags: 966 639 

Error rate for known words: 6.3 4.6 

Error rate for unknown words: 25 16 

TRI-TAGS: 

Overall error rate: 8.3 5.7 

Number of correct tags: 10358 10651 

Number of incorrect tags: 948 655 

Error rate for known words: 5.9 4.6 

Error rate for unknown words: 26 18 

Figure 4 
Comparison of original and trained probabilities. 

3. Pars ing  w i t h  a Context -Free  B a c k b o n e  

The performance of today's natural language understanding systems is hindered by 
the following three complementary problems: 

1. Frequently more than one interpretation remains even after all linguistic 
and domain knowledge has been used in processing an input. 

2. Partial interpretation, when no complete interpretation can be found, is 
minimal. 

3. Finding any interpretation if the input includes an unknown word. 

Our results on problems (1) and (3) above are presented in this section. The problem of 
partial interpretation when no complete interpretation can be found is touched upon 
in Section 4. 

Probabilities can quantify the likelihood of alternative complete interpretations of 
a sentence. In these experiments, we used the grammar of the Delphi component from 
BBN's HARC system (Stallard 1989), which combines syntax and semantics in a uni- 
fication formalism. We employed a context-free model, which estimates the probability 
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Figure 5 
Comparison of thresholds for K-best. 

of each rule in the grammar independently (in contrast to a context-sensitive model, 
such as the tri-tag model described above, which bases the probability of a tag on 
what other tags are in the adjacent context). 

In the context-free model, we associate a probability with each rule of the grammar. 
For each distinct major category (left-hand side) of the grammar, there is a set of 
context-free rules 

LHS ,-- RHS1 

LHS *-- RHS2 

LHS ~ RHSn. 

For each rule, one estimates the probability of the right-hand side given the left- 
hand side, p(RHSj I LHS). With supervised training, where a set of correct parse trees 
is provided as training, one estimates p(RHSj I LHS) by the number of times rule 
LHS *--- RHSj appears in the training set divided by the number of times LHS appears 
in the trees. 

The probability of a syntactic structure S, given the input string W, is then modeled 
by the product of the probabilities of the rules used in S. Chitrao and Grishman (1990) 
used a similar context-free model. Using this model, we explored the following issues: 

What method of training the rule probabilities should be employed? Our 
results were much more effective with supervised training, which 
explains why the model performed better in our experiments than 
Chitrao and Grishman found with unsupervised training. 
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Figure 6 
Probability of a parse tree given words. 

• How much  (little) training data is required for reliable estimates? As 
little as 80 sentences of supervised training proved  adequate  for a 
grammar  of about  1,000 rules. 

• How is system performance influenced? Contrasted with no model,  the 
context-free probabili ty model  reduced the error rate by  a factor of two. 

• Do the results suggest refinements in the probabili ty model? Extensions 
to account for lowest at tachment  are suggested by  an analysis of errors 
occurring in the test sets. 

3.1 Selecting among  Interpretations 
Our intention is to use the TREEBANK corpus being developed at the University 
of Pennsylvania as a source of correct structures for training. However ,  in our  first 
experiments,  we used small training sets taken from an existing quest ion-answering 
corpus of sentences about  a personnel  database. To our  surprise, we found that as 
little as 80 sentences of supervised training (in which a person, using graphical tools, 
identifies the correct parse) are sufficient to improve the ranking of the interpretations 
found. In our  tests, the NLP system produces  all interpretations satisfying all syntactic 
and semantic constraints. From that set, the in tended interpretation must  be chosen. 
The context-free probabil i ty model  reduced the error rate on an independent  test set 
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Figure 7 
Predictions of probabilistic language model. 

by a factor of two to four, compared with no model, i.e., random selection from the 
interpretations satisfying all knowledge-based constraints. 

We tested the predictive power of rule probabilities using this model both in un- 
supervised and in supervised mode. In the former case, the input is all parse trees 
(whether correct or not) for the sentences in the training set. In the latter case, the train- 
ing data included a specification of the correct parse as hand picked by the grammar's 
author from among the parse trees produced by the system. 

The detailed results from using a training set of 81 sentences appear in the his- 
togram in Figure 7. The fact that so little data was adequate deserves further scrutiny. 
The grammar had approximately 1,050 rules, one third of which are lexical, e.g., a cate- 
gory goes to a word. Estimating the lexical level is best handled via the part-of-speech 
techniques covered in the previous section. Therefore, there were 700 nonlexical rules. 
The training corpus consisted of 81 sentences whose parses averaged approximately 
35 rules per sentence. Therefore, the corpus of trees included approximately 2,850 rule 
occurrences, or about 4 per rule on average over all rules. However, as few as half of 
the rules were actually employed, leading to an average of roughly 8 rule occurrences 
per rule observed. Therefore, there was close to the amount of data one would predict 
as desirable. 

One further note about counting rule occurrences in the unification grammar. 
Rather than counting different unification bindings as different rules, we counted the 
rule with unbound variables, representing an equivalence class of rules with bound 
variables. 

The "best possible" error rates for each test indicates the percentage of cases for 
which none of the interpretations produced by the system was judged correct, so 
that no selection scheme could achieve a lower error rate than that. The "chance" 
score gives the error rate that would be expected with random selection from all 
interpretations produced. The "test" column shows the error rate with the supervised 
or unsupervised probability model in question. The first supervised test had an 81.4% 
improvement, the second a 50.8% improvement, and the third a 56% improvement. 
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These results state how much better than chance the given model did as a percentage 
of the maximum possible improvement. 

We expect to improve the model's performance by recording probabilities for other 
features in addition to just the set of rules involved in producing them. For example, 
in the grammar used for this test, two different attachments for a prepositional phrase 
produced trees with the same set of rules, but differing in shape. Thus the simple, 
context-free model based on the product of rule probabilities could not capture pref- 
erences concerning such attachment. By adding to the model probabilities for such 
additional features, we expect that the power of the probabilistic model to automati- 
cally select the correct parse can be substantially increased. 

Second, a much more reliable estimate of p(word I category) can be estimated as 
described in Section 2. In fact, one should be able to improve the estimate of a tree's 
likelihood via p(S I W) = p(S ] T) • p(T I W). 

3.2 Learning Lexical Syntax and Lexical Semantics 
One purpose for probabilistic models is to contribute to handling new words or par- 
tially understood sentences. We have done preliminary experiments that show that 
there is promise in learning lexical, syntactic, and semantic features from context when 
probabilistic tools are used to help control the ambiguity. 

In our experiments, we used a corpus of sentences each with one word that the 
system did not know. To create the corpus, we began with a corpus of sentences known 
to parse from a personnel question-answering domain. We then replaced one word in 
each sentence with an undefined word. 

For example, in the following sentence, the word "contact" is undefined in the 
system: Who in Division Four is the contact for MIT? That word has both a noun and a 
verb part of speech; however, the pattern of parts of speech of the words surrounding 
"contact" causes the tri-tag model to return a high probability that the word is a noun. 
Using unification variables for all possible features of a noun, the parser produces 
multiple parses. Applying the context-free rule probabilities to select the most probable 
of the resulting parses allows the system to conclude both syntactic and semantic facts 
about "contact." Syntactically, the system discovers that it is a count noun, with third 
person singular agreement. Semantically, the system learns (from the use of "who") 
that "contact" is in the semantic class PERSONS. 

Furthermore, the partially specified semantic representation for the sentence as a 
whole also shows the semantic relation to SCHOOLS, which is expressed here by the 
for phrase. Thus, even a single use of an unknown word in context can supply useful 
data about its syntactic and semantic features. 

Probabilistic modeling plays a key role in this process. While context-sensitive 
techniques for inferring lexical features can contribute a great deal, they can still leave 
substantial ambiguity. As a simple example, suppose the word "list" is undefined in 
the sentence List the employees. The tri-tag model predicts both a noun and a verb part of 
speech in that position. Using an underspecified noun sense combined with the usual 
definitions for the rest of the words yields no parses. However, an underspecified 
verb sense yields three parses, differing in the subcategorizafion frame of the verb 
"list." For more complex sentences, even with this very limited protocol, the number 
of parses for the appropriate word sense can reach into the hundreds. 

Using the rule probabilities acquired through supervised training (described in 
the previous section), the likelihood of the ambiguous interpretations resulting from 
a sentence with an unknown word was computed. Then we tested whether the tree 
ranked most highly matched the tree previously selected by a person as the correct one. 
This tree equivalence test was based on the tree's structure and on the rule applied at 
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each node; while an underspecified tree might have some less-specified feature values 
than the chosen fully specified tree, it would still be equivalent in the sense above. 

Of 160 inputs with an unknown word, in 130 cases the most likely tree matched 
the correct one, for an error rate of 18.75%, while picking at random would have 
resulted in an error rate of 37%, for an improvement by a factor of 2. This suggests 
that probabilistic modeling can be a powerful tool for controlling the high degree of 
ambiguity in efforts to automatically acquire lexical data. 

We have also begun to explore heuristics for combining lexical data for a single 
word acquired from a number of partial parses. There are some cases in which the best 
approach is to unify the two learned sets of lexical features, so that the derived sense 
becomes the sum of the information learned from the two examples. For instance, the 
verb subcategorization information learned from one example could be thus combined 
with agreement information learned from another. On the other hand, there are many 
cases, including alternative subcategorization frames, where each of the encountered 
options needs to be included as a separate alternative. 

4. Partial Parsing and Learning Case Frame Information 

Traditionally, natural language processing (NLP) has focused on obtaining complete 
syntactic analyses of all input and on semantic analysis based on handcrafted knowl- 
edge. However, grammars are incomplete, text often contains new words, and there 
are errors in text. Furthermore, as research activities tackle broader domains, if the 
research results are to scale up to realistic applications, handcrafting knowledge must 
give way to automatic knowledge base construction. 

An alternative to traditional parsers is represented in FIDDITCH (Hindle 1983), 
MITFP (de Marcken 1990), and CASS (Abney 1990). Instead of requiring complete 
parses, a forest is frequently produced, each tree in the forest representing a nonover- 
lapping fragment of the input. However, algorithms for finding the semantics of the 
whole from the disjoint fragments have not previously been developed or evaluated. 

We have been comparing several differing algorithms from various sites to evalu- 
ate both the effectiveness of such a strategy in correctly predicting fragments. This is 
reported first (Section 5.1). 

The central experiment in this section tests the feasibility of learning case frame 
information for verbs from examples. In the method tested, we assume that a body of 
fully parsed sentences, such as those from TREEBANK, are available, we furthermore 
assume that every head noun and head verb has a lexical link to a unary predicate in 
a taxonomic domain model; that unary predicate is the most specific semantic class of 
entities denoted by the headword. From the parsed examples and the lexical links to 
the domain model, an algorithm identifies case frame relations for the verbs. 

4.1 Finding Core Noun Phrases 
If an algorithm is to learn case frame relations (or selection restrictions) from text, a 
basic concern is to reliably identify noun phrases and their semantic category, even if 
neither full syntactic nor full semantic analysis is possible. First, we discuss reliably 
finding them based on local syntactic information. In the next section, we describe 
finding their semantic category. 

Two of our experiments have focused on the identification of core noun phrases, 
a primary way of expressing entities in text. A core NP is defined syntactically as 
the maximal simple noun phrase, i.e., the largest one containing no post-modifiers. 
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Here are some examples of core NPs (marked by italics) within their full noun phrases: 

a joint venture with the Chinese government to build an automobile-parts 
assembly plant 

a $50.9 million loss from discontinued operations in the third quarter 
because of the proposed sale 

Such complex, full NPs require too many linguistic decisions to be directly pro- 
cessed without detailed syntactic and semantic knowledge about each word, an as- 
sumption that need not be true for open-ended text. 

We tested two differing algorithms on text from the Wall Street Journal (WSJ). Using 
BBN's part-of-speech tagger (POST), tagged text was parsed using the full unification 
grammar of Delphi to find only core NPs, 695 in 100 sentences. Hand-scoring of 
the results indicated that 85% of the core NPs were identified correctly. Subsequent 
analysis suggested that half the errors could be removed with only a little additional 
work, suggesting that over 90% performance is achievable. 

In a related test, we explored the bracketings produced by Church's PARTS pro- 
gram (Church 1988). We extracted 200 sentences of WSJ text by taking every tenth 
sentence from a collection of manually corrected parse trees (data from the TREE- 
BANK Project at the University of Pennsylvania). We evaluated the NP bracketings in 
these 200 sentences by hand and tried to classify the errors. Of 1226 phrases in the 200 
sentences, 131 were errors, for a 10.7% error rate. The errors were classified by hand 
as follows: 

• Two consecutive but unrelated phrases grouped as one: 10 

• Phrase consisted of a single word, which was not an NP: 70 

• Missed phrases (those that should have been bracketed but were not): 12 

• Ellided head (e.g. part of a conjoined premodifier to an NP): 4 

• Missed premodifiers: 4 

• Head of phrase was verb form that was missed: 4 

• Other: 27. 

The 90% success rate in both tests suggests that identification of core NPs can 
be achieved using only local information and with minimal knowledge of the words. 
Next we consider the issue of what semantics should be assigned and how reliably 
that can be accomplished. 

4.2 Semantics of Core Noun Phrases 
In trying to extract pre-specified data from open-ended text such as a newswire, it is 
clear that full semantic interpretation of such texts is not on the horizon. However, 
our hypothesis is that it need not be for automatic data base update. The type of infor- 
mation to be extracted permits some partial understanding. For semantic processing, 
minimally, for each noun phrase (NP), one would like to identify the class in the 
domain model that is the smallest pre-defined class containing the NP's denotation. 
Since we have assumed that the lexicon has a pointer to the most specific class in the 
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domain model, the issue reduces to whether we can algorithmically predict the word, 
if any, in a noun phrase that denotes the NP's semantic class. For each clause, one 
would like to identify the corresponding event class or state of affairs denoted. 

Our pilot experiment focused on the reliability of identifying the minimal class 
for each noun phrase. 

Assigning a semantic class to a core noun phrase can be handled via some struc- 
tural rules. Usually the semantic class of the headword is correct for the semantic 
class not only of the core noun phrase but also of the complete noun phrase it is part 
of. Additional rules cover exceptions, such as "set of . . .  ". These heuristics correctly 
predicted the semantic class of the whole noun phrase 99% of the time in the sample 
of over 1000 noun phrases from the WSJ that were correctly predicted by Church's 
PARTS program. 

Furthermore, even some of the NPs whose left boundary was not predicted cor- 
rectly by PARTS nevertheless were assigned the correct semantic class. One conse- 
quence of this is that the correct semantic class of a complex noun phrase can be 
predicted even if some of the words in the noun phrase are unknown and even if 
its full structure is unknown. Thus, fully correct identification of core noun phrase 
boundaries and of noun phrase boundaries may not be necessary to accurately pro- 
duce database updates. 

This result is crucial to our method of inferring case frames of verbs from examples. 
Simple rules can predict which word designates the semantic clause of a noun phrase 
very reliably. We can use these simple rules plus lexical lookup to identify the basic 
semantic class of a noun phrase. 

4.3 Learning Semantic Information 
Semantic knowledge called selection restrictions or case frames governs what phrases 
make sense with a particular verb or noun (what arguments go with a particular verb 
or noun). Traditionally such semantic knowledge is handcrafted, though some software 
aids exist to enable greater productivity (Ayuso, Shaked, and Weischedel 1987; Bates 
1989; Grishman, Hirschman, and Nhan 1986; Weischedel et al. 1989). 

Instead of handcrafting this semantic knowledge, our goal is to learn that knowl- 
edge from examples, using a three-step process: 

1. Simple manual semantic annotation 

2. Supervised training based on parsed sentences 

3. Estimation of probabilities. 

4.3.1 Simple Manual Semantic Annotation. Given a sample of text, we annotate each 
noun, verb, and proper noun in the sample with the semantic class corresponding to it 
in the domain model. For instance, dawn would be annotated <time>, explode would 
be <explosion event>, and Yunguyo would be <city>. For our experiment, 560 nouns 
and 170 verbs were defined in this way. We estimate that this semantic annotation 
proceeded at about 90 words per hour. 

4.3.2 Supervised Training. From the TREEBANK project at the University of Penn- 
sylvania, we used 20,000 words of MUC-3 texts that had been bracketed according to 
major syntactic category. The bracketed constituents for the sentence below appears 
in Figure 8. 
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A bomb exploded today at dawn in the Peruvian town of Yunguyo, near the lake, very near where 
the Presidential summit was to take place. 

((S 
(NP a bomb) 
(VP exploded 

today 
(PP at 

(NP dawn) ) 
(PP in 

(NP the Peruvian town 
(PP of 

(NP yunguyo) ) ) ) 

(PP near 
(NP the lake) ) 

(SBAR ( WHPP very 
near 
(WHADVP where) ) 

(S (NP the presidential snmmit) 
(VP was 

(S (NP*) 
to  
(VP take  

(NP place)  ) ) ) ) ) ) ) 
.) 

Figure 8 
Example of TREEBANK analysis. 

From the example one can clearly infer that bombs can explode, or more properly, 
that bomb can be the logical subject of explode, that at dawn can modify explode, etc. 
Naturally good generalizations based on the instances are more valuable than the 
instances themselves. 

Since we have a hierarchical domain model, and since the manual  semantic anno- 
tation states the relationship between lexical items and concepts in the domain model, 
we can use the domain model  hierarchy as a given set of categories for generalization. 
However, the critical issue is selecting the right level of generalization given the set 
of examples in the supervised training set. 

We have chosen a known statistical procedure (Katz 1987) that selects the min- 
imum level of generalization such that there is sufficient data in the training set to 
support  discrimination of cases of attaching phrases (arguments) to their head. This 
leads us to the next topic, estimation of probabilities from the supervised training set. 

4.3.3 Estimation of Probabilities. The case relation, or selection restriction, to be 
learned is of the form X P O, where X is a headword  or its semantic class; P is a 
case, e.g., logical subject, logical object, preposition, etc.; and O is a head word or its 
semantic class. 

One factor in the probability that O attaches to X with case P is p'(X I P, O), an 
estimate of the likelihood of attaching PO to X given P and O. We chose to model  
a second multiplicative factor p(d), the probability of an at tachment where d words 
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separate the headword X from the phrase to be attached (intuitively, the notion of 
attachment distance). For instance, in the example previously discussed, in the town is 
attached to the verb explode, at a distance of four words; of Yunguyo is attached to the 
noun town at a distance of one word back, etc. Thus we estimate the probability of 
attachment as p'(X I P, O) * p(d). 

Since a 20,000-word corpus does not constitute enough data to estimate the prob- 
ability of all triples, we used an extension and generalization of an algorithm (Katz 
1987) to automatically move up the hierarchical domain model from X to its parent, 
and from O to its parent. The "backing-off" that was originally proposed for the es- 
timation of probabilities of n-gram sequences of words starts with the most detailed 
model. In this case we start with the explicit probability of the phrase PO attaching to 
the word X. If we have no examples of X P O in the training set we consider with some 
penalty a class of X or O. Thus the event becomes less specific but more likely to have 
been observed. We back off on the detail until we can estimate the probability from 
the training set. The Katz algorithm gives a way to estimate the back-off penalty as 
the probability that we would not have observed the more detailed triple even though 
it was possible. 

4.3.4 The Experiment. By examining the table of triples X P O that were learned, it 
was clear that meaningful information was induced from the examples. For instance, 
(<attack> against <building>) and (<attack> against <residence>) were learned, 
which correspond to two cases of importance in the MUC domain. As a consequence, 
useful semantic information was learned by the training algorithm. 

However, we ran a far more meaningful evaluation of what was learned by mea- 
suring how effective the learned information would be at predicting 166 prepositional 
phrase attachments that were not made by our partial parser. For example, in the 
following sentence, in the Peruvian town can be attached syntactically at three places: 
modifying dawn, modifying today, or modifying explode. 

A bomb exploded today at dawn in the Peruvian town of Yunguyo, near the 
lake, very near where the Presidential summit was to take place. 

Closest attachment, a purely syntactic constraint, worked quite effectively, having 
a 25% error rate. Using the semantic probabilities alone p~(X I P, O) had poorer per- 
formance, a 34% error rate. However, the richer probability model p'(X I P, O) • p(d) 
outperformed both the purely semantic model and the purely syntactic model (closest 
attachment), yielding an 18% error rate. 

However, the degree of reduction of error rate should not be taken as the final 
word, for the following reasons: 

20,000 words of training data is much less than one would want. 

Since many of the headwords in the 20,000 word corpus are not of 
import in the MUC-3 domain, their semantic type is vague, i.e., 
<unknown event>, <unknown entity>, etc. 

4.4 Related Work 
In addition to the work discussed earlier on tools to increase the portability of natural 
language systems, another recent paper (Hindle and Rooth 1990) is directly related to 
our goal of inferring case frame information from examples. 
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Hindle and Rooth focused only on prepositional phrase attachment using a prob- 
abilistic model, whereas our work applies to all case relations. Their work used an 
unsupervised training corpus of 13 million words to judge the strength of preposi- 
tional affinity to verbs, e.g., how likely it is for to to attach to the word go, for from 
to attach to the word leave, or for to to attach to the word flight. This lexical affin- 
ity is measured independently of the object of the preposition. By contrast, we are 
exploring induction of semantic relations from supervised training, where very little 
training may be available. Furthermore, we are looking at triples of headword (or 
semantic class), syntactic case, and headword (or semantic class). 

In Hindle and Rooth's test, they evaluated their probability model in the limited 
case of verb-noun phrase-prepositional phrase. Therefore, no model at all would be at 
least 50% accurate. In our test, many of the test cases involved three or more possible 
attachment points for the prepositional phrase, which provided a more realistic test. 

An interesting next step would be to combine these two probabilistic models (per- 
haps via linear weights) in order to get the benefit of domain-specific knowledge, as 
we have explored, and the benefits of domain-independent knowledge, as Hindle and 
Rooth have explored. 

4.5 Future Work: Finding Relations/Combining Fragments 
The experiments on the effectiveness of finding core NPs using only local information 
were run by midsummer 1990. In fall 1990, another alternative, the Fast Partial Parser 
(FPP), which is a derivative of earlier work (de Marcken 1990), became available to us. 
It finds fragments using a stochastic part of speech algorithm and a nearly determin- 
istic parser. It produces fragments averaging three to four words in length. Figure 9 
shows an example output for the sentence. 

A BOMB EXPLODED TODAY AT DAWN IN THE PERUVIAN TOWN 
OF YUNGUYO, NEAR THE LAKE, VERY NEAR WHERE THE PRESI- 
DENTIAL SUMMIT WAS TO TAKE PLACE. 

Certain sequences of fragments appear frequently, as illustrated in Tables 1 and 2. 
One frequently occurring pair is an S followed by a PP (prepositional phrase). Since 
there is more than one way the parser could attach the PP, and syntactic grounds alone 
for attaching the PP would yield poor performance, semantic preferences applied by 
a post-process that combines fragments are called for. 

In our approach, we propose using local syntactic and semantic information rather 
than assuming a global syntactic and semantic form will be found. The first step is 
to compute a semantic interpretation for each fragment found without assuming that 
the meaning of each word is known. For instance, as described above, the semantic 
class for any noun phrase can be computed provided the head noun has semantics in 
the domain. 

Based on the data above, a reasonable approach is an algorithm that moves left- 
to-right through the set of fragments produced by FPP, deciding to attach fragments 
(or not) based on semantic criteria. To avoid requiring a complete, global analysis, a 
window two constituents wide is used to find patterns of possible relations among 
phrases. For example, an S followed by a PP invokes an action of finding all points 
along the "right edge" of the S tree where a PP could attach, applying the fragment 
combining patterns at each such spot, and ranking the alternatives. 

As is evident in Table 2, FPP frequently does not attach punctuation. This is to be 
expected, since punctuation is used in many ways, and there is no deterministic basis 
for attaching the constituent following the punctuation to the constituent preceding it. 
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(S (NP (DETERMINER "A") (N "BOMB")) 
(VP (AUX (NP (MONTH "TODAY")) 

(PP (PREP "AT") 
(NP (N "DAWN")))) 

(VP (V "EXPLODED")))) 
(PP 

(PP (PREP "IN") 
(NP (NP (DETERMINER "THE") 

(N "PERUVIAN") 
(N "TOWN")) 

(PP (PREP "OF") 
(NP (N "YUNGUY0"))))) 

(PUNCT ",")) 
(PP (PP (PREP "NEAR") 

(NP (DETERMINER "THE") 
(N "LAKE"))) 

(PUNCT ",")) 
(ADJP (DEGREESPEC "VERY") 

(ADJP (ADJ "NEAR"))) 
(ADV "WHERE") 
(NP (DETERMINER "THE") 

(ADJP (ADJ "PRESIDENTIAL")) 
(N "SUMMIT")) 

(VP (AUX) (VP (V "WAS"))) 
(VP (AUX "T0") 

(VP (V "TAKE") 
(NP (N "PLACE")))) 

(PUNCT ". ") 
Figure 9 
Example output. 

Table 1 
Most frequently occurring pairs (in 2500 
pairs). 

Pair Occurrences 

S PP 104 
NP VP 89 
VP VP 72 
S VP 65 
PP PP 62 
PP NP 58 
NP PP 56 
VP PP 54 
PP VP 48 
NP NP 34 

Therefore, if the pair being examined by  the combining algori thms ends in punctua-  
tion, the algori thm looks at the consti tuent following it, t rying to combine it wi th  the 
consti tuent to the left of the punctuation.  

A similar case is when  the pair ends in a conjunction. Here  the algori thm tries 
to combine the consti tuent to the right of the conjunction with that on the left of the 
conjunction. 
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Table 2 
Frequently occurring fragment pairs surrounding 
punctuation. 

Triple Occurrences 

NP PUNCT NP 53 
VP PUNCT S 20 
S PUNCT S 19 
NP PUNCT S 19 
S PUNCT NP 17 
VP PUNCT N 12 
NP PUNCT PP 10 
NP PUNCT VP 9 

5. C o n c l u s i o n s  

Our pilot experiments indicate that a hybrid approach to text processing including 
corpus-based probabilistic models to supplement knowledge-based techniques is both 
feasible and promising. 

In part-of-speech labeling, we have evaluated POST in the laboratory, evaluating its 
results against the work of people doing the same task. However, the real test of such a 
system is how well it functions as a component in a larger system. Can it make a parser 
work faster and more accurately? Can it help to extract certain kinds of phrases from 
unrestricted text? We are currently running these experiments by making POST a part 
of existing systems. It was run as a preprocessor to Grishman's Proteus system for the 
MUC-3 competition (Grishman and Sterling 1989). Preliminary results showed it sped 
up Proteus by a factor of two in one-best mode and by a factor of 33% with a threshold 
of T=2. It is integrated into a new message processing system (PLUM) at BBN. 

For reducing interpretation ambiguity, our context-free probability model, trained 
in supervised mode on only 81 sentences, was able to reduce the error rate for selecting 
the correct parse on independent test sets by a factor of 2-4. For the problem of process- 
ing new words in text, the probabilistic model reduced the error rate for picking the 
correct part of speech for such words from 91.5% to 15%. And once the possible parts 
of speech for a word are known (or hypothesized using the tri-tag model), the proba- 
bilistic language model proved useful in indicating which parses should be looked at 
for learning more complex lexical information about an unknown word. However, the 
most innovative aspect of our approach is the automatic induction of semantic knowl- 
edge from annotated examples. The use of probabilistic models offers the induction 
procedure a decision criterion for making generalizations from the corpus of examples. 
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