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This paper describes the central role played by default inheritance in Word Grammar, a theory 
of language knowledge and processing. A single formalism is used to represent knowledge at the 
levels of morphology, syntax, and semantics. A single rule of inference is used to inherit knowledge 
at all of these levels. This rule is distinctive in that it requires defaults to be explicitly overridden 
in the case of exceptions. The explicit overriding rule is used in syntax to achieve what other 
theories achieve by means of transformations, metarules, or lexical rules. 

1. Introduction 

Since the scientific study of language first began, a central concern of linguists has 
been the identification of linguistic generalizations and, where necessary, the stating 
of exceptions to these generalizations. 1 However, it is only within the last few years 
that linguists have begun to think of this process in terms of the construction of de- 
fault inheritance hierarchies. This new way of envisaging old problems is attractive 
for at least three reasons. Firstly, it encourages linguists to be explicit not just about 
the relations that hold between individuals and classes, but also about the relations 
that hold between different classes. For example, where the nouns of a language have 
traditionally been assigned to some number of distinct morphological paradigms, the 
default inheritance approach encourages the morphologist to pay attention to gener- 
alizations that cut across paradigms. If these generalizations are inherited, then there 
must be some shared super class to inherit from, and the system of word classes and 
paradigms must be designed accordingly. 

Secondly, whereas generalizations have traditionally been class-based, in the in- 
heritance approach they are based on typical cases and their features, any of which 
may be overridden. Thus the shading from core members of a class to peripheral 
members can be accommodated---indeed, the existence of peripheral members is pre- 
dicted by the mechanism for overriding defaults. The third and more pragmatic reason 
why it is useful to recast well-known linguistic problems in terms of default inheri- 
tance is that there is a fairly well-developed--though by no means conclusive--body 
of knowledge on the subject in the artificial intelligence field of knowledge represen- 
tation (e.g. Etherington and Reiter 1983; Brachman 1985; Touretzky 1986; Etherington 
1988). Nearer the computer science mainstream, work in object-oriented programming 
languages (Cook 1989) offers an interesting range of relevant insights and inheritance- 
based tools. 
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In recent years, linguists and computational linguists in particular have begun 
to explore problems at most linguistic levels within inheritance frameworks. For ex- 
ample, Gibbon and Reinhard have proposed inheritance-based solutions to problems 
of phonology and prosody (Gibbon 1990; Reinhard and Gibbon 1991). Most work to 
date has centered on morphology (e.g. De Smedt 1984; Flickinger, Pollard, and Wa- 
sow 1985; Daelemans 1987; Calder 1989). A certain amount has also been achieved 
in syntax (e.g. De Smedt 1984; Flickinger 1987), where inheritance is used to con- 
struct subcategorization frames for words. As for semantics, there has been a great 
deal of work on inheritance in so-called 'semantic networks,' but much of this work 
relates only loosely to the semantics of natural language. The work we present in 
this paper differs from all previous work in natural language processing (NLP) in at 
least two respects. Firstly, it is distinctive in the extent to which inheritance is used. 
Within our framework knowledge at all levels (morplhology, syntax, semantics, world 
knowledge) is integrated in a single inheritance hierarchy. Indeed, given the extent of 
integration, some of these level distinctions must be regarded as arbitrary. Secondly, it 
is distinctive in the purposes for which inheritance is used. The canonical application 
of inheritance in NLP is lexicon construction. Our system uses inheritance for this 
purpose but it also makes inheritance play a vital role in the building of structure 
during parsing. 

What we describe is part of a theory of language (knowledge and processing) 
called Word Grammar (WG) (Hudson 1984; 1990). Section 2 introduces the knowledge 
representation language used in WG. Section 3 outlines the use of inheritance in WG 
to describe the facts of syntax and semantics. Concluding observations are drawn in 
Section 4. An Appendix sets out a fragment of English grammar and a simple sentence 
analysis. 

2. Word Grammar 

In this section we define the syntax of WG propositions and explain how they can be 
interpreted. The Appendix contains a fragment of English grammar from which all 
examples are drawn. 

2.1 Propositions 
One of the central claims of WG is that knowledge of language is a sub-component of 
knowledge in general, and in particular that it is a kind of propositional knowledge 
(which we assume must be distinguished from other kinds of knowledge, notably per- 
ceptual knowledge). This amounts to the rather uncontroversial claim that all linguistic 
knowledge may be expressed in terms of propositions (just as it can be expressed in 
terms of attribute-value structures). This is uncontroversial because it is obviously 
possible to represent any standard linguistic structure or rule as a collection of propo- 
sitions, though the same is probably not true for representations of faces, sounds and 
so on, which are based more directly on perception. The use of propositions to repre- 
sent linguistic knowledge allows us to use standard logical operations as the basis for 
parsing. One set of propositions defines the observable properties of the input, and 
parsing consists of drawing inferences. These inferences constitute the analysis of the 
input, so, as in unification-based systems, the formal properties of sentence structure 
are the same as those of a grammar. 

Propositions are of two types, positive and negative. A positive proposition con- 
sists of a predicate and two arguments. By convention, an infix notation is used: 

(la) noun isa word. 
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(lb) verb  has (1 finiteness). 

(lc) (stem of JUMP) = < j u m p > .  

The parentheses  are general ly redundant ,  so in later examples  we shall omi t  them. 
As we shall see, the a rguments  are usual ly s om e wha t  more  complex than in these 
examples.  

A negat ive proposi t ion consists of 'NOT: '  fol lowed by  another  proposit ion:  

(2a) NOT: tensed verb  has 0 subject. 

(2b) NOT: posit ion of p redependen t  of word  = after it. 

A negated  proposi t ion m a y  itself be negated: 

(3) NOT: NOT: posit ion of subject of v+s verb  = after it. 

Nega ted  proposi t ions  play a crucial role in the WG sys tem for default  inheritance, as 
we  shall explain below. 

2.2 Predicates 
Three different predicates are recognized: 2 'isa, '  '=, '  and 'has. '  

The ' isa '  predicate  is used to encode the relat ionship be tween a sub type  and  a 
super type  in a type hierarchy. This predicate is used to express both  the relat ionship 
be tween  instances and types (such as the wel l -known relat ionship of 'Clyde '  to 'ele- 
phant ' )  and the relat ionship be tween types and  super types  (such as the relat ionship 
of ' e lephant '  to 'mammal ' ) .  Instances and  types are collectively k n o w n  as concepts. 

(4a) Clyde isa elephant.  

(4b) e lephant  isa m am m al .  

The '= '  predicate  indicates identi ty of arguments .  The reason it is necessary to include 
this predicate is that  it is possible to identify the same concept  by  means  of different 
kinds of names.  For example,  a ssuming  that Clyde is grey, we  can identify the concept  
'grey '  either by  its a tomic name  or as a function of Clyde. The '= '  predicate  shows 
this identity. More complex identifications are of course also possible. 

(5a) color of Clyde = grey. 

(5b) mothe r  of Clyde = sister of father of Babar. 

(5c) mother  of mothe r  of Clyde = mothe r  of father of Babar. 

2 During the evolution of WG this figure has varied between five (Hudson 1984) and one (Hudson 1989), 
although the expressiveness of the formalism has not changed significantly. There is a balance to be 
struck between having a minimal (i.e. one-member) predicate set with necessary distinctions marked in 
the arguments, and having a more readable notation that includes extra predicates. The three-member 
set has been used in recent WG publications. In at least one computer implementation (described in 
Hudson 1989) the 'grammarian's grammar' is written with three predicates and compiled into a 
'machine grammar' that uses only one predicate. 
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Propositions including the '=' predicate can be thought of as path equations of the 
sort used to indicate coreference in directed acyclic graphs. 

The 'has' predicate is used to associate attributes with concepts. A proposition of 
the form shown in (6) associates concept Y with concept X in the quantity specified 
in Q. 

(6) X has Q Y. 

Q is called a quantitator. It signifies how many instances of the specified type should 
be associated with X. 

(7a) word has 1 head. 

(7b) finite verb has 0 head. 

In the simplest cases, as in most of the examples in this paper, the quantitator can be 
just a single integer, but it is also possible to specify a range of numbers by giving the 
minimum and maximum, e.g. [0-1l. 

2.3 Arguments 
Arguments fall into nine basic types. It is helpful to be able to describe these types in 
respect of their structure without reference to their function as arguments. We shall 
therefore say that a well-formed argument must be a name where a name conforms 
to one of the following definitions. 

Atoms. The atoms of the WG knowledge representation are single words such as 
'verb' or hyphenated words such as 'proper-noun' that identify single nodes in the 
knowledge structure. 

Sets. A set of concepts is enclosed in set brackets. The first element inside the brackets 
is a sign that identifies whether conjunction or disjunction is intended. '{&: A, B}' 
means 'A and B.' '{/:ZA, B}' means 'A or B.' Special notations are used for two 
particular kinds of ordered 'and' set. Strings of orthographic symbols are enclosed 
in angle brackets (e.g. '<did>').  Linear constituent structures are formed by linking 
constituents by '+' (e.g. 'stem of it + mEd'). 

Relational names. These consist of an atom that is the name of a relation, followed 
by 'of', followed by a name that may be another relational name. Thus, 'A of B' and 
'A of B of C' are both well formed (e.g. 'subject of verb,' 'position of subject of verb'). 
Relational names are right-embedding. 

Positional names. These consist of positional atoms ('before,' 'after,' 'adjacent-to,' 
'next-to') followed by a name, e.g. 'before X.' Positional names identify positions in a 
linear sequence in which the named concept is located. 

It. Where a proposition refers to the same concept on either side of a path equation, 
the second instance of the concept is identified by the name 'it.' Example (8) uses 'it' 
to refer to 'word.' 

(8) position of dependent of word = after it. 
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The concept identified after the '=' by 'it' is always identified before the '=' by the 
most deeply embedded (i.e. rightmost) name, which in this example is 'word.' 

Compound names. These consist of two parts, the first of which is the value of a 
feature or a set of feature values, and the second of which is an atom. Thus 'past verb' 
and '{&: past, positive, s+v} polarity-verb' are well-formed compound names. 

Temporary names. Stored concepts in the WG knowledge structure are types; e.g. 
'noun' means 'the typical noun,' and 'subject of verb' means 'the typical subject of the 
typical verb.' To distinguish particular tokens from these types, tokens are assigned 
temporary names as they are encountered during processing. These names are tempo- 
rary in the sense that they do not belong to the permanent knowledge base, instead 
being introduced during processing. Temporary names consist of integers prefixed by 
a character or characters. By convention, morpheme instances are prefixed by 'm,' 
word instances by 'w,' and objects in the semantics by 'c' (for 'concept'). Thus 'ml, '  
'w12,' and 'c6' are all well-formed temporary names. For example, the propositions in 
(9) (which refer to the sentence analyzed in the Appendix, Mary jumped) illustrate the 
use of temporary names. 

(9a) whole,of wl = <Mary>. 

(9b) whole of w2 = <jumped>. 

(9c) position of wl  = before w2. 

The analysis of a sentence involves taking the observable facts, such as the above, 
and inferring unobservable ones which are logically consistent with them, with each 
other and with the knowledge base. The inferred facts for Mary jumped include the 
following: 

(10a) wl  isa MARY. 

(10b) w2 isa past JUMP. 

(10c) subject of w2 = wl. 

(10d) w2 has 1 subject. 

(10e) position of subject of w2 = before it. 

(10f) sense of w2 = cl. 

Instance names. These consist of a name preceded by 'a' (or 'an'). Whereas temporary 
names provide a means of identifying specific instances, instance names provide a 
means of identifying any single instance of a specified type. If a type 'X' exists in the 
inheritance hierarchy, then the instance name 'a X' refers to any instance that isa X. 
For example, 

(11) subject of passive verb = a complement of it. 

Notice that without this 'a,' a name refers to every example of the type concerned. 
(This follows from the interpretation of concepts as types; if something is true of 
some concept, then it must also be true of every instance of that concept, barring 
specified exceptions). Proposition (11) identifies the subject of a passive verb with iust 
one of its complements; without 'a,' it would identify the subject with every one of 
the complements, and lead to chaos. 
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Quantif ied names.  As already explained, these consist of a quantitator followed by 
an atom: e.g. '1 head,' '0 complement.' 

2.4 Interpretation 
The WG knowledge representation language keeps close to ordinary English, as can be 
seen from the examples given above and from the Appendix. It avoids the ambiguity 
of ordinary English, and is much less rich, but the propositions are easy to understand. 
A full formal account of the semantics of the language would require a separate paper; 
in this section we limit ourselves to a brief discussion of one of the simpler areas, viz 
the use of positional names. 

Positional names, which it will be recalled consist of a word such as "before' or 
'after' followed by another name, are primarily to do with relations in time--the 
relations between co-occurring spoken words, between co-occurring phonemes, or 
between events or times that are referred to in the semantic structure of a sentence. If 
the data to be analyzed are written, then some of these relations are mapped onto the 
spatial patterns of writing. With this reservation, then, "before X' is the name of some 
time earlier than X, where X is itself either a time (say, last Friday) or an event that 
can be located in time (e.g. Mary's birthday party). The examples in (12) illustrate two 
uses of this single general pattern. 

(12a) position of dependent of word = after it. 

(12b) time of referent of past verb = before it. 

The first example refers to the order of words in a sentence, while the second refers 
to the deictic relation between the event referred to by a past-tense verb and the time 
when that verb itself is uttered. (In (12b), 'it' is coreferential with the verb, so when 
this proposition is inherited by a token of a past verb, 'it' refers to this token, or more 
precisely to the time when it is uttered). 

The rule for interpreting 'after' or 'before' must therefore be capable of determining 
which of two events occurs before the other. This is straightforward if these events 
are themselves given temporary names whose integer rises with time; w2 occurs, 
by definition, before w3, and c2 before c3. In this way, all temporary concepts are 
effectively time-stamped. All the rule needs to do is compare the integers. 

Positional names are noteworthy because they illustrate particularly clearly the 
extent to which different kinds of knowledge can be integrated into a single system. 
The same formal apparatus, interpreted by the same inference rule, is used in syntax 
(regarding word order) and also in semantics (regarding temporal ordering of events). 
Moreover, the latter events themselves include not only the events referred to (e.g. the 
event of Mary jumping), but also the event of uttering the words concerned (i.e. in 
Mary jumped, the utterance of the word jumped). 

2.5 Inheritance 
Inheritance is the rule of inference that derives new propositions from existing ones. 
It is sanctioned primarily by any occurrence of the 'isa' predicate, but also by various 
other formal patterns mentioned below. If A isa B, then A inherits all the properties 
of B (except those that are blocked as we explain in the next section). In other words: 

Inheritance.  If A isa B, then for any true proposition P that refers to B, it is possible 
to infer another true proposition Q that is the same as P except that A is substituted 
in Q for B in P. 
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For example: 

(13a) Clyde isa elephant. 

(13b) color of elephant --- gray. 

(13c) color of Clyde = gray. [from (13a,b)] 

A similar interpretation applies to the '=' predicate, which is in effect a reciprocal 'isa'. 
If A = B, then any true proposition that contains A can be matched by another in 
which B replaces A, and vice versa. Inferentially, then, both 'isa' and '=' are extremely 
simple, and extremely powerful, allowing the creation of new propositions by simple 
substitution operations. 

The most noteworthy feature of the WG inheritance system is, once again, that 
it applies to all types of knowledge, allowing a single integrated knowledge base 
and a single set of inference rules for both linguistic and nonlinguistic knowledge 
(cf. the 'preference rules' of Jackendoff 1983). The same rule that allows us to inherit 
information about Clyde also allows us to inherit information about words within 
the grammar and about words in sentences. These similarities can be seen from the 
following examples. 

(14a) noun isa word. 

(14b) word has 1 head. 

(14c) so: noun has 1 head. 

(15a) MARY isa noun. 

(15b) noun has 1 head. [= 14c] 

(15c) so: MARY has 1 head. 

(16a) wl  isa MARY. 

(16b) MARY has 1 head. [= 15c] 

(16c) so: wl  has 1 head. 

These examples show how inheritance allows information to be inherited both within 
the grammar (14, 15) and from the grammar to a particular sentence word, in the pro- 
cess of parsing (16). As already explained, the aim in parsing is to link each sentence 
word to a word in the grammar from which it can inherit a set of propositions com- 
patible with the propositions inherited for all the other words in the same sentence. 

Another set of examples applies the same inheritance rule to meanings and con- 
cepts: 

(17a) jumping isa action. 

(17b) action has 1 actor. 

(17c) so: jumping has 1 actor. 
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(18a) sense of JUMP = jumping. 

(18b) jumping has 1 actor. [= 17c] 

(18c) so: sense of JUMP has 1 actor. 

(19a) w2 isa JUMP. 

(19b) sense of JUMP has 1 actor. [= 18c] 

(19c) so: sense of w2 has 1 actor. 

(20a) w2 isa word.  

(20b) referent of word  isa sense of it. 

(20c) referent of w2 isa sense of it. 

(21a) referent of w2 isa sense of it. [= 20c] 

(21b) sense of w2 has 1 actor. [= 19c] 

(21c) so: referent of w2 has 1 actor. 

If we continue this chain of deduct ions we eventual ly find that Mary  is the actor of the 
event  of jumping referred to by  w2; in other words,  Mary jumped.  If the analysis were 
embedded  in a body  of knowledge  about  the world  in which Clyde trod on Mary 's  
toes, then we could infer that the person on whose  toes Clyde trod jumped;  and so 
o n .  

The unified nature of inheritance in WG allows us to recognize, or at least imagine, 
a single inheritance hierarchy for the whole of knowledge,  within which linguistic 
concepts can be located as special cases of more general ones. In particular, words  are 
a special kind of action, and inherit  f rom 'action' propert ies  such as having a t ime and 
an actor: 

(22a) word  isa action. 

(22b) action has 1 actor. 

(22c) so: word  has 1 actor. 

(22d) action has 1 time. 

(22e) so: word  has 1 time. 

It was this inheritance that al lowed us to assume that a word  has a time, which can 
be referred to not  only in the rules for word  order  but  also in those for the semantics 
of tense (cf. (12) above). 

Another  direction in which WG extends the normal  scope of inheritance is by  
allowing it to apply  to relations as well as to the more familiar kind of nonrelat ional  
category, such as elephant,  word,  etc. (For a similar approach see Thomason  and 
Touretzky 1991). This allows us to recognize a hierarchy of grammatical  relations, 
with, for example, 'object' as a particular kind of 'dependent ' ;  which in turn allows us 
to formulate  word-order  rules that refer to the appropriate  point  in the hierarchy, and 
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then automatically generalize to all relations below this. Here is a simple example of 
the inferences that can be drawn. 

(23a) position of dependent of word = after it. 

(23b) object isa dependent. 

(23c) LIKE isa word. 

(23d) so: position of object of LIKE = after it. 

To summarize, then, inheritance plays a much larger part in WG than in other theories. 
It allows us to locate atomic concepts in inheritance hierarchies, and encourages us to 
try to unify them all into a single grand hierarchy that reveals the continuities between 
linguistic and other concepts. Afortiori, it integrates linguistic categories of different 
levels into a single system, in which the same inheritance rule applies to morphology, 
syntax, and semantics. Moreover, since WG uses dependency instead of constituent 
structure, all the units of syntax (outside coordination) are single words, so the only 
difference between the 'rules of grammar' and 'lexical entries' is in the generality, 
rather than the size, of the units to which they refer. 

2.6 Overriding 
In a default inheritance system, information is inherited only by default, i.e. in the 
absence of some exceptional information. One key question is how exceptions should 
be handled, and our answer is perhaps the most controversial part of this paper. 

The standard answer is, of course, that any more general proposition is overridden 
by a more specific one that contradicts it. For example, the past-tense form did takes 
precedence over the expected *doed because the former is specified in relation to DO, 
whereas the latter is inherited from the general rules for verbs. This principle, which we 
call automatic overriding, underlies most discussions of inheritance (e.g. Shieber 1986; 
Flickinger 1987), but it is also assumed in a lot of linguistic theory where the notion 
of 'inheritance' is not recognized as such---e.g, in the 'Proper Inclusion Precedence 
Principle' governing the ordering of rules in phonology (see, for example, Pullum 
1979 for a survey of this literature). 

Our answer is quite different, and involves the negative propositions, introduced 
by 'NOT:', which we described earlier. In WG, inheritance is not blocked by a more 
specific proposition, but by a negative proposition. We know that *doed is not possible 
because there is a proposition that tells us so (24a), and not just because (24b) requires 
did: 

(24a) NOT: whole of past DO = stem of it + whole of mEd. 

(24b) whole of past DO = Kdid>. 

Every exceptional fact is paired with a negative fact that blocks inheritance. We call 
this stipulated overriding. It remains to be seen which of these approaches--automatic 
overriding or stipulated overriding--will be favored by future research in NLP. The 
extra cost of exceptional facts in the first system lies in the need to ensure that more 
specific facts are accessed before more general ones. In the second system, the cost 
lies in the need for a larger database. Our reasons for preferring stipulated overriding 
are partly concerned with cognitive modeling (see Hudson 1990: 40ff), but we also 
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believe that the syntactic and semantic arguments that we present in the next sections 
support this approach. Here, then, is the rule of inference for default inheritance: 

Default inheritance 
If A isa B, then for any true proposition P that refers to B, it is possible to infer 

another true proposition Q that is the same as P except that A is substituted in Q for 
B in P, unless NOT: Q. 

That is, we can apply the inheritance rule defined in the last section, unless there 
is a negative proposition that conflicts with the inherited proposition. This negative 
proposition has the form NOT: Q, where Q is also a proposition that is available either 
by inspection or by inference. This proposition, NOT: Q, must itself pass the same test, 
since it may in turn be overridden by NOT: NOT: Q, and so on recursively. 

We can now give a more detailed summary of inheritance and blocking in WG. 

(26a) A proposition P is valid iff 

a. it is contained in the knowledge base or 
bi. it may be inherited and 
bii. NOT: P cannot be inherited. 

(26b) A proposition P may be inherited iff 

a. Q is valid and 
b. at every point where P differs from Q, by containing Y 
instead of X, X subsumes Y. 

(26c) A name X subsumes another name Y iff 

a. Y isa X, or 
b. Y is a compound name (A B), where B is subsumed by X, or 
c. X =Y. 

(Allowing inheritance to apply to compound names allows multiple inheritance i.e., 
one concept may inherit down more than one path. For example, dogs is 'plural DOG,' 
an example of both DOG and 'plural noun.' From DOG it inherits its stem and its 
sense (inter alia), while 'plural noun' provides the suffix, the 'set' meaning, and the 
ability to occur, for example, after these). 

Having introduced our theory of default inheritance, we can now discuss some 
linguistic applications in more depth. One of the most distinctive features of our theory 
is our claim that default inheritance applies to syntax and compositional semantics, 
so we shall concentrate on these areas. The preceding discussion should have made it 
clear that we also use default inheritance in morphology, but we will not pursue that 
further here. (A brief WG account of English inflectional morphology can be found in 
Hudson 1990: 181-90.) 

3. Syntax 

3.1 Word Types 
WG syntax is centred on two inheritance hierarchies, one for word types (i.e. word 
classes and lexical items) and the other for grammatical relations. In Word Grammar 
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word 

adword noun conjunct ion verb 

adjective adverb proper common pronoun polarity STAND etc 

preposition 

Figure 1 
The word type hierarchy. 

count determiner modal 

(as suggested by the name) the category 'word '  is basic in every  sense. Figure 1 shows 
the top of the hierarchy of word  types assumed in WG for English, and some of the 
corresponding WG proposit ions are given in (27). 

(27a) count  isa common.  

(27b) common isa noun. 

(27c) noun  isa word.  

Three points should be noted about  this hierarchy. 

1. We assume a hierarchical relation among word  types, instead of the 
more usual cross-classification based on features. This links to a general 
restriction on the use of features in WG, which excludes all features 
except those that are morphosyntact ic-- i .e . ,  reflected in morpho logy  and 
relevant to syntax or semantics. 

2. Secondly, we assume some nonstandard analyses; in particular, a 
preposit ion is a kind of adverb,  and a determiner  is a kind of pronoun,  
which in turn is a kind of noun. 

3. We prefer to keep an open mind on the extent to which our  categories 
are universal,  but  we are sure that some are parochial (relevant to 
English only). This hierarchy can be continued d o w n w ard  to include 
lexical items (such as STAND, shown in the diagram), which may  in turn 
be further  subdivided;  e.g., we can distinguish transitive and intransitive 
versions of STAND (with, it should be noted, the same irregular 
morpho logy  in both cases): 

(28a) STAND isa verb. 

(28b) STAND/in t rans  isa STAND. 

(28c) STAND/t rans  isa STAND. 
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As explained earlier, because lexical items are part of the same hierarchy as general 
word classes, there is no formal distinction between the lexicon and the rest of the 
grammar. Furthermore, we use the same isa relation to link word tokens to word 
types; so if w3 is the name of the word stand in I can't stand cats, it too will fit into the 
same hierarchy: 

(29) w3 isa STAND/trans.  

Word tokens can be thought  of as a constantly changing fringe on the bottom of 
the (relatively) permanent  hierarchy. 

3.2 Grammatical Functions 
We now come to the second hierarchy of syntax, the hierarchy of grammatical rela- 
tions. Unlike most other syntactic theories, WG uses constituent structure only for the 
purpose of describing coordinate constructions (cf. Hudson  1990: 404ff for details). All 
other syntactic structure is expressed in terms of dependencies between pairs of words, 
one of which is the head of the other, its dependent.  Higher nodes such as phrases 
or sentences are not represented explicitly in the grammar. WG is thus a variety of 
dependency grammar. 

Dependency grammar was first formalized by Tesni6re (1959) and refined by 
Hays (1964), Gaifman (1965), Robinson (1970) and others. A number  of dependency- 
based theories have emerged from the linguistic underground during the last thirty 
years. These include the Meaning-Text model  (Mel'~uk and Zolkovskij 1970; Mel'~uk 
1988), Case Grammar  (Anderson 1971; 1977), Daughter  Dependency Grammar  (Hud- 
son 1976), WG (Hudson 1984; 1990), Functional Generative Description (Sgall, Haji~ov~, 
and Panevov~ 1986), and Lexicase (Starosta 1988). While none of these theories has at- 
tained widespread popularity, some of their central insights have become increasingly 
influential in the phrase structure grammar mainstream. For example, the trend toward 
head-driven approaches, the prominence of notions such as 'government, '  the explicit 
use of grammatical relations and case, and the reduced amount  of information carried 
in phrasal categories all reflect the general migration toward dependency. Increased 
interest in categorial grammars,  and especially unification categorial grammars  (which 
are virtually indistinguishable from dependency grammars) provides further evidence 
of this tendency. 3 

The combination of default inheritance with dependency syntax allows an inter- 
esting range of generalizations and exceptions. Like other dependency grammars,  WG 
requires a typical word to have one head, though the same word may  act as head to 
more than one other word, its dependents.  As in other theories, just one word is al- 
lowed to be an exception to this rule; we call this word the 'root' of the sentence. This 
has (by definition) no head, and is generally a finite verb; e.g. in Mary didn't jump, 
the polarity verb ('auxiliary verb') didn't is the root, on which both Mary and jump 

3 The last decade has seen increased interest in dependency grammar among computational linguists. 
Dependency grammar has been applied in the experimental parsing systems of Hellwig (1986), Sigurd 
(1989), and Covington (1991); in the 'Kielikone' natural language interface of Jappinen, Lassila, and 
Lahtola (1988); in the machine translation systems of EUROTtLA (Johnson, King, and des Tombe 1985), 
DLT (Schubert 1987), Charles University (Sgall and Panevov~ 1987), and IBM Tokyo (Maruyama 1990); 
and in the speech recognition system of Giachin and Rullent (1989). Parsers based on the theories of 
Lexicase (Starosta and Nomura 1986) and Word Grammar (Fraser 1989; Hudson 1989) have also been 
developed. 
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depend. Here, then, we already have a simple example of default inheritance: 

(30a) word has 1 head. 

(30b) wl isa word. 

(30c) so: wl  has 1 head. 

On the other hand, for w2, the finite verb didn't, this general rule is blocked to allow 
it to occur without a head (i.e. to make the head optional, '[0-1] head'). This analysis 
assumes that obligatory ('1') and optional ('[0-1]') conflict, so the former must be 
suppressed by (31d)J 

(31a) finite verb has [0-1] head. 

(31b) w2 isa finite verb. 

(31c) so: w2 has [0-1] head. 

(31d) NOT: finite verb has 1 head. 

(31e) so: NOT: w2 has 1 head. 

If the rule about having one head per word allows exceptions in one direction, we 
may expect exceptions in the other direction as well: words that have more than one 
head. This is not allowed in other versions of dependency grammar, 5 but in WG it 
is the basis for our analysis of a range of important constructions: raising, control, 
extraction, and passives (not to mention coordination, which is often allowed as an 
exception by other theories). For example, in Mary didn't jump, we recognize Mary as 
the subject not only of didn't but also of jump, so Mary has two heads, contrary to the 
general rule. 

(32) subject 
If subject~ ~ xcomplement 1 

Mary didn ' t jump 

4 This analysis may in fact be more complicated than it needs to be. We could allow finite verbs to 
inherit the regular '1 head '  s imply by not  blocking it, and allow for '0 head '  by an extra rule, which 
provides the other alternative. 

5 The notion of a word  with two heads is meaningless in theories based on phrase structure, because 
'head '  is used there in relation to phrases,  not words.  The X-bar 'head'  corresponds to our  'root, '  the 
word  in a phrase that has no head inside that phrase. It is true that some linguists have suggested that 
a phrase might  have more  than one head (e.g. Warner 1987), and this has been a s tandard analysis of 
coordinate structures since Bloomfield (1933); but  this is very different from a single word  having more  
than one head. 
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(In a dependency  diagram, the arrow points towards the dependent . )  This is per- 
mitted by a proposit ion which, at least by  implication, overrides the general rule, and 
which refers to the grammatical  function 'xcomplement ' :  6 

(33) subject of xcomplement  of word  = subject of it. 

In other words,  a word  may  have two heads provided  that one of them is the xcomple- 
ment  of the other. (We return below to the relations among the grammatical  functions 
such as 'subject' and 'xcomplement ' ) .  

The possibility of having more  than one head is related to another  impor tant  
generalization, namely that heads and dependents  are usually adjacent. If we think of 
each word  as defining a 'phrase, '  made  up  of that word  plus any words  subordinate  
to it, this is equivalent  to the PSG ban on discontinuous phrases. In the simple cases, 
then, the following generalization is true: 

(34) position of word  = adjacent-to head of it. 

An operational definition of 'adjacent-to' checks that no word  be tween the words  
concerned has a head outside the phrase: 

(35a) A is adjacent-to B iff every  word  between A and B is a subordinate 
of B. 

(35b) A is a subord ina te  of B iff A is B or A is a dependen t  of a 
subordinate of B. 

But what  if a word  has more  than one head? This normal ly  leads to a discontinuity; 
e.g. in Mary didn't jump, the phrase rooted in jump consists of Mary jump, but  does not 
include didn't. Saying that Mary jump is discontinuous is the same as saying that Mary 
is not adjacent to one of its heads, jump. Interestingly, though,  Mary does have one 
head to which it is adjacent (viz didn't), and more  generally the same is true of all 
discontinuities: even if a word  has some nonadjacent  heads, it also has at least one to 
which it is adjacent. We can therefore keep our  generalization (34) in a slightly revised 
form, with 'a head'  (one head) rather  than 'head'  (every head): 

(36) position of word  = adjacent-to a head of it. 

This generalization is inheri ted by  every  word,  so every  word  has to be adjacent to at 
least one of its heads. This t reatment  of discontinuity has m an y  impor tant  ramifications 
that cannot be explored fully here. 

The generalizations discussed in this section have referred crucially to grammatical  
functions. 7 In some cases these were the functions 'dependent '  and 'head, '  but  we also 
ment ioned "subject' and 'xcomplement . '  The functional categories are ar ranged in an 

6 The name 'xcomplement' is borrowed from Lexical Functional Grammar. The term used in earlier WG 
literature is 'incomplement.' 

7 As in LFG, the term 'function' is used here in both its mathematical and grammatical senses, but 
(unlike LFG) with a single word as the argument; so in expressions such as 'head of X' or 'subject of 
X,' X is always some word or word type rather than a phrase. 
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dependent 

v i s i t o r  subject  preadjunct  ~ n t  postadjunct  

J I \ 
object xcomplement etc 

Figure 2 
Hierarchy of dependency types for English. 

inheritance hierarchy, and the one for English is shown (in part) in Figure 2. This 
hierarchy allows generalizations to be made about different types of dependent at the 
most appropriate level. As with the hierarchy of word classes, we are sure that some 
of these categories are specific to languages like English, and not universal, but others 
seem to be very widespread or universal. 

Generalizations about word order are perhaps the clearest examples of general- 
izations that take advantage of the hierarchical organization of grammatical functions 
in WG. Proposition (37) states the default word order of English (i.e. English is a 
head-first language). 

(37) position of dependent of word = after it. 

Although this generalization has important exceptions, it is clearly true of 'typical' 
dependencies in English; for example, in a running text we find that between 60% and 
70% of dependencies are head-first. 

The exceptional order of those dependent types that typically precede their heads 
is handled by the propositions shown in (38), referring to the super-category 'prede- 
pendent.' 

(38a) position of predependent of word = before it. 

(38b) NOT: position of predependent of word = after it. 

The usual machinery of default inheritance applies, so that (38b) blocks the normal 
head-first rule, and (38a) replaces it by the exceptional one. There are just a few con- 
structions that allow a dependent to precede its head, one of which is the subject-verb 
pair. 8 

8 As one of our readers commented, if pressure toward consistency were the strongest pressure on 
language development, we should expect VSO languages to outnumber SVO, but of course they do not 
(about 40% of the world's languages are said to be SVO, compared with only 10% VSO). One 
explanation for this is presumably tile strong tendency for subjects to be more topical than verbs, but it 
remains as a challenging area for research. 
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One of the most important applications of default inheritance in WG syntax is 
in the distinction of 'derived' from 'underlying' or 'basic' patterns. The general point 
is that underlying patterns are allowed by the most general rules, and are therefore 
most typical; whereas derived patterns involve rules that override these, so they are 
exceptional. In this way we can capture the different statuses of these patterns in 
a completely monostratal analysis and without the use of special devices such as 
transformations, lexical rules, or metarules. 

Take for instance the rules given in the Appendix for inverted subjects. 

(39a) tensed polarity-verb has 1 sv-order. 

(39b) sv-order of verb = {/: s+v, v+s}. 

(39c) position of dependent of word = after it. 

(39d) position of predependent of word = before it. 

(39e) NOT: position of predependent of word -- after it. 

(39f) NOT: position of subject of v+s verb = before it. 

(39g) NOT: NOT: position of subject of v+s verb = after it. 

The first two rules allow us to distinguish tensed polarity-verbs according to whether 
their subject precedes ('s+v') or follows ('v+s') them. 9 This allows us to treat 'v+s verb' 
as an exception to the general rule that subjects precede their head, which is in turn 
an exception to the generalization that words follow their heads. This system allows 
us to generate a sentence such as Did Mary jump? with just one syntactic structure, 
free of empty positions, while still showing 1° that it is a less normal construction than 
a sentence such as Mary did jump. In parsing terms, the only problem is to find and 
apply the necessary propositions; there is no need to reconstruct any kind of abstract 
structure for the sentence itself. 

The use of 'NOT' rules for overriding defaults finds support in the fact that the 
'NOT' rule in (39e) is also crucial for solving at least two other major problems, namely 
passives and extraction. In a passive sentence like (40), WG handles object-promotion 
by analyzing the subject as also being the object. This is achieved by means of propo- 
sition (41a) (which is slightly simplified). 

(40) Mary was kissed by John. 

(41a) subject of passive verb = object of it. 

(41b) NOT: position of predependent of word = after it. 

The problem is that Mary, as the object of kissed, ought to follow it, but since Mary 
is also the subject this requirement is overridden by proposition (39e=41b), so Mary 
never inherits the need to follow kissed. 11 

9 See Hudson (1990: 215-6) for a discussion of the apparent lack of morphological consequences of the 
subject-position feature. 

10 The exceptionality of an inverted subject is shown by the negative proposition 'NOT: NOT: position of 
subject of v+s verb = after it.' This proposition is inherited by the word tokens concerned--i.e, it is part 
of the analysis of the sentence itself, and not just available in the grammar. 

11 It may not be obvious exactly how this works. How does (41b) stop the object of a passive from 
following the verb, given that it refers to 'predependent, '  which does not subsume 'object'? The answer 
lies in (41a): the object of a passive verb is also its subject, so any rule (such as (41b)) that applies to the 
subject also, ipso facto, applies to its object. 
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A similar approach is used to handle extraction. For example, consider sentence (42). 

(42) Salesmen I distrust. 

Here salesmen must be an object of distrust, so the order should be I distrust salesmen, 
but in this case we also recognize a special kind of predependent relation ('visitor,' 
roughly equivalent to 'Comp') between distrust and salesmen, so once again the word 
order conflict between these two relations can be resolved. The rules are given in (43). 

(43a) finite verb has [0-1] visitor. 

(43b) visitor isa predependent. 

(43c) position of predependent of word = before it. 

(43d) NOT: position of predependent of word = after it. 

(43e) visitor of word -- a postdependent of it. 

(43f) visitor of word = a visitor of complement of it. 

Proposition (43a) allows distrust to have a visitor, which according to (43b) is a kind of 
predependent and therefore, by inheritance from (43c,d), must precede it. The visitor 
is also some kind of postdependent, according to (43e), so it may be the verb's object 
as in our example. But equally it may 'hop' down the dependency chain thanks to 
(43f), thereby providing for the analysis of sentences such as (44). 

(44) Salesmen I don't think many people say they trust. 

Further details of the WG analysis of passives and extraction can be found in Hudson 
(1990). 

Both passivization and extraction are standard examples of syntactic problems that 
need special machinery. According to WG--and more recently Flickinger, Pollard, and 
Wasow (1985) and Flickinger (1987)--all that is needed is default inheritance, which 
is available (though generally not explicitly recognized) in every linguistic theory; so 
any theory capable of accommodating exceptional morphology already has the power 
to deal with subject-inversion, passives and extraction. 

4. Semantics 

Default inheritance also plays a crucial part in the WG treatment of semantics. It is 
probably obvious how it applies in the familiar examples of inheritance in semantic 
networks---e.g., how one can infer that Clyde has a head from more general propo- 
sitions about elephants or animals. Rather than discussing this familiar territory we 
shall show how default inheritance helps us to answer a recurrent objection to de- 
pendency analysis: the syntactic dependency structure is completely flat, so it does 
not provide any units between the individual word and the complete phrase (where 
'phrase' means a word and the complete set of all its dependents and their respective 
phrases). 

For example, the semantic structure for the phrase typical French house has to men- 
tion the concept 'French house' (a typical French house is a house that is typical as a 
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French house, and not just as a house); but a flat dependency structure such as (45) 
provides no syntactic unit larger than the individual "words (Dahl 1980). 

(45) 

typical French house 

Similarly, how can we handle 'VP-anaphora' without a VP node? For example, we 
need the concept 'adore peanuts' as part of the semantic structure of Fred doesn't in 
(46a), but adores peanuts is not a phrase in the syntactic structure of the first clause: 

(46a) Mary adores peanuts but Fred doesn't. 

(46b) 

{[Mary adores peanuts] [but Fred doesn't]} 

Inheritance is relevant to these questions because notions such as 'French-house '12 
and 'adoring-peanuts' can be located in an inheritance hierarchy between the more 
general notions denoted by their heads ('house' or 'adoring') and the more specific ones 
denoted by the complete phrase ('typical-French-house,' 'Mary-adoring-peanuts'): 

(47) house adoring 

I L 
French-house adoring-peanuts 

I I 
typical-French-house Mary-adoring-peanuts 

As usual, each of these concepts inherits all the properties of the concepts above it in 
the hierarchy except where these are overridden. 13 

It is easy to see how a dependency grammar can generate concepts at the top 
and bottom of these hierarchies. The top concept comes straight from the lexical entry 
for the root word (e.g. HOUSE, ADORE), and the bottom one belongs to the word 
token--the word in the sentence concerned (e.g. the word house in the phrase typical 

12 The h y p h e n  in 'French-house '  is needed  because  this is an  atomic n a m e  whose  internal  s t ructure  is 
irrelevant. 

13 Overr id ing  is found  in we l l -known examples  such  as fake diamond, not  to men t ion  ord inary  negat ive  
sentences  such  as Mary didn't jump. A fake d i a m o n d  is an  object that  inheri ts  some  of the  propert ies  of 
d i amonds ,  especially the  visible ones,  bu t  not  all, and  in part icular  not  those  that  are criterial in the 
trade. If the sense  of Mary jumped (i.e. the k ind of s i tuat ion to wh ich  it can refer) is P, then  the  referent 
of Mary didn't jump (i.e. the  actual s i tuat ion to wh ich  it refers) is NOT: P, in wh ich  we  k n o w  no th ing  
about  the  s i tuat ion except that  it is not  one in wh ich  Mary  jumped .  (The relevant  rule is g iven  in the  
Appendix) .  
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French house). The problem is how to generate concepts in between the two, and the 
WG solution is to recognize the notion head-sense: the head-sense of some word W 
is the concept that results from combining W with its head. Thus the head-sense of 
French in our example is the result of combining French with house (as adjunct and 
head respectively); and that of peanuts in Mary adores peanuts is the result of combining 
peanuts with adores. This is how we generate semantic structures that contain 'French- 
house' and 'adoring-peanuts' without recognizing French house or adores peanuts as 
units in the syntax. 

The rules that allow head-senses include these: 

(48a) dependent of word has 1 head-sense. 

(48b) referent of word = a dependent of head-sense of it. 

By the first rule, every dependent of a word has a head-sense, i.e. makes a distinct 
contribution, in combination with its head, to the sentence's meaning. The notion 
'head-sense' is thus a functor that maps the senses of the dependent and the head onto 
a third concept, applying equally to complements such as peanuts in adores peanuts and 
to adjuncts such as French in French houses. There is nothing quite like it in standard 
semantic systems such as Montague Grammar, but it applies in conjunction with rather 
more standard functors which each pick out one particular (semantic) role as the 
one filled by the dependent's referent (by rule (48b)). Generally speaking, this role 
is defined by just one of the words concerned, according to whether the dependent 
is an adjunct or a complement. If it is an adjunct, it defines its own semantic role 
(e.g. French defines its own semantic role as 'nationality' or 'location'), but if it is a 
complement then it leaves the head to define its role (e.g. adores provides the role 
'adoree,' or whatever it should be called, for its complement). 

The relevance to inheritance is that all the different head-senses are held together 
by inheritance. These are the basic rules: 

(49a) head-sense of dependent of word isa sense of it. 

(49b) referent of word isa head-sense of dependent of it. 

That is, the combination of a word and one of its dependents yields a concept that is 
normally a particular case of the concept defined by the word on its own (a French 
house is a kind of house; adoring peanuts is a kind of adoring), and whatever a word 
refers to must be a particular case of all the concepts defined by it in combination with 
its dependents (e.g., the particular situation referred to by Mary adores peanuts must be 
one that is both an example of adoring peanuts and of Mary adoring). 

We can impose further structure on the semantics; for example, by requiring all 
other head-senses to build on that of the object: 

(50) head-sense of dependent of word isa head-sense of object of it. 

This is equivalent to an ordered procedure that combines the verb with its object be- 
fore it takes account of any other dependents. This has the attraction of a Categorial 
Grammar approach, in which dependents are added one at a time and subtle distinc- 
tions of grouping can be made e.g., among the complements within VP; but it has the 
advantage of not requiring a similar binary bracketing in the syntax. Why is this an 
advantage? Some of the drawbacks of binary syntactic structures are obvious--e.g., 
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the need for far more phrasal nodes each carrying much the same information. How- 
ever, the advantage of our system that we should like to draw attention to here is the 
possibility of reducing the amount of ambiguity. 

For example, in WG the sequence cheap book about linguistics has just one possible 
syntactic analysis, the usual flat analysis with both cheap and about as dependents of 
book, but its semantics contains the concepts 'cheap book' and 'book about linguistics' 
respectively. These interpretations can be seen from examples such as the following, 
where the sense of ONE is based on the semantic structure of the antecedent phrase. 

(51a) I wanted a cheap book about linguistics but I could only find one 
about cricket. 

(51b) I wanted a cheap book about linguistics but I could only find a 
dear one. 

In a standard approach, the first clause has to be given two distinct syntactic structures, 
one containing the unit cheap book and the other book about linguistics; but this ambiguity 
cannot be resolved until the end of the second clause. Our judgment is that the first 
clause is not in fact semantically ambiguous in this way; and according to our approach 
there is no need to postulate such ambiguity since both concepts 'cheap book' and 
• book  about linguistics' are available there, in addition to the unifying concept 'cheap 
book about linguistics" (which could be identified in relation to book as its supersense, 
the concept that is an instance of the head-sense of every dependent). Here is the 
relevant part of the structure of both (51a) and (51b): 

(55) 
c6 

price / ~ subject 
c4 , c2 c3 

, ~ / matter 

I cl 
I L 

I I 
I adjunct I complement 

, c 5  

complement 

( 

c5 
i 
I 

I 
I 

I 

cheap book about 

In this diagram, the concepts are as follows: 

linguistics 

cl %ook' 
c2 'cheap book'  
c3 "book about linguistics' 
c4 'cheap' 
c5 'about linguistics' 
c6 'cheap book about linguistics' 

The isa relations in this structure provide the basis for ordinary default inheritance; 
so if a book has pages, then so do a cheap book, a book about linguistics, and a 
cheap book about linguistics. They also allow defaults to be overridden in the usual 
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way; this is precisely the function of ordinary adjectives and adverbs like CHEAP 
or QUICKLY, which mean 'more cheap/quickly than the default,' where the default 
value is the average for the category concerned. The theoretical apparatus that allows 
these meanings is precisely the same as the one we apply in morphology and syntax. 

5. Conclus ion 

We have shown that it is possible, and fruitful, to develop a general theory of default 
inheritance that is equally relevant, and equally important, for all levels of linguistic 
analysis. We have demonstrated this in relation to syntax and semantics, and by oc- 
casional allusions to morphology, but we assume it is equally true of phonology and 
of pragmatics (in every sense). 

This conclusion, if true, is important for linguists and psychologists, because it 
shows that the structures found within language are formally similar in at least some 
respects to those found in general knowledge, and that both kinds of knowledge are 
processed in ways that are similar in at least some important respects. And our conclu- 
sion is also important for computational linguists because it indicates the possibility 
of a single very general inheritance mechanism that can be applied at every stage in 
the parsing process, and also in the manipulation of knowledge structures. A second 
conclusion, however, is that default inheritance should be based on the principle of 
stipulated overriding (by means of 'NOT:... '  propositions), rather than on automatic 
overriding. This conclusion conflicts directly with standard theory and practice. 
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Appendix 

This appendix contains a selection of WG propositions that are sufficient to generate 
simple syntactic, morphological, and semantic structures for the sentences Mary jumped, 
Mary didn't jump, Did Mary jump ?, and Didn't Mary jump ? After presenting the grammar, 
we give an analysis of Mary jumped. 

GRAMMAR 

Word classes 
noun isa word. 
proper isa noun. 
verb isa word. 
polarity-verb isa verb. 

Morphosyntactic features 
verb has 1 finiteness. 
finiteness of verb = {/: finite, non-finite}. 
non-finite verb has 1 aspect. 
aspect of verb = {/:  infinitive, perfect, participle}. 
finite verb has 1 mood. 
mood of verb = {/:  tensed, imperative}. 
tensed verb has 1 tense. 
tense of verb = {/: past, present}. 
tensed polarity-verb has 1 polarity. 
polarity of verb = ( / :  positive, negative}. 
tensed polarity-verb has 1 sv-order. 
sv-order of verb = {/:  s+v, v+s}. 

Regular morphology 
body isa form. 
ed-form isa body. 
base isa body. 
n' t-form isa form. 
past verb has 1 ed-form. 
whole of ed-form of verb = stem of it + whole of reEd. 
whole of reEd = <ed>.  
negative verb has 1 n't-form. 
whole of n' t-form of verb = whole of body of it + whole of mN't .  
whole of mN' t  = <n ' t> .  
infinitive verb has 1 base. 
whole of base of word -- stem of it. 

Dependencies 
predependent  isa dependent.  
postdependent  isa dependent.  
subject isa predependent.  
complement isa postdependent.  
xcomplement isa complement. 
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Syntactic valency 
word  has 1 head. 
finite verb has [0-1] head. 
word  has 0 subject. 
verb has 1 subject. 
NOT: tensed verb has 0 subject. 
subject of verb isa noun.  
word  has 0 complement .  
polari ty-verb has 1 xcomplement .  
xcomplement  of polari ty-verb isa infinitive verb. 

Raising/control 
subject of xcomplement  of word  = subject of it. 

Word order 
position of dependen t  of word  = after it. 
posit ion of p redependen t  of word  = before it. 
NOT: position of p redependen t  of word  = after it. 
NOT: position of subject of v+s verb = before it. 
NOT: NOT: position of subject of v+s verb = after it. 

Semantics: sense and reference 
word  has 1 meaning. 
referent isa meaning. 
sense isa meaning.  
p roper  has 0 sense. 
NOT: proper  has 1 sense. 
referent of word  isa sense of it. 
NOT: referent of negative verb isa sense of it. 
NOT: proper  has 1 sense. 

Semantics: words and other actions 
word  isa action. 
action has 1 time. 
action has 1 actor. 
actor of sense of word  = referent of subject of it. 
t ime of referent of past verb = before it. 

"Lexicon" 
MARY isa proper. 
whole of MARY = KMary>.  
referent of MARY = Mary. 

DO isa verb. 
D O / d u m m y  isa DO. 
D O / d u m m y  isa polarity-verb. 
stem of DO = <do> .  
whole of past DO = <d id> .  
NOT: whole of past DO = stem of it + whole  of mEd. 
meaning of D O / d u m m y  = meaning of xcomplement  of it. 
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JUMP isa verb. 
s tem of JUMP = < j u m p > .  
sense of JUMP = jumping.  
jumping  isa action. 

SENTENCE ANALYSIS 

The following is an analysis of Mary jumped, in which we present  all the proposi t ions  
about  its consti tuent  words  (wl,  w2) that can be inheri ted f rom the g r a m m a r  on the 
basis of the proposi t ions  in B, the 'calculated'  properties.  The latter are of course not  
genera ted by  inheri tance but  by  app ly ing  some kind of 'Best Fit Principle '  to the 
observable  proposi t ions  in A plus the a l ready inheritable proposit ions.  

A. Observable propositions 
whole  of w l  = < M a r y > .  
whole  of w2 = < j u m p e d > .  
posit ion of w l  = before w2. 

B. Calculated propositions 
w l  isa singular  MARY. 
w2 isa past  tensed finite JUMP. 
subject of w2 = wl .  
head  of w l  = w2. 
finiteness of w2 = finite. 
m o o d  of w2 = tensed. 
tense of w2 = past. 
sense of w2 = cl.  
referent of w2 = c2. 

C. Inherited propositions 
w l  isa proper.  
w l  isa noun.  
w l  isa word.  
w l  isa action. 
w l  has 1 time. 
w l  has 1 actor. 
w l  has 1 head. 
w l  has 1 referent. 
referent of w l  = Mary. 

w2 isa past  tensed finite verb. 
w2 isa tensed finite verb. 
etc. 
w2 isa verb. 
w2 has 1 finiteness. 
w2 has 1 mood.  
w2 has 1 tense. 
w2 has [0-1J head. 
w2 has 1 subject. 
subject of w2 isa noun.  
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posit ion of subject of w2 = before w2. 
w2 has 0 complement .  
w2 has 1 sense. 
w2 has 1 referent. 

cl  = jumping.  
cl isa action. 
cl has 1 time. 
cl  has 1 actor. 
c2 isa jumping.  
c2 isa action. 
c2 has 1 time. 
c2 has 1 actor. 
t ime of c2 = before w2. 

actor of cl  = Mary. 
actor of c2 = Mary. 
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