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We describe a series o,f five statistical models o,f the translation process and give algorithms,for 
estimating the parameters o,f these models given a set o,f pairs o,f sentences that are translations 
o,f one another. We define a concept o,f word-by-word alignment between such pairs o,f sentences. 
For any given pair of such sentences each o,f our models assigns a probability to each of the 
possible word-by-word alignments. We give an algorithm for seeking the most probable o,f these 
alignments. Although the algorithm is suboptimal, the alignment thus obtained accounts well for 
the word-by-word relationships in the pair o,f sentences. We have a great deal o,f data in French 
and English from the proceedings o,f the Canadian Parliament. Accordingly, we have restricted 
our work to these two languages; but we,feel that because our algorithms have minimal linguistic 
content they would work well on other pairs o,f languages. We also ,feel, again because of the 
minimal linguistic content o,f our algorithms, that it is reasonable to argue that word-by-word 
alignments are inherent in any sufficiently large bilingual corpus. 

1. Introduct ion 

The growing availability of bilingual, machine-readable texts has stimulated interest 
in methods for extracting linguistically valuable information from such texts. For ex- 
ample, a number of recent papers deal with the problem of automatically obtaining 
pairs of aligned sentences from parallel corpora (Warwick and Russell 1990; Brown, 
Lai, and Mercer 1991; Gale and Church 1991b; Kay 1991). Brown et al. (1990) assert, 
and Brown, Lai, and Mercer (1991) and Gale and Church (1991b) both show, that it is 
possible to obtain such aligned pairs of sentences without inspecting the words that 
the sentences contain. Brown, Lai, and Mercer base their algorithm on the number of 
words that the sentences contain, while Gale and Church base a similar algorithm on 
the number of characters that the sentences contain. The lesson to be learned from 
these two efforts is that simple, statistical methods can be surprisingly successful in 
achieving linguistically interesting goals. Here, we address a natural extension of that 
work: matching up the words within pairs of aligned sentences. 

In recent papers, Brown et al. (1988, 1990) propose a statistical approach to ma- 
chine translation from French to English. In the latter of these papers, they sketch an 
algorithm for estimating the probability that an English word will be translated into 
any particular French word and show that such probabilities, once estimated, can be 
used together with a statistical model of the translation process to align the words 
in an English sentence with the words in its French translation (see their Figure 3). 
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Pairs of sentences with words aligned in this way offer a valuable resource for work 
in bilingual lexicography and machine translation. 

Section 2 is a synopsis of our statistical approach to machine translation. Following 
this synopsis, we develop some terminology and notation for describing the word-by- 
word alignment of pairs of sentences. In Section 4 we describe our series of models 
of the translation process and give an informal discussion of the algorithms by which 
we estimate their parameters from data. We have written Section 4 with two aims 
in mind: first, to provide the interested reader with sufficient detail to reproduce our 
results, and second, to hold the mathematics at the level of college calculus. A few 
more difficult parts of the discussion have been postponed to the Appendix. 

In Section 5, we present results obtained by estimating the parameters for these 
models from a large collection of aligned pairs of sentences from the Canadian Hansard 
data (Brown, Lai, and Mercer 1991). For a number of English words, we show trans- 
lation probabilities that give convincing evidence of the power of statistical methods 
to extract linguistically interesting correlations from large corpora. We also show au- 
tomatically derived word-by-word alignments for several sentences. 

In Section 6, we discuss some shortcomings of our models and propose modifica- 
tions to address some of them. In the final section, we discuss the significance of our 
work and the possibility of extending it to other pairs of languages. 

Finally, we include two appendices: one to summarize notation and one to collect 
the formulae for the various models that we describe and to fill an occasional gap in 
our development. 

2. Statistical Translation 

In 1949, Warren Weaver suggested applying the statistical and cryptanalytic techniques 
then emerging from the nascent field of communication theory to the problem of us- 
ing computers to translate text from one natural language to another (published in 
Weaver 1955). Efforts in this direction were soon abandoned for various philosophical 
and theoretical reasons, but at a time when the most advanced computers were of a 
piece with today's digital watch, any such approach was surely doomed to computa- 
tional starvation. Today, the fruitful application of statistical methods to the study of 
machine translation is within the computational grasp of anyone with a well-equipped 
workstation. 

A string of English words, e, can be translated into a string of French words in 
many different ways. Often, knowing the broader context in which e occurs may serve 
to winnow the field of acceptable French translations, but even so, many acceptable 
translations will remain; the choice among them is largely a matter of taste. In statistical 
translation, we take the view that every French string, f, is a possible translation of e. 
We assign to every pair of strings (e~ f) a number Pr(fle ), which we interpret as the 
probability that a translator, when presented with e, will produce f as his translation. 
We further take the view that when a native speaker of French produces a string 
of French words, he has actually conceived of a string of English words, which he 
translated mentally. Given a French string f, the job of our translation system is to find 
the string e that the native speaker had in mind when he produced f. We minimize 
our chance of error by choosing that English string 6 for which Pr(elf ) is greatest. 

Using Bayes' theorem, we can write 

Pr(elf ) = Pr(e) Pr(fle ) 
Pr(f) (1) 

Since the denominator here is independent of e, finding ~ is the same as finding e 
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so as to make the product Pr(e)Pr(fle ) as large as possible. We arrive, then, at the 
Fundamental Equation of Machine Translation: 

= argmax Pr(e) Pr(fle ). (2) 
e 

As a representation of the process by which a human being translates a passage from 
French to English, this equation is fanciful at best. One can hardly imagine someone 
rifling mentally through the list of all English passages computing the product of the 
a priori probability of the passage, Pr(e), and the conditional probability of the French 
passage given the English passage, Pr(fle ). Instead, there is an overwhelming intuitive 
appeal to the idea that a translator proceeds by first understanding the French, and 
then expressing in English the meaning that he has thus grasped. Many people have 
been guided by this intuitive picture when building machine translation systems. 

From a purely formal point of view, on the other hand, Equation (2) is completely 
adequate. The conditional distribution Pr(f[e) is just an enormous table that associates 
a real number between zero and one with every possible pairing of a French passage 
and an English passage. With the proper choice for this distribution, translations of 
arbitrarily high quality can be achieved. Of course, to construct Pr(f[e) by examining 
individual pairs of French and English passages one by one is out of the question. 
Even if we restrict our attention to passages no longer than a typical novel, there are 
just too many such pairs. But this is only a problem in practice, not in principle. The 
essential question for statistical translation, then, is not a philosophical one, but an 
empirical one: Can one construct approximations to the distributions Pr(e) and Pr(f[e) 
that are good enough to achieve an acceptable quality of translation? 

Equation (2) summarizes the three computational challenges presented by the 
practice of statistical translation: estimating the language model probability, Pr(e); esti- 
mating the translation model probability, Pr(fle); and devising an effective and efficient 
suboptimal search for the English string that maximizes their product. We call these 
the language modeling problem, the translation modeling problem, and the search 
problem. 

The language modeling problem for machine translation is essentially the same 
as that for speech recognition and has been dealt with elsewhere in that context (see, 
for example, the recent paper by Maltese and Mancini [1992] and references therein). 
We hope to deal with the search problem in a later paper. In this paper, we focus 
on the translation modeling problem. Before we turn to this problem, however, we 
should address an issue that may be a concern to some readers: Why do we estimate 
Pr(e) and Pr(fle ) rather than estimate Pr(elf ) directly? We are really interested in this 
latter probability. Wouldn't we reduce our problems from three to two by this direct 
approach? If we can estimate Pr(fle ) adequately, why can't we just turn the whole 
process around to estimate Pr(eif)? 

To understand this, imagine that we divide French and English strings into those 
that are well-formed and those that are ill-formed. This is not a precise notion. We 
have in mind that strings like II va ?z la biblioth~que, or I live in a house, or even Colorless 
green ideas sleep furiously are well-formed, but that strings like ~ lava I1 biblioth~que or a 
I in live house are not. When we translate a French string into English, we can think of 
ourselves as springing from a well-formed French string into the sea of well-formed 
English strings with the hope of landing on a good one. It is important, therefore, 
that our model for Pr(elf ) concentrate its probability as much as possible on well- 
formed English strings. But it is not important that our model for Pr(f[e) concentrate 
its probability on well-formed French strings. If we were to reduce the probability 
of all well-formed French strings by the same factor, spreading the probability thus 
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liberated over ill-formed French strings, there would  be no effect on our translations: 
the argument  that maximizes some function f(x) also maximizes cf(x) for any posi- 
tive constant c. As we shall see below, our translation models are prodigal, spraying 
probability all over the place, most of it on ill-formed French strings. In fact, as we 
discuss in Section 4.5, two of our models waste much  of their probability on things 
that are not strings at all, having, for example, several different second words but  no 
first word. If we were to turn one of these models around to model  Pr(elf ) directly, 
the result would  be a model  with so little probability concentrated on well-formed 
English strings as to confound any scheme to discover one. 

The two factors in Equation (2) cooperate. The translation model  probability is 
large for English strings, whether  well- or ill-formed, that have the necessary words in 
them in roughly the right places to explain the French. The language model  probability 
is large for well-formed English strings regardless of their connection to the French. 
Together, they produce a large probability for well-formed English strings that account 
well for the French. We cannot achieve this simply by reversing our translation models. 

3. Alignments 

We say that a pair of strings that are translations of one another form a translation, 
and we show this by enclosing the strings in parentheses and separating them by a 
vertical bar. Thus, we write the translation (Qu'aurions-nous pu faire? I What could we 
have done?) to show that What could we have done? is a translation of Qu'aurions-nous pu 
faire? When the strings end in sentences, we usually omit the final stop unless it is a 
question mark or an exclamation point. 

Brown et al. (1990) introduce the idea of an alignment between a pair of strings as 
an object indicating for each word in the French string that word in the English string 
from which it arose. Alignments are shown graphically, as in Figure 1, by drawing 
lines, which we call connections, from some of the English words to some of the French 
words. The alignment in Figure I has seven connections: (the, Le), (program, programme), 
and so on. Following the notation of Brown et al., we write this alignment as (Le 
programme a ~t~ mis en application I And the(l) program(2) has(3) been(4) implemented(5,6,7)). 
The list of numbers  following an English word shows the positions in the French string 
of the words to which it is connected. Because And is not connected to any French 
words here, there is no list of numbers after it. We consider every alignment to be 
correct with some probability, and so we find (Le programme a ~t~ mis en application I 
And(I,2,3,4,5,6,7) the program has been implemented) perfectly acceptable. Of course, we 
expect it to be much  less probable than the alignment shown in Figure 1. 

In Figure 1 each French word is connected to exactly one English word,  but more 
general alignments are possible and may  be appropriate for some translations. For 
example, we may  have a French word connected to several English words as in Fig- 
ure 2, which we write as (Le reste appartenait aux autochtones I The(l) balance(2) was(3) 
the(3) territory(3) of(4) the(4) aboriginal(5) people(5)). More generally still, we may  have 
several French words connected to several English words as in Figure 3, which we 
write as (Les pauvres sont d~munis I The(l) poor(2) don't(3,4) have(3,4) any(3,4) money(3,4)). 
Here, the four English words don't have any money work together to generate the two 
French words sont d~munis. 

In a figurative sense, an English passage is a web of concepts woven together 
according to the rules of English grammar. When we look at a passage, we cannot see 
the concepts directly but  only the words that they leave behind. To show that these 
words are related to a concept but are not quite the whole story, we say that they form 
a cept. Some of the words in a passage may  participate in more than one cept, while 
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And1 the2 program3 has4 been5 implemented6 

Lel programme2 a3 ~t64 miss en6 application7 

Figure 1 
An alignment with independent English words. 

The1 

balance2 

was3 

the4 

territory5 

of 6 

the7 

aboriginal8 

people9 

Figure 2 
An alignment with independent French words. 

Lel 

reste2 

appartenait3 

aux4 

autochtones5 

The1 

LeSl 

poor2 

pauvres2 

don't3 have4 any5 rnoney6 

sonta demunis4 

Figure 3 
A general alignment. 
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others may participate in none, serving only as a sort of syntactic glue to bind the 
whole together. When a passage is translated into French, each of its cepts contributes 
some French words to the translation. We formalize this use of the term cept and relate 
it to the idea of an alignment as follows. 

We call the set of English words connected to a French word in a particular align- 
ment the cept that generates the French word. Thus, an alignment resolves an English 
string into a set of possibly overlapping cepts that we call the ceptual scheme of the 
English string with respect to the alignment. The alignment in Figure 3 contains the 
three cepts The, poor, and don't have any money. When one or more of the French words 
is connected to no English words, we say that the ceptual scheme includes the empty 
cept and that each of these words has been generated by this empty cept. 

Formally, a cept is a subset of the positions in the English string together with the 
words occupying those positions. When we write the words that make up a cept, we 
sometimes affix a subscript to each one showing its position. The alignment in Figure 2 
includes the cepts the~ and of 6 the7, but not the cepts of 6 the1 or the7. In (J'applaudis ?l la 
ddcision ] I(1) applaud(2) the(4) decision(5)), ?l is generated by the empty cept. Although 
the empty cept has no position, we place it by convention in position zero, and write 
it as e0. Thus, we may also write the previous alignment as (J'applaudis ?~ la d~cision 
leo(3) I(1) applaud(2) the(4) decision(5)). 

We denote the set of alignments of if[e) by .A(e, f). If e has length I and f has 
length m, there are Im different connections that can be drawn between them because 
each of the m French words can be connected to any of the I English words. Since an 
alignment is determined by the connections that it contains, and since a subset of the 
possible connections can be chosen in 2 lm ways, there are 2 zm alignments in .A(e, f). 

4. Translation Models 

In this section, we develop a series of five translation models together with the al- 
gorithms necessary to estimate their parameters. Each model gives a prescription for 
computing the conditional probability Pr(f[e), which we call the likelihood of the trans- 
lation (f, e). This likelihood is a function of a large number of free parameters that we 
must estimate in a process that we call training. The likelihood of a set of transla- 
tions is the product of the likelihoods of its members. In broad outline, our plan is to 
guess values for these parameters and then to apply the EM algorithm (Baum 1972; 
Dempster, Laird, and Rubin 1977) iteratively so as to approach a local maximum of 
the likelihood of a particular set of translations that we call the training data. When 
the likelihood of the training data has more than one local maximum, the one that we 
approach will depend on our initial guess. 

In Models 1 and 2, we first choose a length for the French string, assuming all 
reasonable lengths to be equally likely. Then, for each position in the French string, we 
decide how to connect it to the English string and what French word to place there. 
In Model 1 we assume all connections for each French position to be equally likely. 
Therefore, the order of the words in e and f does not affect Pr(f]e). In Model 2 we 
make the more realistic assumption that the probability of a connection depends on 
the positions it connects and on the lengths of the two strings. Therefore, for Model 2, 
Pr(f[e) does depend on the order of the words in e and f. Although it is possible 
to obtain interesting correlations between some pairs of frequent words in the two 
languages using Models 1 and 2, as we will see later (in Figure 5), these models often 
lead to unsatisfactory alignments. 

In Models 3, 4, and 5, we develop the French string by choosing, for each word in 
the English string, first the number of words in the French string that will be connected 
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to it, then the identity of these French words, and finally the actual positions in the 
French string that these words will occupy. It is this last step that determines the 
connections between the English string and the French string and it is here that these 
three models differ. In Model 3, as in Model 2, the probability of a connection depends 
on the positions that it connects and on the lengths of the English and French strings. 
In Model 4 the probability of a connection depends in addition on the identities of the 
French and English words connected and on the positions of any other French words 
that are connected to the same English word. Models 3 and 4 are deficient, a technical 
concept defined and discussed in Section 4.5. Briefly, this means that they waste some 
of their probability on objects that are not French strings at all. Model 5 is very much 
like Model 4, except that it is not deficient. 

Models 1-4 serve as stepping stones to the training of Model 5. Models 1 and 2 
have an especially simple mathematical form so that iterations of the EM algorithm 
can be computed exactly. That is, we can explicitly perform sums over all possible 
alignments for these two models. In addition, Model 1 has a unique local maximum so 
that parameters derived for it in a series of EM iterations do not depend on the starting 
point for the iterations. As explained below, we use Model 1 to provide initial estimates 
for the parameters of Model 2. In Model 2 and subsequent models, the likelihood 
function does not have a unique local maximum, but  by initializing each model  from 
the parameters of the model before it, we arrive at estimates of the parameters of the 
final model  that do not depend on our initial estimates of the parameters for Model 1. 

In Models 3 and 4, we must  be content with approximate EM iterations because it is 
not feasible to carry out sums over all possible alignments for these models. But, while 
approaching more closely the complexity of Model 5, they retain enough simplicity 
to allow an efficient investigation of the neighborhood of probable alignments and 
therefore allow us to include what  we hope are all of the important  alignments in 
each EM iteration. 

In the remainder of this section, we give an informal but  reasonably precise de- 
scription of each of the five models and an intuitive account of the EM algorithm as 
applied to them. We assume the reader to be comfortable with Lagrange multipliers, 
partial differentiation, and constrained optimization as they are presented in a typical 
college calculus text, and to have a nodding acquaintance with random variables. On 
the first time through, the reader may  wish to jump from here directly to Section 5, 
returning to this Section when  and if he should desire to unders tand more deeply 
how the results reported later are achieved. 

The basic mathematical object with which we deal here is the joint probability 
distribution Pr(F = f, A = a, E = e), where the random variables F and E are a French 
string and an English string making up a translation, and the random variable A is 
an al ignment between them. We also consider various marginal and conditional prob- 
ability distributions that can be constructed from Pr(F = f, A = a, E = e), especially 
the distribution Pr(F = fie = e). We generally follow the common convention of using 
uppercase letters to denote random variables and the corresponding lowercase letters 
to denote specific values that the random variables may  take. We have already used I 
and m to represent the lengths of the strings e and L and so we use L and M to denote 
the corresponding random variables. When there is no possibility for confusion, or, 
more properly, when  the probability of confusion is not thereby materially increased, 
we write Pr(f, a, e) for Pr(F = f, A = a, E = e), and use similar shorthands throughout.  

We can write the likelihood of (fie) in terms of the conditional probability Pr(f, ale ) 
a s  

Pr(fle) = Z Pr(f, ale ). (3) 
a 
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The sum here, like all subsequent sums over a, is over the elements of M(e, f). We 
restrict ourselves in this section to alignments like the one shown in Figure I where 
each French word has exactly one connection. In this kind of alignment, each cept is 
either a single English word or it is empty. Therefore, we can assign cepts to positions 
in the English string, reserving position zero .for the empty cept. If the English string, 
e = e~ - el e 2 . . .  el, has 1 words, and the French string, f = f ~  =_ f l f 2 . . ,  fro, has m 
words, then the alignment, a, can be represented by a series, a~ = a la2 . . . am,  of m 
values, each between 0 and I such that if the word in position j of the French string 
is connected to the word in position i of the English string, then aj = i, and if it is not 
connected to any English word, then aj = O. 

Without loss of generality, we can write 

m 

Pr(f,a[e) = P r (m[e )HPr (a j l a~ - l , f J - l ,m ,e )P r ( f j [ 4 , f~ - l ,m ,e ) .  
j=l 

(4) 

This is only one of many  ways in which Pr(f, ale) can be written as the product  of a 
series of conditional probabilities. It is important  to realize that Equation (4) is not an 
approximation. Regardless of the form of Pr(f, ale ), it can always be analyzed into a 
product  of terms in this way. We are simply asserting in this equation that when  we 
generate a French string together with an al ignment from an English string, we can 
first choose the length of the French string given our knowledge of the English string. 
Then we can choose where to connect the first position in the French string given 
our knowledge of the English string and the length of the French string. Then we can 
choose the identity of the first word in the French string given our knowledge of the 
English string, the length of the French string, and the position in the English string 
to which the first position in the French string is connected, and so on. As we step 
through the French string, at each point we make our next choice given our complete 
knowledge of the English string and of all our previous choices as to the details of the 
French string and its alignment. 

4.1 Mode l  1 
The conditional probabilities on the right-hand side of Equation (4) cannot all be 
taken as independent  parameters because there are too many  of them. In Model 1, we 
assume that Pr(mle ) is independent  of e and m; that Pr(ajlalJ-l,•J -1, m, e), depends 
only on 1, the length of the English string, and therefore must  be (l + 1)-1; and that 
Pr(fj[alJ,fl j - l ,  m~ e) depends only on j~ and %. The parameters, then, are ~ -_ Pr(mle ), 
and t(~]%) -- Pr(djlalJ,AJ-1, m, e), which we call the translation probability of ~ given 
eaj. We think of ~ as some small, fixed number. The distribution of M, the length of the 
French string, is unnormal ized but  this is a minor technical issue of no significance 
to our computations. If we wish, we can think of M as having some finite range. As 
long as this range encompasses everything that actually occurs in training data, no 
problems arise. 

We turn now to the problem of estimating the translation probabilities for Model 1. 
The joint likelihood of a French string and an alignment given an English string is 

Pr(f, ale) - ~ (l +-l)m t( lea,). (5) 

The alignment is determined by specifying the values of aj for j from 1 to m, each of 
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which can take any value from 0 to I. Therefore, 

1 l m 

P r ( f l e ) -  ( l + l ) m  E E 1-It(fJl% ). (6) 
a l = 0  am=O j=l 

We wish to adjust the translation probabilities so as to maximize Pr(fIe ) subject to 
the constraints that for each ¢, 

E t(f]e) = 1. (7) 
I 

Following standard practice for constrained maximization, we introduce Lagrange 
multipliers )%, and seek an unconstrained extrernum of the auxiliary function 

h(t,,X) - (l q2i) m ~_, . . .  t(fjl%) - ~_,~(2s t(f]e) - I ). (8) 
al---0 am = 0  j = l  e 

An extremum occurs when all of the partial derivatives of h with respect to the compo- 
nents of t and ,~ are zero. That the partial derivatives with respect to the components 
of I be zero is simply a restatement of the constraints on the translation probabilities. 
The partial derivative of h with respect to t(f] e) is 

l l re  re  Oh e 
- ( i + 1 ) ~  ~ . . .  ~ E s ( f , ~ ) 5 ( e ,  eo,/t(fle)-I IIt(~lea~) -- Ae, (9) cot(fie) 

a l = 0  a r e = 0 j  1"= k = l  

where 6 is the Kronecker delta function, equal to one when both of its arguments are 
the same and equal to zero otherwise. This partial derivative will be zero provided 
that 

l l m m 

t(fle) = )%1 (l -~-l)re E " "  E 6(f,fj)6(e, %) t(fkl%). (10) II 
al=0 are=O ' =  k = l  

Superficially, Equation (10) looks like a solution to the extremum problem, but 
it is not because the translation probabilities appear on both sides of the equal sign. 
Nonetheless, it suggests an iterative procedure for finding a solution: given an initial 
guess for the translation probabilities, we can evaluate the right-hand side of Equation 
(10) and use the result as a new estimate for t(ff e). (Here and elsewhere, the Lagrange 
multipliers simply serve as a reminder that we need to normalize the translation 
probabilities so that they satisfy Equation (7).) This process, when applied repeatedly, 
is called the EM algorithm. That it converges to a stationary point of h in situations 
like this was first shown by Baum (1972) and later by others (Dempster, Laird, and 
Rubin 1977). 

With the aid of Equation (5), we can reexpress Equation (10) as 

7rg 

t(fte ) = A~-' E P r ( f , a [ e ) E 6 ( f , f j ) 5 ( e ,  %). (11) 
a j = l  

n u m b e r  of t imes  e c o n n e c t s  to f in a 

We call the expected number of times that e connects to f in the translation (fie) the 
count of f given e for (fie) and denote it by c(fle; f, e). By definition, 

c(f I e; f, e) = E Pr(ale' f) E 6(f, fj)5(e, eat) , (12) 
a j = l  
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where Pr(ale, f) = Pr(f, a le) /Pr(f le  ). If we  replace Ae by  ~¢ Pr(fle ), then Equation (11) 
can be writ ten very compactly as 

t(fle ) = )~-jlc(yle; f, e). (13) 

In practice, our training data consists of a set of translations, (f(1) leO)), (f(2)le(2)), . . . ,  
(f(S)[e(S)), so this equation becomes 

S 

t(fle ) = A; 1 E c(f[e; f(S), e(S)). (14) 
s = l  

Here, )% serves only as a reminder that the translation probabilities must  be normal- 
ized. 

Usually, it is not feasible to evaluate the expectation in Equation (12) exactly. Even 
when  we exclude mult i -word cepts, there are still (1 + 1) m alignments possible for 
(fie). Model  1, however,  is special because by  recasting Equation (6), we  arrive at 
an expression that can be evaluated efficiently. The right-hand side of Equation (6) 
is a sum of terms each of which is a monomial  in the translation probabilities. Each 
monomial  contains m translation probabilities, one for each of the words  in f. Different 
monomials  correspond to different ways  of connecting words  in f to cepts in e with 
every w a y  appearing exactly once. By direct evaluation, we  see that 

1 l m m l 

E-.. E 
a l = 0  am=O j=l j = l  i = 0  

(15) 

An example may  help to clarify this. Suppose that m = 3 and 1 = 1, and that we  write 
tji as a shorthand for t(d~le~). Then the left-hand side of Equation (15) is ho t20 t30 + 
tlo t20 t31 + " "  q- tn t21 t30 + tll t21 t31, and the right-hand side is (ho + tn) (t20 + t21 ) (t30 q- t31 ). 
It is routine to verify that these are the same. Therefore, we  can interchange the sums 
in Equation (6) with the product  to obtain 

m l 

pr(fle ) = e (I +-1) '~ I-[~-'t(~lei)" 
j = l  i = 0  

(16) 

If we  use this expression in place of Equation (6) when  we write the auxiliary function 
in Equation (8), we  find that 

count  of  e in  e 
r 

c(fle; f, e) = t(fleo ) :-+ t(flet) y=l i=o 

count  of f in  f 

(17) 

Thus, the number  of operations necessary to calculate a count  is proport ional  to 1 + m 
rather than to (I + 1) m as Equation (12) might suggest. 
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Using Equations (14) and (17), we can estimate the parameters t ( f  I e) as follows. 

1. Choose initial values for t(fle ). 

2. For each pair of sentences if(s), e(S)), 1 < s < S, use Equation (17) to 
compute the counts c(f] e; f(s), e(S)). Notice that these counts will be 
different from zero only when  f is one of the words in f(s) and e is one 
of the words in e (~). Notice, also, that c(f I e; f(s), e(~)) does not depend on 
the order of the words in the sentences, but  only on the number  of times 
that the words appear in their respective sentences. 

3. For each e that appears in at least one of the e (s), 

• Compute ,~ according to the equation 

S 

= 1181 
f s = l  

• For each f that appears in at least one f('), use Equation (14) to 
obtain a new value for t(f] e). 

4. Repeat steps 2 and 3 until the values of t(dle) have converged to the 
desired degree. 

The details of our initial guesses for t(fl e) are unimportant  because Pr(fle ) has a 
unique local maximum for Model 1, as is shown in Appendix B. We start with all of 
the t(fle) equal, but  any other choice that avoids zeros would lead to the same final 
solution. 

4.2 Model  2 
In Model 1, we take no cognizance of where words appear in either string. The first 
word in the French string is just as likely to be connected to a word at the end of the 
English string as to one at the beginning. In Model 2 we make the same assumptions 

as in Model 1 except that we assume that Pr(aj]~-l,f~ -1, m, e) depends on j, aj, and 
m, as well as on I. We introduce a set of alignment probabilities, 

a(aj]j, m, I) - Pr(aj]~-l,f~ -1, ra, I), (19) 

which satisfy the constraints 
l 

~--~a(ilj, m, l) -- 1 (20) 
i=0  

for each triple jml. In place of Equation (6), we have 

1 l m 

Pr(fle) = ¢  ~ " "  ~ H t(fjleaj)a(ajlj' m, I). (21) 
al = 0  am = 0  j = l  

Therefore, we seek an unconstrained extremum of the auxiliary function 

h(t,a,)~,#) =_ e ~-~ . . .  ~ t(fjleaj)a(aj]j,m,l ) 
al=O am=O j=l  

- ae(yt(?le/- 1/- 1/- (22) 
e 1 
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The reader will easily verify that Equations (11), (13), and (14) carry over from 
Model  1 to Model  2 unchanged.  We need a new count, c(ilj, m, l; f, e), the expected 
number  of times that the word  in position j of f is connected to the word  in position 
i of e. Clearly, 

c(ilj, m, l; f, e) = ~ Pr(ale, f)6(i, aj). (23) 
a 

In analogy with Equations (13) and (14), we  have, for a single translation, 

a(ilj, m, l) = #~lc(ilj ,  m, l; f, e), (24) 

and, for a set of translations, 

S 

-1 f(s), e(S)). (25) a(ilj, m, 1) = #jmt ~ c(ilJ, m, l; 
s = l  

Notice that if f(s) does not have length m or if e (s) does not have length l, then the 
corresponding count  is zero. As with the As in earlier equations, the #s here serve 
simply to remind us that the alignment probabilities must  be normalized. 

Model  2 shares with Model  1 the important  proper ty  that the sums in Equations 
(12) and (23) can be obtained efficiently. We can rewrite Equation (21) as 

Pr(fle ) = e  I~I ~ t(fjlei)a(ilj , m, 1). 
j = l  i=0 

(26) 

Using this form for Pr(fle ), we  find that 

m l t(f le)a(ilj ,  m, l )  6(f , f j)6(e,  ei) 
c(f[e; f, e) = ~ y ~  t(fleo ) a(Oij, m, l)-+. : --+ ~ ~( llj, m, I)' 

j = l  i=0 

(27) 

and 

t(fjl e~.) a(ilj , m, I) (28) 
c(ilj , m, I; f, e) = t(fjleo)a(OIj, m, l) + . . .  + t(fjlez)a(llj, m, l)" 

Equation (27) has a double  sum rather than the product  of two single sums, as in 
Equation (17), because in Equation (27) i and j are tied together through the alignment 
probabilities. 

Model  1 is the special case of Model  2 in which a(ilj , m, I) is held fixed at (1+1) -1. 
Therefore, any set of parameters  for Model  I can be reinterpreted as a set of parameters  
for Model  2. Taking as our initial estimates of the parameters  for Model  2 the parameter  
values that result from training Model  1 is equivalent to comput ing the probabilities 
of all alignments as if we  were dealing with Model  1, but  then collecting the counts 
as if we  were dealing with Model  2. The idea of comput ing the probabilities of the 
alignments using one model,  but  collecting the counts in a w a y  appropriate to a second 
model  is very  general and can always be used to transfer a set of parameters  from 
one model  to another. 
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4.3 Intermodel Interlude 
We created Models 1 and 2 by making various assumptions about the conditional 
probabilities that appear in Equation (4). As we have mentioned, Equation (4) is an 
exact statement, but  it is only one of many  ways in which the joint likelihood of f 
and a can be written as a product  of conditional probabilities. Each such product 
corresponds in a natural way to a generative process for developing f and a from e. 
In the process corresponding to Equation (4), we first choose a length for f. Next, we 
decide which position in e is connected to fl and what  the identity of fl is. Then, we 
decide which position in e is connected to f2, and so on. For Models 3, 4, and 5, we 
write the joint likelihood as a product  of conditional probabilities in a different way. 

Casual inspection of some translations quickly establishes that the is usually trans- 
lated into a single word (le, la, or l'), but  is sometimes omitted; or that only is often 
translated into one word (for example, seulement), but sometimes into two (for exam- 
ple, ne .. .  que), and sometimes into none. The number  of French words to which e 
is connected in a randomly selected alignment is a random variable, Ce, that we call 
the fertility of e. Each choice of the parameters in Model 1 or Model 2 determines a 
distribution, Pr(¢e = ¢), for this random variable. But the relationship is remote: just 
what  change will be wrought  in the distribution of ~th~ if, say, we adjust a(1 [2, 8, 9) is 
not immediately clean In Models 3, 4, and 5, we parameterize fertilities directly. 

As a prolegomenon to a detailed discussion of Models 3, 4, and 5, we describe 
the generative process upon which they are based. Given an English string, e, we first 
decide the fertility of each word and a list of French words to connect to it. We call 
this list, which may  be empty, a tablet. The collection of tablets is a random variable, T, 
that we call the tableau of e; the tablet for the i th English word is a random variable, Ti; 
and the k th French word in the i th tablet is a random variable, Tik. After choosing the 
tableau, we permute its words to produce f. This permutat ion is a random variable, 
H. The position in f of the k th word in the l *h tablet is yet another a random variable, 
I~ik. 

The joint likelihood for a tableau, T, and a permutation,  7r, is 

Pr(% zc[e) 
l 

II Pr(¢il¢  -1, e) Pr(¢01¢I, e) × 
i= l  

l ¢i 

I I  I I  Pr(  kt d -1 , "0i-1 , o0, " e) x 
i=0 k= l  

H I I  PrOrikITrif -1' 7r{ -1' rO~' COt' e) x 
i= l  k= l  

¢0 
I I  Pr (Tr°k[~ro~-l' 7r~, r~, ¢~, e). 
k=l  

(29) 

In this equation, rik1-1 represents the series of values Til,... , "l-ik_l; 7ri k - 1  represents the 
series of values 7ril,..., 7rik-1; and ¢i is shorthand for Cei. 

Knowing T and 7r determines a French string and an alignment, but  in general 
several different pairs r, 7r may  lead to the same pair f, a. We denote the set of such 
pairs by (f, a). Clearly, then 

Pr(f, ale ) = E PRO-, 7tie ). (30) 
(~',~r) E (f,a) 
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el 
cheap 

bon march~ 

bon march6 
f l  f2 

Figure 4 
Two tableaux for one alignment. 

Volume 19, Number 2 

el 
cheap 

march~ bon 

X 
bon march6 

fl f2 

l 1 The number  of elements in (f, a} is I-[i=0 ¢i- because for each ri there are ¢i! arrange- 
ments  that lead to the pair f, a. Figure 4 shows the two tableaux for (bon march~ [ 
cheap(I,2)). 

Except for degenerate cases, there is one al ignment in A(e, f) for which Pr(ale, f) 
is greatest. We call this the Viterbi alignment for (fie) and denote it by V(f[e). We 
know of no practical algorithm for finding V(fle ) for a general model.  Indeed, if 
someone were to claim that he had found V(f]e), we know of no practical algorithm 
for demonstrat ing that he is correct. But for Model  2 (and, thus, also for Model  1), 
finding V(f[e) is straightforward. For each j, we simply choose aj so as to make the 
product  t(fj[%)a(ajlj, ra, l) as large as possible. The Viterbi al ignment depends  on the 
model  with respect to which it is computed.  When we need to distinguish be tween 
the Viterbi al ignments for different models, we write V(f[e; 1), V(fle; 2), and so on. 

We denote by .Ai,_-j(e, f) the set of alignments for which aj = i. We say that ij 
is pegged in these alignments. By the pegged Viterbi alignment for ij, which we write 
Vi~_j(fle), we mean  that element of Ai~-j(e, f) for which Pr(a[e, f) is greatest. Obviously, 
we can find Vi~j(fle; 1) and Vii i ( f ie ;2)  quickly with a straightforward modification 
of the algorithm described above for finding V(f]e; 1) and V(fle; 2). 

4.4 Mode l  3 
Model 3 is based on Equation (29). Earlier, we  were  unable to treat each of the con- 
ditional probabilities on the r ight-hand side of Equation (4) as a separate parameter. 
With Equation (29) we are no better off and must  again make assumptions to reduce 
the number  of independent  parameters.  There are many  different sets of assumptions 
that we might  make, each leading to a different model  for the translation process. 
In Model  3, we assume that, for i be tween 1 and 1, Pr(¢i[¢~ -1, e) depends  only on 
¢i and e/; that, for all i, Pr(~-iklTit -1, T~ -1, ¢~, e) depends  only on Tik and e/; and that, 
for i be tween 1 and 1, Pr0rik[~rik-1,7r 1i-1, ~'0 z, ¢~, e) depends  only on ~rik, i, m, and 1. The 
parameters  of Model 3 are thus a set of fertility probabilities, n(¢[ e/) = Pr(¢]¢~ -1, e); a set 
of translation probabilities, t(f[e~) - Pr(Tik =f[~_ik-1, 7-0i-1, %,1~ e); and a set of distortion 
probabilities, dq[i, m, 1) =- Pr(IIik = j[w/k-l, 7r~ -1, TO t, ¢~, e). 

We treat the distortion and fertility probabilities for e0 differently. The empty  cept 
conventionally occupies position 0, but  actually has no position. Its purpose is to 
account for those words  in the French string that cannot readily be accounted for by 
other cepts in the English string. Because we expect these words  to be spread uniformly 
throughout  the French string, and because they are placed only after all of the other 
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= 11~-01, 71"1, T~, 40, e) words  in the string have been placed, we  assume that Pr(H0k+l • k l t t 
equals 0 unless position j is vacant in which case it equals (40 - k) -1. Therefore, the 
contribution of the distortion probabilities for all of the words  in TO is 1/40[. 

We expect 40 to depend  on the length of the French string because longer strings 
should have more extraneous words.  Therefore, we  assume that 

Pr (¢0t¢~, e ) =  ( ¢ 1  +"""  + ¢ 1 4 0  ) ~¢'+'''+¢l-¢°*'db°pO F1 (31) 

for some pair of auxiliary parameters  p0 and pl. The expression on the left-hand side 
of this equation depends  on ¢~ only through the sum ¢1 + "'" + ¢1 and defines a 
probabili ty distribution over ¢0 whenever  P0 and pl are nonnegative and sum to 1. 
We can interpret Pr(¢01¢~,e) as follows. We imagine that each of the words  from T1 t 
requires an extraneous word  with probability pl and that this extraneous word  must  
be connected to the empty  cept. The probabili ty that exactly ¢0 of the words  from T~ 
will require an extraneous word  is just the expression given in Equation (31). 

As with Models 1 and 2, an alignment of (fie) is determined by  specifying aj for 
each position in the French string. The fertilities, ¢0 through ¢l, are functions of the 
ajs: ¢i is equal to the number  of js for which aj equals i. Therefore, 

Pr(fle) 
l l 

y ~  .--~ Pr(f ,a]e)  
a l ~ 0  am~O 

' ± (  ) 
. . .  m 2o O po-2 op o 

a l = 0  a~,7. = 0  

fi t(:l%)d(jlaj, m, 11 
j=l 

l 

H ~i! n(4i1¢/) X 
i=1 

(32) 

with y~f t(fle ) = 1, Y~qd(jli, m, 1) = 1, ~-~¢ n(¢le) = 1, and po+pl = 1. The assumptions 
that we make for Model  3 are such that each of the pairs (% 70 in If, a) makes an 
identical contribution to the sum in Equation (30). The factorials in Equation (32) 
come from carrying out  this sum explicitly. There is no factorial for the empty  cept 
because it is exactly canceled by  the contribution from the distortion probabilities. 

By now, the reader will be able to provide his or her own  auxiliary function for 
seeking a constrained min imum of the likelihood of a translation with Model  3, but  
for completeness and to establish notation, we  write 

h(t,d,n,p,A,#,u,~) Pr(fle ) - ~ Ae(~/t(fle ) - 1)- ~-~#im,(~.d(/li, m,l)- 1) 
i ! 

- ~ ue (~  n(¢  I e) - 1) - ~(P0 + pl - 1). (33) 
e 

Following the trail blazed with Models  1 and 2, we  define the counts 

m 

c(fle; f, e) = ~ Pr(ale, f) y~. 6(S, :)6(e, %), 
a j=l 

(34) 

cqli , m, I; f,e) = y~ Pr(ale, f)6(i, aj), (35) 
a 
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and 

l 

c(¢ I e; f, e) = E Pr(ale' f) ~ 6(¢, ¢i)6(e, ei), 
a i = 1  

c(O; f, e) = ~[~ Pr(ale , f)(m - 2¢0) 
a 

(36) 

(37) 

c(1; f, e) = ~ Pr(ale, f)¢0. (38) 
a 

The counts in these last two equations correspond to the parameters p0 and pl that de- 
termine the fertility of the empty cept in the English string. The reestimation formulae 
for Model 3 are 

S 

t(f le) = A2 a ~_, c(fle; f(~), e(5)), (39) 
s = l  

S 

dO[i, m, l) --1 ~- # i m l  ~ c(Jl i, m,/;  f(~), e(5)), (40/ 
5 = 1  

S 

n(¢ I e) = u[  I ~ c(¢1 e; f(s), e(S)), (41) 
5=1 

and 
S 

Pk = ~-1 ~ c(k; f(s)e(511. (42) 

Equations (34) and (39) are identical to Equations (12) and (14) and are repeated here 
only for convenience. Equations (35) and (40) are similar to Equations (23) and (25), 
but a(i[j, m, 1) differs from d(jti , m, 1) in that the former sums to unity over all i for 
fixed j while the latter sums to unity over all j for fixed i. Equations (36), (37), (38), 
(41), and (42), for the fertility parameters, are new. 

The trick that allows us to evaluate the right-hand sides of Equations (12) and (23) 
efficiently for Model 2 does not work for Model 3. Because of the fertility parameters, 
we cannot exchange the sums over al through am with the product over j in Equation 
(32) as we were able to for Equations (6) and (21). We are not, however, entirely bereft 
of hope. The alignment is a useful device precisely because some alignments are much 
more probable than others. Our strategy is to carry out the sums in Equations (32) 
and (34)-(38) only over some of the more probable alignments, ignoring the vast sea 
of much less probable ones. Specifically, we begin with the most probable alignment 
that we can find and then include all alignments that can be obtained from it by small 
changes. 

To define unambiguously the subset, S, of the elements of A(fle) over which we 
evaluate the sums, we need yet more terminology. We say that two alignments, a and 
a', differ by a move if there is exactly one value of j for which aj ~ aj'. We say that 
they differ by a swap if aj = aj' except at two values, jl and j2, for which a h = a h' and 
aj 2 = aj 11. We say that two alignments are neighbors if they are identical or differ by a 
move or by a swap. We denote the set of all neighbors of a by A/'(a). 

Let b(a) be that neighbor of a for which the likelihood Pr(b(a)l L e) is greatest. 
Suppose that ij is pegged for a. Among the neighbors of a for which/ j  is also pegged, 
let bi~_;(a) be that for which the likelihood is greatest. The sequence of alignments a, 
b(a), b~(a) =-- b(b(a)), ..., converges in a finite number of steps to an alignment that we 
write as b°°(a). Similarly, i f / j  is pegged for a, the sequence of alignments a, bi,_-j(a), 

278 



Peter F. Brown et al. The Mathematics of Statistical Machine Translation 

b2,__j(a), . . . ,  converges in a finite number  of steps to an alignment that we write as 
bi~°~j(a). The simple form of the distortion probabilities in Model 3 makes it easy to 
find b(a) and bi~-j(a). If a' is a neighbor of a obtained from it by the move of j from i 
to i ~, and if neither i nor i ~ is 0, then 

Pr(a'[e,f) = Pr(a[e,f)(¢i, -~ 1) n(¢i, + l[ei,) n(¢i - l[ei) t(~le~, ) d(jli', m, 1) 
(fli n ( f f g i ' [ e i ' )  n(~/[~/) t(fjl~ ) dO'[/, re, l ) '  

(43) 

Notice that ¢i, is the fertility of the word in position i ~ for alignment a. The fertility 
of this word in alignment a ~ is ¢i, + 1. Similar equations can be easily derived when  
either i or i ~ is zero, or when  a and a ~ differ by a swap. We leave the details to the 
reader. 

With these preliminaries, we define S by 

$ = H(b ~ (V(fle; 2))) U ? N(b~_j(Vi~_j(f[e; 2))). (44) 

In this equation, we use b~(V(fle; 2)) and b~j(Vi,__j(fle; 2)) as handy  approximations 
to V(fle; 3) and Vi,__j(fle; 3), neither of which we are able to compute efficiently. 

In one iteration of the EM algorithm for Model 3, we compute the counts in 
Equations (34)-(38), summing only over elements of S, and then use these counts in 
Equations (39)-(42) to obtain a new set of parameters. If the error made by including 
only some of the elements of A(e, f) is not too great, this iteration will lead to values 
of the parameters for which the likelihood of the training data is at least as large as 
for the first set of parameters. 

We make no initial guess of the parameters for Model 3, but  instead adapt the 
parameters from the final iteration of the EM algorithm for Model 2. That is, we com- 
pute the counts in Equations (34)-(38) using Model 2 to evaluate Pr(a[e, f). The simple 
form of Model 2 again makes exact calculation feasible. We can readily adapt  Equa- 
tions (27) and (28) to compute counts for the translation and distortion probabilities; 
efficient calculation of the fertility counts is more involved, and we defer a discussion 
of it to Appendix B. 

4.5 Deficiency 
The reader will have noticed a problem with our parameterization of the distortion 
probabilities in Model 3: whereas we can see by inspection that the sum over all pairs 
% 7r of the expression on the right-hand side of Equation (29) is unity, it is equally clear 
that this can no longer be the case if we assume that Pr(IIik :. k-1 ~_i-1 ~l ~l e) z ][TFi1 ~ 1 ~ o~rPo~ 
depends only on j, i, m, and l for i > 0. Because the distortion probabilities for assigning 
positions to later words do not depend on the positions assigned to earlier words, 
Model 3 wastes some of its probability on what  we might  call generalized strings, i.e., 
strings that have some positions with several words and others with none. When a 
model has this property of not concentrating all of its probability on events of interest, 
we say that it is deficient. Deficiency is the price that we pay for the simplicity that 
allows us to write Equation (43). 

Deficiency poses no serious problem here. Although Models 1 and 2 are not tech- 
nically deficient, they are surely spiritually deficient. Each assigns the same probability 
to the alignments (Je n'ai pas de stylo I I(1) do not(2,4) have(3) a(5) pen(6)) and (Je pas ai ne de 
stylo I I(1) do not(2,4) have(3) a(5) pen(6)), and, therefore, essentially the same probability 
to the translations (Je n" ai pas de stylo I I do not have a pen) and (Je pas ai ne de stylo [ I do 
not have a pen). In each case, not produces two words, ne and pas, and in each case, 
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one of these words ends up in the second position of the French string and the other 
in the fourth position. The first translation should be much more probable than the 
second, but this defect is of little concern because while we might have to translate 
the first string someday, we will never have to translate the second. We do not use 
our translation models to predict French given English but rather as a component of 
a system designed to predict English given French. They need only be accurate to 
within a constant factor over well-formed strings of French words. 

4.6 M o d e l  4 
Often the words in an English string constitute phrases that are translated as units 
into French. Sometimes, a translated phrase may appear at a spot in the French string 
different from that at which the corresponding English phrase appears in the English 
string. The distortion probabilities of Model 3 do not account well for this tendency of 
phrases to move around as units. Movement of a long phrase will be much less likely 
than movement of a short phrase because each word must be moved independently. In 
Model 4, we modify our treatment of Pr(IIik = jlTri k- l ,  ~i-l,,1 , '0,~'0,-I ,~ e) so as to alleviate 
this problem. Words that are connected to the empty cept do not usually form phrases, 
and so we continue to assume that these words are spread uniformly throughout the 
French string. 

As we have described, an alignment resolves an English string into a ceptual 
scheme consisting of a set of possibly overlapping cepts. Each of these cepts then ac- 
counts for one or more French words. In Model 3 the ceptual scheme for an alignment 
is determined by the fertilities of the words: a word is a cept if its fertility is greater 
than zero. The empty cept is a part of the ceptual scheme if ¢0 is greater than zero. 
As before we exclude multi-word cepts. Among the one-word cepts, there is a natural 
order corresponding to the order in which they appear in the English string. Let [i] 
denote the position in the English string of the/th one-word cept. We define the center 
of this cept, ®i, to be the ceiling of the average value of the positions in the French 
string of the words from its tablet. We define its head to be that word in its tablet for 
which the position in the French string is smallest. 

In Model 4, we replace d(jli , m, l) by two sets of parameters: one for placing the 
head of each cept, and one for placing any remaining words. For [i] > 0, we require 
that the head for cept i be r[i]l and we assume that 

• [t 7 - 1  TO / , ~ / , e )  = d 1 Pr(II[i]l = 1 7rl , (J - ®i-llA(e[i-1]),/3(fJ))" (45) 

Here, A and B are functions of the English and French words that take on a small 
number of different values as their arguments range over their respective vocabularies. 
Brown et al. (1990) describe an algorithm for dividing a vocabulary into classes so as to 
preserve mutual information between adjacent classes in running text. We construct 
,A and /3 as functions with 50 distinct values by dividing the English and French 
vocabularies each into 50 classes according to this algorithm. By assuming that the 
probability depends on the previous cept and on the identity of the French word 
being placed, we can account for such facts as the appearance of adjectives before 
nouns in English but after them in French. We call j - ®i-1 the displacement for the 
head of cept i. It may be either positive or negative. We expect dl(-lI.A(e),/3(f)) to 
be larger than dl(+ l lA(e) , /3( f ) )  when e is an adjective and d is a noun. Indeed, 
this is borne out in the trained distortion probabilities for Model 4, where we find 
that dl (-llA(government's),/3(d~veloppement)) is 0.7986, while dl (+ llM(government's), 
/3(d~veloppement)) is 0.0168. 
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Suppose,  now, that we  wish to place the k th word  of cept i for [i] > 0, k > 1. We 
assume that 

• k - 1  [i]-1 l - t  , 
Pr(H[i]k = ] 71"[i]1 ,7r 1 , r0, tp0 , e) = d>l(j - 7l[i]k-1 [/~(d~))" (46) 

We require that ~r[i]k be greater than ~rI,]k-1. Some English words  tend to produce  a 
series of French words  that belong together, while others tend to produce a series of 
words  that should be separate. For example, implemented can produce  mis en application, 
which usually occurs as a unit, but  not can produce  ne pas, which often occurs with 
an intervening verb• We expect d>l(2[B(pas)) to be relatively large compared with 
d>l(2[/J(en)). After training, we  find that d>l(2[B(pas)) is 0.6847 and d>l(2II3(en)) is 
0.1533. 

Whereas we  assume that T[i]l can be placed either before or after any previously 
posit ioned words,  we  require subsequent  words  from 7[i] to be placed in order. This 
does not mean that they must  occupy consecutive positions but  only that the second 
word  from T[~] must  lie to the right of the first, the third to the right of the second, and 
so on. Because of this, only one of the ¢[i]! arrangements of 71i] is possible. 

We leave the routine details of deriving the count  and reestimation formulae for 
Model  4 to the reader. He  may  find the general formulae in Appendix B helpful. 
Once again, the several counts for a translation are expectations of various quantities 
over the possible alignments with the probability of each alignment computed  from an 
earlier estimate of the parameters.  As with Model  3, we  know of no trick for evaluating 
these expectations and must  rely on sampling some small set, S, of alignments. As 
described above, the simple form that we  assume for the distortion probabilities in 
Model  3 makes it possible for us to find b °o (a) rapidly for any a. The analog of Equation 
(43) for Model  4 is complicated by  the fact that when  we move a French word  from cept 
to cept we  change the centers of two cepts and may  affect the contribution of several 
words.  It is nonetheless possible to evaluate the adjusted likelihood incrementally, 
al though it is substantially more time-consuming. 

Faced with this unpleasant  situation, we  proceed as follows. Let the neighbors 
of a be ranked so that the first is the neighbor for which Pr(a[e, f; 3) is greatest, the 
second the one for which Pr(a[e, f; 3) is next greatest, and so on. We define b(a) to be the 
highest-ranking neighbor of a for which Pr(b(a)[e, f; 4) is at least as large as Pr(aIe, f; 4). 
We define bi,._j(a) analogously. Here, Pr(a[e, f;3) means Pr(a[e, f) as computed  with 
Model  3, and Pr(ale, f;4) means Pr(a[e, f) as computed  with Model  4. We define S for 
Model  4 by  

S = A/'(boo (V(f[e; 2))) ~.J Uij.M(b~j(Vi,_j(f[e; 2))). (47) 

This equation is identical to Equation (47) except that b has been replaced by/~. 

4 . 7  M o d e l  5 

Models 3 and 4 are both deficient. In Model  4, not  only can several words  lie on top 
of one another, but  words  can be placed before the first position or beyond  the last 
position in the French string. We remove this deficiency in Model  5. 

After we  have placed the words  for r~ i]-1 and T[i] k-1 there will remain some va- 
cant positions in the French string. Obviously, T[i]k should be placed in one of these 
vacancies. Models  3 and 4 are deficient precisely because we  fail to enforce this con- 
straint for the one-word cepts. Let v(j, T~ i]-1, T[i]I k-l) be the number  of vacancies up  to 
and including position j just before we  place T[,lk. In the interest of notational brevity, 
a noble but  elusive goal, we  write this simply as vj. We retain two sets of distortion 
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parameters, as in Model 4, and continue to refer to them as dl and d>l. We assume 
that, for [i] > 0, 

;1~[i]-1 ~1 ¢/, e) dl(vjlt~(Z), vo,_,, vm - Ctil + 1)(1 - 5(vj, v j - 1 ) ) .  (48) Pr (II[i]l = 11"1 , 'o,  -- 

The number  of vacancies up to j is the same as the number  of vacancies up to j - 1 
only when  j is not itself vacant. The last factor, therefore, is 1 when  j is vacant and 0 
otherwise. In the final parameter of dl, vm is the number  of vacancies remaining in the 
French string. If ~b[i] = 1, then 7.[i11 may  be placed in any of these vacancies; if ~b[i] = 2, 
7-[i]1 may  be placed in any but  the last of these vacancies; in general, 7-[,11 may  be placed 
in any but  the rightmost ~b[,] - 1 of the remaining vacancies. Because 7-[/]1 must  occupy 
the leftmost place of any of the words from T[,], we must  take care to leave room at 
the end of the string for the remaining words from this tablet. As with Model 4, we 
allow dl to depend on the center of the previous cept and on ~, but  we suppress the 
dependence on eli-l] since we should otherwise have too many  parameters. 

For [i] > 0 and k > 1, we assume 

Pr(Ilfilk = jlTr[i]~-i ' 71"1[i]-1' 7"6,z ~b~,e) 

= d>l (v j  - v~t,lk_~ll3(fj),vm - v~t,lk_ , - ~b[i] +k)(1 - 8(vj ,  v j _ l ) ) .  (49) 

Again, the final factor enforces the constraint that 7.[i]k land in a vacant position, and, 
again, we assume that the probability depends on ~ only through its class. Model 5 is 
described in more detail in Appendix B. 

As with Model 4, we leave the details of the count and reestimation formulae 
to the reader. No incremental evaluation of the likelihood of neighbors is possible 
with Model 5 because a move or swap may  require wholesale recomputation of the 
likelihood of an alignment. Therefore, when  we evaluate expectations for Model 5, we 
include only the alignments in S as defined in Equation (47). We further trim these 
alignments by removing any alignment a, for which Pr(ale, f;4) is too much  smaller 
than Pr(b°°(V(fle; 2)le, f; 4). 

Model 5 is a powerful  but  unwieldy ally in the battle to align translations. It must  
be led to the battlefield by its weaker but  more agile brethren Models 2, 3, and 4. In fact, 
this is the raison d'etre of these models. To keep them aware of the lay of the land, we 
adjust their parameters as we carry out iterations of the EM algorithm for Model 5. That 
is, we collect counts for Models 2, 3, and 4 by summing over alignments as determined 
by the abbreviated S described above, using Model 5 to compute Pr(ale, f). Al though 
this appears to increase the storage necessary for maintaining counts as we proceed 
through the training data, the extra burden is small because the overwhelming majority 
of the storage is devoted to counts for t ( f l e  ), and these are the same for Models 2, 3, 
4, and 5. 

5. R e s u l t s  

We have used a large collection of training data to estimate the parameters of the 
models described above. Brown, Lai, and Mercer (1991) have described an algorithm 
with which one can reliably extract French and English sentences that are translations 
of one another from parallel corpora. They used the algorithm to extract a large number  
of translations from several years of the proceedings of the Canadian parliament. From 
these translations, we have chosen as our training data those for which both the English 
sentence and the French sentence are 30 or fewer words in length. This is a collection 
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Table 1 
A summary of the training iterations. 

Iteration In --* Out Survivors Alignments Perplexity 

1 1 --* 2 12,017,609 71,550.56 
2 2 --* 2 12,160,475 202.99 
3 2 --, 2 9,403,220 89.41 
4 2 --* 2 6,837,172 61.59 
5 2 --, 2 5,303,312 49.77 
6 2 --* 2 4,397,172 46.36 
7 2 --* 3 3,841,470 45.15 
8 3 --* 5 2,057,033 291 124.28 
9 5 --* 5 1,850,665 95 39.17 

10 5 ~ 5 1,763,665 48 32.91 
11 5 -* 5 1,703,393 39 31.29 
12 5 --* 5 1,658,364 33 30.65 

of 1,778,620 translations. In an effort to el iminate some of the typographica l  errors that  
abound  in the text, we  have  chosen as our  English vocabula ry  all of those words  that  
appea r  at least twice in English sentences in our  data, and  as our  French vocabula ry  
all of those words  that  appea r  at least twice in French sentences in our  data. A l l  
other words  we  replace wi th  a special unknown English word or unknown French word 
accordingly as they appea r  in an English sentence or a French sentence. We arrive 
in this w a y  at an English vocabula ry  of 42,005 words  and  a French vocabula ry  of 
58,016 words.  Some typographica l  errors are quite frequent,  for example ,  momento for 
memento, and so our  vocabular ies  are not  comple te ly  free of them. At the same time, 
some words  are truly rare, and  so we  have,  in some cases, snubbed  legit imate words .  
Add ing  e0 to the English vocabula ry  brings it to 42,006 words.  

We have  carried out  12 iterations of the EM algor i thm for this data. We initialized 
the process b y  setting each of the 2,437, 020,096 translation probabilit ies,  t(fle), to 
1/58,016. That  is, we  assume each of the 58,016 words  in the French vocabula ry  to be 
equally likely as a translation for each of the 42,006 words  in the English vocabulary.  
For t(f[e) to be greater  than zero at the m a x i m u m  likelihood solution for one of our  
models ,  f and  e mus t  occur together  in at least one of the translations in our  training 
data. This is the case for only 25,427, 016 pairs,  or about  one percent  of all t ranslation 
probabilities. On the average,  then, each English word  appears  wi th  about  605 French 
words.  

Table 1 summar izes  our  training computat ion.  At each iteration, we  compute  the 
probabili t ies of the var ious  a l ignments  of each translation using one model ,  and  collect 
counts us ing a second (possibly different) model .  These are referred to in the table as 
the In mode l  and  the Out  model ,  respectively. After each iteration, we  retain individual  
values  only for those translation probabili t ies that  surpass  a threshold; the remainder  
we  set to a small  value (10-12). This value is so small  that  it does  not  affect the 
normal iza t ion  conditions, but  is large enough  that  translation probabili t ies can be 
resurrected dur ing  later iterations. We see in co lumns  4 and  5 that  even though  we 
lower  the threshold as iterations progress,  fewer and  fewer  probabili t ies survive.  By 
the final iteration, only  1,658,364 probabili t ies survive,  an average  of about  39 French 
words  for each English word.  

Al though the entire t a r ray  has 2,437, 020,096 entries, and  we need to store it 
twice, once as probabili t ies and  once as counts, it is clear f rom the preceeding remarks  
that  we  need never  deal wi th  more  than  about  25 mill ion counts  or about  12 mill ion 
probabilities. We store these two arrays  using s tandard  sparse matr ix  techniques. We 
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keep counts as pairs of bytes, but allow for overflow into 4 bytes if necessary. In 
this way, it is possible to run the training program in less than 100 megabytes of 
memory. While this number would have seemed extravagant a few years ago, today 
it is available at modest cost in a personal workstation. 

As we have described, when the In model is neither Model 1 nor Model 2, we 
evaluate the count sums over only some of the possible alignments. Many of these 
alignments have a probability much smaller than that of the Viterbi alignment. The 
column headed Alignments in Table 1 shows the average number of alignments for 
which the probability is within a factor of 25 of the probability of the Viterbi align- 
ment in each iteration. As this number drops, the model concentrates more and more 
probability onto fewer and fewer alignments so that the Viterbi alignment becomes 
ever more dominant. 

The last column in the table shows the perplexity of the French text given the 
English text for the In model of the iteration. We expect the likelihood of the training 
data to increase with each iteration. We can think of this likelihood as arising from a 
product of factors, one for each French word in the training data. We have 28,850,104 
French words in our training data, so the 28,850,104 th root of the likelihood is the 
average factor by which the likelihood is reduced for each additional French word. 
The reciprocal of this root is the perplexity shown in the table. As the likelihood 
increases, the perplexity decreases. We see a steady decrease in perplexity as the itera- 
tions progress except when we switch from Model 2 as the In model to Model 3. This 
sudden jump is not because Model 3 is a poorer model than Model 2, but because 
Model 3 is deficient: the great majority of its probability is squandered on objects that 
are not strings of French words. As we have argued, deficiency is not a problem. In 
our description of Model 1, we left Pr(mle ) unspecified. In quoting perplexities for 
Models 1 and 2, we have assumed that the length of the French string is Poisson with 
a mean that is a linear function of the length of the English string. Specifically, we 
have assumed that Pr(M : role ) = (Al)me-~Z/m!, with A equal to 1.09. 

It is interesting to see how the Viterbi alignments change as the iterations progress. 
In Figure 5, we show for several sentences the Viterbi alignment after iterations 1, 6, 
7, and 12. Iteration 1 is the first iteration for Model 2, and iterations 6, 7, and 12 are 
the final iterations for Models 2, 3, and 5, respectively. In each example, we show 
the French sentence with a subscript affixed to each word to ease the reader's task 
in interpreting the list of numbers after each English word. In the first example, (Il 
me semble faire signe que oui I It seems to me that he is nodding), two interesting changes 
evolve over the course of the iterations. In the alignment for Model 1 , / / i s  correctly 
connected to he, but in all later alignments II is incorrectly connected to It. Models 2, 3, 
and 5 discount a connection of he to II because it is quite far away. We do not yet have 
a model with sufficient linguistic sophistication to make this connection properly. On 
the other hand, we see that nodding, which in Models 1, 2, and 3 is connected only to 
signe and oui, is correctly connected to the entire phrase faire signe que oui in Model 5. 
In the second example, (Voyez les profits que ils ont r~alis~s [ Look at the profits they have 
made), Models 1, 2, and 3 incorrectly connect profits4 to both profits3 and rdalisds7, but 
with Model 5, profits4 is correctly connected only to profits3, and made7 is connected to 
r~alis~s7. Finally, in (De les promesses, de les promesses! I Promises, promises.), Promises1 is 
connected to both instances of promesses with Model 1; promises3 is connected to most 
of the French sentence with Model 2; the final punctuation of the English sentence is 
connected to both the exclamation point and, curiously, to des with Model 3; and only 
with Model 5 do we have a satisfying alignment of the two sentences. The orthography 
for the French sentence in the second example is Voyez les profits qu'ils ont rdalisds and 
in the third example is Des promesses, des promesses! We have restored the e to the end 
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Ill me2 semble3 faire4 signe5 que6 oui7 

It seems(3) to(4) me(2) that(6) he(l) is nodding(5,7) 
It(l) seems(3) to me(2) that he is nodding(5,7) 
It(l) seems(3) to(4) me(2) that(6) he is nodding(5,7) 
It(l) seems(3) to me(2) that he is nodding(4,5,6,7) 

Voyezl les2 profits3 que4 ils5 ont6 r6alis6s7 

Look(l) at the(2) profits(3,7) they(5) have(6) made 
Look(l) at the(2,4) profits(3,7) they(5) have(6) made 
Look(l) at the profits(3,7) they(5) have(6) made 
Look(l) at the(2) profits(3) they(5) have(6) rnade(7) 

Del les2 promesses3,4 de5 les6 promesses7 !8 

Promises(3,7) ,(4) promises .(8) 
Promises ,(4) promises(2,3,6,7) .(8) 
Promises(3) ,(4) promises(7) .(5,8) 
Promises(2,3) ,(4) promises(6,7) .(8) 

Figure 5 
The progress of alignments with iteration. 

of qu' and have twice analyzed des into its constituents, de and les. We commit these 
and other petty pseudographic improprieties in the interest of regularizing the French 
text. In all cases, orthographic French can be recovered by rule from our corrupted 
versions. 

Figures 6-15 show the translation probabilities and fertilities after the final iteration 
of training for a number of English words. We show all and only those probabilities 
that are greater than 0.01. Some words, like nodding, in Figure 6, do not slip gracefully 
into French. Thus, we have translations like (Il fait signe que oui I He is nodding), (Il fait 
un signe de la t~te } He is nodding), (Il fait un signe de t~te affirmatif l He is nodding), or (II 
hoche la t~te affirmativement I He is nodding). As a result, nodding frequently has a large 
fertility and spreads its translation probability over a variety of words. In French, what 
is worth saying is worth saying in many different ways. We see another facet of this 
with words like should, in Figure 7, which rarely has a fertility greater than one but still 
produces many different words, among them devrait, devraient, devrions, doit, doivent, 
devons, and devrais. These are (just a fraction of the many) forms of the French verb 
devoir. Adjectives fare a little better: national, in Figure 8, almost never produces more 
than one word and confines itself to one of nationale, national, nationaux, and nationales, 
respectively the feminine, the masculine, the masculine plural, and the feminine plural 
of the corresponding French adjective. It is clear that our models would benefit from 
some kind of morphological processing to rein in the lexical exuberance of French. 

We see from the data for the, in Figure 9, that it produces le, la, les, and I' as we 
would expect. Its fertility is usually 1, but in some situations English prefers an article 
where French does not and so about 14% of the time its fertility is 0. Sometimes, as 
with farmers, in Figure 10, it is French that prefers the article. When this happens, the 
English noun trains to produce its translation together with an article. Thus, farmers 
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nodding 

Figure 6 

f t ( f l e )  ~ n(q5 I e) 
signe 0.164 

la 0.123 
t~te 0.097 
oui 0.086 
fait 0.073 
que 0.073 

hoche 0.054 
hocher 0.048 

faire 0.030 
me 0.024 

approuve 0.019 
qui 0.019 
un 0.012 

faites 0.011 

Translation and fertility probabilities for nodding. 

4 0.342 
3 0.293 
2 0.167 
1 0.163 
0 0.023 

typically has a fertility 2 and usually produces either agriculteurs or les. We include 
additional examples in Figures 11 through 15, which show the translation and fertility 
probabilities for external, answer, oil, former, and not. Although we show the various 
probabilities to three decimal places, one must realize that the specific numbers that 
appear are peculiar to the training data that we used in obtaining them. They are not 
constants of nature relating the Platonic ideals of eternal English and eternal French. 
Had we used different sentences as training data, we might well have arrived at 
different numbers. For example, in Figure 9, we see that t(lelthe ) = 0.497 while the 
corresponding number from Figure 4 of Brown et al. (1990) is 0.610. The difference 
arises not from some instability in the training algorithms or some subtle shift in 
the languages in recent years, but from the fact that we have used 1,778,620 pairs of 
sentences covering virtually the complete vocabulary of the Hansard data for training, 
while they used only 40,000 pairs of sentences and restricted their attention to the 9,000 
most common words in each of the two vocabularies. 

Figures 16, 17, and 18 show automatically derived alignments for three transla- 
tions. In the terminology of Section 4.6, each alignment is ~o~ (V(fle; 2)). We stress that 
these alignments have been found by an algorithm that involves no explicit knowledge 
of either French or English. Every fact adduced to support them has been discovered 
algorithmically from the 1,778,620 translations that constitute our training data. This 
data, in turn, is the product of an algorithm the sole linguistic input of which is a set 
of rules explaining how to find sentence boundaries in the two languages. We may 
justifiably claim, therefore, that these alignments are inherent in the Canadian Hansard 
data itself. 

In the alignment shown in Figure 16, all but  one of the English words has fertility 1. 
The final prepositional phrase has been moved to the front of the French sentence, but 
otherwise the translation is almost verbatim. Notice, however, that the new proposal 
has been translated into les nouvelles propositions, demonstrating that number is not an 
invariant under translation. The empty cept has fertility 5 here. It generates enl, de3, 
the comma, del6, and de18. 
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should 

Figure 7 

f t ( f le)  (J n(~le) 
devrait  0.330 

devraient  0.123 
devrions 0.109 
faudrait  0.073 

faut 0.058 
doit  0.058 

aurait  0.041 
doivent  0.024 
devons 0.017 
devrais 0.013 

Translation and fertility probabilities for should. 

1 0.649 
0 0.336 
2 0.014 

national 

f t ( f le)  ~ n(~ I e) 
nationale 0.469 1 0.905 
national 0.418 0 0.094 

nat ionaux 0.054 
nationales 0.029 

Figure 8 
Translation and fertility probabilities for national. 

the 

Figure 9 

f t ( f le)  ~ n(~hle) 
0.497 1 
0.207 0 
0.155 
0.086 
0.018 
0.011 

le 

la 
les 
1' 
ce 

cette 

0.746 
0.254 

Translation and fertility probabilities for the. 

farmers 

Figure 10 

f t ( f l e  ) n(~ [e) 
agriculteurs 0.442 2 0.731 

les 0.418 1 0.228 
cultivateurs 0.046 0 0.039 
producteurs  0.021 

Translation and fertility probabilities for farmers. 
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external 

f t ( f le)  ~ n(~le)  
ext6rieures 0.944 1 0.967 
ext6rieur 0.015 0 0.028 
externe 0.011 

ext6rieurs 0.010 
Figure 11 
Translation and fertility probabilities for external. 

answer 

f t ( f i e  ) ~ n(~b [ e) 
r6ponse 0.442 

r6pondre 0.233 
r6pondu 0.041 

0.038 
solution 0.027 

r6pondez 0.021 
r6pondrai 0.016 
r6ponde 0.014 

y 0.013 
ma 0.010 

Figure 12 
Translation and fertility probabilities for 

1 0.809 
2 0.115 
0 0.074 

answer. 

oil 

Figure 13 

f t ( f le)  ~ n(~le)  
p6trole 0.558 

p6troli6res 0.138 
p@troli~re 0.109 

le 0.054 
p6trolier 0.030 
p6troliers 0.024 

huile 0.020 
Oil 0.013 

Translation and fertility probabilities for oil. 

1 0.760 
0 0.181 
2 0.057 
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former 

Figure 14 

f t(-f[e) ~ n ( ~ l e  ) 
ancien 0.592 
anciens 0.092 

ex 0.092 
pr6c6dent 0.054 

1' 0.043 
ancienne 0.018 

dtd 0.013 

Translation and fertility probabilities for former. 

1 0.866 
0 0.074 
2 0.060 

not 

f t ( f l e  ) c~ n(~[e)  
ne 0.497 2 0.735 

pas 0.442 0 0.154 
non 0.029 1 0.107 
rien 0.011 

Figure 15 
Translation and fertility probabilities for not. 

In Figure 17, two of the English words have fertility 0, one has fertility 2, and one, 
embattled, has fertility 5. Embattled is another word, like nodding, that eludes the French 
grasp and comes with a panoply of multi-word translations. 

The final example, in Figure 18, has several features that bear comment. The second 
word, Speaker, is connected to the sequence l'Orateur. Like farmers above, it has trained 
to produce both the word that we naturally think of as its translation and the associated 
article. In our data, Speaker always has fertility 2 and produces equally often l'Orateur 
and le president. Later in the sentence, starred is connected to the phrase marquees de un 
astdrisque. From an initial situation in which each French word is equally probable as 
a translation of starred, we have arrived, through training, at a situation where it is 
possible to connect starred to just the right string of four words. Near the end of the 
sentence, give is connected to donnerai, the first person singular future of donner, which 
means to give. We should be more comfortable if both will and give were connected 
to donnerai, but  by limiting cepts to no more than one word, we have precluded this 
possibility. Finally, the last 12 words of the English sentence, I now have the answer and 
will give it to the House, clearly correspond to the last 7 words of the French sentence, 
je donnerai la rdponse ?l la Chambre, but, literally, the French is I will give the answer to 
the House. There is nothing about now, have, and, or it, and each of these words has 
fertility 0. Translations that are as far as this from the literal are rather more the rule 
than the exception in our training data. One might  cavil at the connection of la r~ponse 
to the answer rather than to it. We do not. 

6. Better Translation Mode l s  

Models 1-5 provide an effective means for obtaining word-by-word alignments of 
translations, but  as a means to achieve our real goal, which is translation, there is 
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Whah 

is2 

the3 

anticipated4 

cost5 

of  6 

administering7 

ands 

collecting9 

feesl0 

undern 

the12 

newl3 

proposal14 

?15 

Figure 16 
The best of 1.9 x 1025 alignments. 

Enl 

vertu2 

de3 

les4 

nouvelle% 

propositions6 

,7 

quels 

est9 

lelo 

cbutll 

pr6vulz 

de13 

administration14 

et15 

del6 

perceptions7 

de18 

lesl9 

droits20 

?21 
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The1 

secretary2 

orb 

state4 

fors 

external6 

affairs7 

comess 

in9 

asl0 

the11 

onel2 

supporter13 

of 14 

thels 

embattled16 

ministerl7 

of 18 

yesterday~9 

Figure 17 
The best of 8.4 x 1029 alignments. 

Eel 

secr6taire2 

de3 

t~tat4 

as 

les6 

Affaires7 

ext6rieurs 

se9 

pr6sentel0 

comme11 

le12 

seull3 

d6fenseur14 

de15 

lel6 

ministre17 

quils 

sel9 

est20 

fait21 

bousculer22 

hier23 
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Mrq 

Speaker2 

p3 

if4 

w e5  

might6 

return7 

to8 

starred9 

questions10 

ill  

I12 

now13 

have14 

the15 

answer16 

and17 

will18 

givel9 

it20 

t021 

the22 

house23 

Figure 18 
The best of 5.6 x 1031 alignments. 
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room for improvement.  We have seen that by ignoring the morphological structure 
of the two languages we dilute the strength of our statistical model, explaining, for 
example, each of the several tens of forms of each French verb independently. We have 
seen that by  ignoring multi-word cepts, we are forced to give a false, or at least an 
unsatisfactory, account of some features in many  translations. And finally, we have 
seen that our models are deficient, either in fact, as with Models 3 and 4, or in spirit, 
as with Models 1, 2, and 5. 

6.1 The Truth about Deficiency 
We have argued in Section 2 that neither spiritual nor actual deficiency poses a serious 
problem, but  this is not entirely true. Let w(e) be the sum of Pr(fle ) over well-formed 
French strings and let i(e) be the sum over ill-formed French strings. In a deficient 
model, w(e) + i(e) < 1. We say that the remainder of the probability is concentrated 
on the event failure and we write w(e) + i(e) + Pr(failurele ) = 1. Clearly, a model  is 
deficient precisely when Pr(failurele ) > 0. If Pr(failure]e) = 0, but  i(e) > 0, then the 
model is spiritually deficient. If w(e) were independent  of e, neither form of deficiency 
would pose a problem, but because our models have no long-term constraints, w(e) 
decreases exponentially with 1. When computing alignments, even this creates no 
problem because e and f are known. If, however, we are given f and asked to discover 
4, then we will find that the product  Pr(e) Pr(fle ) is too small for long English strings 
as compared with short ones. As a result, we will improperly favor short English 
strings. We can counteract this tendency in part by replacing Pr(fJe) with c I Pr(f]e) 
for some empirically chosen constant c. This is treatment of the symptom rather than 
treatment of the disease itself, but  it offers some temporary relief. The cure lies in 
better modeling. 

6.2 Viterbi Training 
As we progress from Model 1 to Model 5, evaluating the expectations that give us 
counts becomes increasingly difficult. For Models 1 and 2, we are able to include the 
contribution of each of the (1 + 1) m possible alignments exactly. For later models, 
we include the contributions of fewer and fewer alignments. Because most of the 
probability for each translation is concentrated by these models on a small number  
of alignments, this suboptimal procedure, mandated  by the complexity of the models, 
yields acceptable results. 

In the limit, we can contemplate evaluating the expectations using only a single, 
probable alignment for each translation. When that alignment is the Viterbi alignment, 
we call this Viterbi training. It is easy to see that Viterbi training converges: at each 
step, we reestimate parameters so as to make the current set of Viterbi alignments as 
probable as possible; when  we use these parameters to compute a new set of Viterbi 
alignments, we find either the old set or a set that is yet more probable. Since the 
probability can never be greater than one, this process must  converge. In fact, unlike 
the EM algorithm in general, it must  converge in a finite, though impractically large, 
number  of steps because each translation has only a finite number  of alignments. 

In practice, we are never sure that we have found the Viterbi alignment. If we 
reinterpret the Viterbi alignment to mean the most probable al ignment that we can 
find rather than the most probable alignment that exists, then a similarly reinterpreted 
Viterbi training algorithm still converges. We have already used this algorithm suc- 
cessfully as a part  of a system to assign senses to English and French words on the 
basis of the context in which they appear (Brown et al. 1991a, 1991b). We expect to 
use it in models that we develop beyond Model 5. 
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6.3 Multi-Word Cepts 
In Models 1-5, we restrict our attention to alignments with cepts containing no more 
than one word each. Except in Models 4 and 5, cepts play little r61e in our development. 
Even in these models, cepts are determined implicitly by the fertilities of the words 
in the alignment: words for which the fertility is greater than zero make up one-word 
cepts; those for which it is zero do not. We can easily extend the generative process 
upon which Models 3, 4, and 5 are based to encompass multi-word cepts. We need 
only include a step for selecting the ceptual scheme and ascribe fertilities to cepts 
rather than to words, requiring that the fertility of each cept be greater than zero. 
Then, in Equation (29), we can replace the products over words in an English string 
with products over cepts in the ceptual scheme. 

When we venture beyond one-word cepts, however, we must tread lightly. An 
English string can contain any of 42,005 one-word cepts, but there are more than 
1.7 billion possible two-word cepts, more than 74 trillion three-word cepts, and so 
on. Clearly, one must be discriminating in choosing potential multi-word cepts. The 
caution that we have displayed thus far in limiting ourselves to cepts with fewer 
than two words was motivated primarily by our respect for the featureless desert that 
multi-word cepts offer a priori. The Viterbi alignments that we have computed with 
Model 5 give us a frame of reference from which to expand our horizons to multi-word 
cepts. By inspecting them, we can find translations for a given multi-word sequence. 
We need only promote a multi-word sequence to cepthood when these translations 
differ substantially from what we might expect on the basis of the individual words 
that it contains. In English, either a boat or a person can be left high and dry, but in 
French, un bateau is not left haut et sec, nor une personne haute et s~che. Rather, a boat is 
left ~chou~ and a person en plan. High and dry, therefore, is a promising three-word cept 
because its translation is not compositional. 

6.4 Morphology 
We treat each distinct sequence of letters as a distinct word. In English, for example, 
we recognize no kinship among the several forms of the verb to eat (eat, ate, eaten, 
eats, and eating). In French, irregular verbs have many forms. In Figure 7, we have 
already seen 7 forms of devoir. Altogether, it has 41 different forms. And there would 
be 42 if the French did not inexplicably drop the circumflex from the masculine plural 
past participle (dus), thereby causing it to collide with the first and second person 
singular in the pass~ simple, no doubt a source of endless confusion for the beleaguered 
francophone. 

The French make do with fewer forms for the multitude of regular verbs that are 
the staple diet of everyday speech. Thus, manger (to eat), has only 39 forms (manger, 
mange, manges . . . . .  mangeassent). Models 1-5 must learn to connect the 5 forms of to eat 
to the 39 forms of manger. In the 28~ 850~ 104 French words that make up our training 
data, only 13 of the 39 forms of manger actually appear. Of course, it is only natural 
that in the proceedings of a parliament, forms of manger are less numerous than forms 
of parler (to speak), but even for parler, only 28 of the 39 forms occur in our data. If we 
were to encounter a rare form of one of these words, say, parlassions or mangeassent, we 
would have no inkling of its relationship to speak or eat. A similar predicament besets 
nouns and adjectives as well. For example, composition is the among the most common 
words in our English vocabulary, but compositions is among the least common words. 

We plan to ameliorate these problems with a simple inflectional analysis of verbs, 
nouns, adjectives, and adverbs, so that the relatedness of the several forms of the same 
word is manifest in our representation of the data. For example, we wish to make 
evident the common pedigree of the different conjugations of a verb in French and 
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in English; of the singular and plural, and singular possessive and plural possessive 
forms of a noun in English; of the singular, plural, masculine, and feminine forms of 
a noun or adjective in French; and of the positive, comparative, and superlative forms 
of an adjective or adverb in English. 

Thus, our intention is to transform (/'e mange la p~che I I eat the peach) into, e.g., (je 
manger, 13spres la p~che I I eat,x3spres the peach). Here, eat is analyzed into a root, eat, and 
an ending, x3spres, that indicates the present tense form used except in the third person 
singular. Similarly, mange is analyzed into a root, manger, and an ending, 13spres, that 
indicates the present tense form used for the first and third persons singular. 

These transformations are invertible and should reduce the French vocabulary by 
about 50% and the English vocabulary by about 20%. We hope that this will signifi- 
cantly improve the statistics in our models. 

7. D i scuss ion  

That interesting bilingual lexical correlations can be extracted automatically from a 
large bilingual corpus was pointed out by Brown et al. (1988). The algorithm that 
they describe is, roughly speaking, equivalent to carrying out the first iteration of the 
EM algorithm for our Model 1 starting from an initial guess in which each French 
word is equally probable as a translation for each English word. They were unaware 
of a connection to the EM algorithm, but they did realize that their method is not 
entirely satisfactory. For example, once it is clearly established that in (La porte est 
rouge I The door is red), it is red that produces rouge, one is uncomfortable using this 
sentence as support for red producing porte or door producing rouge. They suggest 
removing words once a correlation between them has been clearly established and then 
reprocessing the resulting impoverished translations hoping to recover less obvious 
correlations now revealed by the departure of their more prominent relatives. From 
our present perspective, we see that the proper way to proceed is simply to carry out 
more iterations of the EM algorithm. The likelihood for Model 1 has a unique local 
maximum for any set of training data. As iterations proceed, the count for porte as a 
translation of red will dwindle away. 

In a later paper, Brown et al. (1990) describe a model that is essentially the same as 
our Model 3. They sketch the EM algorithm and show that, once trained, their model 
can be used to extract word-by-word alignments for pairs of sentences. They did not 
realize that the logarithm of the likelihood for Model 1 is concave and, hence, has a 
unique local maximum. They were also unaware of the trick by which we are able to 
sum over all alignments when evaluating the counts for Models 1 and 2, and of the 
trick by which we are able to sum over all alignments when transferring parameters 
from Model 2 to Model 3. As a result, they were unable to handle large vocabularies 
and so restricted themselves to vocabularies of only 9,000 words. Nonetheless, they 
were able to align phrases in French with the English words that produce them as 
illustrated in their Figure 3. 

More recently, Gale and Church (1991a) describe an algorithm similar to the one 
described in Brown et al. (1988). Like Brown et al., they consider only the simulta- 
neous appearance of words in pairs of sentences that are translations of one another. 
Although algorithms like these are extremely simple, many of the correlations between 
English and French words are so pronounced as to fall prey to almost any effort to 
expose them. Thus, the correlation of pairs like (eau I water), (lait ] milk), (pourquoi I why), 
(chambre I house), and many others, simply cannot be missed. They shout from the data, 
and any method that is not stone deaf will hear them. But many of the correlations 
speak in a softer voice: to hear them clearly, we must model the translation process, as 

295 



Computational Linguistics Volume 19, Number 2 

Brown et al. (1988) suggest and as Brown et al. (1990) and the current paper actually 
do. Only in this way can one hope to hear the quiet call of (marquees d'un ast&isque I 
starred) or the whisper of (qui s'est fait bousculer I embattled). 

The series of models that we have described constitutes a mathematical embodi- 
ment  of the powerfully compelling intuitive feeling that a word in one language can 
be translated into a word or phrase in another language. In some cases, there may  
be several or even several tens of translations depending on the context in which the 
word appears, but  we should be quite surprised to find a word  with hundreds  of 
mutual ly  exclusive translations. Al though we use these models as part of an auto- 
matic system for translating French into English, they provide, as a byproduct ,  very 
satisfying accounts of the word-by-word alignment of pairs of French and English 
strings. 

Our work has been confined to French and English, but  we believe that this is 
purely adventitious: had the early Canadian trappers been Manchurians later to be 
outnumbered by swarms of conquistadores, and had the two cultures clung stubbornly 
each to its native tongue, we should now be aligning Spanish and Chinese. We con- 
jecture that local alignment of the component  parts of any corpus of parallel texts is 
inherent in the corpus itself, provided only that it be large enough. Between any pair 
of languages where mutual  translation is important  enough that the rate of accumula- 
tion of translated examples sufficiently exceeds the rate of mutat ion of the languages 
involved, there must  eventually arise such a corpus. 

The linguistic content of our program thus far is scant indeed. It is limited to one 
set of rules for analyzing a string of characters into a string of words, and another 
set of rules for analyzing a string of words  into a string of sentences. Doubtless even 
these can be recast in terms of some information theoretic objective function. But it is 
not our intention to ignore linguistics, neither to replace it. Rather, we hope to enfold 
it in the embrace of a secure probabilistic framework so that the two together may  
draw strength from one another and guide us to better natural language processing 
systems in general and to better machine translation systems in particular. 
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Appendix A: Table of Notation 

8 
e 

e 

E 
I 
L 
i 
ei 

eo 

e~ 

English vocabulary 
English word 
English string 
random English string 
length of e 
random length of E 
position in e, i = 0, 1 , . . .  ,1 
word i of e 
the empty cept 
ele2.. ,  ei 

.F 

f 
f 
F 
m 

M 
j 
fj. 

French vocabulary 
French word 
French string 
random French string 
length of f 
random length of F 
position in f, j -- 1 ,2 , . . .  ,m 
word j of f 

flf2 . . .fj 

alignment 
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aj 

4 

T 

7"i 

¢i 
k 

~k 

IT ik 

V(f I e) 
Vi~-j( f  l e)  

N(a) 
 j(a) 

b(a) 
b°°(a) 
bi,__j(a) 
bi°°~j(a) 

A ( e )  

aj 

V 

Pi 

Ci 

[i] 
®i 

P o  

C(f,e) 
ga(Po) 
R(P~, Po) 

position in e connected to position j of f for 
alignment a 

ala2 • • • aj 

number of positions of f connected to position i of e 
~ 1 ~ 2 ' ' '  (~i 

tableau--a sequence of tablets, where a tablet is a 
sequence of French words 
tablet i of "r 
T o T  1 . . .  T i 

length of T i 
position within a tablet, k = 1 ,2 , . . . ,  ¢i 
word k of T i 

a permutation of the positions of a tableau 
position in f for word k of "ri for permutation r¢ 
7¢il 7F i2 . . .  7rik 

Viterbi alignment for (f[ e) 
Viterbi alignment for (f ] e) with 0 pegged 

neighboring alignments of a 
neighboring alignments of a with ij pegged 

alignment in N(a)  with greatest probability 
alignment obtained by applying b repeatedly to a 
alignment in -My (a) with greatest probability 
alignment obtained by applying bi~j  repeatedly to a 

class of English word e 
class of French word f 

displacement of a word in f 

vacancies in f 
first position in e to the left of i that has non-zero 
fertility 
average position in f of the words connected to 
position i of e 
position in e of the i th one word cept 
C[i] 

translation model P with parameter values 0 
empirical distribution of a sample 
log-likelihood objective function 
relative objective function 

t ( f  l e) translation probabilities (all models) 
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¢(m It) 
n(~ l e) 
Po, pl 

a(i I j, l, m) 
d(j l i, l,m) 

dl (Aj I A, 13) 

d>,(aj J e) 

d I(Aj I 13, v) 

e>l(aj r 13,v) 

string length probabilities (Models 1 and 2) 
fertility probabilities (Models 3, 4, and 5) 
fertility probabilities for e0 (Models 3, 4, and 5) 

alignment probabilities (Model 2) 
distortion probabilities (Model 3) 

distortion 
(Model 4) 
distortion 
(Model 4) 

probabilities for the first word of a tablet 

probabilities for the other words of a tablet 

distortion 
(Model 5) 
distortion 
(Model 5) 

probabilities for the first word of a tablet 

probabilities for the other words of a tablet 

Appendix  B: Summary of Models  

We collect here brief descriptions of our various translation models and the formulae 
needed for training them. 

B.1 Translation Models  
An English-to-French translation model P with parameters 0 is a formula for calculating 
a conditional probability, or likelihood, P0(f I e), for any string f of French words and 
any string e of English words. These probabilities satisfy 

Po(f I e) > O, Po(failurele ) >_ O, 

Po (failure I e) + Z Po (f[ e) = 1, 
f 

(50) 

where the sum ranges over all French strings f, and failure is a special symbol not in 
the French vocabulary. We interpret P0(f I e) as the probability that a translator will 
produce f when given e, and P0 (failure I e) as the probability that he will produce no 
translation when given e. We call a model deficient if Po(failure I e) is greater than zero 
for some e. 

Log-Likelihood Objective Function. The log-likelihood of a sample of translations 
(f(s), e(S)), s = 1, 2 , . . . ,  S, is 

S 

~(P0) = S-1  ZlogP0(f (s )  ] e(S)) = Z C ( f , e ) l o g P 0 ( f ]  e). (51) 
s = l  f,e 

Here C(f, e) is the empirical distribution of the sample, so that C(f, e) is 1/S times the 
number of times (usually 0 or 1) that the pair (f, e) occurs in the sample. We determine 
values for the parameters 0 so as to maximize this log-likelihood for a large training 
sample of translations. 
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Hidden Alignment Models. For the models  that we  present here, we can express 
P0 (f I e) as a sum of the probabilities of hidden alignments a be tween  e and f: 

Po(f I e) = Y~Po(f ,a  I e). (52) 
a 

For our models,  the only alignments that have positive probabili ty are those for which 
each word  of f is connected to at most  one word  of e. 

Relative Objective Function. We can compare hidden alignment models  P6 and P0 
using the relative objective function 1 

R(f~o,po) - ~--~C(f ,e)~--~0(a I f, e ) log  P° ( f ' a  I e) 
f,. . P0(f, a l e ) '  

(54) 

where  P0(a [ f ,e)  = P0(a,f  [ e) /P0(f  [ e). Note  that R(P0,P6) = 0. R is related to ~b by  
Jensen's inequality 

~b(Po) >_ ~b(P~) + R(P6, Po), (55) 

which follows because the logarithm is concave. In fact, for any e and f, 

P 6 ( a l f ,  e) l o g P o ( f ' a  l e) < l o g ~ P ~ ( a  If, " P ° ( f ' a l e )  (56) 
. P~(f,a I e) - , e ) p ~ , a  l e) 

= log Po(f I e) = logPo(f  I e) - log~0(f  I e). (57) 
Po(f I e) 

Summing over e and f and using the Definitions (51) and (54) we  arrive at Equa- 
tion (55). 

B.2 Iterative Improvement 
We cannot create a good model  or find good parameter  values at a stroke. Rather 
we  employ a process of iterative improvement .  For a given model  we  use current 
parameter  values to find better ones, and in this way, from initial values we  find 
locally optimal ones. Then, given good parameter  values for one model,  we  use them 
to find initial parameter  values for another model.  By alternating be tween  these two 
steps we  proceed through a sequence of gradually more sophisticated models. 

Improving Parameter Values. From Jensen's inequality (55), we  see that ~b(Po) is 
greater than ~b(P0) if R(P0, Po) is positive. With P = P, this suggests the following 

1 The reader will notice a similarity between R(P6, Pe) and the relative entropy 

"x" lo p(x) D(p,q) = 2~,p k ) g q(x) (53) 
x 

between probability distributions p and q. However, whereas the relative entropy is never negative, R 
can take any value. The inequality (55) for R is the analog of the inequality D > 0 for D. 
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iterative procedure, known as the E M  Algor i thm (Baum 1972; Dempster, Laird, and 
Rubin 1977), for finding locally optimal parameter values 8 for a model P: 

0. Choose some initial values 0. 
1. Repeat Steps 2-3 until convergence. 
2. With 8 fixed, find the values 8 that maximize R(P6, Po). 
3. Replace ~ by 8. 

Note that for any ~, R(P6, Pe) is non-negative at its maximum in 8, since it is zero for 
8 = ~. Thus ~b(Pe) will not decrease from one iteration to the next. 

Going From One Model to Another. Jensen's inequality also suggests a method for 
using parameter values 0 for one model P to find initial parameter values 8 for another 
model P: 

. With P and ~ fixed, find the values 8 that maximize 
R(P~, Pe). 

In contrast to the case where P = P, there may not be any ~9 for which R(P~, Pa) is 
non-negative. Thus, it could be that, even for the best 8, ~b(Pe) < ~b(I36). 

Parameter Reestimation Formulae. In order to apply these algorithms, we need to 
solve the maximization problems of Steps 2 and 4. For the models that we consider, 
we can do this explicitly. To exhibit the basic form of the solution, we suppose Pe is a 
model given by 

P0(f, a l e) = I I  (5s) 
, ;Eft 

where the 8(w), o; E f~, are real-valued parameters satisfying the constraints 

8(w) ~ O, y ~  8(w) = 1, (59) 
";Eft 

and for each 0; and (a, f, e), c(~v ; a, f, e) is a non-negative integer. 2 We interpret 8(a;) as 
the probability of the event w and c(w;a, f, e) as the number of times that this event 
occurs in (a, f, e). Note that 

c(0;; a, f, e) = 8(a;) O~(~) log Pe (f, a I e). (60) 

The values for 8 that maximize the relative objective function R(P~, Pe) subject to 
the contraints (59) are determined by the Kuhn-Tucker conditions 

~ 

O0(a;) R (P~ ,Po)  - ,~ ~- O, cv E f~, (61) 

where ~ is a Lagrange multiplier, the value of which is determined by the equality 
constraint in Equation (59). These conditions are both necessary and sufficient for a 

2 More generally, we  can a l low c(w ; a,  f, e) to be a non-negat ive  real number.  
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max imum since R(150, P0) is a concave function of the 0(w). By multiplying Equation 
(61) by 0(w) and using Equation (60) and Definition (54) of R, we obtain the parameter  
reestimation formulae 

0(w) = ,\-1~0(w), A = ~ ~0(w), (62) 
wEf~ 

~(~o) = ~ C ( f , e ) ? ~ ( w ; f , e ) ,  (63) 
f,e 

~ ( ~ ; f , e )  -= E 1 5 0 ( a l f ,  e)c(w ; a, f, e). (64) 
a 

We interpret ~0(co;f, e) as the expected number  of times, as computed  by the model  
150, that the event a; occurs in the translation of e to f. Thus O(w) is the (normalized) 
expected number  of times, as computed  by model  150, that a; occurs in the translations 
of the training sample. 

We can easily generalize these formulae to allow models  of the form (58) for which 
the single equality constraint in Equation (59) is replaced by multiple constraints 

O(w) = 1, /z = 1 , 2 , . . . ,  (65) 
wEf~  

where  the subsets f~a, # --- 1 ,2 , . . .  form a partition of fL We need only modify  Equation 
(62) by allowing a different A~ for each #: if w E f2~,, then 

O(o.,) = A~-:t?::~(w), A~ = ~ ?::~(o..,). (66) 
wEf2~ 

B.3 M o d e l  1 
Parameters.  

e(m I I) string length probabilities 
t0 c ] e) translation probabilities 

H e r e f  E 5r; e E $ or e = e0; l = 1 ,2 , . . . ;  and m = 1 ,2 , . . . .  

Genera l  Formula.  

A s s u m p t i o n s .  

P0(f,a I e) = Po(m l e)Po(a l m, e)Po(f l a, rn, e) 

This model  is not deficient. 

(67) 

P 0 ( mie )  = e(m[l) (68) 

P0(a im,  e) = ( l + 1 )  -m (69) 
m 

P0(f l a, / ,  e) = IIt~jleaj)  (70) 
j= l  

302 



Peter E Brown et al. The Mathematics of Statistical Machine Translation 

Generat ion.  Equations (67)-(70) describe the following process for producing f from e: 

. 

2. 

. 

Choose a length m for f according to the probability distribution e(m ] l). 

For each j = 1 ,2 , . . . ,  m, choose aj from O, 1 ,2 , . . .  l according to the 
uniform distribution. 

For each j = 1 ,2 , . . . ,  m, choose a French word j~ according to the 
distribution t(~ ]%). 

Usefu l  Formulae .  Because of the independence assumptions (68)-(70), we can calcu- 
late the sum over alignments (52) in closed form: 

Po(f ] e) = y '~Pe( f , a  l e) (71) 
a 

1 I m 

= e(m II)(I+ 1)-my~, . . .  ~ I I t ( f J l % )  (72) 
al = 0  am = 0  j = l  

m 1 

= e(m ] l)(l + 1) -m I I  ~ t~. I ei). (73) 
j = l  i = 0  

Equation (73) is useful in computations since it involves only O(lm) arithmetic opera- 
tions, whereas the original sum over alignments (72) involves 0(I m) operat ions .  

Concavity. The objective function (51) for this model  is a strictly concave function of 
the parameters. In fact, from Equations (51) and (73), 

m 1 

~b(Pe) -- ~ C(f, e) ~ log ~ tory I ei) + ~ C(f, e) log e(m II) + constant 
f ,e  j = l  i = 0  f,e 

(74) 

which is clearly concave in e(m I I) and t(f I e) since the logarithm of a sum is concave, 
and the sum of concave functions is concave. 

Because ~b is concave, it has a unique local maximum. Moreover, we will find this 
max imum using the EM algorithm, provided that none of our initial parameter  values 
is zero. 

B.4 M o d e l  2 
Parameters.  

c(m I l) 
t ( f le)  
a(i Ij, l,m) 

string length probabilities 
translation probabilities 
al ignment probabilities 

Here i = 0, . . . ,1;  and j = 1 , . . . ,m .  

General  Formula.  

P0(f,a I e) = Po(m l e)Pe(alm, e)Po(f l a, m,e) (75) 
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A s s u m p t i o n s .  

P0(mle  ) = ¢(m[l) (76) 
m 

P0(alm, e) = I Ia(aj l j ,  l,m) (77) 
j = l  

m 

P0(fla ,  m,e) = I I t ( f j l % )  (78) 
j = l  

This model is not deficient. Model 1 is the special case of this model in which the 
alignment probabilities are uniform: a(i I J, l, m) = (I + 1) -1 for all i. 

Generat ion .  Equations (75)-(78) describe the following process for producing f from e: 

1. Choose a length m for f according to the distribution e(m I l). 

2. For each j = 1 ,2 , . . . ,  m, choose aj from 0,1,2, . . .  1 according to the 
distribution a(aj I J, I, m). 

3. For each j, choose a French wordj~ according to the distribution t ~  I%). 

Useful Formulae. Just as for Model 1, the independence assumptions allow us to 
calculate the sum over alignments (52) in closed form: 

P0(f le)  = E P 0 ( f ,  a l e )  (79) 
a 

l l m 

= f f m l l ) ~ . . .  ~_, I-[t~Leo,)a(ajlj, l,m) (80) 
al =0  am =0 j = l  

m 1 

= ¢(m [ I) H E t(fj ei)a(i]j,l,m). 
j = l  i=0  

(81) 

By assumption (77) the connections of a are independent given the length m of f. 
Using Equation (81) we find that they are also independent given f: 

m 

P0(alf ,  e) = IIpo(aj[j , f ,e) ,  (82) 
j = l  

where 

7(i,j, f ,e) 
pe(i Ij, f,e) = Y'~i,'7(i',j,f,e) with 7(i,j ,f ,e) = t(fj l ei)a(ilj, l,m). (83) 

Viterbi  A l i g n m e n t .  For this model, and thus also for Model 1, we can express in 
closed form the Viterbi alignment V(f I e) between a pair of strings (f, e): 

V(f I e)j = argmax t(fj I ei)a(i I J, 1, m). (84) 
i 
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Parameter Rees t imat ion  Formulae.  We can find the parameter  values/9 that  maximize 
the relative objective function R(Pt,  P0) by apply ing  the considerat ions of Section B.2. 
The counts  c(w; a, f, e) of Equation (58) are 

m 

c ( f l e ; a , f , e  ) = ~_,6(e,%)6(f , f j) ,  (85) 
j=l 

c( i l j ,  l ,m;a , f , e )  = 6(i, afl. (86) 

We obtain the parameter  reest imation formulae for t(f I e) and  a(i I J, I, m) by using 
these counts in Equations (62)-(66). 

Equation (64) requires a sum over alignments.  If PO satisfies 

m 

P~(a If,  e) = I Ip~(a j  I j , f , e ) ,  
j=l 

(87) 

as is the case for Models  1 and 2 (see Equation (82)), then this sum can be calculated 
explicitly: 

1 m 

c~(f I e;f ,  e) = E E / 3 ~ ( i  I J, f, e)6(e, ei)6(f,fj), (88) 
i = 0  j = l  

~o( i l j ; f , e )  = ~ ( i l j ,  f ,e).  (89) 

Equations (85)-(89) involve only O(Im) arithmetic operations,  whereas  the sum over 
a l ignments  involves 0(I  m) operations. 

B.5 Model 3 
Parameters. 

t(f l e) 
n(~b I e) 
P0, pl 
d(j l i, l ,m) 

translation probabilities 
fertility probabihties 
fertility probabilities for e0 
distort ion probabilities 

Here ~b = 0 ,1 ,2 , . . - .  

Genera l  Formulae.  

Po(r ,  r e ]e )  

P0(f, a l e )  

= P0(~b[e)P0(T [~b,e)P0(re [7-,~b,e) 

= P0( ,rele) 
( r , r e ) C  (f ,a)  

Here (f, a) is the set of all (~-, re) consistent with (f, a): 

(r,z¢) C (f,a) if for all i =  0 , 1 , . . . , l  and  k = 1 ,2 , . . . , ~ i ,  

fTrik = Tik and aTrik -~- i. 

(90) 

(91) 

(92) 
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Assumptions. 

where 

l l 

Po(~ble) = no(Co I E ¢ i ) I I n ( ¢ i  [ei) (93) 
i = 1  i = 1  

1 4,i 

Po('r [ ¢ , e )  = I-[1-It(Tik l ei) (94) 
i = 0  k-----1 

1 q~ 
1 

Po(Tr I" r ,q~ ,e )  - ¢o! I-[1-Id(Trik l i ' l 'm) (95) 
i=1  k = l  

r t / t  
n0(¢0 I m') -- ¢0 pom -¢°p1¢°. (96) 

In Equation (95) the factor of 1/¢0! accounts for the choices of ~r0k, k = 1 , 2 , . . . ,  ¢0. This 
model  is deficient, since 

Po(failure I'r,q~,e) = 1 - E P e ( T r  I ~',~b,e) > 0. (97) 
71" 

Generation.  Equations (90)-(95) describe the following process for producing f or 
failure from e: 

1. For each i = 1, 2 , . . . ,  I, choose a length (~i for r i  according to the 
distribution n(¢i l ei). 

2. Choose a length ¢0 for r0 according to the distribution n0(¢0 I ~li=l ¢i). 

3. Let m = ¢0 + Y2~li=l ¢i. 
4. For each i = O, 1 , . . . ,  l and each k = 1 , 2 , . . . ,  ¢i, choose a French word rik 

according to the distribution t(Tik l ei). 
5. For each i = 1, 2 , . . . ,  l and each k = 1, 2 , . . . ,  ¢i, choose a position 7rik from 

1 , . . . ,  m according to the distribution dOrik I i, l, m). 
6. If any position has been chosen more than once then return failure. 

7. For each k = 1 , 2 , . . . ,  ¢0, choose a position ~rOk from the ¢0 - k + 1 
remaining vacant positions in 1 , 2 , . . . ,  m according to the uniform 
distribution. 

8. Let f be the string with f~ik = Tik" 

Useful Formulae. From Equations (93)-(95) it follows that if ( r ,  7r) is consistent with 
(f, a) then 

m 

Pe(r  I c~,e) = II t( fJ  l eaj), (98) 
j=l 

1 
Po(Tr I~-,q~,e) - ¢0! l - I  d(jlaj 'l,m)" (99) 

j:aj#O 
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In Equation (99), the product  runs over all j = 1 ,2 , . . . ,  m except those for which aj = O. 
By summing over all pairs (% rr) consistent with (f, a) we find 

P0 (f, ale) = ~ Po(v, 7r l e) (100) 
('r,rr)C {f,a) 

= no ¢01 ¢i l-In(¢ile~)¢~!IIt~l%)IId(jla/,l,m).(lOl) 
i=1 j= l  j:aj:~O 

The factors of ¢i! in Equation (101) arise because there are I-If=0 ¢i! equally probable 
terms in the sum (100). 

Parameter Reestimation Formulae. We can find the parameter  values 0 that maximize 
the relative objective function R(P6, P0) by applying the considerations of Section B.2. 
The counts c(w ; a, f, e) of Equation (58) are 

m 

c0Cle;a , f ,e )  = y~6(e,%)6(f,fj) ,  (102) 
j= l  

c(j ] i , l ,m;a, f ,e)  = 6(i, aj), (103) 
l 

c(¢ ] e;a, f, e) = y ~  6(e, ei)6(¢, •i). (104) 
i=1 

We obtain the parameter  reestimation formulae for t0 c ]e), a(j I i, I, m), and t(¢ l e) by 
using these counts in Equations (62)-(66). 

Equation (64) requires a sum over alignments. If P0 satisfies 

m 

P0(a If ,  e) = II~o(a/] j , f , e ) ,  
j=l 

(105) 

as is the case for Models 1 and 2 (see Equation (82)), then this sum can be calculated 
explicitly for ~6(f I e;f,  e) and ~o(jli;f, e): 

l m 

co(f ] e; f, e) = ~ ~ / ? 0 ( i  ] j, f, e)6(e, ei)~(f,fj), (106) 
i=0 j= l  

c~(/ ' l i ; f ,e)  = ]?0(i ] j, f, e). (107) 

Unfortunately, there is no analogous formula for ~6(¢ I e; f, e). Instead we must  be 
content with 

c0(¢ [ e ; f ,e )  z m ~ ~i~(f ,  e) ,k (108) ~-~6(e 'ei)II(1- f~o(i lJ ' f 'e))  ~ I-I %! , 
i=1 j= l  3'cF¢ k=l 

( -1)  k+l 1 ~ flq(f, e)k, (109) Oqk(f  , e )  - -  k!  k 
j= l  

/?0(i I J, f, e) 
& ( f , e )  = 1 (110) 
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In Equation (108), F4 denotes the set of all partit ions of qS. 
Recall that a parti t ion of ~b is a decomposi t ion of q5 as a sum of positive integers. 

For example, ¢ = 5 has 7 partitions since 1 + 1 + 1 + 1 + 1 = 1 + 1 + 1 + 2 = 1 + 1 + 3 = 
1 + 2 + 2 = 1 + 4 = 2 + 3 = 5. For a part i t ion % we let ~k be the number  of t imes 

k that k appears  in the sum, so that ~b = Y~-k=l 7k. If 7 is the part i t ion corresponding 
to 1 + 1 + 3, then "Y1 = 2, 73 = 1, and "Yk = 0 for k other  than 1 or 3. We adopt  the 
convent ion that F0 consists of the single e lement  7 with 7k = 0 for all k. 

Equation (108) allows us to compute  the counts ~6(¢ I e ; f , e )  in O(Im + ~g) op- 
erations, where  g is the number  of partit ions of ~b. Al though g grows with ~b like 
(4x/3~b) -1 expTrv/~- /3  [11], it is manageably  small for small ~b. For example,  ~b = 10 
has 42 partitions, 

Proof of Formula (108). Introduce the generat ing functional 

o o  

G(x I e , f , e )  = y ~ O ( ~  le;f ,e)x ~, (111) 
¢ = 0  

where  x is an indeterminant .  Then 

oo 1 l m 1 

G(xle, f,e ) = E E . . . E H ~ o ( a j l j ,  f , e ) E 6 ( e ,  ei)6(~b,~i)x~, (112) 
qS=0 al =0 am=O j = l  i=1 

1 1 1 m 

= E S ( e ' e i ) E  "'" E 11po(aj IJ ' f 'e)x4i  (113) 
i=1 a ~ : 0  a~=0  j = l  

1 I 1 m 

= ~ - , 5 ( e ' e i ) E " "  E HPo(aj IJ, f,e) x~(i'~j) (114) 
i=1 al=O am=O j=l 

1 m I 

: ES(e 'e i )  IIZ o(a IJ, f,e) x'~<i'a) (115) 
i : 1  j : l  a=0 

1 m 

= E 6 ( e ,  e i ) H ( 1 - ~ o ( i l j ,  f , e ) + x ~ ( i l j ,  f,e)) (116) 
i=1 j = l  

1 rn m 

= E S ( e ,  ei)H(1 -l;o(i [ j , f , e ) ) H ( 1  +flij(f,e)x). (117) 
i=1 j = l  j = l  

To obtain Equation (113), rearrange the order  of summat ion  and sum over  ~b to elim- 
m inate the &function of ~b. To obtain Equation (114), note that ~bi = Y~4=1 6(i, aj) and so 

x ~' = I-[;m1 xe(i'aj ). To obtain Equation (115), interchange the order  of the sums on aj 
and the product  on j. To obtain Equation (116), note  that in the sum on a, the only 
term for which the power  of x is nonzero  is the one for which a = i. 

N o w  note that for any indeterminants  x, !/1, y2 , . - . ,  ym, 

m m ,~ 
Zk'Yk (118) 11(1+ yjx)= E E II 

j = l  ~b=0 -yEF 4 k = l  

( - 1 )  k+l ~ (yj)k. (119) where  Zk -- k 
j = l  
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This follows from the calculation 

m 
[[(1 + yjx) 
j=l 

= e x p E l o g ( l + y j x )  = exp (--1)k+a(yjx)k (120) 
k j=l j=l k=l 

= exp E zkxk = E ~ zkxk (121) 
k=l n=O k k = l  / 

( ")'1"/'2"'" ) f i (  
n = 0  n :  . k=a 
oo 0o Zk,.yk 

= Z x4 E I-1%! (122) 
4=0 3'EP4 k=l 

The reader will notice that the left-hand side of Equation (120) involves only powers 
of x up to m, while Equations (121)-(122) involve all powers of x. This is because the 
zk are not algebraically independent. In fact, for q~ > m, the coefficient of x 4 on the 
right-hand side of Equation (122) must be zero. It follows that we can express z4 as a 
polynomial in Zk, k = 1,2 , . . . ,  m. 

Using Equation (118) we can identify the coefficient of x 4 in Equation (117). We 
obtain Equation (108) by combining Equations (117), (118), and the definitions (109)- 
(111) and (119). 

B.6 Model 4 
Parameters. 

t(f l e) 
n(q~ [ e) 
P0, Pa 
dl(Aj I A,/3) 
d>l (aj  [/3) 

translation probabilities 
fertility probabilities 
fertility probabilities for e0 
distortion probabilities for the first word of a tablet 
distortion probabilities for the other words of a tablet 

Here Aj is an integer; ,4 is an English class; and/3 is a French class. 

General Formulae. 

Assumptions. 

Po(r, 7r [e) 

Po(f, a F e) 

= Po(~ble)Po(r I q~,e)Po(~ [r,q~,e) 

= E Po(r, 7r l e) 
(r,rr)ff(f,a) 

Po(~b I e) 

Po(r [ q~, e) 

Po(~ [ r,  ~b,e) 

= no d;o [ q~i l - I n ( ~ i  l ei) 
i=1 

= H H t ( r i k  l ei) 
i=0 k=l 

__ 1 H H Pik(Trik) 
40! i=1 k=l 

(123) 

(124) 

(125) 

(126) 

(127) 
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where  

m! ) 
no(~o [ m') = 4o po m -+°pl+°, (128) 

{dl(j - c . ,  [.A(ep,),B('rn)) i fk  = 1 (129) 
Pie(j) = d > l ( j  - 7rik-1 [ B(rik)) if k > 1 

In Equation (129), Pi is the first position to the left of i for which ~bi > 0, and cp is the 
ceiling of the average position of the words  of -rp: 

Pi = max{/ ' :  q~i' > 0}, i' <i 

This model  is deficient, since 

Po (failure 1% 4 }, e) 

C o-= Op -l~Trpl~ (130) 

1 - E P 0 ( l r  ] r ,q ) ,e )  > 0. (131) 
T¢ 

Note that Equations (125), (126), and (128) are identical to the corresponding formulae 
(93), (94), and (96) for Model  3. 

Generat ion.  Equations (123)-(127) describe the following process for producing f or 
failure from e: 

1-4. Choose a tableau r by  following Steps 1--4 for Model  3. 
5. For each i = 1 , 2 , . . . ,  I and each k = 1 , 2 , . . . ,  ~bi choose a posit ion 

7rik as follows. 

If k = 1 then choose 7ri1 according to the distribution 
dl(Tril - co, I A(ep,), ~J(Til)). 
If k > 1 then choose 7(ik greater than ~rik-1 according to 
the distribution 
d>10rik -- 7rig-1 [ B(rik)). 

6-8. Finish generating f by  following Steps 6-8 for Model  3. 

B.7 Mode l  5 
Parameters.  

t(f l e) 
n(d? l e) 
Po, pl 
dl (Aj 113, v) 
a>l(Aj 113, v) 

translation probabilities 
fertility probabilities 
fertility probabilities for e0 
distortion probabilities for the first word  of a tablet 
distortion probabilities for the other words  of a tablet 

Here v = 1 ,2 , . - . ,m .  

General  Formulae. 

Po("-, l e) 
Po (f, a I e) 

= P o ( ~ [ e ) P o ( r  I q~,e)Po(Tr I'r,4~,e) 

= ~ Po ('r, 7r I e) 
( r , ~ ) e  (f,a) 

(132) 

(133) 
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Assumptions. 

( z), 
Pa(~b[e) = no 4o [ Y~ 4i I-[ n(4i [ ei) (134) 

i=1 i=1 
1 ~i 

Po(r ] ~b,e) = 1-I1--it(rik [ei) (135) 
i=0 k=l  

1 4i 

1 I I  ]--I P ikOrik) (136) P0(Irl 'r ,~b,e) - 40[ i~--lk=l 

where 

n0(40 
mt  

m') = 40 pom -4Op1~O , (137) 

(138) 

dl(Vil(j) - Vil(Cpi) [ ] 3 ( T i l ) , V i l ( m )  -- 4i  + k)  
if k =  1 

Pik(j) = ~ik~) (139) 
d>l (V ik ( j )  -- Vik("lrik-1) I ]~(Tik), V ik (m)  -- Vik(' lrik-l)  --  4i  q - k )  

if k >  1 

In Equation (139), pi is the first position to the left of i which has a non-zero fertility; 
and cp is the ceiling of the average position of the words of tablet p (see Equation 
(130)). Also, elk(j) is 1 if position j is vacant after all the words of tablets i' < i and the 
first k - 1 words of tablet i have been placed, and 0 otherwise. Vik(j) is the number  of 
vacancies not to the right of j at this time: vik(j) = ~j ,K_j  £ ikq ' ) .  

This model is not deficient. Note that Equations (134), (135), and (138) are identical 
to the corresponding formulae for Model 3. 

Generation.  Equations (132)-(136) describe the following process for producing f 
from e: 

1.--4. Choose a tableau -r by following Steps 1-4 for Model 3. 
5. For each i = 1 , 2 , . . . ,  I and each k = 1, 2 , . . . ,  4i choose a position 

~rik as follows: 

If k = 1 then choose a vacant position 7ri1 according to 
the distribution 
d 1 (vii  (71-/1) - vii  (Cpi) [ / J (T i l ) ,  7di1 (ttl) -- 4i  -[- k). 
If k > 1 then choose a vacant position 7rik greater than 
7rik-1 according to the distribution 
d>l(Vik(Trik) -- Pik(Trik-1) I ~ (T ik ) '  V ik (m)  -- Vik(Trik-X) -- 4i  nt-k). 

6.-8. Finish generating f by following Steps 6-8 for Model 3. 
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