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We present DIALEX, an inheritance-based tool that facilitates the rapid construction of linguis- 
tic knowledge bases. Simple lexical entries are added to an application-specific DATR lexicon 
that inherits morphosyntactic, syntactic, and lexico-semantic constraints from an application- 
independent set of structured base definitions. A lexicon generator expands the DATR lexi- 
con out into a disjunctive normal  form lexicon. This is then encoded either as an accep- 
tance lexicon (in which the constraining features are bit-encoded for use in pruning word 
lattices), or as a full lexicon (which is used for assigning interpretations or for generating 
messages). 

1. Introduction 

In this paper  we describe DIALEX, a modular  inheritance-based tool for the construc- 
tion of lexicalized grammar  knowledge  bases. DIALEX has been developed as part  
of the SUNDIAL (Speech UNders tanding and DIALogue) project - -current ly  one of 
Europe's  largest collaborative research projects in speech and language technology, l 
SUNDIAL's main project goal is to produce  four prototype systems that suppor t  rela- 
t ively unconstrained telephone dialogs for limited domains  in each of English, French, 
German,  and Italian (Peckham 1991). This paper  reports work carried out  in the devel- 
opment  of the English and French systems. These share a common application domain,  
namely flight enquiries and reservations. 
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The process of writing linguistic knowledge bases has been guided by a number 
of design requirements on the SUNDIAL project as a whole. 

. 

. 

. 

. 

. 

First of all, prototype systems must be capable of understanding speech. 
Therefore grammars must be appropriate for the purposes of speech 
processing. For example, they must reflect the fact that input to the 
parser is a word lattice or graph from which some of the spoken words 
(typically short words such as function words) may be missing. 

Each prototype system must be capable of producing speech. Speech 
generation takes place in two stages. In the first stage, text is generated. 
In the second stage, a text-to-speech system outputs the message. 
Therefore the linguistic knowledge must also be structured appropriately 
for the purposes of text generation. 

Each system must run in real time or near real time. Therefore the 
linguistic knowledge must be structured so as to allow rapid access and 
manipulation. 

Portability to new applications should be simple; work required to write 
new linguistic knowledge bases should therefore be kept to a minimum. 

Duplication of effort must be avoided. This must be true in respect of the 
components of each separate prototype system. For example, the same 
dialog manager software module has been used in each prototype with 
minor customizations for each language (Bilange 1991; McGlashan et al. 
1992). The same principle should apply to the design of tools for the 
construction of knowledge bases, including lexical knowledge bases. 
Thus, the task of adding a new lexical item should only require the 
addition of knowledge that is idiosyncratic to that lexical item and not 
predictable from what is already present in the knowledge base. 

Section 2 of this paper presents an overview of the SUNDIAL DIALEX tool. Section 
3 describes the way in which linguistic knowledge is initially expressed in terms of 
declarative DATR theories. Section 4 explains how a compact DATR knowledge base 
is expanded out into a fully specified lexicon. Section 5 relates how the lexicon can 
be customized for the purposes of real-time speech parsing. Practical experiences of 
constructing and using DIALEX are recounted in Section 6. Concluding observations 
are drawn in Section 7. 

2. Overview of the System 

In common with contemporary generative theories that are unification based and for 
which information is concentrated in the lexicon (Pollard and Sag 1987; Calder et al. 
1988), we adopt the sign as our basic unit of linguistic representation. For a given lexi- 
cal entry, a sign describes the constraints--morphological, syntactic, and semantic--it 

246 



Francois Andry et al. Making DATR Work for Speech 

introduces. The sign for intransitive arrives, for example, is: 

mor : 

syn : 

sem : 

root : arrive ] 
form :arrives J 

major : v 
vform : fin 

head : tense : pres 
person : third 
number : sg 

args : I 

syn : I head : [ maj°r : prep l ] c a s e : a t  

sem : ~ type: time I RestT ] 
[ opt: opt ] 

order : | dir : post J [ adj: any 

r r  as°r:  
I , , I case:nom 

syn : I neaa : [ person: third 
L [ number: sg 

sem : [ type:object I RestA ] 
[ opt:oblig ] 

order : | dir : pre 
• [ adj :any 

type : amve ] 
thetime : [ type: time I RestT ] 
theagent : [ type:object I RestA ] 

The lexical sign for arrives combines syntactic head features that help to determine 
the inflected form, with an args list that constrains its envi ronment  within the phrase 
of which it is the head; the sere feature represents the semantic structure that will 
be assigned to that phrase. The sign shows that the verb may  optionally be followed 
by a preposit ional phrase whose semantics will fill the semantic role thetime. 2 The 
argument  preceding the verb is constrained to be third person singular nominat ive 
(i.e. not  object-marked), and supplies the filler for the semantic role theagent.  

In the interests of linguistic pars imony and sensible knowledge engineering, it is 
necessary for lexicalist approaches to factor away at the lexicon-encoding interface as 
many  as possible of the commonalit ies between lexical items. To this end, we adopt  
the principles of default  inheritance (Gazdar 1987), as embodied  in the DATR language 
(Evans and Gazdar  1989). Areas where abstractions m ay  be made  over  the lexicon are 
morphosyntax  (Gazdar 1990), transitivity (Charniak and McDermot t  1985; Flickinger 
et al. 1985; Hudson  1990), and combinations of these leading to lexical rules such 
as passive. To this we have added the area of lexico-semantic relations. In order  to 
generalize over  semantic roles, it is necessary to tie these to functional-syntactic roles, 
such as subject, direct object, etc. These in turn are related to order  marked  arguments  
in the args frame. Only the latter appear  in the final version of the lexicon. 

2 In our representation of feature structures we follow Prolog conventions, whereby variables are 
identified by initial capitals, and a vertical bar introduces the tail of a list. 
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A major issue for approaches such as ours is whether or not regularities in the 
lexicon should be expanded out off-line, or remain for lazy evaluation during pars- 
ing. We are sympathetic with the latter approach, for reasons of the economies that 
can be achieved in lexicon size. However, we believe that a precompiled lexicon is 
more appropriate to current speech recognition technology. Parsing typically involves 
extremely large lattices of lexical hypotheses with imprecise boundaries, and is thus 
computationally expensive. Our experience suggests that the trade-off between lexi- 
con size and the cost of online inference is such as to favor lexicon size, in the case 
of application-specific lexicons of the size required in the SUNDIAL systems (around 
2000 words). For inflection-impoverished English and (somewhat richer) French, which 
form the basis of our work, limited morphological decomposition during parsing is 
avoided; instead the parser lexicon consists of fully inflected forms. 

The parser lexicon we have developed has the following two properties. 

. 

. 

It is indexed by surface forms, i.e. fully inflected words that are unique 
at the phonological level. Efficiency of access is achieved by allowing 
some internal disjunctions within entries in cases where the surface form 
can be derived from a number of morphosyntactic feature combinations. 

It consists of two separate knowledge bases: an acceptance lexicon and a 
full lexicon. The former is designed for efficient parsing. Only those 
features that constrain the ability of a sign to combine are represented. 
These include syntactic head features and semantic types. The encoding 
technique uses bit-vectors to achieve economy of representation and fast 
unification. The full lexicon contains signs with no information missing; 
the information in a full lexical entry is therefore a superset of the 
corresponding acceptance lexicon entry. 

Parsing takes place in two phases: lattice parsing using the acceptance lexicon, involving 
heuristic search with intensive computation; and structure building, which operates on 
the analysis tree produced by the first phase, using term unification to combine the 
entries from the full lexicon corresponding to the lexical entries found by the first 
phase. 

The lexicon compilation architecture that we present in this paper is outlined in 
Figure 1. 

At the lexical encoding interface, a human lexicon builder builds an application- 
and sublanguage-specific lexicon, using a set of structured base definitions, which gen- 
eralize over commonalities and provide macros with which to structure entries (Sec- 
tion 3). Both of these are written in DATR; we refer to the output of this as the DATR 
lexicon. The lexicon generator then compiles this into a lexicon for which the entries 
are directed acyclic graphs (DAGs) indexed by surface forms. For this a set of closure 
definitions is used. These constitute a knowledge base forming a set of meta-definitions 
to complement the DATR lexicon, as well as rendering explicit what may be implicit in 
the latter (Section 4). The resulting entries are encoded in two ways: for the full lexicon 
via Prolog term encoding and for the acceptance lexicon via bit coding (Section 5). 

3. Encoding Linguistic Knowledge 

3.1 DATR 
DATR is a declarative language for representing inheritance networks that support 
multiple default inheritance. Knowledge is expressed in DATR in terms of path equa- 
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Figure 1 
DIALEX lexicon compilation architecture. 

tions. The syntax of paths is a superset of that found in the PATR-II language (Shieber 
1986). For example, (1) identifies two different paths in the DAG rooted at Node1 in 
an inheritance network. 

(1) Node1: <syn head case> 

Node1: <syn head number> 

The path equations we present in this paper take the following forms: 

(2) a. Nodel: <> == Node2 

b. Nodel: Path1 == Value1 

c. Nodel: Path1 == "Path2" 

d. Nodel: Pathl == Node2:Path2 

e. Nodel: Pathl == Node2:<> 

The form shown in (2a) is the special case in which the path at Node1 is empty. This 
allows Node1 to inherit all equations available at Node2, except those incompatible with 
equations at Node 1. Two equations are incompatible if they both make assignments to 
the same path. The form shown in (2b) is used to assign values to paths, e.g. <syn head 
number> =-- sg. Alternatively, a value may be copied from elsewhere in the DAG. (2c) 
is used to assign to Path1 whatever value is found for Path2 at the original query 
node. The double quotes are significant here because they indicate that Path2 must be 
evaluated globally. If the quotes were not present, Path1 would be evaluated locally 
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and assigned the value of Path2 at Nodel if such a value existed. The form shown in 
(2d) assigns to Node l :Pa th l  whatever value is found at Node2:Path2. A special case 
of this is (2e), which allows extensions of Pathl  to be specified at Node2. For example, 
evaluating the DATR theory in (3) yields the theorems for node Ex2 shown in (4). 

(3) Exl: <head major> == n 

<head case> == nom. 

(4) 

Ex2: <syn> == Exl:<>. 

Ex2: <syn head major> = n. 

Ex2: <syn head case> = nom. 

For a more detailed description of DATR see Evans and Gazdar (1990). 

3.2 The Linguistic Framework 
Linguistic knowledge is structured in terms of a simple unification categorial grammar 
(Calder et al. 1988) in which featural constraints at the levels of morphology, syntax, 
and semantics may all occur in a lexical sign. The basic sign structure of lexical entries 
is shown in (5). 

(5) 
morphology : [...] ] 
syntax: [...] 
semantics : [...] 

The basic sign structure of the syntax feature value is shown in (6). 

(6) s ntax[ ea  :llar sl 
The head feature includes attribute-value structures for such things as tense, person, 
number, and definiteness. The args feature is stack-valued, with stack position deter- 
mining the order in which arguments may be combined by functional application. 

The basic sign structure of the semantics feature value is shown in (7). 

(7) semantics : 

id :< value > 
type :< value > 
modus : [.:.] 
role, :[...] 

Each semantic object has a unique index (id). The type feature locates the object in a 
sortal hierarchy. The modus feature specifies a number of constraints imposed on the 
interpretation of semantic objects, such as polarity, aspect, and tense. Semantic roles 
(such as theagent, thetime, theinstrument) are specified within the inheritance-based 
definitions for semantic types. 

The signs are defined in terms of a dual-component DATR lexicon. The base defini- 
tions represent an application-independent account of morphosyntax, transitivity, and 
lexico-semantic constraints. They define what can be thought of as most of the higher 
nodes of an inheritance hierarchy. The base definitions as a whole are, of course, lan- 
guage specific, although significant exchange of definitions has been possible during 

250 



Frangois Andry et al. Making DATR Work for Speech 

the parallel development of our English and French DATR theories. The application- 
specific lexicon can be thought of as a collection of lower nodes that hook onto the 
bottom of the hierarchy defined by the structured base definitions. Whereas the struc- 
tured base definitions provide a general morphological, syntactic, and lexico-semantic 
account of a language fragment, the application-specific lexicon provides a vocabu- 
lary and a task-related lexical semantics. Ideally, a change of application should only 
necessitate a change of an application-specific lexicon. Naturally, application-specific 
lexicons take much less time to construct than the base lexicon. Much of our discussion 
in the rest of this section will focus on the structured base definitions. 

3.3 Morphosyntax 
Since the requirements of speech processing in real time rule out online morpholog- 
ical parsing, a full-form lexicon must be produced. However, the task of entering all 
possible forms of a word into the lexicon by hand would be both time consuming 
and repetitive. We therefore provide a subtheory of morphology in the DATR base 
definitions so that the grammar writer need only specify exceptional morphology for 
each lexeme, leaving the lexicon generator to expand out all of the regular forms. 

The surface form of an English verb encodes information relating to finiteness, 
tense, number, and person. What is required in the DATR theory is a number of 
condition-action statements that say things like: 

IF a verb is finite 
THEN IF it is present tense AND singular AND third per- 

son 
THEN its form is <root>+s 

ELSE its form is <root>. 

The desired effect is achieved by means of DATR's evaluable paths. The following path 
equation is included at the VERB node. 

(8) VERB: <mor form> == VERB_MOR:<> 

The VERB_MOR node looks like this: 

(9) VERB340R: <bse> == "<mor root>" 

<prp> == ("<mor root>" ing) 

<psp> == ("<mor root>" ed) 

<fin> == "< "<syn head tense>" "<syn head number>" 

"<syn head person>" >" 

<pres> == "<mor root>" 

<pres sg third> == ("<mor root>" s) 

<past> == "<mor form psp>". 
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The base, present participle, and past participle forms are immediately available. If the 
verb is finite it is necessary to construct an evaluable path consisting of tense, number, 
and person values. If the tense is past (last line), the form is copied from the form of 
the past participle. If the form is present singular third person (second last line), the 
form is <root> +s. Otherwise, the present tense form is copied from the root form. 

Exceptional forms are stated explicitly, thus overriding default forms. For example, 
the following entry for hear specifies that it has exceptional past forms. 

(10) HEAR: <> == VERB 

<mor root> == hear 

<mor form psp> == heard. 

The evaluable path mechanism is also used to set the value of an agreement feature agr 
to tps  (third person singular) or not_tps. The path equation shown in (11), augmented 
by the information at the V_AGREE node (12) then requires subject and verb to share 
the same agr feature value. The subject's agr feature is set by the definitions in (13). 3 

(11) VERB: <syn args gr_subject syn head agr> == 

V_AGREE:< "<syn head tense> .... <syn head number>" 

"<syn head person>" >. 

(12) V_AGREE: <pres> == not_tps 

<pres sg third> == tps. 

(13) NOUN: <syn head agr> == 

N_AGREE:<agr "<syn head number>" "<syn head person>">. 

N_AGREE: <agr> == not~ps 

<agr sg third> == tps. 

English verb morphology presents no real problems; noun morphology is even simpler. 
French morphology is rather more complicated. However, it can be handled by means 
of the same general technique of allowing evaluable paths to act as case statements 
that select the appropriate morphological form. Instead of a unified account of French 
verb morphology there are a number of distinct inflectional paradigms from which 
different verbs inherit. A more sophisticated account of subject-verb agreement is also 
required. 

3.4 Transitivity 
Consider the relationship between verbs of different transitivity. An intransitive verb 
takes a subject only. A transitive verb takes a subject and an object. A ditransitive verb 
takes a subject and two objects, one direct and the other indirect. This information 

3 In a few exceptional cases (e.g. am~are~is in the singular of BE) more complex constraints on agreement 
are stated in the relevant lexical entries. 
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is easily expressible in terms of an inheritance hierarchy. Facts about subjects are 
associated with a top node, for example a node called VERB. Facts about direct objects 
are associated with another node, for example, a node called TRANS_V. By saying that 
TRANS_V is a VERB, the general information about subjects is inherited at the TRANS_V 
node. This relationship can be expressed simply in DATR. A similar treatment can be 
adopted for ditransitive verbs (DTRANS_V): 

(14) VERB: <syn head major> == v 

<syn args gr_subject> == GR_SUBJECT:<>. 

TRANS_V: <> == VERB 

<syn args gr_direct> == GR_DIRECT:<>. 

DTRANS_V: <> == TRANS_V 

<syn args gr_indirect> == GR_INDIRECT:<>. 

Entries of the form <syn args gr_subject> == GR_SUBJECT:<> represent a convenient 
way of packaging up all information relating to an argument type at a single node 
(part of the information stored at this node can be found in (18) below; notice that 
different arguments are identified by unique labels such as gr_subj ect  and gr_direct).  
We have already noted that in our sign representation, arguments are distinguished 
by their position in a stack. This ought to render unique argument labels superfluous. 
In fact, there are a number of reasons why it is desirable to use unique labels in the 
DATR theory. Firstly, they allow individual arguments of a word to be picked out (see 
Section 3.4.1 below). Secondly, they allow classes of argument to be identified and 
generalizations to be made where appropriate. For example, we show in Section 3.4.2 
how order and optionality generalizations can be made over argument types, and how 
a system organized around named arguments can be mapped within DATR into an 
order-marked system. Finally, grammatical relation labels are much easier for grammar 
writers to remember and manipulate than positionally encoded argument structures. 

Consider the following partial DATR entry for English infinitival complement 
verbs. 

(15) INF_COMP_V: <> == VERB 

<syn args gr_comp> == GR_COMP:<> 

<syn args gr_comp syn args gr_subject> == 

"Ksyn args gr_subject>" 

The first line states that an infinitival complement verb inherits from the VERB node, 
i.e., it is a verb that must have a subject. The second line introduces a number of 
constraints on the complement. These constraints-----collected at the GR_COMP node--  
include the fact that the complement must be the infinitive form of a verb. The next 
line enables the complement to share the subject of the matrix verb, i.e., in a sentence 
like Amy wants to fly, Amy is the subject of both want and fly. 
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3.4.1 Unevaluated Path Equations. Consider the relationship between the semantics of 
a verb and the semantics of its subject. The semantics of the subject must be coindexed 
with a semantic role of the verb such as theagent, as shown in (16). 

(16) [syn:[args:[gr~ubject:[sem:Asem: [ theagent:A ] ] ] ] ] 

This reentrancy can be expressed in DATR as follows: 

(17) <sem theagent> == "<syn args gr_subject sere>". 

The argument labeled gr_subj ec t  is typically underspecified in the lexicon and awaits 
full specification at parse time. Because of this, the constraint is carried over to the 
DAG-encoding phase of lexicon compilation, where it becomes a reentrancy, as de- 
scribed in Section 4. 

3.4.2 Argument Order and Optionality. While arguments in the structured base def- 
initions are identified by grammatical relation labels, such as gr_subj ect,  the lexicon 
generation process requires arguments encoding order and optionality constraints that 
are identified by relative position in an args list. Two techniques are used to produce 
DATR theories with arguments structured in this way. 

The first technique is to define featural constraints of order and optionality for 
each grammatical relation label. Three types of constraint are defined: 

din indicating whether the argument precedes or follows the functor (pre or 
post); 

adj: indicating whether the argument is adjacent to the functor or not (next or 
any); and 

opt: indicating whether the argument is optional or obligatory (opt or oblig). 

Arguments identified as gr_subject  and gr_oblique, for example, inherit the follow- 
ing ordering constraints: 

(18) GR_SUBJECT: <order dir> == pre 

<order adj> == next 

<order opt> == oblig. 

GR_0BLIQUE: <order dir> == post 

<order adj> == any 

<order opt> == opt 

Whereas the subject is obligatory, and precedes the functor and allows for interven- 
ing constituents, the oblique argument is optional and may appear in any position 
following the functor. 

The second technique maps arguments identified by relation labels onto arguments 
identified by position in a linked list. Relative position is encoded in terms of the 
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features first and rest: first identifies the first argument in a list, and rest identifies the 
linked list of remaining arguments. 

Consider part of the base definition for transitive verbs, as shown in (19). 

(19) TRANS_V: <> == VERB 

<syn args gr_direct> == GR_DIRECT:<> 

<syn args> == TVARGS:<>. 

Part of the collection of nodes devoted to mapping named arguments onto order- 

marked arguments is shown in (20). 

(20) TVARGS: <> == DTVARGS 

<rest> == DARGS:<>. 

DTVARGS: <first> == "<syn args gr_subject>" 

<rest> == ARGSI:<>. 

DARGS: <first> == "<syn args gr_direct>" 

<rest> == ARGS3:<>. 

ARGS3: <first> == "<syn args obliquel>" 

<rest> == ARGS4: <>. 

TVARGS inherits the value of < f i r s t >  from DTVARGS, which finds it by evaluating 
the path "<syn args gr_subject>." The < r e s t >  is then inherited from DTVARGS 
where the < f i r s t >  argument of < r e s t >  inherits from "<syn args gr_direct>."  
The < r e s t >  of < r e s t >  then inherits from ARGS3, which specifies the position of 
oblique arguments within the args list of transitive verbs. 

3.5 Lexico-Semantic Constraints 
A word lattice is likely to include numerous semantically anomalous but syntactically 
well-formed constructions. In a system that aims toward real time speech understand- 
ing it is vital that semantic selectional restrictions be introduced as early as possible 
in order to eliminate false phrasal hypotheses at an early stage. 

Selectional restrictions are typically associated with lexemes. Each content word 
has a semantic type, and many words specify the semantic types of their arguments. 
For example, the semantic type of tell is inform and the type of its role theexperiencer 
(associated with the indirect object) is almost always human in our trial domain. This 
can be expressed as follows. 

(21) TELL: <> == DTRANS_V 

<mor root> == tell 

<sem type> == inform 

<sem theexperiencer type> == human. 
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Certain argument types can be assigned default semantic types. For example, by de- 
fault the semantic type of subjects must be sentient (a superclass of human). This 
works for a large majority of verbs. Of course, defaults of this kind can be overridden 
for individual lexemes (such as the verb rain) or word classes (such as copular verbs). 

3.6 Example: The French Noun Phrase 
By way of example, we show how two entries from the French SUNDIAL lexicon, the 
determiner le ('the.MASC') and the common noun passager ('passenger'), are encoded 
in DATR; to put the following section in context, we also show the DIALEX output. 

In a simple French noun phrase, we treat the common noun as the head, with the 
determiner as an optional argument. Therefore, most of the information is associated 
with the common noun. 

A common noun inherits from the node NOUN: 

(22) NOUN: <> == WOKD 

<syn head major> == n 

<syn head gender> == masc 

<syn head case> == nom 

<syn args gr_determiner> == GK_DETERMINER: <> 

<syn args gr_determiner syn head gender> == 

"<syn head gender>" 

<syn args> == NOUNARGS: <> 

<syn head number> == 

"<syn args gr_determiner syn head number>" 

<syn head def> == 

"<syn args gr_determiner syn head def>" 

<sem type> == entity. 

NOUN itself inherits general word features, such as default morphology, from the node 
WORD: 

(23) WORD: <mor form> == "<mor r o o t > " .  

Syntactic and semantic default values such as category (n), gender (mast), case (nom), 
and semantic type (en t i ty )  are given at the NOUN node. Some of these values may be 
overridden, for example in the definition of passager: 

(24) Passager: <> == NOUN 

<mor root> == passager 

<sem type> == passenger. 

The number and definiteness of the noun phrase are specified by the determiner when 
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WORD 

ARGS... 

/_ 

common-nouns 

Figure 2 
Inheritance graph for French common nouns. 

present, whereas the gender of the determiner is copied from the common noun. 
Where a feature value is already specified for both noun and determiner at parse 
time, the values must be the same if combination is to take place. The definitions for 
GR_DETERMINER and NOUNARGS are shown in (25): 

(25) GR_DETERMINER: <syn head major> == det 

<order adj> == any 

<order opt> == opt 

<order dir> == pre. 

NOUNARGS: <first> == "<syn args gr_determiner>" 

<rest> == ARGS: <>. 

The definition of GR_DETERMINER specifies order and optionality information as well as 
the syntactic category (det). NOUNARGS defines the mapping of case-marked to order- 
marked arguments, for simple determiner-noun NPs. 

The inheritance graph for this set of DATR sentences is illustrated in Figure 2. 
In fact, common nouns may be more complex than our example suggests; they 

may have several obliques, for example. Fortunately, DATR allows the creation of 
intermediate nodes between the NOUN node and the common nouns, and these nodes 
specify distinctive properties of each distinct class of nouns. For example, a RELDAY 
node has been created for French in order to describe common grammatical properties 
for relative day references such as lendemain ('tomorrow') and veille ('the day before'). 
In the same spirit, NPs with genitive postmodifiers such as le numero du vol ('the number 
of the flight/the flight number'), where two nouns are combined, use the node GNOUN, 
which specifies general features of the arguments of the head noun. 

The definition of the determiner node, DET, is simple in comparison with the NOUN 
node, inheriting only from the WORD node. Example (26) shows the definition of DET, 
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mor : 

syn  : 

mor : 

syn  : 

sem : modus 

root : passager ] 

. form :passager ] 

head 

args 

root : le ] 
form : le ] 

major:  det 

head : gender : masc 
def : the 
number  : sg 

[ d e f : t h e  ] ] 

major : n 
case : nora 
gender : masc 
def : A 
number  : B 

syn  : 

first : 

order 

sere : " type : passenger-] 

Figure 3 
DAG lexicon entries for le and passager. 

major : det 
gender"  masc 

head : def : A"  

number  : B 
[ opt :  opt ] 
| d ir :  pre | 

[ adj : any  J 

together with entries for le and la ('the.FEM'). 

(26) DET: <> == WORD 

<syn head major> == det 

<syn head def> == the 

<syn head number> == sg 

<syn head gender> == masc 

<sem modus def> == the. 

le: <> == DET 

<mor root> == le. 

la: <> == DET 

<mor root> == la 

<syn head gender> == fem. 

The lexical entries for le and passager produced by the DAG-encoding phase of com- 
pilation (see Section 4) are shown in Figure 3. 
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4. Lexicon Generation 

4.1 Obtaining the DNF Lexicon 
In order to generalize across morphological instantiations, a DATR theory makes use of 
nodes at the level of the lexeme. In general, the constraints in a lexeme cannot be simply 
represented as a union of paths. This is due to the fact that the sentences making up 
the definition of a lexeme for which morphosyntactic variations exist implicitly contain 
disjunctions. Because we require the lexicon to be disjoint, our strategy is to cash out 
all embedded disjunctions that reference each surface form. The lexicon thus obtained 
can be described as being in disjunctive normal form (DNF). This DNF-lexicon will 
contain all lexical signs, where a lexical sign incorporates both the surface form and 
the corresponding lexeme. 

In order to govern the expansion of information in the DATR lexicon, it is necessary 
to make a closed world of the feature space defined there. The values that features 
may take may be implicit in the DATR lexicon; however such implicit knowledge is not 
necessarily complete. Nothing prevents arbitrary extension of the lexicon by additional 
features and values, and this may lead to unwanted interactions with existing rules. 
We therefore enumerate the possible values of features in a knowledge base known as 
the closure definitions. This enumeration is designed to be recursive, to take into account 
category-valued features such as the args list. Figure 4 gives an example of closure 
definitions, for a sign with only syn and mor attributes. These state the features that 
make up a sign; the definition is recursively introduced at the level of <syn args>. 
A closure definition takes the form: 

cdef (Feature, Fields, FieldVals, FCRs ). 

A complex feature is composed of fields either these are atomic valued, and enumer- 
ated or declared as open class in FieldVals; or they are complex and their definitions 
are to be found elsewhere. 

cdef(s ign, [syn,mor] ,_ , [mor: form=>syn:vform]) .  
cdef (syn , [head ,a rgs ]  . . . .  ).  
cdef (head , [major , type ,vform, tense ,number ,person] ,  

[ 
major==[n,v ,det ,prep] ,  
vform==[f in ,bse ,prp ,psp] ,  
t ense==[pres ,pas t ] ,  
number==[sg,pl], 
person==[first,second,third] 
], 
[vform:fin => [tense,person,number]] 
). 

cdef(args,setof(sign) .... ). 
cdeI(mor,[form,root],[open(form),open(root)],_). 

Figure 4 
Example closure definitions. 
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Besides providing closure for DNF lexicon expansion, these definitions have a 
number of uses: 

1. they are used to determine which possible paths the compiler should try 
to evaluate in order to build a DAG representation of a lexical sign. The 
search proceeds depth-first through the closure definitions, ignoring 
those fringes of the search space for which no evaluation is possible. 
Values of paths, constraints representing unevaluable reentrancies, and 
consistent combinations of these are returned; 

2. they provide a filter on the output of the DATR lexicon. Only those 
features present in the closure definitions are output. Constraints 
incorporating functional labels such as gr_subject are no longer needed; 

3. they include a complete set of knowledge definitions for our semantic 
representation language (SIL), which is inheritance based. The 
inheritance hierarchy for semantic types, for example, is used in bit 
coding (Section 5), so that semantic selectional restrictions can be tested 
during parsing; 

4. they furnish a set of declarative templates against which bit coding and 
DAG-term conversion may be carried out. 

In addition to an enumeration of feature values, the closure definitions contain Feature 
Cooccurrence Restrictions (FCRs) (Gazdar et al. 1985). In principle these could be 
encoded in the DATR lexicon, for example, using the feature-value unspec to represent 
negative occurrence. Their presence here is not only to restrict the possible feature 
combinations that can appear at the head of a sign, but also to detect dependencies 
that govern DNF expansion. 

The DNF lexicon is obtained as follows. Those features on which the surface form 
of a full lexical sign depend, which we shall refer to as its surface form dependency 
features, may be derived from the FCRs contained in the closure definitions. Then for 
each pair consisting of a DATR node A and a possible assignment to its unassigned 
surface form dependency features ~, generate a new DATR node A ~, which inherits 
from A and contains the feature assignments in ~. The DATR theory for A ~ is then used 
to produce the set of evaluated and unevaluated constraint sentences that describe it. 
For example, the base lexical entry for arrive is defined at the DATR node Arrivei ,  
which is underspecified for the paths <syn head tense>,  <syn head person>, and 
<syn head number>. For the assignment of values pres, th i rd ,  sg (respectively) to 
these paths, the node Arr ive l_pres th i rdsg  is created. 

4.2 Producing Unevaluated Paths 
As we have shown, reentrancies can be specified in DATR using global inheritance; see, 
for example, (15) in Section 3.4.1. However, such sentences may not appear directly 
in the DAG representation, either because they include paths not derivable within the 
closure definitions, or because interaction with higher-ranking exceptions may lead 
to weaker equivalences being derived. Any DATR sentence that does not explicitly 
introduce a value is treated as a candidate reentrancy constraint; at the stage where 
constraint sentences are being derived from a DATR theory, all unevaluated constraint 
sentences are retained. In the case of Arr ivel_pres thi rdsg,  the following constraint 
sentences are derived by inheritance from Verb: 

(27) <syn args first sem> = <syn args gr_subject sem>. 

<sere theagent> = <syn args gr_subject sere>. 
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DATR inference takes the form of successive reduction of right-hand sides; in (27), 
neither sentence is further reducible--both would be ignored by a standard DATR 
theorem-prover. By passing both constraints to the DAG-building procedure however, 
where equality is reflexive as well as transitive (Section 4.3), the two constraints may be 
combined to derive the reentrancy between <sem theagent> and <syn args first 
sere>. 

4.3 DAG Building and Disjunction Optimization 
The constraint sentences derived for a DATR node A or for an extension of it A ~ 
are of the form Path = Value or Pathl  = Path2. If consistent, they can be used to 
build a DAG corresponding to A ~. Our DAG-building procedure is based on one 
described in Gazdar and Mellish (1989). It builds DAGs by unification of constraints, 
so that directionality is irrelevant. For this to succeed, the input constraints must not 
contain inconsistencies. This property of correctness is only partially guaranteed by 
the constraint-derivation stage, which will tolerate an unevaluated constraint whose 
left-hand side is a proper prefix of an evaluated one (but not vice versa), as in (28). 

(28) <sem theagent type> = object. 

<sem theagent> = <syn args gr_subject sem>. 

This will work so long as a contradictory type is not derivable elsewhere. The form of 
encoded DAGs is known as normal form (Bouma 1990); that is, if two DAGs share a com- 
mon sub-DAG, this is explicitly represented in both, with the exception of unevaluated 
sharing sub-DAGs that are represented as Prolog variables. Once the DAG is built, 
any remaining unwanted paths are filtered out. In the case of Arr ivel_presthirdsg,  
this amounts to removing those sub-DAGs introduced at paths containing gr_subj ect  
and gr_oblique 1. 

Although the closure definitions ensure that the number of surface form depen- 
dency feature assignments for each lexeme is finite, in practice for languages like 
English where a number of morphosyntactic feature combinations map onto a smaller 
set of surface forms, the DNF lexicon will have more entries than there are distinct sur- 
face forms. In cases where a number of entries differ only in a single feature, a phase 
of disjunction optimization serves to reduce these, according to the simple equivalence: 

(41 /~42 /k...4n) V (4~ /N42 A.. .4n) -~-- (41 V4~)/k42/k.. .4n. 

Apart from this optimization, the lexicon produced is in DNF form. 

5. Bit Coding 

5.1 Motivation and Requirements 
The last step toward the production of data structures for efficient parsing and gen- 
eration is the construction of two separate lexicons: a Prolog term encoding of the 
DAGs and a compact bit-encoded lexicon. The motivation for two separate lexicons 
is the decision to split the task of parsing into its two aspects: determining grammat- 
icality and assigning an interpretation. Since in speech recognition there is also the 
added complication of identifying the best-scoring sequence of words from a lattice of 
hypotheses, and since an interpretation is only needed for the best sequence, not for 
every acceptable one, it is more efficient to separate these tasks. This involves sepa- 
rating lexical entries into those features that are constraining (i.e. which affect a sign's 
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capacity to combine with others) and those that simply contribute to its eventual in- 
terpretation. The former set is used to produce the bit-coded 'acceptance' lexicon, the 
latter to form a term-encoded 'full' lexicon. 

As well as being used in sentence interpretation, the full lexicon is also used in 
sentence generation. However, we shall concentrate here on the bit-encoded acceptance 
lexicon. 

Since the search space when parsing a typical word hypothesis lattice is potentially 
great, the acceptance lexicon must be both compact and suitable for processing by ef- 
ficient low-level operations. Bit encoding allows unification of feature structures to be 
performed by Boolean operations on bit strings, which enables a parser to be imple- 
mented in an efficient programming language such as C; it also provides a convenient 
representation of disjunctions and negations of feature values. 

Two distinct kinds of bit coding are used to represent semantic types and syntactic 
head features: both produce vectors of bits that can be stored as integers or lists of 
integers. 

5.2 Semantic Type Coding 
The principal semantic type of a lexical entry is a node in a tree-structured (single- 
inheritance) sortal hierarchy. Coding for types in the hierarchy is straightforward: 

• a terminal node has one unique bit set; 

• a nonterminal node is represented by the bitwise Boolean OR of the 
codings for the nodes it dominates. 

This scheme requires as many bits as there are terminal nodes in the tree and, assuming 
that every nonterminal node dominates at least two subnodes, assigns a unique bit 
vector to every node. (A simple example is given in Figure 5). The most specific types 
are represented by a bit vector containing a single '1,' and the most general by a vector 
with all its bits set. Unification of two types is performed by bitwise AND; since the 
hierarchy is tree structured the result of this will be the coding of the more specific 
type, or 0 indicating failure if the types are incompatible. The same coding scheme 
would also serve if the hierarchy were extended to a multiple-inheritance graph, the 
only difference being that bitwise AND could then result in a type distinct from either 
of its arguments. 

5.3 Syntactic Feature-Value Coding 
Our approach to the encoding of the feature structures used to represent syntactic 
categories is very similar to that proposed in Nakazawa et al. (1988) for implementing 
GPSG-style grammars. 

A set of features is represented by a bit vector in which for every n-valued feature, 
n + 1 bits are assigned, one associated with each value and one bit indicating that the 
feature is not present. A value of '0' for a bit means that the feature does not have the 
corresponding value; a '1' indicates that the value is a possible one. If the value of a 
feature can be specified precisely, the corresponding bit is set, and all the others for 
that feature are cleared. Hence the negation of a feature-value pair can be represented 
by clearing a bit, and a disjunction of values by setting more than one bit in the 
representation of a feature. This fact can be utilized to pack lexical entries together: 
if two entries differ only in one atomic-valued feature, they can be combined into a 
single entry by this method. Unification is again performed by bitwise AND; failure 
is indicated if all the bits for some feature are turned off, meaning that the structures 
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% @ 

Q 

Type Bit Vector 
A 1111111 
B 1110000 
C 0001111 
D 11O000O 
E 0010000 
F 0001000 

Figure 5 
Bit coding of the semantic type hierarchy. 

Type Bit Vector 
G 0000110 
H OOOOO01 
I 1O0OO0O 
J O100000 
K 0000100 
L 0000010 

being unified have no common value for this feature. Since this operat ion only turns 
bits off, unification of bit vectors is order- independent  (commutat ive and associative). 

The bit vector representation is straightforward for encoding flat feature-value 
structures, but  presents difficulties when  features have categories as values, given the 
requirement  that the possible values for all features can be enumera ted  in order  to 
produce  bit vectors of finite size. Al though a general solution can be proposed that 
uses some pat tern of bits to indicate a recursive feature and associates with this feature 
another  bit vector of the same length (the solution adopted  by Nakazawa et al. 1988), 
we have chosen a more  ad hoc encoding, specifying in advance which features can be 
recursive and representing them by pointers to similarly coded structures. The features 
that are recursive are the list of arguments  of a functor sign and the slash feature used 
to handle  long-distance dependencies2 (This approach enables the parser  to process 

4 We follow GPSG in the use of the category-valued feature slash as a propagating device to handle 
extraction phenomena. For example in the question 'what did you say?', the phrase "did you say?' can 
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major v ~-~ I 
major n 
major det 
major * 
vform fin 
vform bse 
vform psp 
vform prp 

1 0 0 0 1 0 0 0 0 1 1 1 0 0 0 1  
case * 
case gen 
case obj 
case nora 
tense * 
tense past 
tense pres 
vform * 

Figure 6 
Sample bit vector for head features major, vform, tense, and case. 

signs more efficiently, but unfortunately makes it partly dependent on their structure). 
The bit encoding procedure takes as input a DAG representation of individual 

lexical entries and is guided in its translation by the closure definitions. A set of 
declarations is used to indicate which features are to be included in the acceptance 
lexicon, and how they are to be encoded: using either of the bit representations dis- 
cussed above, or simply as a list of encodings of their constituents. If no coding type 
is specified for a feature, then it is simply ignored. 

As a simple example, consider the following partially specified feature structure: 

(29) [head:[  maj°r : v 
vform:fin ] ] 

Assume that the closure definitions specify values for the head features major, vform, 
tense and case, and the FCR" 

case ~ major : n 

Then if the node head is declared for bit coding, the vector shown in Figure 6 will 
be produced. (The symbol "*' stands for 'not present'). Note that bits have been set 
for all values of the unspecified feature tense, indicating that nothing is known about 
its value, but that only the '*' bit is set for the feature case, since the FCR blocks its 
presence for entries whose major feature is not n. 

5.4 Variable Sharing 
Although the representation of variables and their instantiation to (more or fully) spec- 
ified values is straightforward, the implementation of variable sharing or reentrancy 
presents a serious problem for bit coding schemes, since there is no means of rep- 
resenting identifiable variables. We have adopted a two-fold solution, depending on 
the type of the variable. For sign-valued variables, and other large scale structures, 
sharing is achieved by means of pointers to common data objects. 

This approach cannot be extended down to the level of bit-coded features, since 
these involve data below the level of the machine word. Instead a solution based on 

be partially characterized, in our notation, as 

syn : args : [1 

slash: first: [ syn: [ head: [ major:n ] ] ] ] 
indicating that it is a sentence from which a noun phrase has been extracted. 

264 



Frangois Andry et al. Making DATR Work for Speech 

the use of bit masks has been adopted. The key to this is the recognition that variable 
sharing between structures is a limited form of unification, carried out between a 
restricted set of their features. If two feature structures represented by bit vectors fll 
and t2 share a variable for the feature ¢, a mask # is constructed in which all the 
bits representing ¢ are cleared, and all the rest are set. The values for q~ in the two bit 
vectors are unified in the result of the expression: 

~, A (f12 V ~) 

Note that a single mask may represent more than one variable shared between two 
structures. 

A disadvantage of this technique is that it requires the construction of masks for 
all possible feature structures within a sign between which variables may be shared. 
In practice we can assume that this means only the recursively nested signs of the 
args list and slash, and so need relatively few masks. 

A description of the two-stage parsing procedure can be found in Andry and 
Thornton (1991). 

6. Implementation and Coverage 

DIALEX is implemented in Quintus Prolog; benchmark tests indicate that compilation 
time is linear in the size of the lexicon. Development of very large scale lexicons is 
somewhat hindered by the current lack of effective debugging tools. We have, how- 
ever, succeeded in constructing lexicons that cover a broad range of syntactic phe- 
nomena in both French and English. For example, the English DATR lexicon covers all 
distinctive lexical forms in our corpus gathered from simulations of flight enquiry dia- 
logues (Fraser and Gilbert 1991). Furthermore, one of the major advantages of DATR's 
inheritance-based approach is ease of adding new lexical entries. For example, a large 
number of entries for cities is required in the flight information domain. With the def- 
inition of a CITY_PROP node to specify general properties of proper nouns identifying 
cities, individual cities such as Paris are simple and quick to define: 

(30) Paris: <> == CITY_PROP 

<mor root> == paris 

<sem thecity value> == paris. 

Extending the lexicon to include new verbs, especially verbs with idiosyncratic prop- 
erties like try, takes more time and effort. 

This paper has been mainly concerned with the definition and compilation of 
lexicons for understanding. In fact, SUNDIAL applications are such that a produc- 
tion lexicon shares a considerable portion with its recognition counterpart. To this 
end, DIALEX has been adapted for compilation of a generation lexicon (Youd and 
McGlashan 1992). This is derived from the same DATR definitions but differs from the 
parser lexicons in that indexing is based on semantic type and complexity, rather than 
the surface string, and inflection is factored away from the lexical entries. 

7. Conclusion 

In the design of our lexicon compilation tool, we have shown how linguistic knowl- 
edge can be arranged in terms of a set of DATR structured base definitions that are 
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portable across applications. Knowledge at the levels of morphology, syntax, and se- 
mantics combines in a single reusable DATR database. The fact that this knowledge 
is expressed in a high-level representation language does not limit its usefulness. On 
the contrary, it allows the designers of base definitions or application lexicons to think 
clearly about the structural relations that hold between objects in the representation 
and to maximize generalizations. Default inheritance allows generalizations to trickle 
down to specific instances, unless overridden. As a consequence, every good gener- 
alization captured during the design of structured base definitions represents labor 
saved during subsequent application-specific work. 

We have also shown how high-level knowledge can be entered by the lexicon 
builder at the appropriate conceptual level and then compiled into a lower level form 
appropriate for a chosen application. The system we describe produces two kinds of 
output: a term-encoded full lexicon for use in sentence interpretation and generation, 
and a lower level bit-encoded acceptance lexicon for use in lattice pruning during 
speech processing. The modular design of our system makes it particularly easy to 
exchange existing coding modules for new ones, thus allowing linguistic knowledge 
to be customized for a wide variety of speech or language applications. 
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