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A new natural language system, TINA, has been developed for applications involving spoken 
language tasks. TINA integrates key ideas from context free grammars, Augmented Transition 
Networks (ATN's), and the unification concept. TINA provides a seamless interface between 
syntactic and semantic analysis, and also produces a highly constraining probabilistic language 
model to improve recognition performance. An initial set of context-free rewrite rules provided by 
hand is first converted to a network structure. Probability assignments on all arcs in the network 
are obtained automatically from a set of example sentences. The parser uses a stack decoding 
search strategy, with a top-down control flow, and includes a feature-passing mechanism to deal 
with long-distance movement, agreement, and semantic constraints. TINA provides an automatic 
sentence generation capability that has been effective for identifying overgeneralization problems 
as well as in producing a word-pair language model for a recognizer. The parser is currently 
integrated with MIT's SUMMIT recognizer for use in two application domains, with the parser 
screening recognizer outputs either at the sentential level or to filter partial theories during the 
active search process. 

1. Introduct ion and O v e r v i e w  

Over the past few years, there has been a gradual paradigm shift in speech recognition 
research both in the U.S. and in Europe. In addition to continued research on the tran- 
scription problem, i.e., the conversion of the speech signal to text, many  researchers 
have begun to address as well the problem of speech understanding.  1 This shift is 
at least partly brought on by the realization that many  of the applications involving 
human / ma c h i ne  interface using speech require an "unders tanding" of the intended 
message. In fact, to be truly effective, many  potential applications demand that the 
system carry on a dialog with the user, using its knowledge base and information 
gleaned from previous sentences to achieve proper response generation. Current ad- 
vances in research and development  of spoken language systems 2 can be found, for 
example, in the proceedings of the DARPA speech and natural language workshops, 
as well as in publications from participants of the ESPRIT SUNDIAL project. Repre- 
sentative systems are described in Boisen et al. (1989), De Mattia and Giachin (1989), 
Niedermair  (1989), Niemann (1990), and Young (1989). 

Spoken Language Systems Group, Laboratory for Computer Science, MIT, Cambridge MA 02139 
~This research was supported by DARPA under Contract N00014-89-J-1332, monitored through the 

Office of Naval Research. 
1 Speech understanding research flourished in the U.S. in the 1970s under DARPA sponsorship. While 

"understanding" was one of the original goals, none of the systems really placed any emphasis on this 
aspect of the problem. 

2 We will use the term "speech understanding systems" and "spoken language systems" interchangeably. 
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A spoken language system relies on its natural language component to provide 
the meaning representation of a given sentence. Ideally, this component should also 
be useful for providing powerful constraints to the recognizer component in terms of 
permissible syntactic and semantic structures, given the limited domain. If it is to be 
useful for constraint, however, it must concern itself not only with coverage but also, 
and perhaps more importantly, with overgeneralization. In many existing systems, 
the ability to parse as many sentences as possible is often achieved at the expense 
of accepting inappropriate word strings as legitimate sentences. This had not been 
viewed as a major concern in the past, since systems were typically presented only 
with well-formed text strings, as opposed to errorful recognizer outputs. 

The constraints can be much more effective if they are embedded in a probabilistic 
framework. The use of probabilities in a language model can lead to a substantially 
reduced perplexity 3 for the recognizer. If the natural language component's computa- 
tional and memory requirements are not excessive, and if it is organized in such a way 
that it can easily predict a set of next-word candidates, then it can be incorporated 
into the active search process of the recognizer, dynamically predicting possible words 
to follow a hypothesized word sequence, and pruning away hypotheses that cannot 
be completed in any way. The natural language component should be able to offer 
significant additional constraint to the recognizer, beyond what would be available 
from a local word-pair or bigram 4 language model, because it is able to make use of 
long-distance constraints in requiring well-formed whole sentences. 

This paper describes a natural language system, TINA, which attempts to address 
some of these issues. The mechanisms were designed to support a graceful, seam- 
less interface between syntax and semantics, leading to an efficient mechanism for 
constraining semantics. Grammar rules are written such that they describe syntactic 
structures at the high levels of a parse tree and semantic structures at the low lev- 
els. All of the meaning-carrying content of the sentence is completely encoded in the 
names of the categories of the parse tree, thus obviating the need for separate seman- 
tic rules. By encoding meaning in the structural entities of the parse tree, it becomes 
feasible to realize probabilistic semantic restrictions in an efficient manner. This also 
makes it straightforward to extract a semantic frame representation directly from an 
unannotated parse tree. 

The context-free rules are automatically converted to a shared network structure, 
and probability assignments are derived automatically from a set of parsed sentences. 
The probability assignment mechanism was deliberately designed to support an ability 
to predict a set of next-word candidates with associated word probabilities. Constraint 
mechanisms exist and are carried out through feature passing among nodes. A unique 
aspect of the grammar is that unification constraints are expressed one-dimensionally, 
being associated directly with categories rather than with rules. Syntactic and semantic 
fields are passed from node to node by default, thus making available by default the 
second argument to unification operations. This leads to a very efficient implemen- 
tation of the constraint mechanism. Unifications introduce additional syntactic and 
semantic constraints such as person and number agreement and subject/verb seman- 
tic restrictions. 

This paper is organized as follows. Section 2 contains a detailed description of the 
grammar and the control strategy, including syntactic and semantic constraint mech- 

3 A technical term used in speech recognition to denote the geometric mean of the number of alternative 
word hypotheses that may follow each word. 

4 Each word is associated with a list of the probabilites for all the words that could possibly follow it 
anywhere in a sentence. 
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anisms. Section 3 describes a number of domain-dependent versions of the system 
that have been implemented, and addresses, within the context of particular domains, 
several evaluation measures, including perplexity, coverage, and portability. Section 
4 discusses briefly two application domains involving database access in which the 
parser provides the link between a speech recognizer and the database queries. The 
last section provides a summary and a discussion of our future plans. There is also an 
appendix, which walks through an example grammar for three-digit numbers, show- 
ing how to train the probabilities, parse a sentence, and compute perplexity on a test 
sentence. 

2. Detailed Description 

This section describes several aspects of the system in more detail, including how the 
grammar is generated and trained, how the control strategy operates, how constraints 
(both syntactic and semantic) are enforced, and practical issues having to do with 
efficiency and ease of debugging. 

2.1 Overview 
TINA is based on a context-free grammar augmented with a set of features used to 
enforce syntactic and semantic constraints. The grammar is converted to a network 
structure by merging common elements on the right-hand side (RHS) of all rules 
sharing the same left-hand side (LHS) category. Each LHS category becomes associated 
with a parent node whose children are the collection of unique categories appearing 
in the RHSs of all the rules in the common set. Each parent node establishes a two- 
dimensional array of permissible links among its children, based on the rules. Each 
child can link forward to all of the children that appear adjacent to that child in any of 
the shared rule set. Probabilities are determined for pairs of siblings through frequency 
counts on rules generated by parsing a set of training sentences. The parsing process 
achieves efficiency through structure-sharing among rules, resembling in this respect 
a top-down chart processor. 

The grammar nodes are contained in a static structure describing a hierarchy of 
permissible sibling pairs given each parent, and a node-dependent set of constraint 
filters. Each grammar node contains a name specifying its category, a two-dimensional 
probability array of permissible links among the next lower level in the hierarchy and 
a list of filter specifications to be applied either in the top-down or the bottom-up cycle. 
When a sentence is parsed, a dynamic structure is created, a set of parse nodes that are 
linked together in a hierarchical structure to form explicit paths through the grammar. 
During the active parse process, the parse nodes are entered into a queue prioritized 
by their path scores. Each node (except terminals) in a given parse tree enters the 
queue exactly twice: once during the top-down cycle, during which it enters into the 
queue all of its possible first children, and once again during the bottom-up cycle, 
during which it enters all of its possible right siblings, given its parent. The control 
strategy repeatedly pops the queue, advancing the active hypothesis by exactly one 
step, and applying the appropriate node-level unifications. 

Each feature specification for each grammar node contains a feature name, a value 
or set of values for that feature, a logic function, and a specification as to whether the 
unification should take place during the top-down or during the bottom-up cycle. 
All features are associated with nodes (categories) rather than with rules, and each 
node performs exactly the same unifications without regard to whatever rule it might 
be a part of. In fact, during the active parse process, a rule is not an explicit entity 
while it is being formed. Each instantiation of a rule takes place only at the time that 
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the next sibling is the distinguished [end] node, a special node that signifies a return 
to the level of the parent. The rule can be acquired by tracing back through the left 
siblings, until the distinguished [start] node is encountered, although this is not done 
in practice until the entire parse is completed. 

The parse nodes contain a set of features whose values will be modified through 
the unification process. All modifications to features are made nondestructively by 
copying a parse node each time a hypothesis is updated. Thus each independent 
hypothesis is associated with a particular parse node that contains all of the rele- 
vant feature information for that hypothesis. As a consequence, all hypotheses can be 
pursued in parallel, and no explicit backtracking is ever done. Control is repeatedly 
passed to the currently most probable hypothesis, until a complete sentence is found 
and all of the input stream is accounted for. Additional parses can be found by simply 
continuing the process. 

2.2 Training the Probabilities 
The grammar is built from a set of training sentences, using a bootstrapping procedure. 
Initially, each sentence is translated by hand into a list of the rules invoked to parse 
it. After the grammar has built up a substantial knowledge of the language, many 
new sentences can be parsed automatically, or with minimal intervention to add a few 
new rules incrementally. The arc probabilities can be incrementally updated after the 
successful parse of each new sentence. 

The process of converting the rules to a network form is straightforward. All rules 
with the same LHS are combined to form a structure describing possible intercon- 
nections among children of a parent node associated with the left-hand category. A 
probability matrix connecting each possible child with each other child is constructed 
by counting the number of times a particular sequence of two siblings occurred in the 
RHSs of the common rule set, and normalizing by counting all pairs from the partic- 
ular left-sibling to any right sibling. 5 Two distinguished nodes, a [start] node and an 
[end] node, are included among the children of every grammar node. A subset of the 
grammar nodes are terminal nodes whose children are a list of vocabulary words. 

This process can be illustrated with the use of a simple example. 6 Suppose there 
exists a grammar for noun phrases that can be expressed through the single compact 
rule form: 

Rule 1 
[NP] ~ [article] ([adjective]) ([adjective]) [noun] 

where the parentheses signify optional nodes. This grammar would be converted to 
a network as shown in Figure 1, which would be stored as a single grammar node 
with the name [NP]. The resulting grammar could be used to parse the set of phrases 
shown on the left, each of which would generate the corresponding rule shown on 
the right. 

"the boy" 
"a beautiful town" 
"a cute little baby" 
"the wonderful pudding" 

[NP] ~ [article] [noun] 
[NP] ~ [article] [adjective] [noun] 
[NPI ~ [article] ]adjective] [adjective] [nounl 
[NP] ~ [articlel [adjective] [noun] 

5 In general, a particular rule will occur repeatedly in the training data, and each instantiation of the rule 
will add to the counts on its arcs. 

6 A more complete example is given in the appendix. 
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.25 

Figure 1 .25 
Illustration of probabilistic network obtained from four rules with the same LHS (NP), as 
given in the text. A parent node, named [NP], would contain these five nodes as its children, 
with a probability matrix specifying the network connections• 

To train the probabilities, a record is kept of the relative counts of each subseqent 
sibling, with respect to each permissible child of the parent node, in our case, [NP], as 
they occurred in an entire set of parsed training sentences• In the example, [adjective] 
is followed three times by [noun] and once by [adjective], so the network shows a 
probability of 1/4 for the self loop and 3/4 for the advance to [noun]• Notice that the 
system has now generalized to include any number of adjectives in a row. Each rule 
in general would occur multiple times in a given training set, but in addition there is 
a significant amount of sharing of individual sibling pairs among different rules, the 
so-called cross-pollination effect• 

This method of determining probabilities effectively amounts to a bigram language 
model 7 embedded in a hierarchical structure, where a separate set of bigram statistics 
is collected on category pairs for each unique LHS category name. The method is to 
be distinguished from the more common method of applying probabilities to entire 
rule productions, rather than to sibling pairs among a shared rule set. An advantage 
to organizing probabilities at the sibling-pair level is that it conveniently provides an 
explicit probability estimate for a single next word, given a particular word sequence. 
This probability can be used to represent the language model score for the next word, 
which, when used in conjunction with the acoustic score, provides the overall score 
for the word. 

We make a further simplifying assumption that each sentence has only a single 
parse associated with it. This is probably justified only in conjunction with a grammar 
that contains semantic categories• We have found that, within the restricted domains 
of specific applications, the first parse is essentially always a correct parse, and of- 
ten, in fact, the only parse• With only a single parse from each sentence, and with 
the grammar trained at the sibling-pair level, training probabilities becomes a triv- 
ial exercise of counting and normalizing sibling-pair frequencies within the pooled 
context-free rule sets. Training is localized such that, conditional on the parent, there 
is an advance from one sibling to some next sibling with probability 1.0. Normaliza- 
tion requires only this locally applied constraint, making it extremely fast to train on 
a set of parsed sentences. Furthermore, the method could incorporate syntactic and 
semantic constraints, by simply renormalizing the probabilities at run time, after paths 
that fail due to constraints have been eliminated• 

7 A bigram language model is commonly used in speech recognition systems, where bigram statistics 
(frequency counts on adjacent word pairs) are collected from words or word categories in sample 
sentences. 
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Figure 2 
Functional block diagram of control strategy. (Note: "Initiate" means "enter into the queue 
ranked by probability.") 

2.3 Control Strategy 
A functional block diagram of the control strategy is given in Figure 2. At any given 
time, a set of active parse nodes are arranged on a priority queue. Each parse node 
contains a pointer to a corresponding grammar node,, and has access to all the infor- 
mation needed to pursue its partial theory. The top node is popped from the queue, 
and it then creates a number of new nodes (either first children s or right siblings 9 de- 
pending on its state), and inserts them into the queue according to their probabilities. 
If the node is an [end] node, it returns control to the parent node, giving that node 
a completed subparse. As each new node is considered, unifications of syntactic and 
semantic constraints are performed, and may lead to failure. The process can terminate 
on the first successful completion of a sentence, or tlhe Nth successful completion if 
more than one hypothesis is desired. 

A parse in TINA begins with a single parse node linked to the grammar node 
[sentence], which is entered on the queue with probability 1.0. This node creates new 
parse nodes that might have categories such as [statement], [question], and [request], 
and places them on the queue, prioritized. If [statement] is the most likely child, it 
gets popped from the queue, and returns nodes indicating [subject], [it], etc., to the 
queue. When [subject] reaches the top of the queue, it activates units such as [noun 
phrase], [gerund], and [noun clause]. Each node, after instantiating first-children, be- 
comes inactive, pending the return of a successful subparse from a sequence of chil- 
dren. Eventually, the cascade of first-children reaches a terminal node such as [article], 

8 All of the categories that can initiate the RHS of rules containing its category on the LHS. 
9 All of the categories that can follow its own category anywhere on the RIdS in the common rule set 

sharing its parent's category on the LHS. 
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which proposes a set of words to be compared with the input stream. If a match with 
an appropriate word is found, then the terminal node fills its subparse slot with an 
entry such as ([article] "the"), and activates all of its possible right-siblings. 

Whenever a terminal node has successfully matched an input word, the path 
probability is reset to 1.0.1° Thus the probabilities that are used to prioritize the queue 
represent not the total path probability but rather the probability given the partial 
word sequence. Each path climbs up from a terminal node and back down to a next 
terminal node, with each new node adjusting the path probability by multiplying by 
a new conditional probability. The resulting conditional path probability for a next 
word represents the probability of that word in its linguistic role given all preceding 
words in their linguistic roles. With this strategy, a partial sentence does not become 
increasingly improbable as more and more words are added. 

Because of the sharing of common elements on the right-hand side of rules, TINA 

can automatically generate new rules that were not explicitly provided. For instance, 
having seen the rule X =~ A B C and the rule X =~ B C D, the system would automat- 
ically generate two new rules, X ~ B C and X =~ A B C D. Although this property 
can potentially lead to certain problems with overgeneralization, there are a number 
of reasons why it should be viewed as a feature. First of all, it permits the system to 
generalize more quickly to unseen structures. For example, having seen the rule [ques- 
tion] ~ [aux] [subject] ]predicate] (as in "May I go?") and the rule ]question] ~ ]have] 
]subject] [link] [pred-adjective] (as in "Has he been good?"), the system would also 
understand the forms [question] ~ [have] [subject] [predicate] (as in "Has he left?") 
and [question] ~ [aux] [subject] [link] [pred-adjective] (as in "Should I be careful?"). 11 
Secondly, it greatly simplifies the implementation, because rules do not have to be ex- 
plicitly monitored during the parse. Given a particular parent and a particular child, 
the system can generate the allowable right siblings without having to note who the 
left siblings (beyond the immediate one) were. Finally, and perhaps most importantly, 
probabilities are established on arcs connecting sibling pairs regardless of which rule 
is under construction. In this sense the arc probabilities behave like the familiar word- 
level bigrams of simple recognition language models (Jelinek 1976), except that they 
apply to siblings at multiple levels of the hierarchy. This makes the probabilities mean- 
ingful as a product of conditional probabilities as the parse advances to deeper levels 
of the parse tree and also as it returns to higher levels of the parse tree. This approach 
implies an independence assumption that claims that what can follow depends only 
on the left sibling and the parent. 

One negative aspect of the cross-pollination is that the system can potentially 
generalize to include forms that are agrammatical. For instance, the forms "Pick the 
box up" and "Pick up the box," if defined by the same LHS name, would allow the 
system to include rules producing forms such as "Pick up the box up" and "Pick up the 
box up the box!" This problem can be overcome either by giving the two structures 
different LHS names or by grouping "up the box" and "the box up" into distinct 
parent nodes, adding another layer to the hierarchy on the RHS. Another solution is 
to use a trace mechanism to link the two positions for the object, thus preventing it 
from occurring in both places. A final alternative is to include a PARTICLE bit among 

10 Some modificat ion of this s cheme  is necessary w h e n  the inpu t  s t ream is not  determinist ic.  For the A* 
a lgor i thm (Hart et al. 1968) as appl ied to speech recognition, the actual pa th  score is typically 
a u g m e n t e d  wi th  an es t imated  score for the unseen  portion. Unless  some  kind of normal iza t ion is done,  
the short  theories have  an  unfai r  advantage ,  s imply  because fewer probabil i ty scores have  been 
mult ipl ied.  With a determinist ic  word  sequence  it seems  reasonable to a s s u m e  probabil i ty 1.0 for wha t  
has  been found.  

11 The auxil iary verb sets the m o d e  of the ma i n  verb to be root or past  participle as appropriate .  
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the features which, once set, cannot be reset. In fact, tlhere were only a few situations 
where such problems arose, and reasonable solutions could always be found. 

2.4 Design Issues 
TINA'S design includes a number of features that lead to rapid development of the 
grammar and/or  porting of the grammar to a new domain, as well as efficient im- 
plementation capabilities, in terms of both speed and memory. Among its features 
are semi-automatic training from a set of example sentences, a sentence generation 
capability, and a design framework that easily accomodates parallel implementations. 

It is a two-step procedure to acquire a grammar :from a specific set of sentences. 
The rule set is first built up gradually, by parsing the sentences one-by-one, adding 
rules and /or  constraints as needed. Once a full set of sentences has been parsed in 
this fashion, the parse trees from the sentences are automatically converted to the 
sequence of rules used to parse each sentence. The training of both the rule set and 
the probability assignments is then established directly in a second pass from the 
provided set of parsed sentences; i.e., the parsed sentences a r e  the grammar. 

Generation mode uses the same routines as those used by the parser, but chooses 
a small subset of the permissible paths based on the outcome of a random-number 
generator, rather than exploring all paths and relying on an input word stream to 
resolve the correct one. Since all of the arcs have assigned probabilities, the parse tree 
is traversed by generating a random number at each node and deciding which arcs 
to select based on the outcome. The arc probabilities can be used to weigh the alter- 
natives. Occasionally, the generator chooses a path that leads to a dead end, because 
of unanticipated constraints. Hence we in general need to keep more than one partial 
theory alive at any given time, to avoid having to backtrack upon a failure condition. 
We could in fact always choose to sprout two branches at any decision point, although 
this generally leads to a much larger queue than is really necessary. We found instead 
that it was advantageous to monitor the size of the queue, and arbitrarily increase the 
number of branches kept alive from one to two whenever the queue becomes danger- 
ously short, shrinking it back to one upon recovery. We have used generation mode 
to detect overgeneralizations in the grammar, to build a word-pair language model 
for use as a simple constraint mechanism in our recognizer, and to generate random 
sentences for testing our interface with the back-end. 

A final practical feature of TINA is that, as in unification grammars, all unifications 
are nondestructive, and as a consequence, explicit backtracking is never necessary. 
Every hypothesis on the queue is independent of every other one, in the sense that 
activities performed by pursuing one lead do not disturb the other active nodes. This 
feature makes TINA an excellent candidate for parallel implementation. The control 
strategy would simply deliver the most probable node to an available processor. 

TINA has been implemented in Commonlisp and runs on both a Sun workstation 
and a Symbolics LISP machine. A deterministic word sequence can be parsed in a 
small fraction of real-time on either machine. Of course, once the input is a speech 
waveform rather than a word sequence, the uncertainty inherent in the proposed 
words will greatly increase the search space. Until we have a better handle on control 
strategies in the best-first search algorithm, it is impossible to predict the computational 
load for a spoken-input mode. 

2.5 Constraints and Gaps 
This section describes how TINA handles several issues that are often considered to be 
part of the task of a parser. These include agreement constraints, semantic restrictions, 
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subject-tagging for verbs, and long distance movement (often referred to as gaps, or the 
trace, as in "(which article)/do you think I should read (ti)?") (Chomsky 1977). The gap 
mechanism resembles the Hold register idea of ATNs (Woods 1970) and the treatment 
of bounded domination metavariables in lexical functional grammars (LFGs) (Bresnan 
1982, p. 235 ft.), but it is different from these in that the process of filling the Hold 
register equivalent involves two steps separately initiated by two independent nodes. 

Our approach to the design of a constraint mechanism is to establish a framework 
general enough to handle syntactic, semantic, and, ultimately, phonological constraints 
using identical functional procedures applied at the node level. The intent was to de- 
sign a grammar for which the rules would be kept completely free of any constraints. 
To achieve this goal, we decided to break the constraint equations usually associated 
with rules down into their component parts, and then to attach constraints to nodes 
(i.e., categories) as equations in a single variable. The missing variable that must be 
unified with the new information would be made available by default. In effect, the 
constraint mechanism is thus reduced from a two-dimensional to a one-dimensional 
domain. Thus, for example, the developer would not be permitted to write an f- 
structure (Bresnan 1982) equation of the form [subj]inf = [np] associated with the rule 
[vp] --, [verb] [np] [inf], to cover, "I told John to go." Instead, the [np] node (regard- 
less of its parent) would generate a CURRENT-FOCUS (defined later) from its subparse, 
which would be passed along passively to the verb "go." The verb would then sim- 
ply consult the CURRENT-FOCUS (regardless of its source) to establish the identity of its 
subject. 

The procedure works as follows. In the absence of any explicit instructions from its 
grammar node, a parse node simply passes along all features to the immediate relative 
(first child in the top-down cycle, and right sibling during the bottom-up cycle12). 
Any constraints specified by the grammar node result in a modification of certain 
feature values. The modifications are specified through a four-tuple of (feature-name 
new-value logic-function cycle). The possible features include person and number, 
case, determiner (DEFINITE, INDEFINITE, PROPER, etc.), mode (ROOT, FINITE, etc.), and a 
semantic category bit map. The new value, entered as a bit pattern, could be a single 
value, such as SINGULAR, or could be multiple valued as in the number for the noun 
"fish." Furthermore, during the bottom-up cycle, the new value can be the special 
variable top-down-setting, i.e., the value for that feature that currently occupies the slot 
in the parse node in question. This has the effect of disconnecting the node from its 
children, with respect to the feature in question. The logic function is one of AND, OR, 
or SET, and the cycle is either top-down or bottom-up. 

A parse node has jurisdiction over its own slots only during the bottom-up cycle. 
During the top-down cycle, its feature value modifications are manifested only in its 
descendants. The node retains the values for the features that its parent delivered, and 
may use these for unifications prior to passing information on to its right siblings. This 
additional complexity was felt necessary to handle number agreement in questions of 
the form "Do John and Mary eat out a lot?" Here, the auxiliary verb "do" sets the 
number to plural, but the two individual nouns are singular. The SUBJECT node blocks 
transfer of number information to its children (by setting the value to all ls), but 
unifies the value for number returned during the bottom-up cycle with the value 
previously delivered to it by its left sibling, the auxiliary verb. There is a node, [and- 
noun-phrase], that deals specifically with compound nouns. This node blocks transfer 

12 If the right sibling happens to be the distinguished [end] node, then the features get passed up to the 
parent. 
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of number information to its children and sets number to plural during the bottom-up 
cycle. 

It has been found expedient to define a meta-level operator named "detach" that 
invokes a block operation during both the top-down and bottom-up cycles. This oper- 
ation has the effect of isolating the node in question from its descendents with respect 
to the particular blocked feature. This mechanism was commonly used to detach a 
subordinate clause from a main clause with respect to the semantic bits, for example. 
The setting that had been delivered to the node during the top-down cycle is retained 
and sent forward during the bottom-up cycle, but not communicated to the node's 
children. Another special blocking property can be associated with certain features, but 
the block only applies at the point where an [end] node returns a solution to a parent. 
This is true, for instance, of the mode for the verb. 

Along with the syntactic and semantic features, there are also two slots that are 
concerned with the trace mechanism, and these are used as well for semantic filtering 
on key information from the past. There are some special operations concerned with 
filling these slots and unifying semantics with these slots that will be described in 
more detail in later sections. 

Lexical entries contain three-tuple specifications of values for features; the fourth 
element is irrelevant since there are no separate top-down and bottom-up cycles. Thus 
a terminal verb node contains vocabulary entries that include settings for verb mode, 
and for person/number  if the verb is finite. The plural form for nouns can be handled 
through a [pl] morph for the sake of efficiency. This morph sets the value of number to 
plural, regardless of its prior setting. It is the job of a parent node to unify that setting 
with the value delivered by the left siblings of the noun. 

Some examples may help explain how the constraint mechanism works. Consider, 
for example, the ill-formed phrase "each boats." Suppose the grammar has the three 
rules, ([np] -* [det] [noun]), ([noun] --* [root-noun]), and ([noun] --* [root-noun] [pl]). 
The lexical item "each" sets the number to singular and passes this value to the [noun] 
node. The [noun] node blocks transfer of number to its children. "Boat" sets the num- 
ber to singular, but the [pl] morph overrides this value, returning a plural value to the 
parent. This plural value gets unified with the singular value that had been retained 
from "each" during the top-down cycle. The unification fails and the parse dies. By 
splitting off the plural morph, singular and plural nouns can share the bulk of their 
phonetics, thus reducing greatly the redundancy in the recognizer's matching prob- 
lem. In theory, morphs could be split off for verbs as well, but due to the large number 
of irregularities this was not done. 

Subject-verb agreement gets enforced by default, because the number information 
that was realized during the parsing of the subject node gets passed along to the 
predicate and down to the terminal verb node. The lexical item unifies the number 
information, and the parse fails if the result is zero. Any nonauxiliary verb node blocks 
the transfer of any predecessor person/number  information to its right siblings during 
the bottom-up cycle, reflecting the fact that verbs agree in person/number  with their 
subject but not their object. 

Certain nodes set the mode of the verb either during the top-down or the bottom- 
up cycle. Thus, for example, "have" as an auxiliary verb sets mode to PAST-PARTICIPLE 
during the bottom-up cycle (i.e., for its right-siblings). The category [gerund] sets the 
mode to PRESENT-PARTICIPLE during the top-down cycle (for its children). Whenever a 
[predicate] node is invoked, the verb's mode has always been set by a predecessor. 

2.5.1 Gaps. The mechanism to deal with gaps resembles in certain respects the Hold 
register idea of ATNs, but with an important difference, reflecting the design philoso- 
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phy that no node can have access to information outside of its immediate domain. The 
mechanism involves two slots that are available in the feature vector of each parse 
node. These are called the CURRENT-FOCUS and the FLOAT-OBJECT, respectively. The 
CURRENT-FOCUS slot contains, at any given time, a pointer to the most recently men- 
tioned content phrase in the sentence. If the FLOAT-OBJECT slot is occupied, it means 
that there is a gap somewhere in the future that will ultimately be filled by the partial 
parse contained in the FLOAT-OBJECT. The process of getting into the FLOAT-OBJECT slot 
(which is analogous to the Hold register) requires two steps, executed independently 
by two different nodes. The first node, the generator, fills the CURRENT-FOCUS slot with 
the subparse returned to it by its children. The second node, the activator, moves the 
CURRENT-FOCUS into the FLOAT-OBJECT position, for its children, during the top-down 
cycle. It also requires that the FLOAT-OBJECT be absorbed somewhere among its descen- 
dants by a designated absorber node, a condition that is checked during the bottom-up 
cycle. The CURRENT-FOCUS only gets passed along to siblings and their descendants, 
and hence is unavailable to activators at higher levels of the parse tree. That is to say, 
the CURRENT-FOCUS is a feature, like verb-mode, that is blocked when an [end] node is 
encountered. To a first approximation, a CURRENT-FOCUS reaches only nodes that are 
c-commanded (Chomsky 1977) by its generator. Finally, certain blocker nodes block the 
transfer of the FLOAT-OBJECT to their children. 

A simple example will help explain how this works. For the sentence "(How 
many pies)/ did Mike buy (ti)?" as illustrated by the parse tree in Figure 3, the [q- 
subject] "how many pies" is a generator, so it fills the CURRENT-FOCUS with its subparse. 
The [do-question] is an activator; it moves the CURRENT-FOCUS into the FLOAT-OBJECT 
position. Finally, the object of '~ouy," an absorber, takes the [q-subject] as its subparse. 
The [do-question] refuses to accept any solutions from its children if the FLOAT-OBJECT 
has not been absorbed. Thus, the sentence "How many pies did Mike buy the pies?" 
would be rejected. Furthermore, the same [do-question] grammar node deals with the 
yes/no question "Did Mike buy the pies?," except in this case there is no CURRENT- 
FOCUS and hence no gap. 

More complicated sentences involving nested or chained traces are handled 
straightforwardly by this scheme. For instance, the phrase, "Which hospital was Jane 
taken to?" can be parsed correctly by TINA, identifying "which hospital" as the object 
of the preposition "to" and "Jane" as the object of "taken." The phrase "which hos- 
pital" gets generated by the [q-subject] and activated by the following [be-question], 
thus filling the FLOAT-OBJECT slot. When the predicate of the clause is reached, the 
word "Jane" is in the CURRENT-FOCUS slot, and the phrase "which hospital" is still in 
the FLOAT-OBJECT slot. The [participial-phrase] for "taken [object]" activates "Jane," but 
only for its children. This word is ultimately absorbed by the [object] node within 
the verb phrase. Meanwhile, the [participial-phrase] passes along the original FLOAT- 
OBJECT ("which hospital") to its right sibling, the adverbial prepositional phrase, "to 
[object]." The phrase "which hospital" is finally absorbed by the preposition's object. 

The example used to illustrate the power of ATNs (Woods 1986), "John was be- 
lieved to have been shot," also parses correctly, because the [object] node following 
the verb "believed" acts as both an absorber and a (re)generator. Cases of crossed 
traces are automatically blocked because the second CURRENT-FOCUS gets moved into 
the FLOAT-OBJECT position at the time of the second activator, overriding the preexist- 
ing FLOAT-OBJECT set up by the earlier activator. The wrong FLOAT-OBJECT is available 
at the position of the first trace, and the parse dies: 

*(Which books)/did you ask John (where)j Bill bought (ti) (tj)? 
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SENTENCE 

I 
QUESTION 

Q-SUBJECT 

HOW QUANTIFIER NOUN-PL 

How many pies 

DO-QUESTION 

DO SUBJECT PREDICATE 

I 
NOUN-GROUP 

L 
NOUN-PHRASE 

J 
PROPER-NOUN 

d/d M~..e 

VERB-PHRASE-IO 

VBIO OBJECT 

I I 
buy Q-SUI~ECT 

Figure 3 
Example of a parse tree illustrating a gap. 

The CURRENT-FOCUS slot is not restricted to nodes that represent nouns.  Some of 
the generators are adverbial  or adjectival parts of speech (pos). An absorber checks for 
agreement  in POS before it can accept the FLOAT-OBJECT as its subparse. As an example, 
the question, " (How oi ly) /do  you  like your  salad dressing (ti)?" contains a [q-subject] 
"how oily" that is an adjective. The absorber [pred-adjective] accepts the available 
float-object as its subparse, but  only after confirming that POS is ADJECTIVE. 

The CURRENT-FOCUS has a number  of other uses besides its role in movement .  
It always contains the subject whenever  a verb is proposed,  including verbs that are 
predicative objects of another  verb, as in "I want  to go to China." It has also been found 
to be very  effective for passing semantic information to be constrained by  a future 
node,  and it can play an integral role in p ronoun  reference. For instance, a reflexive 
p ronoun  nearly always refers back to the CURRENT-FOCUS, whereas a nonreflexive form 
never  does, unless it is in the nominat ive case. 

2.5.2 Semant ic  Filtering. In the more recent versions of the grammar,  we have im- 
p lemented  a number  of semantic constraints using procedures  very  similar to those 
used for syntactic constraints. We found it effective to filter on the CURRENT-FOCUS's 
semantic category, as well as to constrain absorbers in the gap mechanism to require a 
match on semantics before they could accept a FLOAT-OBJECT. Semantic categories were 
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SENTENCE 

Q-SUBJECT 

WHAT STREET 

I I 
What street 

BE-QUESTION 

L I N ~ U N C T  

/s 

ARTICLE A-PLACE 
I 

A-HOTEL 
I 

HOTEL-NAME 
I 

the Hyatt 

I 
ON-STREET 

ON A-STREET 
I I 

on Q-SUBJECT 

Figure 4 
Parse tree for the sentence, "What street is the Hyatt on?" 

implemented in a hierarchy such that, for example, RESTAURANT automatically inher- 
its the more general properties BUILDING and PLACE. We also introduced semantically 
loaded categories at the low levels of the parse tree. It seems that, as in syntax, there 
is a trade-off between the number of unique node-types and the number of constraint 
filtering operations. At low levels of the parse tree it seems more efficient to label the 
categories, whereas information that must pass through higher levels of the hierarchy 
is better done through constraint filters. 

As an example, consider the sentence, "(what street)/is the Hyatt on (ti)?" shown 
in Figure 4. The [q-subject] places "What street" into the CURRENT-FOCUS slot, but this 
unit is activated to FLOAT-OBJECT status by the subsequent [be-question]. The [subject] 
node refills the now empty CURRENT-FOCUS with "the Hyatt." The node [a-street], an 
absorber, can accept the FLOAT-OBJECT as a solution, but only if there is tight agree- 
ment in semantics; i.e., it requires the identifier Street. Thus a sentence such as "What 
restaurant is the Hyatt on?" would fail on semantic grounds. Furthermore, the node 
[on-street] imposes strict semantic restrictions on the CURRENT-FOCUS. Thus the sen- 
tence "(What street)/ is Cambridge on (ti)?" would fail because Ion-street] does not 
permit Region as the semantic category for the CURRENT-FOCUS, "Cambridge." 

One place where semantic filtering can play a powerful role is in subject/verb rela- 
tionships. This is easily accomplished within TINA'S framework because the CURRENT- 
FOCUS slot always contains the subject of a verb at the time of the verb's instantiation. 
This is obvious in the case of a simple statement or complete clause, since the [subject] 
node generates a current-focus, which is available as the subject of the terminal verb 
node in the subsequent ]predicate]. The same [subject] current-focus is also available 
as the subject of a verb in a predicative object of another verb, as in "I want to go to 
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China." For the case where a verb takes an object and an infinitive phrase as argu- 
ments, the ]object] node replaces the current-focus with its subparse, such that when 
the verb of the infinitive phrase is proposed, the correct subject is available. This han- 
dles cases like "I asked Jane to help." With this mechanism, the two sentences "I want 
to go" and "I want John to go" can share the same parse node for the verb want. 

Certain sentences exhibit a structure that superficially resembles the verb-object- 
infinitive-phrase pattern but should not be represented this way, such as "I avoid 
cigarettes to stay healthy." Here, clearly, 'T' is the subject of "stay." This can be realized 
in TINA by having a top-level rule, ([statement] ~ ]subject] ]predicate] [adjunct-why]). 
The ]object] node for "cigarettes" replaces the CURRENT-FOCUS, but the replacement 
does not get propagated back up to the [predicate] node (since a current-focus is 
passed only to siblings and children, but not to parents). Thus, the CURRENT-FOCUS "I" 
is passed on from the predicate to the adjunct, and eventually to the verb "stay." 

Finally, in the case of passive voice, the CURRENT-FOCUS slot is empty at the time 
the verb is proposed, because the CURRENT-FOCUS which was the surface-form subject 
has been moved to the float-object position. In this case, the verb has no information 
concerning its subject, and so it identifies it as an unbound pronoun. 

Semantic filters can also be used to prevent multiple versions of the same case 
frame (Fillmore 1968) showing up as complements. For instance, the set of comple- 
ments [from-place], [to-place], and [at-time] are freely ordered following a movement 
verb such as "leave." Thus a flight can "leave for Chicago from Boston at nine," 
or, equivalently, "leave at nine for Chicago from Boston." If these complements are 
each allowed to follow the other, then in TINA an infinite sequence of [from-place]s, 
[to-place]s and [at-time]s is possible. This is of course unacceptable, but it is straight- 
forward to have each node, as it occurs, or in a semantic bit specifying its case frame, 
and, in turn, fail if that bit has already been set. We have found that this strategy, in 
conjunction with the capability of erasing all semantic bits whenever a new clause is 
entered (through the meta level "detach" operation mentioned previously) serves the 
desired goal of eliminating the unwanted redundancies. 

Thus far, we have added all semantic filters by hand, and they are implemented in 
a hard-fail mode, i.e., if the semantic restrictions fail, the node dies. This strategy seems 
to be adequate for the limited domains that we have worked with thus far, but they 
will probably be inadequate for more complex domains. In principle, one could parse a 
large set of sentences with semantics turned off, collecting the semantic conditions that 
occurred at each node of interest. Then the system could propose to a human expert a 
set of filters for each node, based on its observations, and the human could make the 
final decision on whether to accept the proposals. This approach resembles the work 
by Grishman et al. (1986) and Hirschman et al. (1975) on selectional restrictions. The 
semantic conditions that pass could even ultimately be associated with probabilities, 
obtained by frequency counts on their occurrences. There is obviously a great deal 
more work to be done in this important area. 

3. Evaluat ion  Measures  

This section addresses some performance measures for a grammar, including coverage, 
portability, perplexity, and trainability. Perplexity, roughly defined as the geometric 
mean of the number of alternative word hypotheses that may follow each word in the 
sentence, is of particular concern in spoken language tasks. Portability and trainability 
concern the ease with which an existing grammar can be ported to a new task, as well 
as the amount of training data necessary before the grammar is able to generalize well 
to unseen data. 
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To date, four distinct domain-specific versions of TINA have been implemented. 
The first version (TIMIT) was developed for the 450 phonetically rich sentences of the 
TIMIT database (Lamel et al. 1986). The second version (RM) concerns the Resource 
Management task (Pallett 1989) that has been popular within the DARPA community 
in recent years. The third version (VOYAGER) s e r v e s  as an interface both with a recog- 
nizer and with a functioning database back-end (Zue et al. 1990). The VOYAGER system 
can answer a number of different types of questions concerning navigation within a 
city, as well as provide certain information about hotels, restaurants, libraries, etc., 
within the region. A fourth domain-specific version is under development for the ATIS 

(Air Travel Information System) task, which has recently been designated as the new 
common task for the DARPA community. 

3.1 Portability 
We tested ease of portability for TINA by beginning with a grammar built from the 
450 TIMIT sentences and then deriving a grammar for the RM task. These two tasks 
represent very different sentence types. For instance, the overwhelming majority of 
the TIMIT sentences are statements, whereas the RM task is made up exclusively of 
questions and requests. The process of conversion to a new grammar involves parsing 
the new sentences one by one, and adding context-free rules whenever a parse fails. 
The person entering the rules must be very familiar with the grammar structure, but 
for the most part it is straightforward to identify and incrementally add missing rules. 
The parser identifies where in the sentence it fails, and also maintains a record of the 
successful partial parses. These pieces of information usually are adequate to pinpoint 
the problem. Once the grammar has been expanded to accomodate the new set of 
sentences, a subset grammar can be created automatically that only contains rules 
needed in the new domain, eliminating any rules that were particular to the original 
domain. It required less than one person-month to convert the grammar from TIMIT 
to the RM task. 

3.2 Perplexity and Coverage in RM Task 
A set of 791 sentences within the RM task have been designated as training sentences, 
and a separate set of 200 sentences as the test set. We built a subset grammar from 
the 791 parsed training sentences, and then used this grammar to test coverage and 
perplexity on the unseen test sentences. The grammar could parse 100% of the training 
sentences and 84% of the test sentences. 

A formula for the test set perplexity (Lee 1989) is: 13 

N 

_1 ~log2P(wi ] wi-1,...Wl). 
N 

Perplexity = 2 i=1 

where the wi are the sequence of all words in all sentences, N is the total number 
of words, including an "end" word after each sentence, and P(wi I Wi--I~'''Wl) is 
the probability of the ith word given all preceding wordsJ 4 If all words are assumed 
equally likely, then P(wi ] wi-1, . . ,  wl) can be determined by counting all the words 
that could follow each word in the sentence, along all workable partial theories. If the 
grammar contains probability estimates, then these can be used in place of the equally 

13 The appendix includes an example for computing test set perplexity. 
14 In the case of TINA, all words up to the current word within each sentence are relevant. 
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Table 1 
Summary of perplexity and coverage within the Resource Management domain, for the 200 
designated test sentences. 

Vocabulary Coverage Perplexity Perplexity 
Size No Probabilities With Probabilities 

985 84% 368 41.5 

Table 2 
Ranking of first reasonable parse in the Resource Management task. 

Top 1 Top 2 Top 3 Top 7 

Training 88% 96% 98% 100% 

Test 90% 96% 99% 99% 

likely assumption.  If the g rammar ' s  estimates reflect reality, the est imated probabilities 
will result in a reduct ion in the total perplexity. 

An average perplexi ty for the 167 test sentences that were parsable was computed  
for the two conditions, wi thout  (Case 1) and with (Case 2) the est imated probabilities. 
The result was a perplexity of 368 for Case 1, but  only 41.5 for Case 2, as summar ized  
in Table 1. This is with a total vocabulary size of 985 words,  and with a g rammar  
that included some semantically restricted classes such as [ship-name] and [readiness- 
category]. The incorporat ion of arc probabilities reduced the perplexi ty by  a factor of 
nine, a clear indicator that a proper  mechanism for utilizing probabilities in a g rammar  
can help significantly. An even lower perplexi ty could be realized within this domain  
by  increasing the number  of semantic nodes. In fact, this is a trend that we have 
increasingly adopted  as we move  to new domains.  

We didn ' t  look at the test sentences while designing the grammar,  nor  have we yet  
looked at those sentences that failed to parse. However ,  we decided to examine the 
parse trees for those sentences that p roduced  at least one parse to determine the dep th  
of the first reasonable parse. The results were essentially the same for the training and 
the test sentences, as shown in Table 2. Both gave a reasonable parse as either the first 
or second proposed  parse 96% of the time. Two of the test sentences never  gave a 
correct parse. 

3.3 Experiments within the VOYAGER domain 
We have recently deve loped  a subdomain  for TINA that has been incorporated into 
a complete spoken language system called VOYAGER. The system provides  directions 
on how to get f rom one place to another  within an urban region, and also gives 
information such as phone  number  or address for places such as restaurants, hotels, 
libraries, etc. We have made  extensive use of semantic filters within this domain,  in 
order  to reduce the perplexity of the recognition task as much  as possible. 

To obtain training and test data for this task, we had a number  of naive sub- 
jects use the system as if they were trying to obtain actual information. Their  speech 
was recorded in a simulation mode  in which the speech recognition component  was 
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Table 3 
Perplexity and coverage data for test and training samples within the VOYAGER domain. 

Data set: Test Test Training 

System: initial expanded expanded 

No Prob: 20.6 27.1 25.8 

Prob: 7.1 8.3 8.1 

Coverage: 69% 76% 78% 

excluded. Instead, an experimenter in a separate room typed in the utterances as 
spoken by the subject. Subsequent processing by the natural language and response 
generation components was done automatically by the computer (Zue et al. 1989). 
We were able to'collect a total, of nearly 5000 utterances in this fashion. The speech 
material was then used to train the recognizer component, and the text material was 
used to train the natural language and back-end components. 

We designated a subset of 3312 sentences as the training set, and augmented the 
original rules so as to cover a number of sentences that appeared to stay within the 
domain of the back-end. We did not try to expand the rules to cover sentences that 
the back-end could not deal with, because we wanted to keep the natural language 
component tightly restricted to sentences with a likely overall success. In this way 
we were able to increase the coverage of an independent test set of 560 utterances 
from 69% to 76%, with a corresponding increase in perplexity, as shown in Table 3. 
Perplexity was quite low even without probabilities; this is due mainly to an extensive 
semantic filtering scheme. Probabilities decreased the perplexity by a factor of three, 
however, which is still quite significant. An encouraging result was that both perplexity 
and coverage were of comparable values for the training and test sets, as shown in 
the table. 

3.4 Generation M o d e  
As mentioned previously, generation mode has been a very useful device for detecting 
overgeneralization problems in a grammar. After the addition of a number of seman- 
tically loaded nodes and semantic filters, the VOYAGER version of the grammar is now 
restricted mainly to sentences that are semantically as well as syntactically legitimate. 
To illustrate this point we show in Table 4 five examples of consecutively generated 
sentences. Since these were not selectively drawn from a larger set, they accurately 
reflect the current performance level. 

We also used generation mode to construct a word-pair grammar automatically for 
the recognizer component of our VOYAGER system. To do this, over 100,000 sentences 
were generated, and word-pair links were established for all words sharing the same 
terminal category (such as [restaurant-name], for all category-pairs appearing in the 
generated sentences. We could test completion by continuing until no new pairs were 
found. The resulting word pair grammar has a perplexity of over 70, in contrast to a 
perplexity of less than nine for the grammar used to construct it. This difference reflects 
the additional constraint of both the probabilities and the long-distance dependencies. 
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Table 4 
Sample sentences generated consecutively by the VOYAGER version of TINA. 

• Do you know the most direct route to Broadway Avenue from here? 

• Can I get Chinese cuisine at Legal's? 

• I would like to walk to the subway stop from any hospital. 

• Locate a T-stop in Inman Square. 

• What kind of restaurant is located around Mount Auburn in Kendall Square of East 
Cambridge? 

4. Interfaces with the Recognizer and the Back-End 

At present,  we have available at MIT two systems, VOYAGER and ATIS, involving specific 
application domains  in which a person can carry on a dialog with the computer,  either 
through spoken speech or through text input. In both of these systems, TINA provides  
the interface between the recognizer and the application back-end. In this section, I 
will describe our  current  interfaces be tween TINA and the recognizer and our  future 
plans in this area. In addition, I will describe briefly how we currently translate the 
parse tree into a semantic frame that serves as the input  to database access and text 
response generation. This aspect of the system is beyond  the scope of this paper, and 
therefore it will not be covered in detail. 

The recognizer for these systems is the SUMMIT system (Zue et al. 1989), which 
uses a segmental-based f ramework  and includes an audi tory  model  in the front-end 
processing. The lexicon is entered as phonetic  pronunciat ions that are then augmented  
to account for a number  of phonological  rules. The search algori thm is the s tandard 
Viterbi search (Viterbi 1967), except that the match involves a network- to-network 
al ignment problem rather than sequence-to-sequence. 

When we first integrated this recognizer with TINA, we used a "wire" connection, 
in that the recognizer p roduced  a single best output ,  which was then passed to TINA for 
parsing. A simple word-pair  g rammar  constrained the search space. If the parse failed, 
then the sentence was rejected. We have since improved  the interface by  incorporat ing 
a capability in the recognizer to propose  addit ional  solutions in turn once the first 
one fails to parse (Zue et al. 1991) To produce  these "N-best" alternatives, we make 
use of a s tandard A* search algori thm (Hart 1968, Jelinek 1976). Both the A* and the 
Viterbi search are left-to-right search algorithms. However ,  the A* search is contrasted 
with the Viterbi search in that the set of active hypotheses  take up  unequal  segments 
of time. That  is, when  a hypothesis  is scoring well it is al lowed to procede forward,  
whereas poorer  scoring hypotheses  are kept  on hold. 

We have thus far deve loped  two versions of the control strategy, a "loosely cou- 
pled" system and a "tightly coupled"  system. Both versions begin with a Viterbi search 
all the way  to the end of the sentence, resulting in not only the first candidate  solution 
but  also partial scores for a large set of other hypotheses.  If this first solution fails to 
parse, then the best-scoring partial theory is al lowed to procede forward  incrementally. 
In an A* search, the main issue is how to get an estimate of the score for the unseen 
port ion of the sentence. In our  case, we can use the Viterbi pa th  to the end as the 
estimate of the future score. This path is guaranteed to be the best way  to get to the 
end; however,  it may  not parse. Hence it is a tight upper  bound  on the true score for 
the rest of the sentence. The recognizer can continue to propose  hypotheses  until  one 
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successfully parses, or until a quitting criterion is reached, such as an upper bound 
on N. 

Whereas in the loosely coupled system the parser acts as a filter only on completed 
candidate solutions (Zue et al. 1991), the tightly coupled system allows the parser to 
discard partial theories that have no way of continuing. Following the Viterbi search, 
each partial theory is first extended by the parser to specify possible next words, which 
are then scored by the recognizer. We have not yet made use of TINA'S probabilities in 
adjusting the recognizer scores on the fly, but we have been able to incorporate linguis- 
tic scores to resort N-best outputs, giving a significant improvement in performance 
(Goodine et al. 1991). Ultimately we want to incorporate TINA'S probabilities directly 
into the A* search, but it is as yet unclear how to provide an appropriate upper bound 
for the probability estimate of the unseen portion of the linguistic model. 

Once a parser has produced an analysis of a particular sentence, the next step 
is to convert it to a meaning representation form that can be used to perform what- 
ever operations the user intended by speaking the sentence. We currently achieve this 
translation step in a second-pass treewalk through the completed parse tree. Although 
the generation of semantic frames could be done on the fly as the parse is being pro- 
posed, it seems inappropriate to go through all of that extra work for large numbers 
of incorrect partial theories, due to the uncertainty as to the identity of the terminal 
word strings inherent in spoken input. 

We have taken the point of view that all syntactic and semantic information can 
be represented uniformly in strictly hierarchical structures in the parse tree. Thus the 
parse tree contains nodes such as [subject] and [dir-object] that represent structural 
roles, as well as nodes such as [on-street] and [a-school] representing specific semantic 
categories. There are no separate semantic rules off to the side; rather, the semantic 
information is encoded directly as names attached to nodes in the tree. 

Exactly how to get from the parse tree to an appropriate meaning representation 
is a current research topic in our group. However, the method we are currently using 
in the ATIS domain (Seneff et al. 1991) represents our most promising approach to this 
problem. We have decided to limit semantic frame types to a small set of choices such 
as CLAUSE ( for  a sentence-level concept, such as request), PREDICATE ( for  a functional 
operation), REFERENCE (essentially proper noun), and QSET ( for  a set of objects). The 
process of obtaining a completed semantic frame amounts to passing frames along 
from node to node through the completed parse tree. Each node receives a frame in 
both a top-down and a bottom-up cycle, and modifies the frame according to spec- 
ifications based on its broad-class identity (as one of noun, noun-phrase, predicate, 
quantifier, etc.). For example, a [subject] is a noun-phrase node with the label "topic." 
During the top-down cycle, it creates a blank frame and inserts it into a "topic" slot 
in the frame that was handed to it. It passes the blank frame to its children, who will 
then fill it appropriately, labeling it as a QSET or as a REFERENCE. It then passes along to 
the right sibling the same frame that was handed to it from above, with the completed 
topic slot filled with the information delivered by the children. 

The raw frame that is realized through the treewalk is post-processed to simplify 
some of the structure, as well as to augment or interpret expressions such as relative 
time. For example, the predicate modifier in "flights leaving at ten a.m." is simplified 
from a predicate leave to a modifier slot labeled departure-time. An expression such 
as "next Tuesday" is interpreted relative to today's date to fill in an actual month, 
date, and year. Following this post-analysis step, the frame is merged with references 
contained in a history record, to fold in information from the previous discourse. 

The completed semantic frame is used in ATIS both to generate an SQL (Structured 
Query Language) command to access the database and to generate a text output to be 
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spoken in the interactive dialog. The SQL pattern is controlled through lists of frame 
patterns to match and query fragments to generate given the match. Text generation is 
done by assigning appropriate temporal ordering for modifiers on nouns and for the 
main noun. The modifiers are contained in slots associated with the QSET frame. Certain 
frames such as clock-time have special print functions that produce the appropriate 
piece of text associated with the contents. 

5. D i s c u s s i o n  

This paper describes a new natural language system that addresses issues of concern 
in building a fully integrated spoken language system. The formalism provides an 
integrated approach to representations for syntax and for semantics, and produces a 
highly constraining language model to a speech recognizer. The grammar includes 
arc probabilities reflecting the frequency of occurrence of patterns within the domain. 
These probabilities are used to control the order in which hypotheses are considered, 
and are trained automatically from a set of parsed sentences, making it straightforward 
to tailor the grammar to a particular need. Ultimately, one could imagine the existence 
of a very large grammar that could parse almost anything, which would be subsetted 
for a particular task by simply providing it with a set of example sentences within 
that domain. 

The grammar makes use of a number of other principles that we felt were im- 
portant. First of all, it explicitly incorporates into the parse tree semantic categories 
intermixed with syntactic ones, rather than having a set of semantic rules provided 
separately. The semantic nodes are dealt with in the same way as the syntactic nodes; 
the consequence is that the node names alone carry essentially all of the information 
necessary to extract a meaning representation from the sentence. The grammar is not 
a semantic grammar in the usual sense, because it does include high level nodes of a 
syntactic nature, such as noun-clause, subject, predicate, etc. 

A second important feature is that unifications are performed in a one-dimensional 
framework. That is to say, features delivered to a node by a close relative (sibling/parent/ 
child) are unified with particular feature values associated with that node. The x vari- 
able in an x-y relationship is not explicitly mentioned, but rather is assigned to be 
"whatever was delivered by the relative." Thus, for example, a node such as [subject] 
unifies in exactly the same way, regardless of the rule under construction. 

Another important feature of TINA is that the same grammar can be run in gener- 
ation mode, making up random sentences by tossing the dice. This has been found to 
be extremely useful for revealing overgeneralization problems in the grammar, as well 
as for automatically acquiring a word-pair grammar for a recognizer and producing 
sentences to test the back-end capability. 

We discussed a number of different application domains, and gave some perfor- 
mance statistics in terms of perplexity/coverage/overgeneralization within some of 
these domains. The most interesting result was obtained within the VOYAGER domain 
(see Sections 3.3 and 3.4). The perplexity (average number of words that can follow 
a given word) decreased from 70 to 28 to 8 when the grammar changed from word- 
pair (derived from the same grammar) to parser without probabilities to parser with 
probabilities. 

We_currently have two application domains that can carry on a spoken dialog with 
a user. One, the VOYAGER domain (Zue et al. 1990), answers questions about places 
of interest in an urban area, in our case, the vicinity of MIT and Harvard University. 
The second one, ATIS (Seneff et al. 1991), is a system for accessing data in the Official 
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Airline Guide and booking flights. Work continues on improving all aspects of these 
domains. 

Our current research is directed at a number of different remaining issues. As of 
this writing, we have a fully integrated version of the VOYAGER system, using an A* 
search algorithm (Goodine et al. 1991). The parser produces a set of next-word candi- 
dates dynamically for each partial theory. We have not yet incorporated probabilities 
from TINA into the search, but they are used effectively to resort the final output sen- 
tence candidates. In order to incorporate the probabilities into the search we need a 
tight upper bound on the future linguistic score for the unseen portion of each hypoth- 
esis. This is a current research topic in our group. We also plan to experiment with 
further reductions in perplexity based on a discourse state. This should be particularly 
effective within the ATIS domain where the system often asks directed questions about 
as yet unresolved particulars to the flight. 

6. Appendix: Sample Grammar Illustrating Probability Calculation and Perplexity 
Computation 

This appendix walks through a pedagogical example to parse spoken digit sequences 
up to three long, as in "three hundred and sixteen." Included is a set of initial context- 
free rules, a set of training sentences, an illustration of how to compute the path prob- 
abilities from the training sentences, and an illustration of both parsing and perplexity 
computation for a test sentence. 

Since there are only five training sentences, a number of the arcs of the original 
grammar are lost after training. This is a problem to be aware of in building grammars 
from example sentences. In the absence of a sufficient amount of training data, some 
arcs will inevitably be zeroed out. Unless it is desired to intentionally filter these out 
as being outside of the new domain, one can insert some arbitrarily small probability 
for these arcs, using, for example, an N-gram back-off model (Katz 1987). 

The Grammar: 
(parentheses indicate optional elements) 

number = hundreds-place (tens-place) ones-place 

number = tens-place 

number = (tens-place) ones-place 

hundreds-place = digits (hundred) 

hundreds-place = a hundred (and) 

tens-place = tens 

tens-place = teens (this overgeneralizes a bit) 

tens-place = oh (as in "four oh five") 

ones-place = digits 

tens = [twenty thirty forty ...] (a terminal node with eight 

individual words) 

digits = [zero one two three four .... ] 

teens = [ten eleven twelve...] 

oh = [oh] 

hundred = [hundred] 

and = [and] 

The training sentences: (with spoken form) 

I: 144 "one hundred and forty four" 
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2:430 "four thirty" 

3:208 "two oh eight" 

4: 24 "twenty four" 

5:114 "a hundred fourteen" 

The training rules: (excluding terminals) 

1: number = hundreds-place tens-place ones-place 

hundreds-place = digits hundred and 

tens-place = tens 

ones-place = digits 

2: number = hundreds-place tens-place 

hundreds-place = digits 

tens-place = tens 

number = hundreds-place tens-place ones-place 

hundreds-place = digits 

tens-place = oh 

ones-place = digits 

4. number = tens-place ones-place 

tens-place = tens 

ones-place = digits 

5. number = hundreds-place tens-place 

hundreds-place = a hundred 

tens-place = teens 

The training pairs for "hundreds-place" (gathering together all rules in (1, 2, 3, 5) 
above that have "hundreds-place" on the LHS: 

from 1: start 

from 2: start 

from 3: start 

from 5: start 

digits, digits hundred, hundred and, and end 

digits, digits end 

digits, digits end 

a, a hundred, hundred end 

The count array for "hundreds-place": 

digits hundred and end a total 

start 3 0 0 0 1 4 

digits 0 1 0 2 0 3 

hundred 0 0 1 1 0 2 

and 0 0 0 1 0 1 

a 0 1 0 0 0 1 

The probability of a transition from start to digits, within the parent node "hundreds- 
place," is just 3/4, the ratio of the number of times "hundreds-place" started with 
"digits" over the number of times it started with anything. 
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Parsing the phrase "four fifteen" with the trained parser: 
The initial stack: ~5 

ChildiParent, Left Sibling 
hundreds-placelnumber, start 
tens-placeinumber, start 

Path Probability 
4/5 
i/5 

After "hundreds-place" gets popped and expanded: 

digitsJhundreds-place, start 4/5*3/4 
tens-placelnumber, start 1/5 
alhundreds-place, start 4/5.1/4 (this is a tie score with 

the above) 

After "digitslhundreds-place" is popped and a match with "four" is found: 

endihundreds-place, digits 
hundredJhundreds-place, digits 
tens-placelnumber, start 
alhundreds-place, start 

2/3 (given "four" with certainty) 
1/3 (this is the word "hundred") 
i/5 

4/5~I/4 

After "endlhundreds-place, digits" is popped, "hundreds-place" has a solution in 
hand, "four." It now activates its only right sibling, "tens-place." This is a different 
instance of "tens-place" from the one at the third place in the stack. Its left sibling is 
"hundreds-place" rather than "start." 

tens-placeJnumber, hundreds-place 2/3 
hundredIhundreds-place, digits i/3 
tens-placeinumber, start I/5 
aihundreds-place, start 4/5,1/4 

After "tens-place" is expanded, we have: 

tensftens-place, start 2/3~3/5 
hundredihundreds-place, digits i/3 
tens-placelnumber, start i/5 
aJhundreds-place, start 4/5~1/4 
teensftens-place, start 2/3.1/5 
ohltens-place, start 2/3~1/5 

"Tens" and "hundred" will both get popped off and rejected, because there is no match 
with the word "fifteen." "Tens-151ace" will also get popped, and eventually rejected, 
because nothing within "tens-place" matches the digit "four." A similar fate meets the 
"a" hypothesis. Finally, "teens" will be popped off and matched, and "endltens-place, 
teens" will be inserted at the top with probability 1.0. This answer will be returned 
to the parent, "tens-place," and two new hypotheses will be inserted at the top of the 

15 To make the story simpler, I'm ignoring probabilities on the terminal word nodes. 
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number 

Figure A.1 

I hundreds 
3/4~ 2/3~ 

['our I 

tens 

I teens 
1/10~ 1~ 

fifteen 
Paths through the parse tree for the phrase "four fifteen" with associated probabilities derived 
from the training data. 

stack as follows: 

ones-placelnumber, tens-place 
endlnumber, tens-place 

315 215 

After the first one is rejected, the second one finds a completed "n u m b er "  rule and an 
empty  input  stream. The correct solution is now in hand. Notice that because "teens" 
was a relatively rare occurrence, a number  of incorrect hypotheses  had to be pursued  
before the correct one was considered. 

Computa t ion  of perplexity, for the phrase, "four fifteen:" 

N 

- l  y ~  logaP(wi lwi -1 ,  . . . Wl ) 

Perplexi ty  = 2 i=1 

These are the three transitions with associated probabilities, following the appropria te  
paths in Figure A.I: 

Transition Probability 
1: start ~ four 4 / 5 , 3 / 4 , 1 / 1 0  
2: four --* fifteen 1 , 2 / 3 , 1 , 1 / 5 , 1 / 1 0  
3: fifteen --* end 1 , 1 , 2 / 5  

Thus, for this example test sentence: 

lo ~ / 4 3  1 ~ 21  1 ~;2~ ~ ~ Y6 ) q- log2(~ ~ i-6) q- l°g2(2) 

Perplexi ty  = 2 3 

This comes out  to about  14 words  on average following a given word,  for this 
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particular phrase. This is higher than the norm for numbers  given the grammar,  again 
because of the rare occurrence of the "teens" node,  as well as the fact that there is 
no ones-place. This example is a bit too simple - in general there would  be multiple 
ways to get to a particular next word,  and there are also constraints which kill certain 
paths and make it necessary to readjust probabilities on the fly. In practice, one must  
find all possible ways to extend a word  sequence, comput ing total path probabili ty for 
each one, and then renormalize to assure that with probabili ty 1.0 there is an advance 
to some next word.  It is the normalized probability contribution of all paths that can 
reach the next word  that is used to update  the log P calculation. 
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