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This paper introduces a paradigm of context-dependent grammar (CDG) and an acquisition 
system that, through interactive teaching sessions, accumulates the CDG rules. The resulting 
context-sensitive rules are used by a stack-based, shift~reduce parser to compute unambiguous 
syntactic structures of sentences. The acquisition system and parser have been applied to the phrase 
structure and case analyses of 345 sentences, mainly from newswire stories, with 99% accuracy. 
Extrapolation from our current grammar predicts that about 25 thousand CDG rule examples 
will be sufficient to train the system in phrase structure analysis of most news stories. Overall, 
this research concludes that CDG is a computationally and conceptually tractable approach for 
the construction of sentence grammar for large subsets of natural language text. 

1. Introduction 

An enduring goal for natural language processing (NLP) researchers has been to con- 
struct computer programs that can read narrative, descriptive texts such as newspaper 
stories and translate them into knowledge structures that can answer questions, clas- 
sify the content, and provide summaries or other useful abstractions of the text. An 
essential aspect of any such NLP system is parsing--to translate the indefinitely long, 
recursively embedded strings of words into definite ordered structures of constituent 
elements. Despite decades of research, parsing remains a difficult computation that 
often results in incomplete, ambiguous structures; and computational grammars for 
natural languages remain notably incomplete. In this paper we suggest that a solution 
to these problems may be found in the use of context-sensitive rules applied by a 
deterministic shift/reduce parser. 

A system is described for rapid acquisition of a context-sensitive grammar based 
on ordinary news text. The resulting grammar is accessed by deterministic, bottom- 
up parsers to compute phrase structure or case analyses of texts that the grammars 
coven The acquisition system allows a linguist to teach a CDG grammar by showing 
examples of parsing successive constituents of sentences. At this writing, 16,275 ex- 
ample constituents have been shown to the system and used to parse 345 sentences 
ranging from 10 to 60 words in length achieving 99% accuracy. These examples com- 
press to a grammar of 3,843 rules that are equally effective in parsing. Extrapolation 
from our data suggests that acquiring an almost complete phrase structure grammar 
for AP Wire text will require about 25,000 example rules. The procedure is further 
demonstrated to apply directly to computing superficial case analyses from English 
sentences. 
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One of the first lessons in natural or formal language analysis is the Chomsky 
(1957) hierarchy of formal grammars, which classifies grammar forms from unre- 
stricted rewrite rules, through context-sensitive, context-free, and the most restricted, 
regular grammars. It is usually conceded that pure, context-free grammars are not 
powerful enough to account for the syntactic analysis of natural languages (NL) such 
as English, Japanese, or Dutch, and most NL research in computational linguistics has 
used either augmented context-flee or ad hoc grammars. The conventional wisdom 
is that context-sensitive grammars probably would be too large and conceptually and 
computationally untractable. There is also an unspoken supposition that the use of 
a context-sensitive grammar implies using the kind of complex parser required for 
parsing a fully context~sensitive language. 

However, NL research based on simulated neural networks took a context-based 
approach. One of the first hints came from the striking finding from Sejnowski and 
Rosenberg's NETtalk (1988), that seven-character contexts were largely sufficient to 
map each character of a printed word into its corresponding phoneme---where each 
character actually maps in various contexts into several different phonemes. For ac- 
complishing linguistic case analyses McClelland and Kawamoto (1986) and Miikku- 
lainen and Dyer (1989) used the entire context of phrases and sentences to map string 
contexts into case structures. Robert Allen (1987) mapped nine-word sentences of En- 
glish into Spanish translations, and Yu and Simmons (1990) accomplished comparable 
context-sensitive translations between English and German simple sentences. It was 
apparent that the contexts in which a word occurred provided information to a neural 
network that was sufficient to select correct word sense and syntactic structure for 
otherwise ambiguous usages of language. 

In order to solve a problem of accepting indefinitely long, complex sentences in 
a fixed-size neural network, Simmons and Yu (1990) showed a method for training 
a network to act as a context-sensitive grammar. A sequential program accessed that 
grammar with a deterministic, single-path parser and accurately parsed descriptive 
texts. Continuing that research, 2,000 rules were accumulated and a network was 
trained using a back-propagation method. The training of this network required ten 
days of continuous computation on a Symbolics Lisp Machine. We observed that the 
training cost increased by more than the square of the number of training examples and 
calculated that 10,000-20,000 rules might well tax a supercomputer. So we decided that 
storing the grammar in a hash table would form a far less expensive option, provided 
we could define a selection algorithm comparable to that provided by the trained 
neural network. 

In this paper we describe such a selection formula to select rules for context- 
sensitive parsing, a system for acquiring context-sensitive rules, and experiments in 
analysis and application of the grammar to ordinary newspaper text. We show that 
the application of context-sensitive rules by a deterministic shift/reduce parser is a 
conceptually and computationally tractable approach to NLP that may allow us to 
accumulate practical grammars for large subsets of English texts. 

2. Context-Dependent Parsing 

In NL research most interest has centered on context-free grammars (CFG), augmented 
with feature tests and transformations, used to describe the phrase structure of sen- 
tences. There is a broad literature on Generalized Phrase Structure Grammar (Gazdar 
et al. 1985), Unification Grammars of various types (Shieber 1986), and Augmented 
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Transition Networks (J. Allen 1987). Gazdar (1988) calls attention to a subcategory of 
context-sensitive grammars called indexed languages and illustrates some applicability 
to natural languages, and Joshi illustrates an application of "mild context-sensitivity" 
(Joshi 1987), but in general, NL computation with context-sensitive grammars is a 
largely unexplored area. 

While a few advanced NLP laboratories have developed grammars and parsing 
capabilities for significantly large subsets of natural language, 1 it cannot be denied that 
massive effort was required and that the results are plagued by ambiguous interpreta- 
tions. These grammars are typically a context-free form, augmented by complex feature 
tests, transformations, and occasionally, arbitrary programs. The combination of even 
an efficient parser with such intricate grammars may greatly increase computational 
complexity of the parsing system (Tomita 1985). It is extremely difficult to write and 
maintain such grammars, and they must frequently be revised and retested to ensure 
internal consistency as new rules are added. We argue here that an acquisition sys- 
tem for accumulating context-sensitive rules and their application by a deterministic 
shift/reduce parser will greatly simplify the process of constructing and maintaining 
natural language parsing systems. 

Although we use context-sensitive rules of the form 

u X v  ~ u Y v  

they are interpreted by a shift/reduce parser with the result that they can be applied 
successfully to the LR(k) subset of context-free languages. Unless the parser is aug- 
mented to include shifts in both directions, the system cannot parse context-sensitive 
languages. It is an open question as to whether English is or is not context-sensitive, 
but it definitely includes discontinuous constituents that may be separated by indefi- 
nitely many symbols. For this reason, future developments of the system may require 
operations beyond shift and reduce in the parser. To avoid the easy misinterpretation 
that our present system applies to context-sensitive languages, we call it Context- 
Dependent Grammar (CDG). 

We begin with the simple notion of a shift/reduce parser. Given a stack and an 
input string of symbols, the shift/reduce parser may only shift a symbol to the stack 
(Figure la) or reduce n symbols on the stack by rewriting them as a single symbol 
(Figure lb). We further constrain the parser to reduce no more than two symbols on 
the stack to a single symbol. The parsing terminates when the stack contains only a 
single root element and the input string is empty. Usually this class of parser applies 
a CFG to a sentence, but it is equally applicable to CDG. 

2.1 CDG Rule Forms 
The theoretical viewpoint is that the parse of a sentence is a sequence of states, each 
composed of a condition of the stack and the input string. The sequence ends success- 
fully when the stack contains only the root element (e.g. SNT), and the input string is 

1 Notable examples include the large augmented CFGs at IBM Yorktown Hts, the Univ. of Pennsylvania, 
and the Linguistic Research Ctr. at the Univ. of Texas. 
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INPUT SENTENCE 

t._i Ci+l t__i+2 . . . .  

t. tn 

Nrk  

STACK 

bottom 

INPUT SENTENCE 

t.i+l t 1+2 f_i+$ . . . .  

t_ln 

NT._~, 

t l 

STACK 

bottom 

t i,t m,.~,t I are terminals. 
N'T_'~ is a ~on-terminal_ 

(a) Shift Operation 
I N P U T  S E N T E N C E  I N P U T  S E N T E N C E  

t i t i+1 t_i+2 . . . .  t_i t_i+l t__i+2 . . . .  

t . m  

A~'_t 

S T A C K  

bottom 

a~rd 
U 

S T A C K  

bottom 

t i,t m,... ,t I are  terminals .  
N'T_~, N T ~  are  non-terminals .  

(b) Reduce Operation 

Figure 1 
Shift/reduce parser. 

empty. Each state can be seen as the left half of a context-sensitive rule whose right 
half is the succeeding state. 

stacksinputs ~ stacks+ l inputs+ l 

However, sentences may be of any length and are often more than forty words, 
so the resulting strings and stacks would form very cumbersome rules of variable 
lengths. To avoid this difficulty, the stack and input parts of a rule are limited to five 
symbols each. In the following example the stack and input parts are separated by 
the symbol "*/' as the idea is applied to the sentence "The old man from Spain ate 
fish." The symbol _ stands for blank, art for article, adj for adjective, p for preposition, 
n for noun, and v for verb. The syntactic classes are assigned by dictionary lookup in 
a context-sensitive dictionary. 2 
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The old man from Spain ate fish 

art adj n p n v n 

* art adj n p n 

art * adj n p n v 

_ _ _ art adj * n p n v n 

_ _ art adj n * p n v n _ 

_ _ _ art np * p n v n _ 

. . . .  n p * p n v n _  

_ _ _np p* n vn_ _ 

_ _np p n* v n_ _ _ 

_ _ _ np pp * v n _ _ _ 

. . . .  n p * v n _ _ _  

_ _ _ n p v * n  

_ _ n p v n *  

_ _ _ np vp * 

snt * 

The analysis terminates  wi th  an e m p t y  input  string and  the single symbol  "snt" 
on the stack, successfully complet ing the parse. Note  that the first four operat ions can 
be described as shifts fol lowed by  the two reductions, adj n ~ np, and  art  np  ~ np. 
Subsequently the p and n were  shifted onto the stack and  then reduced to a pp; then 
the np  and p p  on the stack were  reduced to an np, fol lowed by  the shifting of v and 
n, their reduction to vp, and a final reduction of np  vp  ---* snt. Il lustrations similar to 
this are often used to introduce the concept  of pars ing in AI texts on natural  language 
(e.g.J. Allen 1987). 

We could perfect ly well  record the g r a m m a r  in pairs  of successive states as follows: 

___ np  p *  n v n __--* __ np  p n *  v n ___ 
__ np  p n *  v n _ _ _ 7  ___ np  p p *  v n ___ 

but  some economy can be achieved by  recording the operat ion and  possible label as 
the right half of a rule. So for the example  immedia te ly  above,  we  record: 

_ _ _ n p  p * n v n _ _ - - +  ( S )  

_ _ n p p n * v n _ _ _ - - * ( R p p )  

where  S shifts and  (R pp)  replaces the top two elements  of the stack with p p  to fo rm 
the next state of the parse. 

Thus a windowed context of ten symbols  is created as the left half of a rule and an 
operat ion as the right half. Note  that if the stack were  l imited to the top two elements,  
and the input  to a single element,  the rule sys tem would  reduce to a binary rule CFG. 

The example  in Figure 2 shows h o w  a sentence "Treatment  is a complete  rest and  
a special diet" is parsed  by  a context sensitive sh i f t / reduce  parser. Terminal symbols  
are lowercase, while nonterminals  are uppercase.  The shaded  areas represent  the parts  

2 Described in Section 7.3. 
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T r e a t m e n t  is a c o m p l e t e  res t  a n d  a s p e c i a l  diet .  
( n v de t  adj  n c n j d e t  adj  n) 

I Input  
bottom-~------~ ~ top ne~ ~ last 

N!i.. . . . . . . .  

...........-.-...........-...-. 

iiiiiiiiiii!iliiii ii 
iii~iiii::i::i::i::~ 
iiiiiiiiiiiiiii !ii o 

i !{{{ii{iiiiiiiiiN{{!;!{, 
n 

n 

n v 

n v det 

n v det adj 

v det adj n 

n v det NP 

n v NP 

n v NP cnj 

v NP cnj det 

NP cnj det adj 

cnj det adj n 

NP cnj det NP 

v NP cnj NP 

n v NP CNP 

n v NP 

n VP 

S 

n v det adj n 

v det adj n cnj 

det adj n cnj det 

adj n cnj det adj 

n cnj det adj n 

cnj det adj n 

cnj det adj n 

cnj det adj n 

det adj n 

adJ n 

n 

W i n d o w e d  Context  

Operat ion 

shift 

shift 

shift 

shift 

shift 

reduce to NP 

reduce to NP 

shift 

shift 

shift 

shift 

reduce to NP 

reduce to NP 

reduce to CNP 

reduce to NP 

reduce to VP 

reduce to S 

done 

F i g u r e  2 
An example of windowed context. 

of the context invisible to the system. The next operat ion is solely decided by the 
windowed  context. It can be observed that the last state in the analysis is the single 
symbol  SNT-- the  designated root symbol, on the stack along with an empty  input  
string, successfully complet ing the parse. 

And this is the CDG form of rule used in the phrase structure analysis. 

2 . 2  A l g o r i t h m  f o r  t h e  S h i f t / R e d u c e  P a r s e r  

The parser accepts a string of syntactic word  classes as its input  and forms a ten- 
symbol vector, five symbols each from the stack and the input  string. It looks up  this 
vector as the left half of a product ion in the grammar  and interprets the right half of 
the product ion as an instruction to modify  the stack and input  sequences to construct 
the next state of the parse. To accomplish these tasks, it maintains two stacks, one for 
the input  string and one for the syntactic constituents. These stacks may  be arbitrarily 
large. 

An algori thm for the parser is described in Figure 3. The most  important  part  
of this algori thm is to find an applicable CDG rule f rom the grammar. Finding such 
a rule is based on the current  w indowed  context. If there is a rule whose left side 
exactly matches the current  w indowed  context, that rule will be applied. However ,  
realistically, it is often the case that there is no exact match with any rule. Therefore, 
it is necessary to find a rule that best matches the current  context. 
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CD-SR-Parser(Input,Cdg) 

Input is a string of syntactic classes for the given sentence. 
Cdg is the given CDG grammar rules. 

Stack := empty 
do until(Input = empty and Stack = (SNT)) 

Windowed-context := Append(Top-five(stack),First-ilve(input)) 
Operation := Consult_CDG(Window-context,Cdg) 
if First(Operation) = SHIFT 
then  Stack := Push(First(Input),Stack) 

Input := Rest(Input) 
else Stack := Push(Second(Operation),Pop(Pop(Sta~k))) 

end do 

The functions, Top_five and First-five, return the lists of top (or first) five elements of the 
Stack and the Input respectively. I f  there are not enough elements, these procedures pad 
with blanks. The function Append concatenates two lists into one. Consult_CDG consults 
the given CDG rules to find the next operation to take. The details of this function are the 
subject of the next section. Push and Pop add or delete one element to/from a stack while 
First and Second return the first or second elements of a list, respectively. Rest returns the 
given list minus the first element. 

Figure 3 
Context-sensitive shift reduce parser. 

2.3 Consulting the CDG Rules 
There are two related issues in consulting the CDG rules. One is the computational 
representation of CDG rules, and the other is the method for selecting an applicable 
rule. 

In the traditional CFG paradigms, a CFG rule is applicable if the left-hand side of 
the rule exactly matches the top elements of the stack. However, in our CDG paradigm, 
a perfect match between the left side of a CDG rule and the current state cannot be 
assured, and in most cases, a partial match must suffice for the rule to be applied. Since 
many rules may partially match the current context, the best matching rule should be 
selected. 

One way to do this is to use a neural network. Through the back-propagation 
algorithm (Rumelhart, Hinton, and Williams 1986), a feed-forward network can be 
trained to memorize the CDG rules. After successful training, the network can be used 
to retrieve the best matching rule. However, this approach based on ~ neural network 
usually takes considerable training time. For instance, in our previous experiment 
(Simmons and Yu 1990), training a network for about 2,000 CDG rules took several 
days of computation. Therefore, this approach has an intrinsic problem for scaling up, 
at least on the present generation of neural net simulation software. 

Another method is based on a hash table in which every CDG rule is stored 
according to its top two elements of the stack--the fourth and fifth elements of the 
left half of the rule. Given the current windowed context, the top two elements of the 
stack are used to retrieve all the relevant rules from the hash table. 
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We use no more than 64 word and phrase class symbols, so there can be no more 
than 4,096 possible pairs. The effect is to divide the large number of rules into no 
more than 4,096 subgroups, each of which will have a manageable subset. In fact, 
with 16,275 rules we discovered that we have only 823 pairs and the average number 
of rules per subgroup is 19.8; however, for frequently occurring pairs the number of 
rules in the subgroups can be much larger. The problem is to determine what scoring 
formula should be used to find the rule that best matches a parsing context. 

Sejnowski and Rosenberg (1988) analyzed the weight matrix that resulted from 
training NETtalk and discovered a triangular function with the apex centered at the 
character in the window and the weights falling off in proportion to distance from 
that character. We decided that the best matching rule in our system would follow 
a similar pattern with maximum weights for the top two elements on the stack with 
weights decreasing in both directions with distance from those positions. The scoring 
function we use is developed as follows: 

Let T4 be the set of vectors {RI~R2,... ,Rn}  
where Ri is the vector [rl, r2, . . . ,  rl0] 
Let C be the vector [Cl, Ca,..., c10] 
Let #(ci, ri) be a matching function whose value is 1 if ci = ri, and 0 otherwise. 

TZ is the entire set of rules, Ri is (the left half of) a particular rule, and C is the 
parse context. 

Then/-4' is the subset of T4 where if Ri E T~ I then #(ri4,c4) • #(ris~cs) = 1. 
Access of the hash table with the top two elements of the stack, c4, c5 produces 

the set T4'. 
We can now define the scoring function for each Ri C T~ I. 

3 i0 

Score = ~_,  t~(ci, ri) . i +  ~_, #(ci, ri)(11 - i )  
i=1 i=6 

The first summation scores the matches between the stack elements of the rule 
and the current context, and the second summation scores the matches between the 
elements in the input string. If two items of the rule and context match, the total score 
is increased by the weight assigned to that position. The maximum score for a perfect 
match is 21 according to the above formula. 

From several experiments, varying the length of vector and the weights, particu- 
larly those assigned to blanks, it has been determined that this formula gave the best 
performance among those tested. More importantly, it has worked well in the current 
phrase structure and case analysis experiments. 

It was an unexpected surprise to us 3 that using context-sensitive productions, an 
elementary, deterministic, parsing algorithm proved adequate to provide 99% correct, 
unambiguous anAalyses for the entire text studied. 

3. Grammar Acquisition for CDG 

Constructing an augmented phrase structure grammar of whatever type unification, 
GPSG, or ATN--is a painful process usually involving a well-trained linguistic team 
of several people. These types of grammar require that a CFG recognition rule such 

3 But perhaps not to Marcus (1980) and Berwick (1985), who promote the study of deterministic parsing. 
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as np  v p  ~ snt be suppor ted  by  such addit ional  information as the fact that the np  
and vp  agree in number ,  that the np  is characterized by  part icular  features such as 
count, animate, etc., and  that the vp  can or cannot  accept certain types of complements .  
The addit ional  features make  the rules exceedingly complex and  difficult to prepare  
and  debug.  College s tudents  can be taught  easily to make  a phrase  structure tree to 
represent  a sentence, but  it requires considerable linguistic training to deal successfully 
wi th  a feature grammar .  

We have  seen in the preceding section that a CFG is der ived f rom recording the 
successive states of the parses  of sentences. Thus it was  natural  for us to develop  an 
interactive acquisition sys tem that would  assist a linguist (or a student)  in construct ing 
such parses  to p roduce  easily large sets of example  CFG rules. 4 The sys tem cont inued 
to evolve as a consequence of our  use until we  had  included capabilities to: 

• read in text and data files 

• compile  dict ionary and  g r a m m a r  tables f rom comple ted  text files 

• select a sentence to continue processing or revise 

• look u p  words  in a dict ionary to suggest  the syntactic class for the word  
in context when  assigning syntactic classes to the words  in a sentence 

• compare  each state of the parse  wi th  rules in the current  g r a m m a r  to 
predict  the sh i f t / reduce  operation.  A carriage return signals that the user 
accepts the p rompt ,  or the typing in of the desired operat ion overr ides  it. 

• compute  and  display the parse  tree f rom the local g r a m m a r  after 
complet ion of each sentence, or f rom the global total g r a m m a r  at any  
t ime 

• provide  backing u p  and editing capabil i ty to correct errors 

• pr int  help messages  and  guide the user 

• compile  dict ionary and  g r a m m a r  entries at the complet ion of each 
sentence, insuring no duplicate entries 

• save comple ted  or partially comple ted  g r a m m a r  files. 

The resulting tool, GRAMAQ, enables a linguist to construct  a context-sensitive 
g r a m m a r  for a text corpus  at the rate of several  sentences per  hour. Thousands  of 
rules are accumula ted  with only weeks  of effort in contrast  to the years required for a 
comparab le  sys tem of augmen ted  CFG rules. About  ten weeks  of effort were  required 
to produce  the 16,275 rules on which this s tudy is based. Since GRAMAQ's  p rompt s  
become more  accurate as the dict ionary and  g r a m m a r  grow in size, there is a posit ive 
acceleration in the speed of g r a m m a r  accumulat ion and  the l inguist 's  task gradual ly  
converges  to one of alert supervis ion of the sys tem's  prompts .  

A slightly different version of G R A M A Q  is Caseaq, which uses operat ions that 
create case constituents to accumulate  a context-sensitive g r a m m a r  that t ransforms 

4 Starting with an Emacs editor, it was fairly easy to read in a file of sentences and to assign each word 
its syntactic class according to its context. Then the asterisk was inserted at the beginning of the 
syntactic string, the string was copied to the next line, the asterisk moved if a shift operation was 
indicated, or the top two symbols on the stack were rewritten if a reduce was required--just as we 
constructed the example in the preceding section. Naturally enough, we soon made Emacs macros to 
help us, and then escalated to a Lisp program that would print the stack-*-string and interpret our 
shift/reduce commands to produce a new state of the parse. 
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Text States Sentences Wds/Snt Mn-Wds/Snt 

Hepatitis 236 12 4-19 10.3 
Measles 316 10 4-25 16.3 
News Story 470 10 9-51 23.5 
APWire-Robots 1005 21 11-53 26.0 
APWire-Rocket 1437 25 8-47 29.2 
APWire-Shuttle 598 14 12-32 21.9 

Total 4062 92 4-53 22.8 

Table 1 
Characteristics of a sample of the text corpus. 

sentences directly to case structures with no intermediate stage of phrase structure 
trees. It has the same functionality as GRAMAQ but  allows the linguist user to specify 
a case argument  and value as the transformation of syntactic elements on the stack, 
and to rename the head of such a constituent by  a syntactic label. Figure 9 in Section 7.3 
illustrates the acquisition of case grammar. 

4. Experiments with CDG 

There are a number  of critical questions that need be answered if the claim that CDG 
grammars  are useful is to be supported.  

• Can they be used to obtain accurate parses for real texts? 

• Do they reduce ambigui ty  in the parsing process? 

• H o w  well do the rules generalize to new texts? 

• H o w  large must  a CFG be to encompass the syntactic structures for most  
newspaper  text? 

4.1 Parsing and Ambiguity with CDG 
Over the course of this s tudy we accumulated 345 sentences mainly from newswire  
texts. The first two articles were brief disease descriptions from a you th  encyclopedia; 
the remaining fifteen were newspaper  articles from February 1989 using the terms "star 
wars," "SDI," or "Strategic Defense Initiative." Table 1 characterizes typical articles by 
the number  of CDG rules or states, number  of sentences, the range of sentence lengths, 
and the average number  of words  per sentence. 

We developed our  approach to acquiring and parsing context-sensitive grammars  
on the first two simple texts, and then used GRAMAQ to redo those texts and to 
construct product ions for the news stories. The total text numbered  345 sentences, 
which accumulated 16,275 context-sensitive ru les - -an  average of 47 per sentence. 

The parser embodying  the algori thm illustrated earlier in Figure I was augmented  
to compare  the constituents it constructed with those prescribed dur ing grammar  ac- 
quisition by  the linguist. In parsing the 345 sentences, 335 parses exactly matched the 
linguist 's original judgement.  In nine cases in which differences occurred, the parses 
were judged correct, but  slightly different sequences of parse states occurred. The 
tenth case clearly made  an at tachment  e r ro r - -o f  an int roductory adverbial  phrase in 
the sentence "Hours  later, Baghdad announced  . . . .  " This was mistakenly attached to 
"Baghdad." This evaluation shows that the grammar  was in precise agreement  with 
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Another mission soon scheduled that also would have priority over the shuttle is the first 
firing of a trident two intercontinental range missile from a submerged submarine. 

~ N P  ~ art eazotb~ 
n mis~on 

~ NP adv s o o n  

V P ~  palm scheduled 
NP 

. ~ -  xeapron ~ that 

v ~ have 
SNT VP n ~ l~iority 

p ~ over 

art the 

n ~ shuttle 

- -  vbe 
VP ~ ~ _ _ ~ - ~ ~ ~  the 

prprt firing 

I ' °' o _  

PP~-% a r t ~  a 

NP NP n trident 
n t w o  

x / adj intercontinental 
< n  range 

NP missile 
PP ~ p -  from 

a 

~ - "  NP N - ~  ~papr t  submerged 
r~t" N n  submarine 

Figure 4 
Sentence parse. 

the linguist 97% of the time and completed correct parses in 99.7% of the 345 sentences 
from which it was derived. Since our  pr imary  interest was in evaluating the effective- 
ness of the CDG, all these evaluations were based on using correct syntactic classes 
for the words  in the sentences. The context-sensitive dictionary lookup procedure  de- 
scribed in Section 7.3 is 99.5% accurate, but  it assigns 40 word  classes incorrectly. As a 
consequence, using this procedure  would  result in a reduction of about  10% accuracy 
in parsing. 

An output  of a sentence from the parser is displayed as a tree in Figure 4. Since 
the whole mechanism is coded in Lisp, the actual ou tput  of the system is a nested list 
that is then printed as a tree. 

Notice in this figure that the PP at the bot tom modifies the NP composed of "the 
first firing of a trident two intercontinental range missile" not just the word  "firing." 
Since the parsing is bot tom-up,  left-to-right, the constituents are formed in the natural 
order  of words  encountered in the sentence and the terminals of the tree can be read 
top-to-bottom to give their ordering in the sentence. 

Although 345 sentences totaling 8594 words is a small selection from the infinite 
set of possible English sentences, it is large enough to assure us that the CDG is 
a reasonable form of grammar. Since the deterministic parsing algori thm selects a 
single interpretation, which we have seen almost perfectly agrees with the linguist 's 
parsings, it is apparent  that, at least for this size text sample, there is little difficulty 
with ambiguous interpretations. 
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5. Generalization of CDG 

The purpose of accumulating sample rules from texts is to achieve a grammar gen- 
eral enough to analyze new texts it has never seen. To be useful, the grammar must 
generalize. There are at least three aspects of generalization to be considered. 

How well does the grammar generalize at the sentence level? That is, 
how well does the grammar parse new sentences that it has not 
previously experienced? 

How well does the grammar generalize at the operation level? That is, 
how well does the grammar predict the correct Shift/Reduce operation 
during acquisition of new sentences? 

How much does the rule retention strategy affect generalization? For 
instance, when the grammar predicts the same output as a new rule 
does, and the new rule is not saved, how well does the resulting 
grammar parse? 

5.1 Generalization at the Sentence Level 
The complete parse of a sentence is a sequence of states recognized by the grammar 
(whether it be CDG or any other). If all the constituents of the new sentence can be 
recognized, the new sentence can be parsed correctly. It will be seen in a later para- 
graph that with 16,275 rules, the grammar predicts the output of new rules correctly 
about 85% of the time. For the average sentence with 47 states, only 85% or about 40 
states can be expected to be predicted correctly; consequently the deterministic parse 
will frequently fail. In fact, 5 of 14 new sentences parsed correctly in a brief experiment 
that used a grammar based on 320 sentences to attempt to parse the new, 20-sentence 
text. Considering that only a single path was followed by the deterministic parser, we 
predicted that a multiple-path parser would perform somewhat better for this aspect 
of generalization. In fact, our initial experiments with a beam search parser resulted 
in successful parses of 15 of the 20 new sentences using the same grammar based on 
the 320 sentences. 

5.2 Generalization at the Operation Level 
This level of generalization is of central significance to the grammar acquisition system. 
When GRAMAQ looks up a state in the grammar it finds the best matching state with 
the same top two elements on the stack, and offers the right half of this rule as its 
suggestion to the linguist. How often is this prediction correct? 

To answer this question we compiled the grammar of 16,275 rules in cumulative 
increments of 1,017 rules using a procedure, union-grammar, that would only add a rule 
to the grammar if the grammar did not already predict its operation. We call the result 
a "minimal-grammar," and it contains 3,843 rules. The black line of Figure 5 shows 
that with the first 1,000 rules 40% were new; with an accumulation of 5,000, 18% were 
new rules. By the time 16,000 rules have been accumulated, the curve has flattened to 
an average of 16% new rules added. This means that the acquisition system will make 
correct prompts about 84% of the time and the linguist will only need to correct the 
system's suggestions about 3 or 4 times in 20 context presentations. 
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Figure 5 
Generalization of CDG rules. 

5.3 Rule  Retent ion  and Genera l izat ion  
If two parsing grammars  account equally well for the same sentences, the one with 
fewer rules is less redundant ,  more abstract, and the one to be preferred. We used the 
union-grammar procedure  to produce  and s tudy the minimal g rammar  for the 16,275 
rules (rule-examples) der ived from the sample text. Union-grammar  records a new 
rule for a rule-example: s 

1. if best matching rule has an operation that doesn ' t  match 

2. if best matching rule ties with another  rule whose operation does not 
match 

3. if 2 is true, and score = 21 we have a full contradiction and list the rule 
as an error. 

Six contradictions occurred in the grammar;  five were inconsistent treatments of "SNT" 
followed by  one or more punctuat ion marks, while the sixth offered both a shift and a 
"pp"  for a preposi t ion-noun followed by a preposition. The latter case is an at tachment 
ambiguity not resolvable by  syntax. 

In the first pass as shown in Table 2, the text resulted in 3,194 rules compared with 
16,275 possible rules. That is, 13,081 possible CDG rules were not retained because 
already existing rules would  match and predict the operation. However,  using those 
rules to parse the same text gave very  poor  results: zero correct parses at the sentence 
level. Therefore, the process of compiling a minimal grammar  was repeated starting 
with those 3,194 rules. This time only 619 new rules were added.  The purpose  of this 

5 These definite conditions are due to an analysis by Mark Ring. 
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Pass UntWined Retained Total Rules 

1 13081 3194 16275 
2 15656 619 16275 
3 16245 18 16275 
4 16275 0 16275 

Table 2 
Four passes with minimal grammar. 

repetition is to get rid of the effect that the rules added  later change the predictions 
made  earlier. Finally, in a fourth repetition of the process no rules were new. 

The resulting grammar  of 3,843 rules succeeds in parsing the text with only occa- 
sional minor  errors in attaching constituents. It is to be emphas ized  that the unretained 
rules are similar but  not identical to those in the minimal grammar. 

We can observe that this technique of minimal retention by  "unioning" new rules 
to the grammar  results in a compression of the order  16,275/3,843 or 4.2 to 1, wi thout  
increase in error. If this ratio holds for larger grammars,  then if the linguist accu- 
mulates 40,000 training-example rules to account for the syntax of a given subset of 
language, that grammar  can be compressed automatically to about  10,000 rules that 
will accomplish the same task. 

6. Predicting the Size of CDGs 

When any kind of acquisition system is used to accumulate knowledge,  one very  
interesting question is, when  will the knowledge be complete enough for the in tended 
application? In our  case, how many  CDG rules will be sufficient to cover almost all 
newswire  stories? To answer this question, an extrapolation can be used to find a point  
when  the solid line of Figure 5 intersects with the y-axis. However ,  the CDG curve is 
descending too slowly to make a reliable extrapolation. 

Therefore, another  question was investigated instead: when  will the CDG rules 
include a complete set of CFG rules? Note  that a CDG rule is equivalent  to a CFG rule 
if the context is limited to the top two elements of the stack. What  the other elements 
in the context accomplish is to make one rule preferable to another  that has the same 
top two elements of the stack, but  a different context. 

We allow 64 symbols in our  phrase structure analysis. That  means, there are 642 
possible combinations for the top two elements of the stack. For each combination,  
there are 65 possible operations: 6 a shift or a reduct ion to another  symbol. Among  
16,275 CDG rules, we studied how many  different CFG rules can be der ived by elim- 
inating the context. We found 844 different CFG rules that used 600 different left-side 
pairs of symbols. This shows that a given context free pair of symbols averages 1.4 
different operations. 7 

Then, as we did with CDG rules, we measured how m an y  new CFG rules were 
added  in an accumulative fashion. The shaded line of Figure 5 shows the result. 

6 Actually, there are fewer than 65 possible operations since the stack elements can be reduced only to 
nonterminal symbols. 

7 We actually use only 48 different symbols, so only 482 or 2,304 combinations could have occurred. The 
fraction 600/2,304 yields .26, the proportion of the combinatoric space that is actually used, so far. 
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Figure 6 
Log-log plot of new CFG rules. 

Notice that the line has descended to about 1.5% errors at 16,000 rules. To make an 
extrapolation easier, a log-log graph shows the same data in Figure 6. From this graph, 
it can be predicted that, after about 25,000 CDG rules are accumulated, the grammar 
will encompass a CFG component that is 99% complete. Beyond this point, additional 
CDG rules will add almost no new CFG rules, but only fine-tune the grammar so that 
it can resolve ambiguities more effectively. 

Also, it is our belief that, after the CDG reaches that point, a multi-path, beam- 
search parser will be able to parse most newswire stories very reliably. This belief is 
based on our initial experiment that used a beam search parser to test generalization 
of the grammar to find parses for fifteen out of twenty new sentences. 

7. Acquiring Case Grammar 

Explicating the phrase structure constituents of sentences is an essential aspect in 
computer recognition of meaning. Case analysis organizes the constituents into a hi- 
erarchical structure of labeled propositions. The propositions can be used directly to 
answer questions and are the basis of schemas, scripts, and frames that are used to 
add meaning to otherwise inexplicit texts. As a result of the experiments with acquir- 
ing CDG and exploring its properties for parsing phrase structures, we became fairly 
confident that we could generalize the system to acquisition and parsing based on a 
grammar that would compute syntactic case structures directly from syntactic strings. 
Direct translation from string to structure is supported by neural network experiments 
such as those by McClelland and Kawamoto (1986), Miikkulainen and Dyer (1989), Yu 
and Simmons (1990), and Leow and Simmons (1990). We reasoned that if we could 
acquire case grammar with something approaching the simplicity of acquiring phrase 
structure rules, the result could be of great value for NL applications. 
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7.1 Case Structure 
Cook (1989) reviewed twenty years of linguistic research on case analysis of natural 
language sentences. He synthesized the various theories into a system that depends 
on the subclassification of verbs into twelve categories, and it is apparent from his 
review that with a fine subcategorization of verbs and nominals, case analysis can be 
accomplished as a purely syntactic operation--subject to the limitations of attachment 
ambiguities that are not resolvable by syntax. This conclusion is somewhat at variance 
with those AI approaches that require a syntactic analysis to be followed by a semantic 
operation that filters and transforms syntactic constituents to compute case-labeled 
propositions (e.g. Rim 1990), but it is consistent with the neural network experience 
of directly mapping from sentence to case structure, and with the AI research that 
seeks to integrate syntactic and semantic processing while translating sentences to 
propositional structures. 

Linguistic theories of case structure have been concerned only with single propo- 
sitions headed by verb predications; they have been largely silent with regard to the 
structure of noun phrases and the relations among embedded and sequential proposi- 
tions. Additional conventions for managing these complications have been developed 
in Simmons (1984) and Alterman (1985) and are used here. 

The central notion of a case analysis is to translate sentence strings into a nested 
structure of case relations (or predicates) where each relation has a head term and an 
indefinite number of labeled arguments. An argument may itself be a case relation. 
Thus a sentence, as in the examples below, forms a tree of case relations. 

The old man from Spain ate fish. 

(eat Agt (man Mod old From spain) Obj fish) 

(is Objl 
Obj2 

Another mission scheduledsoonisthefirstfiringofatrident missile 
from a submerged submarine. 

(mission Mod another Obj* (scheduled Vmod soon)) 
(firing Mod first Det the Of (missile Nmod trident Det a) 

From (submarine Mod submerged Det a))) 

Note that mission is in Obj* relation to scheduled. This means the object of scheduled 
is mission, and the expression can be read as "another mission such that mission is 
scheduled soon." An asterisk as a suffix to a label always signals the reverse direction 
for the label. 

There is a small set of case relations for verb arguments, such as verbmodifier, 
agent, object, beneficiary, experiencer, location, state, time, direction, etc. For nouns there 
are determiner, modifier, quantifier, amount, nounmodifier, preposition, and reverse verb 
relations, agt*, obj*, ben*, etc. Prepositions and conjunctions are usually used directly 
as argument labels while sentence conjunctions such as because, while, before, after, etc. 
are represented as heads of propositions that relate two other propositions with the 
labels preceding, post, antecedent, and consequent. For example, "Because she ate fish and 
chips earlier, Mary was not hungry." 

(because Ante (ate Agt she Obj (fish And chips) Vmod earlier) 
Conse (was Vmod not Objl mary State hungry)) 

Verbs are subcategorized as vao, vabo, vo, va, vhav, vbe where a is agent, o is object, 
b is beneficiary and vhav is a form of have and vbe a form of be. So far, only the 
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subcategory of time has been necessary in subcategorizing nouns to accomplish this 
form of case analysis, but in general, a lexical semantics is required to resolve syntactic 
attachment ambiguities. The complete set of case relations is presumed to be small, 
but no one has yet claimed a complete enumeration of them. 

Other case systems such as those taught by Schank (1980) and Jackendoff (1983) 
classify predicate names into such primitives as Do, Event, Thing, Mtrans, Ptrans, Go, 
Action, etc., to approximate some form of "language of thought" but the present ap- 
proach is less ambitious, proposing merely to represent in a fairly formal fashion the 
organization of the words in a sentence. Subsequent operations on this admittedly 
superficial class of case structures, when augmented with a system of shallow lexi- 
cal semantics, have been shown to accomplish question answering, focus tracking of 
topics throughout a text, automatic outlining, and summarization of texts (Seo 1990; 
Rim 1990). One strong constraint on this type of analysis is that the resulting case 
structure must maintain all information present in the text so that the text may be 
exactly reconstituted from the analysis. 

7.2 Syntactic Analysis of Case Structure 
We've seen earlier that a shift/reduce-rename operation is sufficient to parse most 
sentences into phrase structures. Case structure, however, requires transformations 
in addition to these operations. To form a case structure it is frequently necessary 
to change the order of constituents and to insert case labels. Following Jackendoff's 
principle of grammatical constraint, which argues essentially that semantic interpretation 
is frequently reflected in the syntactic form, case transformations are accomplished as 
each syntactic constituent is discovered. Thus when a verb, say throw and an NP, say 
coconuts are on top of the stack, one must not only create a VP, but also decide the 
case, Obj, and form the constituent, (throw Obj coconuts). This can be accomplished in 
customary approaches to parsing by using augmented context free recognition rules 
of the form: 

V P ~ V P N P /  l o b j 2  

where the numbers following the slash refer to the text dominated by the syntactic 
class in the referenced position, (ordered left-to-right) in the right half of the rule. 
The resulting constituents can be accumulated to form the case analysis of a sentence 
(Simmons 1984). 

We develop augmented context-sensitive rules following the same principle. Let 
us look again at the example "The old man from Spain ate fish," this time to develop 
case relations. 

* art adj n from n vao n ; shift 

art * adj n from n vao n ; shift 

art adj * n from n vao n ; shift 

art adj n * from n vao n ; i mod 

art n * from n vao n ; 1 det 

n * from n vao n ; shift 

n from * n vao n ; shift 

n from n * vao n ; 3 2 1 
n * vao n ; shift 

n vao * n ; 2 agt 

vao * n ; shift 

vao n * ; 1 obj 

2 (man Mod old) 

2 (man Mod old Det the) 

(man Mod old Det the From spain) 

1 (ate Agt (man Mod old ... ) 

2 (ate Agt (man ...) Obj fish) 
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Stack Case-Transform 

V.. 

n 
vpasv 

adj n 
nl n2 
n vao 
n vo 
vbe v 
vabo n 
n vpasv 
prep n 
prep n 
by n 
snt because 
because snt 
and n 
snt after 
after snt 

n mod adj 
n2 nmod nl 
1 agt 2 
1 obj 2 
1 vbe 2 vpasv 
2 ben 1 vao 
1 obj 2 
3 2 1 
3 2 1 
1 prep 2 
1 conse 2 
2 ante 1 
1 2 3 
1 pre 2 
2 post 1 

Table 3 
Some typical case transformations for syntactic constituents 

In this example  the case t ransformat ion  immedia te ly  follows the semicolon, and  the 
result of the t ransformat ion is shown  in parentheses  fur ther  to the right. The result in 
the final consti tuent  is: 

(ate Agt  (man Mod old Det the From spain) Obj fish). 

Note  that we did not r ename  the syntactic consti tuents as NP  or VP in this example ,  
because we were  not interested in showing the phrase  structure tree. Renaming  in case 
analysis need only be done w h e n  it is necessary to pass on informat ion accumula ted  
f rom an earlier constituent. 

For example ,  in "fish were  eaten by  birds," the CS parse  is as follows: 

* n vbe ppart by n ; shift 

n * vbe ppart by n ; shift 

n vbe * ppart by n ; shift 

n vbe ppart * by n ; I vbe 2, vpasv (eaten Vbe were) 

n vpasv * by n ; I obj 2 (eaten Vbe were Obj fish) 

vpasv * by n ; shift 

vpasv by * n ; shift 

vpasv by n * ; i prep 2 (birds Prep by) 

vpasv n * ; 2 agt 1 (eaten Vbe were Obj fish Agt (birds Prep by)) 

Here,  it was  necessary to r ename  the combinat ion of a past  participle and  its auxil iary 
as a passive verb,  vpasv, so that the syntactic subject and  object could be recognized 
as Obj and Agent, respectively. We also chose to use the a rgumen t  name  Prep to fo rm 
(birds Prep by) so that we  could then call that  consti tuent  Agent. 

We can see that the reduce operat ion has become  a reduce-transform-rename opera-  
tion where  number s  refer to e lements  of the stack, the second te rm provides  a case 
a rgumen t  label, the ordering provides  a t ransformation,  and  an opt ional  fourth ele- 
men t  m a y  rename the constituent. A sample  of typical  case t ransformat ions  is shown  
associated with  the top e lements  of the stack in Table 3. In this table, the first e lement  
of the stack is in the third posit ion in the left side of the table, and the n u m b e r  I refers 
to that  position, 2 to the second, and  3 to the first. As an aid to the reader  the first two 
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CS-CASE-Parser ( input ,cdg)  

Input is a string of syntactic classes for the given sentence. 
Cdg is the given CDG grammar rules. 

stack := empty 
outputstack := empty 
do unti l( input = empty and  2nd(stack) = blank) 

window-context := append(top-.five(stack),first_five(input)) 
operation := consult_CDG(window-context,cdg) 
if  first(operation) = SHIFT 
t h e n  stack := push(first(input),stack) 

input := rest(input) 
e l se  stack := push(select(operation),pop(pop(stack))) 

outputstack := make_constituent(operation,outputstack) 
end  do  

Figure 7 
Algorithm for case parse. 

entries in the table refer literally by symbol rather than by reference to the stack. The 
symbols vao and vabo are subclasses of verbs that take, respectively, agent and object; 
and agent, beneficiary, and object. The symbol v.. refers to any verb. Forms of the verb 
be are referred to as vbe, and passivization is marked by relabeling a verb by adding 
the suffix -pasv. 

Parsing case structures 
From the discussion above we may  observe that the flow of control in accomplishing 
a case parse is identical to that of a phrase structure parse. The difference lies in the 
fact that when  a constituent is recognized (see Figure 7): 

in phrase structure, a new name is substituted for its stack elements, and 
a constituent is formed by listing the name and its elements 

in case analysis, a case transformation is applied to designated elements 
on the stack to construct a constituent, and the head (i.e. the first element 
of the transformation) is substituted for its e lements--unless  a new name 
is provided for that substitution. 

Consequent ly  the algorithm used in phrase structure analysis is easily adapted  to case 
analysis. The difference lies in interpreting and applying the operation to make a new 
consti tuent and a new stack. 

In the algori thm shown above, we revise the stack by attaching either the head 
of the new constituent, or its new name, to the stack resulting from the removal  of 
all elements in the new constituent. The function select chooses either a new name 
if present, or the first element, the head of the operation. Makeconstituent applies the 
transformation rule to form a new consti tuent from the output  stack and pushes the 
consti tuent onto the output  stack, which is first reduced by removing the elements 
used in the constituent. Again, the algori thm is a deterministic, first (best) path parser 
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with behavior essentially the same as the phrase structure parser. But this version 
accomplishes transformations to construct a case structure analysis. 

7.3 Acquisition System for Case Grammar 
The acquisition system, like the parser, required only minor revisions to accept case 
grammar. It must apply a shift or any transformation to construct the new stack-string 
for the linguist user, and it must record the shift or transformation as the right half 
of a context-sensitive rule--still composed of a ten-symbol left half and an operation 
as the right half. Consequently, the system will be illustrated in Figure 9 rather than 
described in detail. 

Earlier we mentioned the context-sensitive dictionary. This is compiled by associ- 
ating with each word the linguist's in-context assignments of each syntactic word class 
in which it is experienced. When the dictionary is built, the occurrence frequencies of 
each word class are accumulated for each word. A primitive grammar of four-tuples 
terminating with each word class is also formed and hashed in a table of syntactic 
paths. The procedure to determine a word class in context, 

,, first obtains the candidates from the dictionary. 

,, For each candidate wc, it forms a four-tuple, vec, by adding it to the cdr 
of each immediately preceding vec, stored in IPC. 

• Each such vec is tested against the table of syntactic paths; 

if it has been seen previously, it is added to the list of IPCs, 
otherwise it is eliminated. 

If the union of first elements of the IPC list is a single word class, that is 
the choice. If not, the word's most frequent word class among the union 
of surviving classes for the word is chosen. 

The effect of this procedure is to examine a context of plus and minus three words 
to determine the word class in question. Although a larger context based on five- 
tuple paths is slightly more effective, there is a tradeoff between accuracy and storage 
requirements. 

The word class selection procedure was tested on the 8,310 words of the 345- 
sentence sample of text. A score of 99.52% correct was achieved, with 8,270 words 
correctly assigned. As a comparison, the most frequent category for a word resulted 
in 8,137 correct assignments for a score of 97.52%. Although there are only 3,298 
word types with an average of 3.7 tokens per type, the occurrence of single word class 
usages for words in this sample is very high, thus accounting for the effectiveness of the 
simpler heuristic of assignment of the most frequent category. However, since the effect 
of misassignment of word class can often ruin the parse, the use of the more complex 
procedure is amply justified. Analysis of the 40 errors in word class assignment showed 
7 confusions of nouns and verbs that will certainly cause errors in parsing; other 
confusions of adjective/noun, and adverb/preposition are less devastating, but still 
serious enough to require further improvements in the procedure. 

The word class selection procedure is adequate to form the prompts in the lexical 
acquisition phase, but the statistics on parsing effectiveness given earlier depend on 
perfect word class assignments. 

Shown in Figure 8 is the system's presentation of a sentence and its requests for 
each word's syntactic class. The protocol in Figure 9 shows the acquisition of shift 

410 



Robert E Simmons and Yeong-Ho Yu Context-Dependent Grammars for English 

L e x i c a l  A c q u i s i t i o n :  T h e  s y s t e m  p r o m p t s  fo r  s y n t a c t i c  c lasses  a r e  in  c a p i t a l s .  T h e  u se r  a c c e p t s  t h e  
system's p r o m p t  w i t h  a c a r r i a g e  r e t u r n ,  c r  o r  t y p e s  in  a s y n t a c t i c  c lass  in  l ower  case .  W e  s h o w  u s e r ' s  
r e s p o n s e s  in  bo ld - f ace ,  u s i n g  c r  fo r  c a r r i a g e  r e t u r n .  O t h e r  a b b r e v i a t i o n s  a re  wc  for  w o r d  c lass ,  y or  n for  
yes  o r  no,  a n d  b for  b a c k u p .  

( T H E  L A U N C H  O F  D I S C O V E R Y  A N D  I T S  F I V E  A S T R O N A U T S  H A S  B E E N  D E L A Y E D  A T - L E A S T  
T W O  D A Y S  U N T I L  M A R C H  E L E V E N T H  B E C A U S E - O F  A C R U S H E D  E L E C T R I C A L  P A R T  O N  A 
M A I N  E N G I N E  C O M M A  O F F I C I A L S  S A I D )  
p r o c e s s  t h i s  one?  - y o r  n y 

T H E  cr  fo r  d e f a u l t  else we  or  b d e f a u l t  is: A R T  c r  
L A U N C H  cr  fo r  d e f a u l t  else w c  or  b c r  ;user  m a d e  a n  e r r o r  s ince  t h e r e  w a s  n o  d e f a u l t  
L A U N C H  c r  fo r  d e f a u l t  else w c  or  b n ; s y s t e m  r e p e a t e d  t h e  question 
O F  cr  fo r  d e f a u l t  else wc  or  b d e f a u l t  is: O F  c r  
D I S C O V E R Y  cr  fo r  d e f a u l t  else we  or  b n 
A N D  cr  fo r  d e f a u l t  else wc  or  b d e f a u l t  is: C O N J  e r  
I T S  c r  fo r  d e f a u l t  else w c  or  b b ;user  d e c i d e d  to  r edo  " a n d "  
A N D  cr  fo r  d e f a u l t  else wc  or  b d e f a u l t  is: C O N J  a n d  
I T S  c r  fo r  d e f a u l t  else wc  or  b p p r o n  

i ! s k i p p i n g  m o s t  o f  t h e  s e n t e n c e . . .  
A cr  for  d e f a u l t  else w c  or  b d e f a u l t  is: A R T  cr  
M A I N  cr  fo r  d e f a u l t  else wc  or  b n 
E N G I N E  cr  fo r  d e f a u l t  else wc  or  b n 
C O M M A  cr  for  d e f a u l t  else w c  or  b d e f a u l t  is: C O M M A  c r  
O F F I C I A L S  c r  fo r  d e f a u l t  else w c  or  b n 
S A I D  c r  fo r  d e f a u l t  else wc  or  b v a o  

Figure 8 
Illustration of dictionary acquisition. 

and transformation rules for the sentence. What we notice in this second protocol is 
that the stack shows syntactic labels but the input string presented to the linguist 
is in English. As the system constructs a CS rule, however, the vector containing five 
elements of stack and five of input string is composed entirely of syntactic classes. The 
English input string better enables the linguist to maintain the meaningful context he 
or she uses to analyze the sentence. About five to ten minutes were required to make 
the judgments for this sentence. Appendix A shows the rules acquired in the session. 

When rules for the sentence were completed, the system added the new syntactic 
classes and rules to the grammar, then offered to parse the sentence. The resulting 
parse is shown in Figure 10. 

The case acquisition system was used on the texts described earlier in Table 1 to 
accumulate 3,700 example CDG case rules. Because the case transformations refer to 
three stack elements and the number of case labels is large, we expected and found that 
a much larger sample of text would be required to obtain the levels of generalization 
seen in the phrase structure experiments. 

Accumulated in increments of 400 rules, the case curve flattens at about 2,400 rules 
with an average of 33% error in prediction compared to the 20% found in analysis 
of the same number of phrase structure rules. The compressed or minimal grammar 
for this set of case rules reduces the 3,700 rules to 1,633, a compression ratio in this 
case of 2.3 examples accounted for by each rule. The resulting compressed grammar 
parses the texts with 99% accuracy. These statistics are from our initial study of a case 
grammar, and they should be taken only as preliminary estimates of what a more 
thorough study may show. 
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C a s e - G r a m m a r  A c q u i s i t i o n :  The options are h for a help message, b for backup one state, s for shift, 
case-trans for a case transformation, and cr for carriage return to accept a system prompt.  System prompts  
axe capitalized in parentheses, user responses are in lower case. Where no appaxent response is shown, the 
user did a carriage return to accept the prompt.  The first line shows the syntactic classes for the words in 
the sentence. 

(ART N OF N AND PPRON ADJ N VHAV VBE VAO AT-LEAST ADJ N UNTIL N N BECAUSE-OF 
ART PPART AD3 N ON ART N N COMMA N VAO) 
(* THE LAUNCH OF DISCOVERY AND ITS FIVE ASTRONAUTS HAS BEEN DELAYED AT-LEAST 
TWO DAYS UNTIL MARCH ELEVENTH BECAUSE-OF A CRUSHED ELECTRICAL PART ON A 
MAIN ENGINE COMMA OFFICIALS SAID) 
options-axe h b s case-trans or cr for default: (S) 
(ART * LAUNCH OF DISCOVERY AND ITS ... SAID) 
options-axe h b s case-trans or cr for default: (S) 
(ART N * OF DISCOVERY AND ITS FIVE ... SAID) 
options-axe h b s case-trans or cr for default: (S) 1 det 2 
(N * OF DISCOVERY AND ITS FIVE ... SAID) 
options-axe h b s case-trans or cr for default: (S) 

i s k i p p i n g  s e v e r a l  sh i f t s  
(N OF N AND PPRON AD3 N * HAS BEEN DELAYED AT-LEAST ... SAID) 
options-axe h b s case-trans or cr for default: (S) 1 rood 2 
(N OF N AND PPRON N * HAS BEEN DELAYED AT-LEAST ... SAID) 
options-axe h b s case-trans or cr for default: NIL 1 possby 2 
(N OF N AND N * HAS BEEN DELAYED AT-LEAST ... SAID) 
options-axe h b s case-trans or cr for default: NIL 3 2 1 
(N OF N * HAS BEEN DELAYED AT-LEAST TWO ... SAID) 
options-axe h b s case-trans or cr for default: (3 2 1) 
(N * HAS BEEN DELAYED AT-LEAST TWO ... SAID) 
options-axe h b s case-trans or cr for default: (S) 
(N VHAV * BEEN DELAYED AT-LEAST TWO DAYS ... SAID) 
options-axe h b s case-trans or cr for default: ( 1 0 B J  2) s 
(N VHAV VBE * DELAYED AT-LEAST TWO DAYS ... SAID) 
options-axe h b s case-trans or cr for default: (S) 1 anx 2 
(N VBE * DELAYED AT-LEAST TWO DAYS UNTIL ... SAID) 
options-axe h b s case-trans or cr for default: (S) 
(N VBE VAO * AT-LEAST T W O  DAYS UNTIL MARCH ... SAID) 
options-axe h b s case-trans or cr for default: (1 VBE 2 VAOPASV) 
(N VAOPASV * AT-LEAST T W O  DAYS UNTIL MARCH ... SAID) 
options-axe h b s case-trans or cr for default: ( 1 0 B J  2 / 

! s k i p p i n g  n o w  to  B E C A U S E  
(VAOPASV UNTIL N * BECAUSE-OF A CRUSHED ELECTRICAL ... SAID) 
options-axe h b s case-trans or cr for default: (S) 3 2 1 
(VAOPASV * BECAUSE-OF A CRUSHED ELECTRICAL PART ... SAID) 
options-axe h b s case-trans or cr for default: (S) 
(VAOPASV BECAUSE-OF * A CRUSHED ELECTRICAL PART ON .. SAID) 
options-are h b s case-trans or cr for default: NIL 1 conse 2 
(BECAUSE-OF * A CRUSHED ELECTRICAL PART ON ... SAID) 
options-axe h b s case-trans or cr for default: NIL s 

: s k i p p i n g  n o w  to  t h e  e n d  
(BECAUSE-OF COMMA N VAO *) 
options-are h b s case-trans or cr for default: (1 OB3 2) 1 agt 2 
(BECAUSE-OF COMMA VAO *) 
options-axe h b s case-trans or cr for default: NIL 1 obj 3 

Figure 9 
I l l u s t r a t i on  of  case  g r a m m a r  acqu is i t ion .  

8. Discussion and Conclusions 

I t  s e e m s  r e m a r k a b l e  t h a t  a l t h o u g h  t h e  t h e o r y  o f  c o n t e x t - s e n s i t i v e  g r a m m a r s  a p p e a r e d  

i n  C h o m s k y  (1957) ,  f o r m a l  c o n t e x t - s e n s i t i v e  r u l e s  s e e m  n o t  t o  h a v e  b e e n  u s e d  p r e -  
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s a i d  ~ AGT - ' ~  Officials 

I 
OBJ ~ because-of 

m CONSE ~ d e l a y e d  ~ VBE ''¢~ b e e n ~  A U X ' - ~  has 

O B J - ' ~  l a u n c h - -  D E T - ' - ~  the 

I 
OF"-~  d i s c o v e r y  ~ A N D  ~ ~ . r o n ~ o J t s  

~ MOD " ~  five 

POSSBY " ~  its 

AT-LEAST ~ d a y s -  MOD ~ two 

UNTIL ~ eleventh ~ NMOD - - ~  march 

ANTE ~ part ~ MOD ~ electrical 

~ MOD ~ crushed 

DET ''4t" a 

ON " - ~  engine 

L NMOD - ~ m a i n  

DET - ' ~  a 

The launch of discovery and its five astronauts has been delayed at-least two days until 
march eleventh because-of a crushed electrical part on a main engine comma officials said. 

Figure 10 
Case analysis of a sentence. 

viously in computational parsing. As researchers we seem simply to have assumed, 
without experimentation, that context-sensitive grammars would be too large and 
cumbersome to be a practical approach to automatic parsing. In fact, context-sensitive, 
binary phrase structure rules with a context composed of the preceding three stack 
symbols and the next five input symbols, 

stack1_3 binary-rule input1_5 ---* operation 

provide several encouraging properties. 

The linguist uses the full context of the sentence to make a simple 
decision: either shift a new element onto the stack or combine the top 
two elements into a phrase category. 

The system compiles a CS rule composed of ten symbols, the top five 
elements of the stack and the next five elements of the input string. The 
context of the embedded binary rule specializes that rule for use in 
similar environments, thus providing selection criteria to the parser for 
the choice of shift or reduce, and for assigning the phrase name that has 
most frequently been used in similar environments. The context provides 
a simple but powerful approach to preference parsing. 
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• As a result, a deterministic bottom-up parser is notably successful in 
finding precisely the parse tree that the linguist who constructed the 
analysis of a sentence had in mind--and this is true whether the 
grammar is stored as a trained neural network or in the form of 
hash-table entries. 

• Despite the large combinatoric space for selecting 1 of 64 symbols in 
each of 10 slots in the rules--641° possible patterns experiments in 
accumulating phrase structure grammar suggest that a fairly complete 
grammar will require only about 25,000 CS rules. 

• It is also the case that when redundant rules are removed the CS 
grammar is reduced by a factor of four and still maintains its accuracy in 
parsing. 

• Because of the simplicity and regular form of the rule structure, it has 
proved possible to construct an acquisition system that greatly facilitates 
the accumulation of grammar. The acquisition system presents contexts 
and suggests operations that have previously been used with similar 
contexts; thus it helps the linguist to maintain consistency of judgments. 

• Parsing with context-sensitive rules generalizes from phrase structure 
rewriting rules to the transformational rules required by case analysis. 
Since the case analysis rules retain a regular, simple form, the acquisition 
system also generalizes to case grammar. 

Despite such advantageous properties, a few cautions should be noted. First, the 
deterministic parsing algorithm is sufficient to apply the CDG to the sentences from 
which the grammar was derived, but to accomplish effective generalization to new 
sentences, a bandwidth parsing algorithm that follows multiple parsing paths is supe- 
rior. Second, the 99% accuracy of the parsing will deteriorate markedly if the dictionary 
lookup makes errors in word assignment. Thirdly, the shift/reduce parsing is unable 
to give correct analyses for such embedded discontinuous constituents as "I saw the 
man yesterday who . . . .  " Finally, the actual parsing structures that we have presented 
here are skeletal. We did not mark mood, aspect or tense of verbs, number for nouns, 
or deal with long distance dependencies. We do not resolve pronoun references; and 
we do not complete ellipses in conjunctive and other constructions. 

Each of these shortcomings is the subject of continuing research. For the present, 
the output of the case parser provides the nested, labeled, propositional structures 
which, supported by a semantic knowledge base, we have customarily used to ac- 
complish focus-tracking of topics through a continuous text to compute labeled out- 
lines and other forms of discourse structure (Seo 1990; Rim 1990; Alterman 1985). 
During this process of discourse analysis, some degapping, completion of ellipsis, and 
pronoun resolution is accomplished. 

8.1 Conclus ions  
From the studies presented in this paper we conclude: 

. Context-Dependent Grammars (CDGs) are computationally and 
conceptually tractable formalisms that can be composed easily by a 
linguist and effectively used by a deterministic parser to compute phrase 
structures and case analyses for subsets of newspaper English. 
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2. The contextual portions of the CDG rules and the scoring formula that 
selects the rule that best matches the parsing context allow a 
deterministic parser to provide preferred parses, reflecting the linguist's 
meaning-based judgments. 

3. The CDG acquisition system described earlier simplifies linguistic 
judgments and greatly improves a linguist's ability to construct relatively 
large grammars rapidly. 

4. Although a deterministic, bottom-up parser has been sufficient to 
provide highly accurate parses for the 345-sentence sample of news text 
studied here, we believe that a multi-path parser proves superior in its 
ability to analyze sentences beyond the sample on which the grammar 
was developed. 

5. With 3,843 compressed CDG rules, the acquisition system is about 85% 
accurate in suggesting the correct parsing for constituents from texts it 
has not experienced. 

6. For phrase structure analysis, the context-free core of the CS rules will be 
99% complete when we have accumulated about 25,000 CS rules. At that 
point it should be possible for a multi-path parser to find a satisfactory 
analysis for almost all news story sentences. 

We have shown that the acquisition and parsing techniques apply also to CDG 
grammars for computing structures of case propositions to represent sentences. In 
this application, however, much more research is needed to better define linguistic 
systems for case analysis, and for their application to higher levels of natural language 
understanding. 
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Appendix A. Rules from the Case Acquisition Session 

Blanks in the 10-symbol vectors are signified by the letter B. 

((THE LAUNCH OF DISCOVERY AND ITS FIVE ASTRONAUTS HAS BEEN 
DELAYED AT-LEAST TWO DAYS UNTIL MARCH ELEVENTH BECAUSE-OF A 
CRUSHED ELECTRICAL PART ON A MAIN ENGINE COMMA OFFICIALS SAID) 

(ART N OF N AND PPRON ADJ N VHAV VBE VAO AT-LEAST ADJ N UNTIL 
N N BECAUSE-OF ART PPART ADJ N ON ART N N COMMA N VAO) 

(((B B B B B ART N OF N AND) (S)) 
((B B B B ART N OF N AND PPRON) (S)) 

((B B B ART N OF N AND PPRON ADJ) (I DET 2)) 

((B B B B N OF N AND PPRON ADJ) (S)) 

((B B B N OF N AND PPRON ADJ N) (S)) 

((B B N OF N AND PPRON ADJ N VHAV) (S)) 

((B N OF N AND PPRON ADJ N VHAV VBE) (S)) 

((N OF N AND PPRON ADJ N VHAV VBE VAO) (S)) 

((OF N AND PPRON ADJ N VHAV VBE VAO AT-LEAST) (S)) 

((N AND PPRON ADJ N VHAV VBE VAO AT-LEAST ADJ) (i MOD 2)) 

((OF N AND PPRON N VHAV VBE VAO AT-LEAST ADJ) (I POSSBY 2)) 

((N OF N AND N VHAV VBE VAO AT-LEAST ADJ) (3 2 i)) 

((B B N OF N VHAV VBE VAO AT-LEAST ADJ) (3 2 I)) 

((B B B B N VHAV VBE VAO AT-LEAST ADJ) (S)) 

((B B B N VHAV VBE VAO AT-LEAST ADJ N) (S)) 

((B B N VHAV VBE VAO AT-LEAST ADJ N UNTIL) (i AUX 2)) 

((B B B N VBE VAO AT-LEAST ADJ N UNTIL) (S)) 

((B B N VBE VAO AT-LEAST ADJ N UNTIL N) (I VBE 2 VAOPASV)) 

((B B B N VAOPASV AT-LEAST ADJ N UNTIL N) (i OBJ 2)) 

((B B B B VAOPASV AT-LEAST ADJ N UNTIL N) (S)) 

((B B B VAOPASV AT-LEAST ADJ N UNTIL N N) (S)) 

((B B VAOPASV AT-LEAST ADJ N UNTIL N N BECAUSE-OF) (S)) 
((B VAOPASV AT-LEAST ADJ N UNTIL N N BECAUSE-OF ART) (i MOD 2)) 

((B B VAOPASV AT-LEAST N UNTIL N N BECAUSE-OF ART) (3 2 i)) 

((B B B B VAOPASV UNTIL N N BECAUSE-OF ART) (S)) 

((B B B VAOPASV UNTIL N N BECAUSE-OF ART PPART) (S)) 

((B B VAOPASV UNTIL N N BECAUSE-OF ART PPART ADJ) (S)) 

((B VAOPASV UNTIL N N BECAUSE-OF ART PPART ADJ N) (i NMOD 2)) 

((B B VAOPASV UNTIL N BECAUSE-OF ART PPART ADJ N) (3 2 i)) 

((B B B B VAOPASV BECAUSE-OF ART PPART ADJ N) (S)) 

((B B B VAOPASV BECAUSE-OF ART PPART ADJ N ON) 

(i CONSE 2)) 

((B B B B BECAUSE-OF ART PPART ADJ N ON) (S)) 

((B B B BECAUSE-OF ART PPART ADJ N ON ART) (S)) 

((B B BECAUSE-OF ART PPART ADJ N ON ART N) (S)) 

((B BECAUSE-OF ART PPART ADJ N ON ART N N) (S)) 
((BECAUSE-OF ART PPART ADJ N ON ART N N COMMA) (i MOD 2)) 

((B BECAUSE-OF ART PPART N ON ART N N COMMA) (i MOD 2)) 
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((B B BECAUSE-OF ART N ON ART N N COMMA) (i DET 2)) 

((B B B BECAUSE-OF N ON ART N N COMMA) (S)) 

((B B BECAUSE-OF N ON ART N N COMMA N) (S)) 

((B BECAUSE-OF N ON ART N N COMMA N VAO) (S)) 

((BECAUSE-OF N ON ART N N COMMA N VAO B) (S)) 

((N ON ART N N COMMA N VAO B B) (i NMOD 2)) 

((BECAUSE-OF N ON ART N COMMA N VAO B B) (i DET 2)) 

((B BECAUSE-OF N ON N COMMA N VAO B B) (3 2 I)) 

((B B B BECAUSE-OF N COMMA N VAO B B) (2 ANTE i)) 

((B B B B BECAUSE-OF COMMA N VAO B B) (S)) 

((B B B BECAUSE-OF COMMA N VAO B B B) (S)) 

((B B BECAUSE-OF COMMA N VAO B B B B) (S)) 

((B BECAUSE-OF COMMA N VAO B B B B B) (i AGT 2)) 

((B B BECAUSE-OF COMMA VAO B B B B B) (I OBJ 3)))) 
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