
Inheritance in Word Grammar

N o r m a n M. Fraser*
University of Surrey

Richard A. H u d s o n t
University College London

This paper describes the central role played by default inheritance in Word Grammar, a theory
of language knowledge and processing. A single formalism is used to represent knowledge at the
levels of morphology, syntax, and semantics. A single rule of inference is used to inherit knowledge
at all of these levels. This rule is distinctive in that it requires defaults to be explicitly overridden
in the case of exceptions. The explicit overriding rule is used in syntax to achieve what other
theories achieve by means of transformations, metarules, or lexical rules.

1. Introduction

Since the scientific study of language first began, a central concern of linguists has
been the identification of linguistic generalizations and, where necessary, the stating
of exceptions to these generalizations. 1 However, it is only within the last few years
that linguists have begun to think of this process in terms of the construction of de-
fault inheritance hierarchies. This new way of envisaging old problems is attractive
for at least three reasons. Firstly, it encourages linguists to be explicit not just about
the relations that hold between individuals and classes, but also about the relations
that hold between different classes. For example, where the nouns of a language have
traditionally been assigned to some number of distinct morphological paradigms, the
default inheritance approach encourages the morphologist to pay attention to gener-
alizations that cut across paradigms. If these generalizations are inherited, then there
must be some shared super class to inherit from, and the system of word classes and
paradigms must be designed accordingly.

Secondly, whereas generalizations have traditionally been class-based, in the in-
heritance approach they are based on typical cases and their features, any of which
may be overridden. Thus the shading from core members of a class to peripheral
members can be accommodated---indeed, the existence of peripheral members is pre-
dicted by the mechanism for overriding defaults. The third and more pragmatic reason
why it is useful to recast well-known linguistic problems in terms of default inheri-
tance is that there is a fairly well-developed--though by no means conclusive--body
of knowledge on the subject in the artificial intelligence field of knowledge represen-
tation (e.g. Etherington and Reiter 1983; Brachman 1985; Touretzky 1986; Etherington
1988). Nearer the computer science mainstream, work in object-oriented programming
languages (Cook 1989) offers an interesting range of relevant insights and inheritance-
based tools.

* Social and Computer Sciences Research Group, University of Surrey, Guildford, Surrey, GU2 5XH,
United Kingdom. E-mail: norman@soc.surrey.ac.uk.

~- Department of Phonetics and Linguistics, University College London, Gower Street, London, WCIE
6BT, United Kingdom. E-mail: r.hudson@ucl.ac.uk.

1 We received very helpful comments on an earlier draft of this paper from three anonymous
Computational Linguistics readers, to whom we are most grateful. We also benefitted from discussions
with participants at the Workshop on Inheritance in Natural Language Processing, Tilburg, August
1990.

(~) 1992 Association for Computational Linguistics

Computational Linguistics Volume 18, Number 2

In recent years, linguists and computational linguists in particular have begun
to explore problems at most linguistic levels within inheritance frameworks. For ex-
ample, Gibbon and Reinhard have proposed inheritance-based solutions to problems
of phonology and prosody (Gibbon 1990; Reinhard and Gibbon 1991). Most work to
date has centered on morphology (e.g. De Smedt 1984; Flickinger, Pollard, and Wa-
sow 1985; Daelemans 1987; Calder 1989). A certain amount has also been achieved
in syntax (e.g. De Smedt 1984; Flickinger 1987), where inheritance is used to con-
struct subcategorization frames for words. As for semantics, there has been a great
deal of work on inheritance in so-called 'semantic networks,' but much of this work
relates only loosely to the semantics of natural language. The work we present in
this paper differs from all previous work in natural language processing (NLP) in at
least two respects. Firstly, it is distinctive in the extent to which inheritance is used.
Within our framework knowledge at all levels (morplhology, syntax, semantics, world
knowledge) is integrated in a single inheritance hierarchy. Indeed, given the extent of
integration, some of these level distinctions must be regarded as arbitrary. Secondly, it
is distinctive in the purposes for which inheritance is used. The canonical application
of inheritance in NLP is lexicon construction. Our system uses inheritance for this
purpose but it also makes inheritance play a vital role in the building of structure
during parsing.

What we describe is part of a theory of language (knowledge and processing)
called Word Grammar (WG) (Hudson 1984; 1990). Section 2 introduces the knowledge
representation language used in WG. Section 3 outlines the use of inheritance in WG
to describe the facts of syntax and semantics. Concluding observations are drawn in
Section 4. An Appendix sets out a fragment of English grammar and a simple sentence
analysis.

2. Word Grammar

In this section we define the syntax of WG propositions and explain how they can be
interpreted. The Appendix contains a fragment of English grammar from which all
examples are drawn.

2.1 Propositions
One of the central claims of WG is that knowledge of language is a sub-component of
knowledge in general, and in particular that it is a kind of propositional knowledge
(which we assume must be distinguished from other kinds of knowledge, notably per-
ceptual knowledge). This amounts to the rather uncontroversial claim that all linguistic
knowledge may be expressed in terms of propositions (just as it can be expressed in
terms of attribute-value structures). This is uncontroversial because it is obviously
possible to represent any standard linguistic structure or rule as a collection of propo-
sitions, though the same is probably not true for representations of faces, sounds and
so on, which are based more directly on perception. The use of propositions to repre-
sent linguistic knowledge allows us to use standard logical operations as the basis for
parsing. One set of propositions defines the observable properties of the input, and
parsing consists of drawing inferences. These inferences constitute the analysis of the
input, so, as in unification-based systems, the formal properties of sentence structure
are the same as those of a grammar.

Propositions are of two types, positive and negative. A positive proposition con-
sists of a predicate and two arguments. By convention, an infix notation is used:

(la) noun isa word.

134

Norman M. Fraser and Richard A. Hudson Inheritance in Word Grammar

(lb) verb has (1 finiteness).

(lc) (stem of JUMP) = < j u m p > .

The parentheses are general ly redundant , so in later examples we shall omi t them.
As we shall see, the a rguments are usual ly s om e wha t more complex than in these
examples.

A negat ive proposi t ion consists of 'NOT: ' fol lowed by another proposit ion:

(2a) NOT: tensed verb has 0 subject.

(2b) NOT: posit ion of p redependen t of word = after it.

A negated proposi t ion m a y itself be negated:

(3) NOT: NOT: posit ion of subject of v+s verb = after it.

Nega ted proposi t ions play a crucial role in the WG sys tem for default inheritance, as
we shall explain below.

2.2 Predicates
Three different predicates are recognized: 2 'isa, ' '=, ' and 'has. '

The ' isa ' predicate is used to encode the relat ionship be tween a sub type and a
super type in a type hierarchy. This predicate is used to express both the relat ionship
be tween instances and types (such as the wel l -known relat ionship of 'Clyde ' to 'ele-
phant ') and the relat ionship be tween types and super types (such as the relat ionship
of ' e lephant ' to 'mammal ') . Instances and types are collectively k n o w n as concepts.

(4a) Clyde isa elephant.

(4b) e lephant isa m am m al .

The '= ' predicate indicates identi ty of arguments . The reason it is necessary to include
this predicate is that it is possible to identify the same concept by means of different
kinds of names. For example, a ssuming that Clyde is grey, we can identify the concept
'grey ' either by its a tomic name or as a function of Clyde. The '= ' predicate shows
this identity. More complex identifications are of course also possible.

(5a) color of Clyde = grey.

(5b) mothe r of Clyde = sister of father of Babar.

(5c) mother of mothe r of Clyde = mothe r of father of Babar.

2 During the evolution of WG this figure has varied between five (Hudson 1984) and one (Hudson 1989),
although the expressiveness of the formalism has not changed significantly. There is a balance to be
struck between having a minimal (i.e. one-member) predicate set with necessary distinctions marked in
the arguments, and having a more readable notation that includes extra predicates. The three-member
set has been used in recent WG publications. In at least one computer implementation (described in
Hudson 1989) the 'grammarian's grammar' is written with three predicates and compiled into a
'machine grammar' that uses only one predicate.

135

Computational Linguistics Volume 18, Number 2

Propositions including the '=' predicate can be thought of as path equations of the
sort used to indicate coreference in directed acyclic graphs.

The 'has' predicate is used to associate attributes with concepts. A proposition of
the form shown in (6) associates concept Y with concept X in the quantity specified
in Q.

(6) X has Q Y.

Q is called a quantitator. It signifies how many instances of the specified type should
be associated with X.

(7a) word has 1 head.

(7b) finite verb has 0 head.

In the simplest cases, as in most of the examples in this paper, the quantitator can be
just a single integer, but it is also possible to specify a range of numbers by giving the
minimum and maximum, e.g. [0-1l.

2.3 Arguments
Arguments fall into nine basic types. It is helpful to be able to describe these types in
respect of their structure without reference to their function as arguments. We shall
therefore say that a well-formed argument must be a name where a name conforms
to one of the following definitions.

Atoms. The atoms of the WG knowledge representation are single words such as
'verb' or hyphenated words such as 'proper-noun' that identify single nodes in the
knowledge structure.

Sets. A set of concepts is enclosed in set brackets. The first element inside the brackets
is a sign that identifies whether conjunction or disjunction is intended. '{&: A, B}'
means 'A and B.' '{/:ZA, B}' means 'A or B.' Special notations are used for two
particular kinds of ordered 'and' set. Strings of orthographic symbols are enclosed
in angle brackets (e.g. '<did>'). Linear constituent structures are formed by linking
constituents by '+' (e.g. 'stem of it + mEd').

Relational names. These consist of an atom that is the name of a relation, followed
by 'of', followed by a name that may be another relational name. Thus, 'A of B' and
'A of B of C' are both well formed (e.g. 'subject of verb,' 'position of subject of verb').
Relational names are right-embedding.

Positional names. These consist of positional atoms ('before,' 'after,' 'adjacent-to,'
'next-to') followed by a name, e.g. 'before X.' Positional names identify positions in a
linear sequence in which the named concept is located.

It. Where a proposition refers to the same concept on either side of a path equation,
the second instance of the concept is identified by the name 'it.' Example (8) uses 'it'
to refer to 'word.'

(8) position of dependent of word = after it.

136

Norman M. Fraser and Richard A. Hudson Inheritance in Word Grammar

The concept identified after the '=' by 'it' is always identified before the '=' by the
most deeply embedded (i.e. rightmost) name, which in this example is 'word.'

Compound names. These consist of two parts, the first of which is the value of a
feature or a set of feature values, and the second of which is an atom. Thus 'past verb'
and '{&: past, positive, s+v} polarity-verb' are well-formed compound names.

Temporary names. Stored concepts in the WG knowledge structure are types; e.g.
'noun' means 'the typical noun,' and 'subject of verb' means 'the typical subject of the
typical verb.' To distinguish particular tokens from these types, tokens are assigned
temporary names as they are encountered during processing. These names are tempo-
rary in the sense that they do not belong to the permanent knowledge base, instead
being introduced during processing. Temporary names consist of integers prefixed by
a character or characters. By convention, morpheme instances are prefixed by 'm,'
word instances by 'w,' and objects in the semantics by 'c' (for 'concept'). Thus 'ml, '
'w12,' and 'c6' are all well-formed temporary names. For example, the propositions in
(9) (which refer to the sentence analyzed in the Appendix, Mary jumped) illustrate the
use of temporary names.

(9a) whole,of wl = <Mary>.

(9b) whole of w2 = <jumped>.

(9c) position of wl = before w2.

The analysis of a sentence involves taking the observable facts, such as the above,
and inferring unobservable ones which are logically consistent with them, with each
other and with the knowledge base. The inferred facts for Mary jumped include the
following:

(10a) wl isa MARY.

(10b) w2 isa past JUMP.

(10c) subject of w2 = wl.

(10d) w2 has 1 subject.

(10e) position of subject of w2 = before it.

(10f) sense of w2 = cl.

Instance names. These consist of a name preceded by 'a' (or 'an'). Whereas temporary
names provide a means of identifying specific instances, instance names provide a
means of identifying any single instance of a specified type. If a type 'X' exists in the
inheritance hierarchy, then the instance name 'a X' refers to any instance that isa X.
For example,

(11) subject of passive verb = a complement of it.

Notice that without this 'a,' a name refers to every example of the type concerned.
(This follows from the interpretation of concepts as types; if something is true of
some concept, then it must also be true of every instance of that concept, barring
specified exceptions). Proposition (11) identifies the subject of a passive verb with iust
one of its complements; without 'a,' it would identify the subject with every one of
the complements, and lead to chaos.

137

Computational Linguistics Volume 18, Number 2

Quantif ied names. As already explained, these consist of a quantitator followed by
an atom: e.g. '1 head,' '0 complement.'

2.4 Interpretation
The WG knowledge representation language keeps close to ordinary English, as can be
seen from the examples given above and from the Appendix. It avoids the ambiguity
of ordinary English, and is much less rich, but the propositions are easy to understand.
A full formal account of the semantics of the language would require a separate paper;
in this section we limit ourselves to a brief discussion of one of the simpler areas, viz
the use of positional names.

Positional names, which it will be recalled consist of a word such as "before' or
'after' followed by another name, are primarily to do with relations in time--the
relations between co-occurring spoken words, between co-occurring phonemes, or
between events or times that are referred to in the semantic structure of a sentence. If
the data to be analyzed are written, then some of these relations are mapped onto the
spatial patterns of writing. With this reservation, then, "before X' is the name of some
time earlier than X, where X is itself either a time (say, last Friday) or an event that
can be located in time (e.g. Mary's birthday party). The examples in (12) illustrate two
uses of this single general pattern.

(12a) position of dependent of word = after it.

(12b) time of referent of past verb = before it.

The first example refers to the order of words in a sentence, while the second refers
to the deictic relation between the event referred to by a past-tense verb and the time
when that verb itself is uttered. (In (12b), 'it' is coreferential with the verb, so when
this proposition is inherited by a token of a past verb, 'it' refers to this token, or more
precisely to the time when it is uttered).

The rule for interpreting 'after' or 'before' must therefore be capable of determining
which of two events occurs before the other. This is straightforward if these events
are themselves given temporary names whose integer rises with time; w2 occurs,
by definition, before w3, and c2 before c3. In this way, all temporary concepts are
effectively time-stamped. All the rule needs to do is compare the integers.

Positional names are noteworthy because they illustrate particularly clearly the
extent to which different kinds of knowledge can be integrated into a single system.
The same formal apparatus, interpreted by the same inference rule, is used in syntax
(regarding word order) and also in semantics (regarding temporal ordering of events).
Moreover, the latter events themselves include not only the events referred to (e.g. the
event of Mary jumping), but also the event of uttering the words concerned (i.e. in
Mary jumped, the utterance of the word jumped).

2.5 Inheritance
Inheritance is the rule of inference that derives new propositions from existing ones.
It is sanctioned primarily by any occurrence of the 'isa' predicate, but also by various
other formal patterns mentioned below. If A isa B, then A inherits all the properties
of B (except those that are blocked as we explain in the next section). In other words:

Inheritance. If A isa B, then for any true proposition P that refers to B, it is possible
to infer another true proposition Q that is the same as P except that A is substituted
in Q for B in P.

138

Norman M. Fraser and Richard A. Hudson Inheritance in Word Grammar

For example:

(13a) Clyde isa elephant.

(13b) color of elephant --- gray.

(13c) color of Clyde = gray. [from (13a,b)]

A similar interpretation applies to the '=' predicate, which is in effect a reciprocal 'isa'.
If A = B, then any true proposition that contains A can be matched by another in
which B replaces A, and vice versa. Inferentially, then, both 'isa' and '=' are extremely
simple, and extremely powerful, allowing the creation of new propositions by simple
substitution operations.

The most noteworthy feature of the WG inheritance system is, once again, that
it applies to all types of knowledge, allowing a single integrated knowledge base
and a single set of inference rules for both linguistic and nonlinguistic knowledge
(cf. the 'preference rules' of Jackendoff 1983). The same rule that allows us to inherit
information about Clyde also allows us to inherit information about words within
the grammar and about words in sentences. These similarities can be seen from the
following examples.

(14a) noun isa word.

(14b) word has 1 head.

(14c) so: noun has 1 head.

(15a) MARY isa noun.

(15b) noun has 1 head. [= 14c]

(15c) so: MARY has 1 head.

(16a) wl isa MARY.

(16b) MARY has 1 head. [= 15c]

(16c) so: wl has 1 head.

These examples show how inheritance allows information to be inherited both within
the grammar (14, 15) and from the grammar to a particular sentence word, in the pro-
cess of parsing (16). As already explained, the aim in parsing is to link each sentence
word to a word in the grammar from which it can inherit a set of propositions com-
patible with the propositions inherited for all the other words in the same sentence.

Another set of examples applies the same inheritance rule to meanings and con-
cepts:

(17a) jumping isa action.

(17b) action has 1 actor.

(17c) so: jumping has 1 actor.

139

Computational Linguistics Volume 18, Number 2

(18a) sense of JUMP = jumping.

(18b) jumping has 1 actor. [= 17c]

(18c) so: sense of JUMP has 1 actor.

(19a) w2 isa JUMP.

(19b) sense of JUMP has 1 actor. [= 18c]

(19c) so: sense of w2 has 1 actor.

(20a) w2 isa word.

(20b) referent of word isa sense of it.

(20c) referent of w2 isa sense of it.

(21a) referent of w2 isa sense of it. [= 20c]

(21b) sense of w2 has 1 actor. [= 19c]

(21c) so: referent of w2 has 1 actor.

If we continue this chain of deduct ions we eventual ly find that Mary is the actor of the
event of jumping referred to by w2; in other words, Mary jumped. If the analysis were
embedded in a body of knowledge about the world in which Clyde trod on Mary 's
toes, then we could infer that the person on whose toes Clyde trod jumped; and so
o n .

The unified nature of inheritance in WG allows us to recognize, or at least imagine,
a single inheritance hierarchy for the whole of knowledge, within which linguistic
concepts can be located as special cases of more general ones. In particular, words are
a special kind of action, and inherit f rom 'action' propert ies such as having a t ime and
an actor:

(22a) word isa action.

(22b) action has 1 actor.

(22c) so: word has 1 actor.

(22d) action has 1 time.

(22e) so: word has 1 time.

It was this inheritance that al lowed us to assume that a word has a time, which can
be referred to not only in the rules for word order but also in those for the semantics
of tense (cf. (12) above).

Another direction in which WG extends the normal scope of inheritance is by
allowing it to apply to relations as well as to the more familiar kind of nonrelat ional
category, such as elephant, word, etc. (For a similar approach see Thomason and
Touretzky 1991). This allows us to recognize a hierarchy of grammatical relations,
with, for example, 'object' as a particular kind of 'dependent ' ; which in turn allows us
to formulate word-order rules that refer to the appropriate point in the hierarchy, and

140

Norman M. Fraser and Richard A. Hudson Inheritance in Word Grammar

then automatically generalize to all relations below this. Here is a simple example of
the inferences that can be drawn.

(23a) position of dependent of word = after it.

(23b) object isa dependent.

(23c) LIKE isa word.

(23d) so: position of object of LIKE = after it.

To summarize, then, inheritance plays a much larger part in WG than in other theories.
It allows us to locate atomic concepts in inheritance hierarchies, and encourages us to
try to unify them all into a single grand hierarchy that reveals the continuities between
linguistic and other concepts. Afortiori, it integrates linguistic categories of different
levels into a single system, in which the same inheritance rule applies to morphology,
syntax, and semantics. Moreover, since WG uses dependency instead of constituent
structure, all the units of syntax (outside coordination) are single words, so the only
difference between the 'rules of grammar' and 'lexical entries' is in the generality,
rather than the size, of the units to which they refer.

2.6 Overriding
In a default inheritance system, information is inherited only by default, i.e. in the
absence of some exceptional information. One key question is how exceptions should
be handled, and our answer is perhaps the most controversial part of this paper.

The standard answer is, of course, that any more general proposition is overridden
by a more specific one that contradicts it. For example, the past-tense form did takes
precedence over the expected *doed because the former is specified in relation to DO,
whereas the latter is inherited from the general rules for verbs. This principle, which we
call automatic overriding, underlies most discussions of inheritance (e.g. Shieber 1986;
Flickinger 1987), but it is also assumed in a lot of linguistic theory where the notion
of 'inheritance' is not recognized as such---e.g, in the 'Proper Inclusion Precedence
Principle' governing the ordering of rules in phonology (see, for example, Pullum
1979 for a survey of this literature).

Our answer is quite different, and involves the negative propositions, introduced
by 'NOT:', which we described earlier. In WG, inheritance is not blocked by a more
specific proposition, but by a negative proposition. We know that *doed is not possible
because there is a proposition that tells us so (24a), and not just because (24b) requires
did:

(24a) NOT: whole of past DO = stem of it + whole of mEd.

(24b) whole of past DO = Kdid>.

Every exceptional fact is paired with a negative fact that blocks inheritance. We call
this stipulated overriding. It remains to be seen which of these approaches--automatic
overriding or stipulated overriding--will be favored by future research in NLP. The
extra cost of exceptional facts in the first system lies in the need to ensure that more
specific facts are accessed before more general ones. In the second system, the cost
lies in the need for a larger database. Our reasons for preferring stipulated overriding
are partly concerned with cognitive modeling (see Hudson 1990: 40ff), but we also

141

Computational Linguistics Volume 18, Number 2

believe that the syntactic and semantic arguments that we present in the next sections
support this approach. Here, then, is the rule of inference for default inheritance:

Default inheritance
If A isa B, then for any true proposition P that refers to B, it is possible to infer

another true proposition Q that is the same as P except that A is substituted in Q for
B in P, unless NOT: Q.

That is, we can apply the inheritance rule defined in the last section, unless there
is a negative proposition that conflicts with the inherited proposition. This negative
proposition has the form NOT: Q, where Q is also a proposition that is available either
by inspection or by inference. This proposition, NOT: Q, must itself pass the same test,
since it may in turn be overridden by NOT: NOT: Q, and so on recursively.

We can now give a more detailed summary of inheritance and blocking in WG.

(26a) A proposition P is valid iff

a. it is contained in the knowledge base or
bi. it may be inherited and
bii. NOT: P cannot be inherited.

(26b) A proposition P may be inherited iff

a. Q is valid and
b. at every point where P differs from Q, by containing Y
instead of X, X subsumes Y.

(26c) A name X subsumes another name Y iff

a. Y isa X, or
b. Y is a compound name (A B), where B is subsumed by X, or
c. X =Y.

(Allowing inheritance to apply to compound names allows multiple inheritance i.e.,
one concept may inherit down more than one path. For example, dogs is 'plural DOG,'
an example of both DOG and 'plural noun.' From DOG it inherits its stem and its
sense (inter alia), while 'plural noun' provides the suffix, the 'set' meaning, and the
ability to occur, for example, after these).

Having introduced our theory of default inheritance, we can now discuss some
linguistic applications in more depth. One of the most distinctive features of our theory
is our claim that default inheritance applies to syntax and compositional semantics,
so we shall concentrate on these areas. The preceding discussion should have made it
clear that we also use default inheritance in morphology, but we will not pursue that
further here. (A brief WG account of English inflectional morphology can be found in
Hudson 1990: 181-90.)

3. Syntax

3.1 Word Types
WG syntax is centred on two inheritance hierarchies, one for word types (i.e. word
classes and lexical items) and the other for grammatical relations. In Word Grammar

142

Norman M. Fraser and Richard A. Hudson Inheritance in Word Grammar

word

adword noun conjunct ion verb

adjective adverb proper common pronoun polarity STAND etc

preposition

Figure 1
The word type hierarchy.

count determiner modal

(as suggested by the name) the category 'word ' is basic in every sense. Figure 1 shows
the top of the hierarchy of word types assumed in WG for English, and some of the
corresponding WG proposit ions are given in (27).

(27a) count isa common.

(27b) common isa noun.

(27c) noun isa word.

Three points should be noted about this hierarchy.

1. We assume a hierarchical relation among word types, instead of the
more usual cross-classification based on features. This links to a general
restriction on the use of features in WG, which excludes all features
except those that are morphosyntact ic-- i .e . , reflected in morpho logy and
relevant to syntax or semantics.

2. Secondly, we assume some nonstandard analyses; in particular, a
preposit ion is a kind of adverb, and a determiner is a kind of pronoun,
which in turn is a kind of noun.

3. We prefer to keep an open mind on the extent to which our categories
are universal, but we are sure that some are parochial (relevant to
English only). This hierarchy can be continued d o w n w ard to include
lexical items (such as STAND, shown in the diagram), which may in turn
be further subdivided; e.g., we can distinguish transitive and intransitive
versions of STAND (with, it should be noted, the same irregular
morpho logy in both cases):

(28a) STAND isa verb.

(28b) STAND/in t rans isa STAND.

(28c) STAND/t rans isa STAND.

143

Computational Linguistics Volume 18, Number 2

As explained earlier, because lexical items are part of the same hierarchy as general
word classes, there is no formal distinction between the lexicon and the rest of the
grammar. Furthermore, we use the same isa relation to link word tokens to word
types; so if w3 is the name of the word stand in I can't stand cats, it too will fit into the
same hierarchy:

(29) w3 isa STAND/trans.

Word tokens can be thought of as a constantly changing fringe on the bottom of
the (relatively) permanent hierarchy.

3.2 Grammatical Functions
We now come to the second hierarchy of syntax, the hierarchy of grammatical rela-
tions. Unlike most other syntactic theories, WG uses constituent structure only for the
purpose of describing coordinate constructions (cf. Hudson 1990: 404ff for details). All
other syntactic structure is expressed in terms of dependencies between pairs of words,
one of which is the head of the other, its dependent. Higher nodes such as phrases
or sentences are not represented explicitly in the grammar. WG is thus a variety of
dependency grammar.

Dependency grammar was first formalized by Tesni6re (1959) and refined by
Hays (1964), Gaifman (1965), Robinson (1970) and others. A number of dependency-
based theories have emerged from the linguistic underground during the last thirty
years. These include the Meaning-Text model (Mel'~uk and Zolkovskij 1970; Mel'~uk
1988), Case Grammar (Anderson 1971; 1977), Daughter Dependency Grammar (Hud-
son 1976), WG (Hudson 1984; 1990), Functional Generative Description (Sgall, Haji~ov~,
and Panevov~ 1986), and Lexicase (Starosta 1988). While none of these theories has at-
tained widespread popularity, some of their central insights have become increasingly
influential in the phrase structure grammar mainstream. For example, the trend toward
head-driven approaches, the prominence of notions such as 'government, ' the explicit
use of grammatical relations and case, and the reduced amount of information carried
in phrasal categories all reflect the general migration toward dependency. Increased
interest in categorial grammars, and especially unification categorial grammars (which
are virtually indistinguishable from dependency grammars) provides further evidence
of this tendency. 3

The combination of default inheritance with dependency syntax allows an inter-
esting range of generalizations and exceptions. Like other dependency grammars, WG
requires a typical word to have one head, though the same word may act as head to
more than one other word, its dependents. As in other theories, just one word is al-
lowed to be an exception to this rule; we call this word the 'root' of the sentence. This
has (by definition) no head, and is generally a finite verb; e.g. in Mary didn't jump,
the polarity verb ('auxiliary verb') didn't is the root, on which both Mary and jump

3 The last decade has seen increased interest in dependency grammar among computational linguists.
Dependency grammar has been applied in the experimental parsing systems of Hellwig (1986), Sigurd
(1989), and Covington (1991); in the 'Kielikone' natural language interface of Jappinen, Lassila, and
Lahtola (1988); in the machine translation systems of EUROTtLA (Johnson, King, and des Tombe 1985),
DLT (Schubert 1987), Charles University (Sgall and Panevov~ 1987), and IBM Tokyo (Maruyama 1990);
and in the speech recognition system of Giachin and Rullent (1989). Parsers based on the theories of
Lexicase (Starosta and Nomura 1986) and Word Grammar (Fraser 1989; Hudson 1989) have also been
developed.

144

Norman M. Fraser and Richard A. Hudson Inheritance in Word Grammar

depend. Here, then, we already have a simple example of default inheritance:

(30a) word has 1 head.

(30b) wl isa word.

(30c) so: wl has 1 head.

On the other hand, for w2, the finite verb didn't, this general rule is blocked to allow
it to occur without a head (i.e. to make the head optional, '[0-1] head'). This analysis
assumes that obligatory ('1') and optional ('[0-1]') conflict, so the former must be
suppressed by (31d)J

(31a) finite verb has [0-1] head.

(31b) w2 isa finite verb.

(31c) so: w2 has [0-1] head.

(31d) NOT: finite verb has 1 head.

(31e) so: NOT: w2 has 1 head.

If the rule about having one head per word allows exceptions in one direction, we
may expect exceptions in the other direction as well: words that have more than one
head. This is not allowed in other versions of dependency grammar, 5 but in WG it
is the basis for our analysis of a range of important constructions: raising, control,
extraction, and passives (not to mention coordination, which is often allowed as an
exception by other theories). For example, in Mary didn't jump, we recognize Mary as
the subject not only of didn't but also of jump, so Mary has two heads, contrary to the
general rule.

(32) subject
If subject~ ~ xcomplement 1

Mary didn ' t jump

4 This analysis may in fact be more complicated than it needs to be. We could allow finite verbs to
inherit the regular '1 head ' s imply by not blocking it, and allow for '0 head ' by an extra rule, which
provides the other alternative.

5 The notion of a word with two heads is meaningless in theories based on phrase structure, because
'head ' is used there in relation to phrases, not words. The X-bar 'head' corresponds to our 'root, ' the
word in a phrase that has no head inside that phrase. It is true that some linguists have suggested that
a phrase might have more than one head (e.g. Warner 1987), and this has been a s tandard analysis of
coordinate structures since Bloomfield (1933); but this is very different from a single word having more
than one head.

145

Computational Linguistics Volume 18, Number 2

(In a dependency diagram, the arrow points towards the dependent .) This is per-
mitted by a proposit ion which, at least by implication, overrides the general rule, and
which refers to the grammatical function 'xcomplement ' : 6

(33) subject of xcomplement of word = subject of it.

In other words, a word may have two heads provided that one of them is the xcomple-
ment of the other. (We return below to the relations among the grammatical functions
such as 'subject' and 'xcomplement ') .

The possibility of having more than one head is related to another impor tant
generalization, namely that heads and dependents are usually adjacent. If we think of
each word as defining a 'phrase, ' made up of that word plus any words subordinate
to it, this is equivalent to the PSG ban on discontinuous phrases. In the simple cases,
then, the following generalization is true:

(34) position of word = adjacent-to head of it.

An operational definition of 'adjacent-to' checks that no word be tween the words
concerned has a head outside the phrase:

(35a) A is adjacent-to B iff every word between A and B is a subordinate
of B.

(35b) A is a subord ina te of B iff A is B or A is a dependen t of a
subordinate of B.

But what if a word has more than one head? This normal ly leads to a discontinuity;
e.g. in Mary didn't jump, the phrase rooted in jump consists of Mary jump, but does not
include didn't. Saying that Mary jump is discontinuous is the same as saying that Mary
is not adjacent to one of its heads, jump. Interestingly, though, Mary does have one
head to which it is adjacent (viz didn't), and more generally the same is true of all
discontinuities: even if a word has some nonadjacent heads, it also has at least one to
which it is adjacent. We can therefore keep our generalization (34) in a slightly revised
form, with 'a head' (one head) rather than 'head' (every head):

(36) position of word = adjacent-to a head of it.

This generalization is inheri ted by every word, so every word has to be adjacent to at
least one of its heads. This t reatment of discontinuity has m an y impor tant ramifications
that cannot be explored fully here.

The generalizations discussed in this section have referred crucially to grammatical
functions. 7 In some cases these were the functions 'dependent ' and 'head, ' but we also
ment ioned "subject' and 'xcomplement . ' The functional categories are ar ranged in an

6 The name 'xcomplement' is borrowed from Lexical Functional Grammar. The term used in earlier WG
literature is 'incomplement.'

7 As in LFG, the term 'function' is used here in both its mathematical and grammatical senses, but
(unlike LFG) with a single word as the argument; so in expressions such as 'head of X' or 'subject of
X,' X is always some word or word type rather than a phrase.

146

Norman M. Fraser and Richard A. Hudson Inheritance in Word Grammar

dependent

v i s i t o r subject preadjunct ~ n t postadjunct

J I \
object xcomplement etc

Figure 2
Hierarchy of dependency types for English.

inheritance hierarchy, and the one for English is shown (in part) in Figure 2. This
hierarchy allows generalizations to be made about different types of dependent at the
most appropriate level. As with the hierarchy of word classes, we are sure that some
of these categories are specific to languages like English, and not universal, but others
seem to be very widespread or universal.

Generalizations about word order are perhaps the clearest examples of general-
izations that take advantage of the hierarchical organization of grammatical functions
in WG. Proposition (37) states the default word order of English (i.e. English is a
head-first language).

(37) position of dependent of word = after it.

Although this generalization has important exceptions, it is clearly true of 'typical'
dependencies in English; for example, in a running text we find that between 60% and
70% of dependencies are head-first.

The exceptional order of those dependent types that typically precede their heads
is handled by the propositions shown in (38), referring to the super-category 'prede-
pendent.'

(38a) position of predependent of word = before it.

(38b) NOT: position of predependent of word = after it.

The usual machinery of default inheritance applies, so that (38b) blocks the normal
head-first rule, and (38a) replaces it by the exceptional one. There are just a few con-
structions that allow a dependent to precede its head, one of which is the subject-verb
pair. 8

8 As one of our readers commented, if pressure toward consistency were the strongest pressure on
language development, we should expect VSO languages to outnumber SVO, but of course they do not
(about 40% of the world's languages are said to be SVO, compared with only 10% VSO). One
explanation for this is presumably tile strong tendency for subjects to be more topical than verbs, but it
remains as a challenging area for research.

147

Computational Linguistics Volume 18, Number 2

One of the most important applications of default inheritance in WG syntax is
in the distinction of 'derived' from 'underlying' or 'basic' patterns. The general point
is that underlying patterns are allowed by the most general rules, and are therefore
most typical; whereas derived patterns involve rules that override these, so they are
exceptional. In this way we can capture the different statuses of these patterns in
a completely monostratal analysis and without the use of special devices such as
transformations, lexical rules, or metarules.

Take for instance the rules given in the Appendix for inverted subjects.

(39a) tensed polarity-verb has 1 sv-order.

(39b) sv-order of verb = {/: s+v, v+s}.

(39c) position of dependent of word = after it.

(39d) position of predependent of word = before it.

(39e) NOT: position of predependent of word -- after it.

(39f) NOT: position of subject of v+s verb = before it.

(39g) NOT: NOT: position of subject of v+s verb = after it.

The first two rules allow us to distinguish tensed polarity-verbs according to whether
their subject precedes ('s+v') or follows ('v+s') them. 9 This allows us to treat 'v+s verb'
as an exception to the general rule that subjects precede their head, which is in turn
an exception to the generalization that words follow their heads. This system allows
us to generate a sentence such as Did Mary jump? with just one syntactic structure,
free of empty positions, while still showing 1° that it is a less normal construction than
a sentence such as Mary did jump. In parsing terms, the only problem is to find and
apply the necessary propositions; there is no need to reconstruct any kind of abstract
structure for the sentence itself.

The use of 'NOT' rules for overriding defaults finds support in the fact that the
'NOT' rule in (39e) is also crucial for solving at least two other major problems, namely
passives and extraction. In a passive sentence like (40), WG handles object-promotion
by analyzing the subject as also being the object. This is achieved by means of propo-
sition (41a) (which is slightly simplified).

(40) Mary was kissed by John.

(41a) subject of passive verb = object of it.

(41b) NOT: position of predependent of word = after it.

The problem is that Mary, as the object of kissed, ought to follow it, but since Mary
is also the subject this requirement is overridden by proposition (39e=41b), so Mary
never inherits the need to follow kissed. 11

9 See Hudson (1990: 215-6) for a discussion of the apparent lack of morphological consequences of the
subject-position feature.

10 The exceptionality of an inverted subject is shown by the negative proposition 'NOT: NOT: position of
subject of v+s verb = after it.' This proposition is inherited by the word tokens concerned--i.e, it is part
of the analysis of the sentence itself, and not just available in the grammar.

11 It may not be obvious exactly how this works. How does (41b) stop the object of a passive from
following the verb, given that it refers to 'predependent, ' which does not subsume 'object'? The answer
lies in (41a): the object of a passive verb is also its subject, so any rule (such as (41b)) that applies to the
subject also, ipso facto, applies to its object.

148

Norman M. Fraser and Richard A. Hudson Inheritance in Word Grammar

A similar approach is used to handle extraction. For example, consider sentence (42).

(42) Salesmen I distrust.

Here salesmen must be an object of distrust, so the order should be I distrust salesmen,
but in this case we also recognize a special kind of predependent relation ('visitor,'
roughly equivalent to 'Comp') between distrust and salesmen, so once again the word
order conflict between these two relations can be resolved. The rules are given in (43).

(43a) finite verb has [0-1] visitor.

(43b) visitor isa predependent.

(43c) position of predependent of word = before it.

(43d) NOT: position of predependent of word = after it.

(43e) visitor of word -- a postdependent of it.

(43f) visitor of word = a visitor of complement of it.

Proposition (43a) allows distrust to have a visitor, which according to (43b) is a kind of
predependent and therefore, by inheritance from (43c,d), must precede it. The visitor
is also some kind of postdependent, according to (43e), so it may be the verb's object
as in our example. But equally it may 'hop' down the dependency chain thanks to
(43f), thereby providing for the analysis of sentences such as (44).

(44) Salesmen I don't think many people say they trust.

Further details of the WG analysis of passives and extraction can be found in Hudson
(1990).

Both passivization and extraction are standard examples of syntactic problems that
need special machinery. According to WG--and more recently Flickinger, Pollard, and
Wasow (1985) and Flickinger (1987)--all that is needed is default inheritance, which
is available (though generally not explicitly recognized) in every linguistic theory; so
any theory capable of accommodating exceptional morphology already has the power
to deal with subject-inversion, passives and extraction.

4. Semantics

Default inheritance also plays a crucial part in the WG treatment of semantics. It is
probably obvious how it applies in the familiar examples of inheritance in semantic
networks---e.g., how one can infer that Clyde has a head from more general propo-
sitions about elephants or animals. Rather than discussing this familiar territory we
shall show how default inheritance helps us to answer a recurrent objection to de-
pendency analysis: the syntactic dependency structure is completely flat, so it does
not provide any units between the individual word and the complete phrase (where
'phrase' means a word and the complete set of all its dependents and their respective
phrases).

For example, the semantic structure for the phrase typical French house has to men-
tion the concept 'French house' (a typical French house is a house that is typical as a

149

Computational Linguistics Volume 18, Number 2

French house, and not just as a house); but a flat dependency structure such as (45)
provides no syntactic unit larger than the individual "words (Dahl 1980).

(45)

typical French house

Similarly, how can we handle 'VP-anaphora' without a VP node? For example, we
need the concept 'adore peanuts' as part of the semantic structure of Fred doesn't in
(46a), but adores peanuts is not a phrase in the syntactic structure of the first clause:

(46a) Mary adores peanuts but Fred doesn't.

(46b)

{[Mary adores peanuts] [but Fred doesn't]}

Inheritance is relevant to these questions because notions such as 'French-house '12
and 'adoring-peanuts' can be located in an inheritance hierarchy between the more
general notions denoted by their heads ('house' or 'adoring') and the more specific ones
denoted by the complete phrase ('typical-French-house,' 'Mary-adoring-peanuts'):

(47) house adoring

I L
French-house adoring-peanuts

I I
typical-French-house Mary-adoring-peanuts

As usual, each of these concepts inherits all the properties of the concepts above it in
the hierarchy except where these are overridden. 13

It is easy to see how a dependency grammar can generate concepts at the top
and bottom of these hierarchies. The top concept comes straight from the lexical entry
for the root word (e.g. HOUSE, ADORE), and the bottom one belongs to the word
token--the word in the sentence concerned (e.g. the word house in the phrase typical

12 The h y p h e n in 'French-house ' is needed because this is an atomic n a m e whose internal s t ructure is
irrelevant.

13 Overr id ing is found in we l l -known examples such as fake diamond, not to men t ion ord inary negat ive
sentences such as Mary didn't jump. A fake d i a m o n d is an object that inheri ts some of the propert ies of
d i amonds , especially the visible ones, bu t not all, and in part icular not those that are criterial in the
trade. If the sense of Mary jumped (i.e. the k ind of s i tuat ion to wh ich it can refer) is P, then the referent
of Mary didn't jump (i.e. the actual s i tuat ion to wh ich it refers) is NOT: P, in wh ich we k n o w no th ing
about the s i tuat ion except that it is not one in wh ich Mary jumped . (The relevant rule is g iven in the
Appendix) .

150

Norman M. Fraser and Richard A. Hudson Inheritance in Word Grammar

French house). The problem is how to generate concepts in between the two, and the
WG solution is to recognize the notion head-sense: the head-sense of some word W
is the concept that results from combining W with its head. Thus the head-sense of
French in our example is the result of combining French with house (as adjunct and
head respectively); and that of peanuts in Mary adores peanuts is the result of combining
peanuts with adores. This is how we generate semantic structures that contain 'French-
house' and 'adoring-peanuts' without recognizing French house or adores peanuts as
units in the syntax.

The rules that allow head-senses include these:

(48a) dependent of word has 1 head-sense.

(48b) referent of word = a dependent of head-sense of it.

By the first rule, every dependent of a word has a head-sense, i.e. makes a distinct
contribution, in combination with its head, to the sentence's meaning. The notion
'head-sense' is thus a functor that maps the senses of the dependent and the head onto
a third concept, applying equally to complements such as peanuts in adores peanuts and
to adjuncts such as French in French houses. There is nothing quite like it in standard
semantic systems such as Montague Grammar, but it applies in conjunction with rather
more standard functors which each pick out one particular (semantic) role as the
one filled by the dependent's referent (by rule (48b)). Generally speaking, this role
is defined by just one of the words concerned, according to whether the dependent
is an adjunct or a complement. If it is an adjunct, it defines its own semantic role
(e.g. French defines its own semantic role as 'nationality' or 'location'), but if it is a
complement then it leaves the head to define its role (e.g. adores provides the role
'adoree,' or whatever it should be called, for its complement).

The relevance to inheritance is that all the different head-senses are held together
by inheritance. These are the basic rules:

(49a) head-sense of dependent of word isa sense of it.

(49b) referent of word isa head-sense of dependent of it.

That is, the combination of a word and one of its dependents yields a concept that is
normally a particular case of the concept defined by the word on its own (a French
house is a kind of house; adoring peanuts is a kind of adoring), and whatever a word
refers to must be a particular case of all the concepts defined by it in combination with
its dependents (e.g., the particular situation referred to by Mary adores peanuts must be
one that is both an example of adoring peanuts and of Mary adoring).

We can impose further structure on the semantics; for example, by requiring all
other head-senses to build on that of the object:

(50) head-sense of dependent of word isa head-sense of object of it.

This is equivalent to an ordered procedure that combines the verb with its object be-
fore it takes account of any other dependents. This has the attraction of a Categorial
Grammar approach, in which dependents are added one at a time and subtle distinc-
tions of grouping can be made e.g., among the complements within VP; but it has the
advantage of not requiring a similar binary bracketing in the syntax. Why is this an
advantage? Some of the drawbacks of binary syntactic structures are obvious--e.g.,

151

Computational Linguistics Volume 18, Number 2

the need for far more phrasal nodes each carrying much the same information. How-
ever, the advantage of our system that we should like to draw attention to here is the
possibility of reducing the amount of ambiguity.

For example, in WG the sequence cheap book about linguistics has just one possible
syntactic analysis, the usual flat analysis with both cheap and about as dependents of
book, but its semantics contains the concepts 'cheap book' and 'book about linguistics'
respectively. These interpretations can be seen from examples such as the following,
where the sense of ONE is based on the semantic structure of the antecedent phrase.

(51a) I wanted a cheap book about linguistics but I could only find one
about cricket.

(51b) I wanted a cheap book about linguistics but I could only find a
dear one.

In a standard approach, the first clause has to be given two distinct syntactic structures,
one containing the unit cheap book and the other book about linguistics; but this ambiguity
cannot be resolved until the end of the second clause. Our judgment is that the first
clause is not in fact semantically ambiguous in this way; and according to our approach
there is no need to postulate such ambiguity since both concepts 'cheap book' and
• book about linguistics' are available there, in addition to the unifying concept 'cheap
book about linguistics" (which could be identified in relation to book as its supersense,
the concept that is an instance of the head-sense of every dependent). Here is the
relevant part of the structure of both (51a) and (51b):

(55)
c6

price / ~ subject
c4 , c2 c3

, ~ / matter

I cl
I L

I I
I adjunct I complement

, c 5

complement

(

c5
i
I

I
I

I

cheap book about

In this diagram, the concepts are as follows:

linguistics

cl %ook'
c2 'cheap book'
c3 "book about linguistics'
c4 'cheap'
c5 'about linguistics'
c6 'cheap book about linguistics'

The isa relations in this structure provide the basis for ordinary default inheritance;
so if a book has pages, then so do a cheap book, a book about linguistics, and a
cheap book about linguistics. They also allow defaults to be overridden in the usual

152

Norman M. Fraser and Richard A. Hudson Inheritance in Word Grammar

way; this is precisely the function of ordinary adjectives and adverbs like CHEAP
or QUICKLY, which mean 'more cheap/quickly than the default,' where the default
value is the average for the category concerned. The theoretical apparatus that allows
these meanings is precisely the same as the one we apply in morphology and syntax.

5. Conclus ion

We have shown that it is possible, and fruitful, to develop a general theory of default
inheritance that is equally relevant, and equally important, for all levels of linguistic
analysis. We have demonstrated this in relation to syntax and semantics, and by oc-
casional allusions to morphology, but we assume it is equally true of phonology and
of pragmatics (in every sense).

This conclusion, if true, is important for linguists and psychologists, because it
shows that the structures found within language are formally similar in at least some
respects to those found in general knowledge, and that both kinds of knowledge are
processed in ways that are similar in at least some important respects. And our conclu-
sion is also important for computational linguists because it indicates the possibility
of a single very general inheritance mechanism that can be applied at every stage in
the parsing process, and also in the manipulation of knowledge structures. A second
conclusion, however, is that default inheritance should be based on the principle of
stipulated overriding (by means of 'NOT:... ' propositions), rather than on automatic
overriding. This conclusion conflicts directly with standard theory and practice.

References
Anderson, John M. (1971). The Grammar of

Case: Towards a Localistic Theory.
Cambridge: Cambridge University Press.

Anderson, John M. (1977). On Case Grammar:
Prolegomena to a Theory of Grammatical
Relations. London: Croom Helm.

Bloomfield, Leonard (1933). Language.
London: Allen and Unwin.

Brachman, Ronald J. (1985). "I lied about
the trees, or defaults and definitions in
knowledge representation." A/Magazine
6, 80-93.

Calder, Jonathan (1989). "Paradigmatic
morphology." In Proceedings, Fourth
Conference of the European Chapter of the
Association for Computational Linguistics,
Manchester, U.K., April 58-59.

Cook, S., ed. (1989). Proceedings, 1989
European Conference on Object Oriented
Programming. Cambridge: Cambridge
University Press.

Covington, Michael A. (1991). "Parsing
discontinuous constituents in dependency
grammar." Computational Linguistics 16(4),
234-236.

Daelemans, Walter (1987). Studies in language
technology: An object-oriented computer model
of morphosyntactic aspects of Dutch. Doctoral
dissertation, Katholieke Universiteit
Leuven.

Dahl, Osten (1980). "Some arguments for
higher nodes in syntax: A reply to

Hudson's 'Constituency and
dependency'." Linguistics 18, 485-488.

De Smedt, Koenraad (1984). "Using
object-oriented knowledge representation
techniques in morphology and syntax
programming." ECAI-84, 181-184.

Etherington, David R., and Reiter, Raymond
(1983). "On inheritance hierarchies with
exceptions." Proceedings, AAAI-83.
Washington, 104-108.

Etherington, David R. (1988). Reasoning with
Incomplete Information. Los Altos: Morgan
Kaufmann.

Flickinger, Daniel P. (1987). Lexical rules in the
hierarchical lexicon. Doctoral dissertation,
Stanford University, California.

Flickinger, Daniel P.; Pollard, Carl J.; and
Wasow, Thomas (1985). "Structure sharing
in lexical representation." In Proceedings,
23rd Annual Meeting of the Association for
Computational Linguistics, Chicago,
262-267.

Fraser, Norman M. (1989). "Parsing and
dependency grammar." In UCL Working
Papers in Linguistics 1, edited by Robyn
Carston, 296-319. London: University
College London.

Gaifman, Haim (1965). "Dependency
systems and phrase-structure systems."
Information and Control 8, 304-337.

Giachin, Egidio P., and Rullent, Claudio
(1989). "A parallel parser for spoken
natural language." I]CAI-89, 1537-1542.

153

Computational Linguistics Volume 18, Number 2

Gibbon, Dafydd (1990). "Prosodic
association by template inheritance." In
Proceedings, Workshop on Inheritance in
Natural Language Processing, edited by
Walter Daelemans and Gerald Gazdar,
65-81. Tilburg: ITK.

Hays, David (1964). "Dependency theory: a
formalism and some observations."
Language 40, 511-525.

Hellwig, Peter (1986). "Dependency
Unification Grammar (DUG)."
COLING-86, 195-198.

Hudson, Richard A. (1976). Arguments for a
Non-Transformational Grammar. Chicago:
University of Chicago Press.

Hudson, Richard A. (1984). Word Grammar.
Oxford: Blackwell.

Hudson, Richard A. (1989). "Towards a
computer testable word grammar of
English." In UCL Working Papers in
Linguistics 1, edited by Robyn Carston,
321-339. London: University College
London.

Hudson, Richard A. (1990). English Word
Grammar. Oxford: Blackwell.

Jackendoff, Ray (1983). Semantics and
Cognition. Cambridge, MA: The MIT
Press.

Jappinen, Harri; Lassila, Eero; and Lehtola,
Aarno (1988). "Locally governed trees
and dependency parsing." COLING-88,
275-277.

Johnson, Rod; King, Maghi; and des Tombe,
Louis (1985). "EUROTRA: A multilingual
system under development."
Computational Linguistics 11, 155-169.

Maruyama, Hiroshi (1990). "Structural
disambiguation with constraint
propagation." In Proceedings, 28th Annual
Meeting of the Association for Computational
Linguistics, 31-38.

Mel'~uk, Igor A. (1988). Dependency Syntax:
Theory and Practice. Albany, NY: State
University of New York Press.

Mel'~uk, Igor A., and Zolkovskij, Alexander
K. (1970). "Towards a functioning
'Meaning-Text' model of language."
Linguistics 57, 10-47.

Pullum, Geoffrey K. (1979). Rule Interaction
and the Organization of a Grammar. London:
Garland.

Reinhard, Sabine, and Gibbon, Dafydd

(1991). "Prosodic inheritance and
morphological generalisations." In
Proceedings, Fifth Conference of the European
Chapter of the Association for Computational
Linguistics. April, Berlin, 131-136.

Robinson, Jane J. (1970). "Dependency
structures and transformational rules."
Language 46, 259-285.

Schubert, Klaus (1987). Metataxis: Contrastive
Dependency Syntax for Machine Translation.
Dordrecht: Foris.

Sgall, Petr; Haji~ovfi, Eva; and Panevovfi,
Jarmila (1986). The Meaning of the Sentence
in its Semantic and Pragmatic Aspects.
Prague: Academia.

Sgall, Petr, and Panevovfi, Jarmila (1987).
"Machine translation, linguistics, and
interlh~gua." In Proceedings, Third
Conference of the European Chapter of the
Association for Computational Linguistics,
99-108.

Shieber, Stuart M. (1986). An Introduction to
Unification-Based Approaches to Grammar.
Stanford, CA: CSLI.

Sigurd, Bengt (1989). "DEPARSE--An
experimental dependency parser." In
Praktisk Lingvistik 12, edited by B. Sigurd;
M. Eeg-Olofsson; L. Eriksson;
B. Gawronska-Werngren; K. Holmqvist;
and P. Touati, 30-41. Lunds: Lunds
Universitet.

Starosta, Stanley (1988). The Case for Lexicase:
An Outline of Lexicase Grammatical Theory.
London: Pinter.

Starosta, Stanley, and Nomura, H. (1986).
"Lexicase parsing: A lexicon-driven
approach to syntactic analysis."
COLING-86, 127-132.

Tesni6re, Lucien (1959). Eldments de Syntaxe
Structurale. Paris: Librairie Klincksieck.

Thomason, Richmond H., and Touretzky,
David F. (1991). "Inheritance theory and
networks with roles." In Principles of
Semantic Networks, edited by John
E Sowa, 231-266. San Mateo, CA: Morgan
Kaufmann.

Touretzky, David F. (1986). The Mathematics
of Inheritance Systems. Los Altos: Morgan
Kaufmann.

Warner, Anthony (1987). "Multiple heads
and minor categories in GPSG."
Linguistics 27, 179-205.

154

Norman M. Fraser and Richard A. Hudson Inheritance in Word Grammar

Appendix

This appendix contains a selection of WG propositions that are sufficient to generate
simple syntactic, morphological, and semantic structures for the sentences Mary jumped,
Mary didn't jump, Did Mary jump ?, and Didn't Mary jump ? After presenting the grammar,
we give an analysis of Mary jumped.

GRAMMAR

Word classes
noun isa word.
proper isa noun.
verb isa word.
polarity-verb isa verb.

Morphosyntactic features
verb has 1 finiteness.
finiteness of verb = {/: finite, non-finite}.
non-finite verb has 1 aspect.
aspect of verb = {/: infinitive, perfect, participle}.
finite verb has 1 mood.
mood of verb = {/: tensed, imperative}.
tensed verb has 1 tense.
tense of verb = {/: past, present}.
tensed polarity-verb has 1 polarity.
polarity of verb = (/ : positive, negative}.
tensed polarity-verb has 1 sv-order.
sv-order of verb = {/: s+v, v+s}.

Regular morphology
body isa form.
ed-form isa body.
base isa body.
n' t-form isa form.
past verb has 1 ed-form.
whole of ed-form of verb = stem of it + whole of reEd.
whole of reEd = <ed>.
negative verb has 1 n't-form.
whole of n' t-form of verb = whole of body of it + whole of mN't .
whole of mN' t = <n ' t> .
infinitive verb has 1 base.
whole of base of word -- stem of it.

Dependencies
predependent isa dependent.
postdependent isa dependent.
subject isa predependent.
complement isa postdependent.
xcomplement isa complement.

155

Computational Linguistics Volume 18, Number 2

Syntactic valency
word has 1 head.
finite verb has [0-1] head.
word has 0 subject.
verb has 1 subject.
NOT: tensed verb has 0 subject.
subject of verb isa noun.
word has 0 complement .
polari ty-verb has 1 xcomplement .
xcomplement of polari ty-verb isa infinitive verb.

Raising/control
subject of xcomplement of word = subject of it.

Word order
position of dependen t of word = after it.
posit ion of p redependen t of word = before it.
NOT: position of p redependen t of word = after it.
NOT: position of subject of v+s verb = before it.
NOT: NOT: position of subject of v+s verb = after it.

Semantics: sense and reference
word has 1 meaning.
referent isa meaning.
sense isa meaning.
p roper has 0 sense.
NOT: proper has 1 sense.
referent of word isa sense of it.
NOT: referent of negative verb isa sense of it.
NOT: proper has 1 sense.

Semantics: words and other actions
word isa action.
action has 1 time.
action has 1 actor.
actor of sense of word = referent of subject of it.
t ime of referent of past verb = before it.

"Lexicon"
MARY isa proper.
whole of MARY = KMary>.
referent of MARY = Mary.

DO isa verb.
D O / d u m m y isa DO.
D O / d u m m y isa polarity-verb.
stem of DO = <do> .
whole of past DO = <d id> .
NOT: whole of past DO = stem of it + whole of mEd.
meaning of D O / d u m m y = meaning of xcomplement of it.

156

Norman M. Fraser and Richard A. Hudson Inheritance in Word Grammar

JUMP isa verb.
s tem of JUMP = < j u m p > .
sense of JUMP = jumping.
jumping isa action.

SENTENCE ANALYSIS

The following is an analysis of Mary jumped, in which we present all the proposi t ions
about its consti tuent words (wl, w2) that can be inheri ted f rom the g r a m m a r on the
basis of the proposi t ions in B, the 'calculated' properties. The latter are of course not
genera ted by inheri tance but by app ly ing some kind of 'Best Fit Principle ' to the
observable proposi t ions in A plus the a l ready inheritable proposit ions.

A. Observable propositions
whole of w l = < M a r y > .
whole of w2 = < j u m p e d > .
posit ion of w l = before w2.

B. Calculated propositions
w l isa singular MARY.
w2 isa past tensed finite JUMP.
subject of w2 = wl .
head of w l = w2.
finiteness of w2 = finite.
m o o d of w2 = tensed.
tense of w2 = past.
sense of w2 = cl.
referent of w2 = c2.

C. Inherited propositions
w l isa proper.
w l isa noun.
w l isa word.
w l isa action.
w l has 1 time.
w l has 1 actor.
w l has 1 head.
w l has 1 referent.
referent of w l = Mary.

w2 isa past tensed finite verb.
w2 isa tensed finite verb.
etc.
w2 isa verb.
w2 has 1 finiteness.
w2 has 1 mood.
w2 has 1 tense.
w2 has [0-1J head.
w2 has 1 subject.
subject of w2 isa noun.

157

Computational Linguistics Volume 18, Number 2

posit ion of subject of w2 = before w2.
w2 has 0 complement .
w2 has 1 sense.
w2 has 1 referent.

cl = jumping.
cl isa action.
cl has 1 time.
cl has 1 actor.
c2 isa jumping.
c2 isa action.
c2 has 1 time.
c2 has 1 actor.
t ime of c2 = before w2.

actor of cl = Mary.
actor of c2 = Mary.

158

