
Languages Generated by Two-Level
Morphological Rules-

G r a e m e Ri tchie t
University of Edinburgh

The two-level model .of morphology and phonology arose from work on finite-state machine de-
scriptions of phonological phenomena. However, the two-level rule notation can be given a precise
declarative semantics in terms of the segmentation of sequences of pairs of symbols, quite inde-
pendently of any computational representation as sets of finite-state transducers. Thus defined,
the two-level model can be shown to be less powerful, in terms of weak generative capacity, than
parallel intersections of arbitrary finite-state transducers without empty transitions (the usual
computational representation). However, if a special boundary symbol is permitted, the full family
of regular languages can be generated. Two-level morphological grammars may, without loss of
generality, be written in a simplified normal form. The set of two-level generated languages can
be shown to be closed under intersection, but not under union or complementation.

1. Background

Koskenniemi (1983a, 1983b, 1984) proposed a rule-system for describing morphological
regularities in a language, depending centrally on the idea of matching two sequences
of symbols--a lexical string (made up of the lexical forms of morphemes) and a
surface string (the sequence of characters in the normal, inflected, form of the word).
(In general, symbols could be orthographic or phonological; here we shall abstract
from this linguistic issue, and merely consider strings of atomic symbols, which could
be phonemes, typewritten characters, or any other separate entities).

Koskenniemi (1983a) originally described the rules in two alternative forms--
high-level rules and finite-state transducers. The high-level rules were given only an
informal interpretation, and were used as an expository device to state the linguistic
regularities more perspicuously. The formalism that was actually used to write and im-
plement two-level morphological grammars was parallel combinations of finite-state
transducers. Koskenniemi's own implementation was an interpreter for parallel trans-
ducers, which were directly written by the linguist as rules in their own right. Also,
various linguistic analyses presented in Dalrymple et al. (1983) follow this approach,
expressing rules as transition tables for transducers, and Antworth (1990) describes
a recent implementation based wholly on transducers being written directly. Never-
theless, Koskenniemi conjectured that an automatic compilation procedure could be

* An earlier version of part of this work was presented at the Fourth Conference of the European
Chapter of the Association for Computational Linguistics, Manchester, April 1989.

J Department of Artificial Intelligence, 80 South Bridge, Edinburgh EH1 1HN, Scotland,
g.d.ritchie@ed.ac.uk

(~) 1992 Association for Computational Linguistics

Computational Linguistics Volume 18, Number 1

devised to transform the more readable high-level form into the more directly im-
plementable parallel transducer form. Koskenniemi (,1985) refined the notation and
sketched a compilation method, although he still did not provide a detailed declar-
ative definition of the meaning of the high-level rules. Various implementations that
compile variants of the notation into arrangements of transducers have been devel-
oped (e.g. Karttunen et al. 1987; Ritchie et al. 1991).

The general view of this earlier work was that the rule notation was a mere
"syntactic sugar" for parallel combinations of arbitrary transducers, and that there
was no difference in meaning or power between the two formalisms.

This paper establishes the following:

(i)

(ii)

(iii)

(iv)

(v)

an alternative (declarative) statement of the meaning of the high-level
rule notation is possible, without recourse to compilation into finite-state
transducers;

the usual two-level morphological mechanism is more limited than
arbitrary transducers in its ability to define relationships between strings;

the use of a special boundary symbol slightly increases the generative
power of the model;

for any two-level morphological grammar, there is an equivalent one in a
simpler normal form;

the family of languages generated by two-level rules is not closed under
union or complementation, but is closed under intersection.

2. The Two-Level Notat ion

The original notation proposed in Koskenniemi (1983a) included some rather complex
notational conventions that have not survived into later versions. The formalization
given here will deal only with the core ideas, as embodied in Koskenniemi (1985) (and
other implementations such as Karttunen et al. 1987; Ritchie et al. 1991),

To understand how two-level rules operate, it is useful to consider four separate
levels, as depicted in Figure 1. The topmost level contains lexical forms, which are
strings of symbols in some suitable lexical alphabet:. Each string can be thought of
as the abstract representation of the phonology or orthography of an individual mor-
pheme or lexeme. The second level consists of a notional automaton "tape" made
up of any concatenation of strings from the first level (the lexicon), with special null
symbols inserted anywhere between the symbols of the lexical alphabet (optionally).
Hence a finite set of lexical strings characterizes an infinite set of possible "lexical
tapes," produced by concatenation and insertion of nulls. The third level is a similar
"surface tape" consisting of symbols in a surface alphabet, with the null symbol also
appearing at arbitrary positions. The fourth level, at the bottom in Figure 1, represents
the word as spelt (or phonetically represented) in the surface alphabet; the relation-
ship between the surface tape and the surface form is that the latter can be produced
from the former by removing all occurrences of the special null symbol. The ordinary

42

Graeme Ritchie

LEXICAL FORMS:

Languages Generated by Two-Level Morphological Rules

m o v e + e d

LEXICAL TAPE:

SURFACE TAPE:

- I o l v e e d

i o o l v o o l e l d

SURFACE FORM:
Figure 1
Lexical and surface tapes and forms.

moved

surface form (such as moved) is related to a sequence of lexical forms (such as move
and +ed) if a surface tape and a lexical tape exist such that:

1. the lexical tape is the concatenation of the lexical forms in question,
possibly with the addition of nulls;

2. the surface tape contains the symbols of the surface form, possibly with
the addition of nulls;

3. the two tapes have the same number of symbols, counting nulls;

4. the contents of the tapes are related by the two-level rules.

That is, the two-level rules define possible pairs of equal-length sequences (the two
"tapes"), and the actual surface form and lexical forms are then related by general
conventions acting on these sequences. The formalism as a whole can be used to
describe phenomena involving a surface string of a different length from the lexical
forms, via the conventions regarding null symbols, but the rules themselves are written
as statements about symbol-strings of equal length. Hence, the rules can be viewed
as statements about sequences of symbol-pairs, where each symbol-pair consists of one
symbol from the lexical tape and its counterpart from the surface tape. Conventionally,
symbol-pairs are written with an infix colon, rather than as a pair within parentheses.
The rules specify which sequences of symbol-pairs are or are not valid, by supplying
contexts (sequences of symbol-pairs) within which a particular symbol-pair may or
must occur. For example, the rather trivial rule

e:O => v:v ___ +:0

would specify that the pair e:0 could occur only if it were surrounded by v:v on
the left and +:0 on the right, which is a rough approximation to the phenomenon
illustrated by Figure 1.

There are three types of rule, but they all have the same overall form--a single
symbol-pair whose behaviour is being specified, followed by an operator (=>, <--- or
<--->), a left context, a punctuation ("___" in this paper) to indicate where the symbol
pair appears relative to the context, and a right context.

43

Computational Linguistics Volume 18, Number 1

The three types of rule are as follows:

Context Restriction (operator =>): states that the given symbol-pair can occur only in
the given contexts, as in the simple example given above.

Surface Coercion (operator <=): states that if the contexts occur, and the lexical symbol
is as given, then the surface symbol must be as specified. For example

e:l <= l:i +:0

indicates that where a lexical Z corresponds to a surface ±, there is a pairing of lexical +
with a surface null symbol one place further to the right, and the intervening symbol-
pair has a lexical e, then the surface symbol in that pair must be 1. This might be one
of the rules describing the relationship between possible+ity and possibility.

Composite (operator <=>): a rule of this sort is merely an abbreviation of two separate
rules (a context restriction rule and a surface coercion rule) made up of exactly the
same symbol-pair, left context and right context. For example

i:y <=> -:- ___ e:O +:0 i:i

states that lexical ± and surface y are paired only in the context of anything on the left
(if we assume that the "=" symbol means "any symbol") and a sequence of pairings
on the right as given. This describes the association of lexical t i e+ ing with surface
tying. The precise meaning of a composite rule is given by re-writing it as a context
restriction rule and a surface coercion rule; composite rules will be ignored in the
formalization below, as they add nothing to the abstract mechanism.

Fuller examples of the use of two-level rules can be found in Koskenniemi (1983a)
and Ritchie et al. (1987, 1991).

The interpretation of a set of rules is as follows. For a sequence of symbol-pairs to
be acceptable, if any symbol-pair in it was the subject of one or more context restriction
rules, then at least one of these rules must apply to the surrounding sequence (i.e. the
contexts must match). Also, if the surrounding contexts of any symbol-pair matched
the context parts of any surface coercion rule, then the symbol-pair must obey that
rule. That is, in a rule-set (a two-level morphological grammar), all the context re-
striction rules that have the same symbol-pair on the left-hand side of the ~ operator
were deemed to be a disjunction of constraints for that symbol-pair, and the surface
coercion rules were a conjunction of constraints (regardless of which symbol-pair they
constrained).

In specifying symbol-pairs in rules (whether in the central pair or within the
contexts) various convenient abbreviations were available. Symbols denoting sets of
characters could be used instead of individual characters, thereby making it easier to
state rules that referred to "all vowels" or other classes. Variables were also available
for conflating rules that were very similar.

In specifying contexts (left and right), it was possible to supply more complex
expressions than just sequences of symbol-pairs. Essentially, regular expressions of
symbol-pairs were allowed (regular pair expressions as Koskenniemi called them),
since notation was available to state alternation (disjunction), optionality, and the oc-
currence of zero or more instances (Kleene star). Also, a single rule could contain
several pairs of contexts, written as a disjunction of possibilities.

44

Graeme Ritchie Languages Generated by Two-Level Morphological Rules

In the following illustrative example of a two-level morphological rule (taken from
Ritchie et al. 1987), angle brackets indicate sequences of pairs and braces indicate
alternatives; also, C, V, C2, and = represent subsets of the relevant symbol alphabets
and + is an abstract symbol occurring in certain lexical forms.

e:0 <=> =:C2 ___ < +:0 V: = >
or < C:C V:V> ___ <+:0 e:e>

or {g:g c:c} ___ <+:0 {e:e i:i} >

or i:0 ___ +:0
or c:c ___ <+:0 a:0 t:t>

This rule describes the various contexts in which a lexical e is elided on the surface
(as in larger, continuing, raced, possibly, or reduction).

The formalism here will not include symbolic mnemonics for sets of symbols, nor
variables ranging over sets of symbols. The semantics of both these notations can be
stated in terms of equivalent sets of rules without such abbreviatory conventions, so
all that is required is a definition of the interpretation of rules containing only actual
character symbols. We shall also (in some of our formalization) abstract away from
the stipulation that the context-expressions must denote regular sets, since none of the
proofs depend on that characteristic. (This is a slight generalization of the presentation
in Ritchie 1989.)

One of the more peripheral aspects of two-level morphology is the role of the
rules in segmenting surface input strings into lexical forms (i.e. the interface between
a rule interpreter and a lexicon of morphemes). We shall ignore this issue here (but
see Ritchie 1989 and Ritchie et al. 1991 for a formal statement of two possible lexical
interfaces). Our formalization will deal solely with the way in which the two equal-
length "tapes" are related, as this is the stage of the surface-to-lexicon mapping that
is explicitly mediated by the rules.

3. Regular Relations

The two-level rule compiler of Karttunen et al. (1987) was based on sophisticated
manipulation of regular expressions in order to define very precisely and rigorously
the set of transducers produced by the compiler. Kaplan (1988) generalized some
of this work further, by formalizing the algebraic manipulations of regular sets of
sequences of pairs of symbols, which he called regular relations. 1 These relations bear
the same relationship to finite-state transducers that regular languages bear to finite-
state machines, and his formal definition is exactly analogous to that of a regular
language:

the empty set is a regular relation;

the set consisting of the empty string is a regular relation;

the set consisting of a single ordered pair of symbols, either of which may be
the empty string, is a regular relation;

if R1 and R2 are regular relations, so are R1 U R2, R1R2, and R~ (i.e. the union
of the two sets, the set consisting of concatenations of elements from the two

1 The material in this section is based solely on Kaplan (1988). For the resul ts reported, there are no
formally publ i shed details that I a m aware of.

45

Computational Linguistics Volume 18, Number 1

sets, and the set consisting of zero or more concatenations of elements from
a set).

Regular relations can then be described using regular expressions over symbol-
pairs in the obvious way. Kaplan observed that every regular relation is accepted
by some finite-state transducer, and that every finite-state transducer accepts some
regular relation. One important subtlety is the use of the empty string as an element
of a symbol-pair, with the consequence that a "regular relation" can associate strings
of unequal lengths together, assuming the obvious equivalence between a sequence
of symbol-pairs and a pair of symbol-strings (see Section 2 above). In the associated
transducer form, the empty symbol corresponds to no symbol being scanned or no
symbol being output (i.e. one of transducer's "heads" may advance while the other
does not).

Kaplan stated various results about regular relations, regular languages, and their
combinations, including the following. If R1, R2, are regular relations, and L1, L2 are
regular languages, then the following are regular relations:

R1 o R2 (the composition of the relations);

L1 × L2 (the direct product of the sets);

Id(L1) (the relation in which each element is paired with itself);

R~ -1 (the inverse relation).

Also:

Dom(R1) (the set of sequences of first elements of pairs in R1) is a regular
language.

Kaplan pointed out that intersection and complementation of regular relations do not
in general yield regular relations if empty symbols are involved, but will do where
all the symbols are nonempty. Since intersection of regular relations corresponds to a
parallel combination of finite-state transducers, this means that there are combinations
of transducers that will map a regular language into a nonregular language. This last
point is illustrated by considering the two regular relations defined as

(a: b)*(e :c)*

(e: b)*(a: c)*

where e denotes the empty string. In transducer terms, the first of these scans any
number of a symbols on one tape, with the same number of b symbols on the other
tape; one tape then stays stationary (empty transitions) while the other is scanning
any number of c symbols. The second expression describes a situation where the first
head remains stationary, while the second head scans some number of b symbols; then
an equal number of a and c symbols are scanned on the two tapes. The intersection of
these will have n occurrences of a on the first tape, but the second tape must contain
exactly bnc n. Hence a regular language is being associated with a known nonregular
(context-free) language. There is no single finite-state transducer that will define this
mapping.

It is important to note that here e is a genuine empty string, interpreted by a
transducer as a lack of transition; this is different from two-level morphology's "null"

46

Graeme Ritchie Languages Generated by Two-Level Morphological Rules

symbol 0, which acts as an ordinary symbol for the transducers (or for rule-matching),
but is treated specially when relating the "tapes" to other linguistic levels (see Section 2
above).

Kaplan also developed more subtle results about combinations of regular rela-
tions and languages, including the result that the following operator IF combines two
regular relations to form a regular relation:

IF(R1,R2) =eef {xy I i fy C R2, then x E R1}

With these algebraic devices, he expressed the meaning of Koskenniemi's rule-
notation as regular expressions. Two important points must be noted here---the context
expressions in Koskenniemi's rules denoted regular sets (the rules formed a regular
two-level morphological grammar, in the terminology of Section 5 below); also, the
basic rule-mechanism operates on equal-length sequences of symbols, as outlined in
Section 2 above, with no genuine empty or null symbols. A context restriction rule of
the form

a:b => LC ___ RC

defines a regular relation that can be expressed as:

IF(zc*LC, a :bzr*) M IF((zr*a : b)', (RCzr*)')

where 7r is the set of all possible symbol-pairs, and the prime denotes complementation
with respect to 7r*.

Similarly, a surface coercion rule

a:b <= LC RC

defines the relation:

(~*LC(Id(Dom(a: b)) o 7r* ~ {a: b})RCzr*)'

where ",-J' denotes set-difference. Kaplan did not explicitly define the language that
would be generated by a set of two-level rules (a full grammar), but it would be
characterized by an intersection of all the regular relations defined by the individual
rules. 2

He also showed that the uniform deletion/insertion of a particular symbol (such
as the special null symbol used in two-level rules) at arbitrary points in a string could
be expressed as a regular relation, so the entire lexicon-to-surface mapping sketched
in Section 2 earlier could be stated as a regular relation.

The overall result of Kaplan's theoretical work is that the compilation from regular
two-level rules to parallel transducers is vindicated as theoretically sound, and any-
thing expressible in the two-level formalism (limited to regular context expressions) is
expressible in the transducer (regular relation) formalism; that is, the latter is at least
as powerful as the regular two-level formalism itself. The question of whether the two
formalisms were equivalent (as had always been assumed) was left open.

2 Strictly, this would require the two-level grammar to be in the normal form defined in Section 10 below.

47

Computational Linguistics Volume 18, Number 1

4. Basic Definitions

Having established the basis for discussion, we can now formulate a precise set-
theoretic definition of two-level rules, so as to go on to investigate their formal prop-
erties.

Given any two finite symbolic alphabets, A and A', a symbol-pair from A and A'
is a pair (a, a') where a c A and a' c A t. Such symbol-pairs will normally be written as
"a :a" . A symbol-pair sequence from A and A' is simply a sequence (possibly empty)
of symbol-pairs from A and A', and a symbol-pair language over A and A' is a set
of symbol-pair sequences (i.e. a subset of (A x A')*).

Given two alphabets A and A t, and a symbol-pair sequence G from A and A', a
sequence (P1,..Pn) of symbol-pair sequences from A and A' is said to be a part i t ion of

iff

G = P1P2....Pn

(i.e. G is made up of the concatenation of the Pi).
Given two alphabets A and A', a two-level morphological rule over A and A'

consists of a pair (P, C) where P is a symbol-pair from A and A', and C is a nonempty
set of pairs (LC,RC) where LC and RC are sets of symbol-pair sequences from A and
A'; each such set of symbol-pair sequences is called a context set. The reason for
having C be a set of pairs of context sets, is that we must cater, in the general case,
for there being a disjunction of pairs of context sets, as in the illustrative rule given
in Section 2 earlier. In the case where the set is a singleton, this reduces to the simple
(nondisjunctive) case. Only one of the formal proofs that follow depends upon C being
a f ini te set, but if infinite sets of context-pairs were required, some suitable notation
would have to be devised for expressing such infinite sets. There seems to be no
linguistic motivation to go beyon d finite sets of pairs of context sets. Each individual
context set (i.e. LC or RC in the above notation) can be an infinite set, and often is.

The above definition is the generalization beyond regular context expressions men-
tioned in the previous section. To specialize it to the traditional two-level case, we need
a further definition:

A two-level morphological rule is said to be regular if all the context sets in it are
regular sets. (Notice that even here we have abstracted from the actual notation used
to represent regular sets).

A set 0 is said to match at the right-end a symbol-pair sequence G iff there is a
partition (P1, P2) of ~ such that P2 E 0.

A set 0 is said to match at the left-end a symbol-pair sequence G iff there is a
partition (P1, P2) of ~ such that P1 c 0.

A set R of two-level morphological rules contextually allows a symbol-pair se-
quence ~ iff, for every partition (P1, a:a t, P2) of ~, either there is no rule of the form
(a:a', C) c R, or there is at least one rule (a:a', C) c R such that C contains a pair (LC,
RC) such that LC matches P1 at the right end and RC matches P2 at the left end.

A two-level morphological rule ((a,a'), C) coercively allows a symbol-pair se-
quence G iff for every possible partition (P1, b:b t, P2) of ~ and every element (LC, RC)
E C such that LC matches P1 at the right end, and RC matches P2 at the left end, if b
= a, then b' = a'.

An alternative but equally useful variation on the last definition would be that a
two-level morphological rule ((a,at), C) coercively disallows a symbol-pair sequence

iff there is a possible partition (P1, b:b', P2) of ~ and an element (LC, RC) E C such
that LC matches P1 at the right end, RC matches P2 at the left end, b = a and b t # a'.

48

Graerne Ritchie Languages Generated by Two-Level Morphological Rules

5. Feasible Pairs

Real implementations of two-level morphology have to consider the issue of what
counts as a feasible pair within a two-level grammar. Roughly speaking, the set of
feasible pairs is the set of symbol-pairs that have to be considered as potential elements
of symbol-pair sequences. The normal approach is not to allow the whole cross-product
A x A' as possible symbol pairs, but to define a subset of this as being the effective
alphabet under consideration. This is normally done in three ways:

• Any symbol a that appears in both the lexical alphabet and the surface
alphabet gives rise to a feasible pair a 'a .

• Any symbol-pair that is explicitly mentioned in a context-expression
anywhere in a rule is feasible.

• Any symbol-pair that is explicitly declared to be feasible (in a list
supplied along with the rules) is feasible.

The set of feasible pairs is then used in two ways--any variables or sets occurring in
the statement of rules are deemed to range only over feasible pairs, not over arbitrary
symbol-pairs; also, any feasible pair may occur freely in a symbol-pair sequence if not
otherwise constrained by the rules of the grammar.

It can be seen that these definitions and conventions are to some extent bound up
with the concrete textual representation of rules, and the way of stating symbolically
the contents of the grammar. At the set-theoretic level of abstraction here, a slightly
different (but compatible) set of definitions is necessary. We are assuming that no
variables or symbol-set-mnemonics appear in our rules, so the question of using the
feasible pair set to expand or give meaning to such abbreviations is irrelevant, but
there is still the question of freedom of occurrence.

The notion of implicit definition of feasibility can be altered so that instead of
referring to occurrence within a context-expression, it refers to occurrence with a set
(for regular sets specified using disjunction, concatenation and indefinite iteration, the
two are equivalent). Explicit listing of additional feasible pairs can be represented by
including context restriction rules of the form

{ ({ },{

where c denotes the empty sequence. A trivial rule like this allows the symbol-pair
to occur freely, since any adjacent material will match the empty string. (The exact
definition of matching is important here---matching the empty string or sequence
means that there is some partition of the surrounding string in which the portion
of the partition next to the symbol-pair of interest is the empty sequence; it does not

mean that there are no adjacent symbol-pairs).
That is, no extra mechanism is needed for adding feasible pairs--what would ap-

pear in a practical implementation as a declaration of an enumerated list can be viewed
as a convention for defining rather degenerate context restriction rules. The point is
that the original textually-based definitions of feasibility are merely a notational con-
venience for conveying (to the human reader or a software interpreter/compiler) a
set of symbol-pairs that includes at least the pairs from the contexts (and the identity
pairs), and we shall abstractly regard that set as being part of the definition of the
grammar, regardless of the notation used to make it manifest.

49

Computational Linguistics Volume 18, Number 1

A symbol-pair a:a' is said to be a s tr ing-const i tuent in a set 0 of symbol-pair
sequences if there is at least one element s C 0 such that a:a ~ is an element of the
sequence s.

A symbol-pair a:a ~ is said to occur in a rule (b:b p, C) iff either a:a' = b:b' or for at
least one element (LC, RC) of C, a:a' is a string-constituent in at least one of LC and
RC.

Given two alphabets A and N , a two-level morphological grammar based on
A and A' consists of a pair (CR, SC) where CR and SC are finite sets of two-level
morphological rules over A and N . (The two sets of rules are the context restriction and
surface coercion rules respectively). Given such a two-level morphological g rammar
R = (CR, SC), the set of feasible pairs in R is the set of symbol-pairs:

{a : a'] a : a' occurs in some element of CR U SC} U {a : a I a C A n A'}

A two-level morphological g rammar is said to be regular if all the rules in it are
regular.

6. Languages Generated

Given a two-level morphological g rammar R = (CR, SC), a symbol-pair sequence E is
generated by R iff all the following hold:

1. all the symbol-pairs in ~ are feasible pairs in R;

2. each rule in SC coercively allows E;

3. the set CR of rules contextually allows E.

As ment ioned earlier, the two classes of rules are treated slightly d i f ferent lym
surface coercion rules are conjoined, forming a set of constraints all of which must be
met, and the context restriction rules for a given symbol pair are disjoined, giving a
set of possible licensing contexts. If no rules apply to a particular symbol-pair, it is
acceptable if and only if it is feasible.

With the above definitions, it is now possible to ask what sorts of symbol-pair
languages can be characterized using a two-level morphological grammar.

Lemma 1
Let CR be a set of two-level morphological rules. Let E1 and E2 be symbol-pair se-
quences such that CR contextually allows El, and CR contextually allows E2. Then CR
contextually allows the concatenation EIE2.

Proof
Let a:a ~ be a symbol-pair occurring in EIE2, such that (P1, a:a',P2) is a part i t ion of
E1E2. Assume, wi thout loss of generality, that a:a t occurs in El. That is, P1 is a proper
initial subsequence of E1 and/32 = $2E2 for some sequence $2. Since CR contextually
allows El, for the parti t ion (P1, a:a', $2) of E1 there is at least one rule C in CR that
contains at least one context-pair (LC, RC) such that LC matches P1 at the right end
and RC matches $2 at the left end. If RC matches $2 at the left end, then RC will also
match $2E2 = P2 at the left end. Hence, for the part i t ion (P1, a:a', P2) of E1E2 there is
at least one rule C in CR that contains at least one context-pair (LC, RC) such that LC
matches P1 at the right end and RC matches P2 at the left end. A similar a rgument
can be given for the occurrence of a:a' being in E2. Since this will be true for any such
a:a ~ in EIE2, CR contextually allows E1E2. •

50

Graerne Ritchie Languages Generated by Two-Level Morphological Rules

Corollary
If a two-level grammar is of the form (CR, 0) (i.e. it contains no surface coercion rules),
then the concatenation of any two strings in its language is also in its language.

Lemma 2
Let R = (a:a', C) be a two-level morphological rule. Let E~, E2, E3 be symbol-pair
sequences such that E1E2E3 is coercively allowed by R. Then E2 is coercively allowed
by R.

Proof
If E2 were not coercively allowed by R, it would mean that there is a partition ($1, a:b,
$2) of E2 such that for some (LC, RC) in C, LC matches $1 at the right end, RC matches
$2 at the left end, and b~ a'. If this were the case, there would be a corresponding
partition (E1S1, a:b, $2E3) of E1E2E3, with LC matching E1S1 at the right end, and
RC matching $2E3 at the left end. This would (by definition) mean that R does not
coercively allow E1E2E3, which is not the case by hypothesis. •

Corollary (a)
Let C be a set of two-level morphological rules, all of which coercively allow a symbol-
pair sequence E. Then all of the rules in C coercively allow any subsequence of E.

Corollary (b)
If all the context restriction rules in a two-level morphological grammar are trivial, in
the sense of having vacuous contexts (see Section 5 above), then any substring of an
element of its language is also in the language.

Lemma 3 (The Concatenation Property)
Let G be a two-level morphological grammar (CR, SC), and let L(G) be the set of
symbol-pair sequences generated by G. Suppose that there are sequences El, E2, E3,
E4 such that E2 E L(G), E3 E L(G), and E1E2EBE4 c L(G). Then E2E3 ~ L(G).

Proof
(i)

(ii)

Since E1E2E3E4 C L(G), all the symbol-pairs in it are feasible with respect
to G, hence all the symbol-pairs in E2E3 are feasible.

Since E2 and E3 c L(G), it follows that CR contextually allows E2 and E3
(by definition). By Lemma 1 above, this means that CR contextually
allows E2E3.

(iii) Since E1E2E3E4 E L(G), it follows (by definition) that all of the rules in
SC coercively allow E1E2E3E4. Hence, by Corollary (a) to Lemma 2
above, all of the rules in SC coercively allow E2E3.

This establishes the three defining conditions for E2E3 c L(G). •

7. Comparison with Transducers

As mentioned in the introduction, two-level grammars have historically been written
in two different ways--as rules as defined here, and as sets of finite-state transduc-
ers. In the latter case, each transducer deals with some linguistic phenomenon, and a

51

Computational Linguistics Volume 18, Number 1

sequence of symbol-pairs is generated by the grammar if every transducer in the gram-
mar accepts it. That is, the symbol-pair sequence must be in the intersection of the lan-
guages accepted by the transducers (viewed as acceptors); in procedural terms, this is
often referred to as "having the transducers executed in parallel." Hence, when work-
ing with the transducer formalism the linguist has to devise independent transducers
whose intersection is the required language. These transducers, like the two-level rules,
define a mapping between equal-length symbol sequences, as described earlier; there
are no "empty transitions." Under these conditions, since the intersection of a set of
regular languages is also a regular language, it follows that these parallel finite-state
acceptors define exactly the regular sets of symbol-pair sequences.

As observed earlier, Kaplan's work on regular relations shows that the "parallel
transducer" model is at least as powerful as the two-level grammar model defined
earlier. The obvious question is whether there is a difference in power; in fact, there
is:

Theorem 1
There are regular sets of symbol-pair sequences (i.e. symbol-pair languages character-
ized by regular expressions of symbol-pairs) that cannot be generated by any two-level
morphological grammar.

Proof
This follows directly from Lemma 3 above. Any language L generated by a two-level
morphological grammar must have the property that if E2, E3, and EIE2E3E4 C L, then
E2E3 E L. There are regular symbol-pair languages that do not have this property, such
as the language defined by the regular expression

b :bV (a :a b:b)*

which contains b : b and a: a b : b but not b : b a: a b : b, even though that sequence is
a subsequence of other' elements of the language. •

It was already clear that there are some regular relations that cannot be generated
by a two-level grammar, since a regular relation can put into correspondence symbol-
sequences of different lengths; what the above result shows is that there are some
equal-length regular relations that cannot be generated by any two-level grammar. That
is, we have the following proper inclusions:

languages generated by regular two-level morphological grammars

c regular sets of symbol-pair sequences

c regular relations

There is another, rather trivial, difference between the power of two-level morpholog-
ical rules and arbitrary regular expressions. According to the definitions given here,
the empty sequence of symbol-pairs is in every language generated by a two-level
morphological grammar, since it conforms to the definition regardless of the content
of the rules. The definitions could be altered to exclude the empty sequence from ev-
ery language, but it is hard to see how the rule mechanism could be used to allow the
empty sequence in some languages but not others.

52

Graeme Ritchie Languages Generated by Two-Level Morphological Rules

8. Another Type of Rule

Karttunen et al. (1987) allow a further rule operator/<= in their rules. A rule of the
form

a:b /<= LC --- RC

means, informally, that the pair a:b must not occur if the contexts LC and RC are
present. It would be straightforward to extend the definition of a two-level morpho-
logical grammar to cover this symbol. What would be needed would be to allow a
grammar to be a triple (CR, SC, CE) in which CR and SC are as before, but CE is a
set of context exclusion rules of this new sort. The applicability of such rules could
be defined thus:

A symbol-pair sequence E is contextually excluded by a rule (a:b, C)
if there is a partition ($1, a:b, $2) of ~ and some context-pair (LC, RC)
E C such that LC matches $1 at the right end and RC matches $2 at
the left end.

The definition of generation of a sequence E by a grammar (CR, SC, CE) would have
to be amended to include the additional stipulation (see Section 6 above):

4. no rule in CE contextually excludes ~.

Inclusion of this type of context exclusion rule does not affect the proof of Lemmas
1 and 2, or their corollaries, and the Concatenation Property (Lemma 3) can still be
proven since the following lemma can be proven by a very simple modification to the
proof for Lemma 2 :

Lemma 4
Let R = (a:a', C) be a two-level morphological rule. Let El, E2, E3 be symbol-pair se-
quences such that E1E2E3 is not contextually excluded by R. Then E2 is not contextually
excluded by R.

Hence, the use of context exclusion rules does not affect any of the results about
generative power given earlier, or the lack of closure demonstrated in Section 11 below.

David Weir (personal communication) has pointed out that the use of context ex-
clusion rules makes surface coercion rules technically redundant, since any stipulation
of surface coercion can be restated as a set of context exclusion rules.

9. Boundary Markers

The two-level formalism, as defined above (and as originally defined by Koskenniemi)
has no word-boundary symbol to mark the end of a sequence of symbols. Although
the linguist is free to introduce any symbols that seem empirically useful, none of these
symbols has any specially defined status beyond what the linguist chooses to state in
the actual twoqevel morphological grammar, and the apparatus does not stipulate
that a particular symbol occurs only at the start or end of a complete string. The

53

Computational Linguistics Volume 18, Number 1

PC-KIMMO implementation of two-level morphology (Antworth 1990) has a special
boundary marker "#" with the following properties:

1. # can appear in both the lexical and the surface component of a
symbol-pair.

2. # can be paired only with itself, not with any other symbol.

3. The pair #:# occurs at the extreme ends of every string.

4. The pair #:# never occurs at any internal position of a string.

5. Any two-level rule may refer to the pair #:#, thereby making
phenomena it describes relative to the end of the sequence.

6. The symbol-pair #:# is not regarded as part of the sequence generated;
that is, the rules characterize an extended string with #:# at each end,
but the generated sequence is defined to be the sequence without
boundary markers.

It would be possible, with careful design of the two-level rules, to enforce points 1-5
without resorting to special treatment for #:#, but point 6 steps outside the two-level
mechanism; a grammar that merely enforced 1-5 using its rules would, according to
the basic definitions of generation, have in its language strings that contained #:# (at
the ends). Karttunen et al. (1987) also allow a lexical boundary marker #, such that
the symbol-pair # : 0 meets points 3, 4, and 5 above (which can be achieved by writing
suitable two-level rules without any need for special treatment). However, they do not
need to rely on the additional stipulation given in 6, since the use of a surface null
will give the desired effect when considering the entire mapping from lexical forms
to surface form, with explicit null symbols being removed in the manner outlined in
Section 2 above (see Ritchie 1989 for a formal definition of this phase).

We can show that the inclusion of a specially treated boundary symbol slightly
alters the generative power of the formalism, since this allows any set that can be
included as a context set to constitute the entire language, as follows.

Given two sets A and N, a symbol rx E A, a symbol fl c N, and a two-level
morphological grammar G based on alphabets A and A ~, then a symbol-pair sequence

E (A x A~) * is said to be generated by G with boundary a:fl iff

1. ~:fl does not occur anywhere in

2. ~:fl G a:fl is generated by G.

Notice that under this definition, a sequence ~ may well be "generated by G with
boundary c~:fl" even though G itself is not generated by G.

Theorem 2
Let A and A ~ be sets of symbols, let ~ be some symbol not in A, fl some symbol not
in A ~ and let L be some set of symbol-pair sequences from A x AE Then there is a
two-level morphological grammar G based on A U { (~ } and A' U { fl } such that

L -- {G I G generates G with boundary rx : fl}

54

Graeme Ritchie Languages Generated by Two-Level Morphological Rules

Proof
Consider the two-level grammar (written in the usual textual notation):

(~ : fl =~ - - - C a : f l

o r s : t i C - - -

where C is some expression denoting the set L (in the usual notation based on regular
sets, C would be a regular expression). More formally, this grammar G (= (CR, SC))
could be written set-theoretically as

({(~: fl,{({e},L1)(L2,(e})})},O)

where L1 is the set consisting of all possible concatenations of elements of L with a:fl,
and L2 is the set consisting of all possible concatenations of c~:fl with elements of L.

It is straightforward to verify that this grammar generates all and only strings of
the form o~:flGc~:fl for ~ E L. •

This theorem may sound rather odd, since it implies that any set whatsoever can
be generated in this manner (in contrast to the earlier result that there are some regular
languages of symbol-pairs that cannot be generated by two-level rules). However, it is
important to note that this theorem not only uses a special boundary symbol, it relies
on the generalization of the usual regular-set based two-level rules to rules that allow
any set as a context set. Essentially it says that, with the augmentat ion of a special
boundary symbol, the generative power is limited only by the limits placed on the
class of sets that can appear as contexts. A more useful and natural specialization of
this theorem is as follows:

Corollary
For any regular set L of symbol-pair sequences, there is a regular two-level morpho-
logical grammar that generates L with boundary ~:fl, for some symbols c~, fl that are
not in the alphabets used for L.

10. Normal Form

We define a two-level morphological grammar as being in normal form if there is no
symbol-pair that is the subject of more than one context restriction rule or more than
one surface coercion rule. More formally, a grammar (CR, SC) is said to be in normal
form iff whenever (a:b, C) c CR and (a:b, C ~) E CR, C = C', and whenever (a:b, C) c
SC and (a:b, C') E SC, C --- C'.

Theorem 3
For any two-level morphological grammar G, there is a corresponding two-level mor-
phological grammar G' in normal form that generates the same symbol-pair language.

Proof
Suppose G = (CR, SC) is not in normal form. Create the grammar G' = (CR', SC') as
follows. If there is exactly one rule (a:b, C) in CR for the symbol-pair a:b, include that
rule in CRL For any set of two or more rules in CR with the same symbol-pair a : b

(a : b, C1), , (a : b, G)

55

Computational Linguistics Volume 18, Number 1

include in CR' a rule:

(a : b, C1 U C2... Cn).

Create SC from SC in exactly the same way. It should be clear from this that (a) any
symbol-pair a:b occurs in the rules in G iff it occurs in the rules in G'; (b) any pair of
context sets (LC, RC) appears in a rule in CR iff it appears in a rule in CR' with the
same symbol-pair; (c) any pair of context sets (LC, RC) appears in a rule in SC iff it
appears in a rule in SC' with the same symbol-pair.

It is straightforward to prove the equivalence for G and G' of the three defining
criteria for language membership. •

11. Closure Properties

Most classes of formal languages (e.g. regular languages, context-free languages) are
closed under at least some of the simple set-theoretic operations such as union and
intersection. Certain results can be proved for two-level morphological languages con-
cerning their closure (or lack of it).

Theorem 4
The set of languages generated by two-level morphological grammars is not closed
under union.

Proof
The proof follows from the "concatenation property" of Lemma 3 above, which allows
a simple counterexample to be constructed. Consider the grammar G1 which would
conventionally be written as

b:b =>

(if we follow the normal practice of omitting textually any context set containing only
the empty sequence). This generates the language (b : b)*; that is,

{ ¢, b:b, b:b b:b, ...}

The grammar G2 given by the rules

b:b => a :a
a:a => b:b

(again, omitting mention of contexts that are trivially satisfiable) generates the lan-
guage (a :a b:b)*:

e, a :a b:b, a :a b:b a :a b:b, . . .

The union of these languages contains the sequences

b:b a:a b:b a:a b:b a:a b:b

56

Graeme Ritchie Languages Generated by Two-Level Morphological Rules

but does not contain the sequence

b:b a : a b:b

and hence, by Lemma 3, cannot be a language generated by a two-level language. •
The following result and construction are due to David Weir (personal communi-

cation).

T h e o r e m 5
The set of languages generated by two-level morphological grammars is closed under
intersection.

Proof
Let L1 and L2 be two-level morphological languages, generated by the grammars
GI=(CR1, SC1) and G2=(CR2, SC2) respectively. It is possible to construct a two-level
grammar for the intersection L = L1 N L2. Without loss of generality, assume (merely
to simplify the construction):

1. For every rule in CR1 or CR2 of the form (P,C) let the set C contain just
one pair of the form (LC,RC). This assumes that the set of context-pairs
in a rule is never an infinite set--see Section 4 above. There can be
several such rules for any given symbol-pair P (i.e. we have to allow the
grammar to be not in the "normal form" defined in Section 10 above).
Note that we do not need to make this assumption for the rules in SC1
and SC2.

2. For every pair a : b that is a feasible pair in both G1 and G2 there is at
least one rule in CR1 and CR2 for the symbol pair a : b. In the absence of
any other rule include (a : b, ({~}, {~})).

Suppose that • is the set of symbol-pairs that are feasible in both G1 and G2, so
that ~* is the set of sequences of such symbol-pairs.

To create the context restriction rules for the intersection grammar G, take

CR = CR' U CR"

where CR' is defined to be:

((p, {((I)*LC1 N c~*LC2, RClC~ * f"l RC2(I)*)}) I

(p~ {(LCI~RC1)}) E CRI~ and (p~ {(LC2~RC2)}) E ca2}

and CR" is defined as:

{(a : b, {({a' : a'}, c)} [a : b is feasible in exactly one of G1 and G2}

where a' is a new symbol that is not in a feasible pair in either G1 or G2.
The set SC' defined below has the effect of making the context a' : a' unobtainable.

Hence, the above rule makes each a : b that is not feasible in both grammars behave
as if it were not feasible in the new grammar. There will be no symbol-pair that is
the subject of a rule in CR' and in CR", since the first of these sets covers the jointly
feasible pairs and the latter handles others.

57

Computational Linguistics Volume 18, Number 1

To construct the surface coercion rules for the intersection grammar G use

SC = SC1 U SC2 U SC'

where SC ~ is defined as follows:

SC' : {(a': a', (({c}, {e})})~ (a': a, (({~}, (¢})})}

where a' is as above and a is an arbitrary symbol other than a'.
There is then a fairly straightforward proof that this grammar characterizes a

symbol-pair sequence if and only if that sequence is in L(G1) rl L(G2). The only slightly
complicated step involves the proof that if an occurrence of a symbol-pair matches a
rule in CR1, and also matches a rules in CR2, it must match a rule in CR (in CR', in
fact). The argument goes as follows. If a partition (S, a: b, S r) is contextually allowed
by original rules (a : b, {(LC1,RC1)}) and (a : b, {(LC2~RC2)}), then it follows from the
definitions in Section 4 above that there is a P1 at the right end of S that is in LC1,
and a P2 at the right end of S that is in LC2. Hence S ~-- ~*LC1, and S E ~*LC2. Hence
there is a string (namely S) that is at the right end of S and is in ~*LCI N c~*LC2 (and
similarly for the right contexts). •

Corollary (a)
The set of regular two-level morphological languages is closed under intersection.

Proof
The above construction uses combinations that yield regular sets from regular sets.
Hence if G1 and G2 are regular two-level morphological grammars, so is G. •

Corollary (b)
The set of two-level morphological languages is not closed under complementation.

Proof
Follows directly from Theorem 4 and Theorem 5, since

A UB = (A' riB')'

(a direct counter-example can also be constructed using Lemma 3). •

12. The Next Stage--Compilation and Complexity

The above results define more clearly the family of two-level languages, but they
say nothing about mechanisms for recognizing strings of symbol-pairs, nor how such
recognition can be integrated with a lexicon of symbol-strings. There are at least two
methods of compilation and subsequent interpretation for regular two-level grammars
(i.e. those whose context sets can be written as regular expressions, which is the nor-
mal practice), both of which rely heavily on finite-state transducers in their compiled
form. Karttunen et al. (1987) produce an intersecting set of traditional transducers,
and the recognition process is then a straightforward interpretation of the equivalent
combined automaton. Ritchie et al. (1991) compile rules into a slightly peculiar form of
transducer, in which states are marked to indicate different processing requirements;
a nonstandard interpreter then scans the resulting annotated automaton. There are no

58

Graeme Ritchie Languages Generated by Two-Level Morphological Rules

published proofs of correctness of either mechanism, but Karttunen et al.'s exposi-
tion relies heavily on Kaplan's work on regular relations (see Section 3 above), which
appears to justify its procedures.

The usual assumed interface to a lexicon (e.g. Koskenniemi 1983a, 1983b; Karttunen
1983) is via sublexicons for different lexeme classes, with cross-pointers indicating al-
lowable sequences of lexemes (a formal definition of this can be found in Ritchie 1989).
Another possibility is to impose a wholly separate rule-driven layer of morphotactic
description upon the lexical forms; this approach is coupled with a two-level system
in Ritchie et al. (1991).

The complexity of the problem of recognizing a string of symbols using the parallel
transducer formulation of two-level morphology with a single (or cross-linked) lexicon
has been shown to be NP-complete by Barton et al. (1987), and Ritchie et al. (1991)
suggest that the proof of NP-hardness could be modified to cover the recognition
problem for the definition of two-level rules given here (and a single lexicon), but
exact complexity or decidability results for the compilation/interpretation procedure
of Ritchie et al. (1991) have not been produced, nor is there any characterization of the
complexity of determining whether a sequence of symbol-pairs belongs to the language
generated by a two-level language (without regard for the lexical segmentation issue).

All these issues lie outside the scope of this paper, but it would be desirable for
them to be settled.

Acknowledgments
I would like to thank Alan Black, Ron
Kaplan, and David Weir for useful
discussions of this material.

References
Antworth, Evan L. (1990). PC-KIMMO : A

Two-Level Processor for Morphological
Analysis. Occasional Publications in
Academic Computing No. 16, Summer
Institute of Linguistics, Dallas, TX.

Barton, G. Edward; Berwick, Robert C.; and
Ristad, Eric Sven (1987). Computational
Complexity and Natural Language.
Cambridge: The MIT Press.

Dalrymple, Mary; Doron, Edit; Goggin,
John; Goodman, Beverley; and McCarthy,
John (eds.) (1983). Texas Linguistic Forum
22, Department of Linguistics, University
of Texas at Austin.

Kaplan, Ronald M. (1988). "Regular models
of phonological rule systems." Talk on
finite-state transducers given at the Alvey
Workshop on Parsing and Pattern
Recognition, Oxford.

Karttunen, Lauri (1983). "KIMMO: A
general morphological analyser." In Texas
Linguistic Forum 22, edited by
M. Dalrymple, E. Doran, J. Goggin,
B. Goodman, and J. McCarthy: 165-186.

Karttunen, Lauri; Koskenniemi, Kimmo;
and Kaplan, Ronald M. (1987). "A
compiler for two-level phonological
rules." Unpublished manuscript.

Koskenniemi, Kimmo (1983a). Two-level

Morphology: a General Computational model
for Word-Form Recognition and Production.
Publication No. 11, University of Helsinki,
Finland.

Koskenniemi, Kimmo (1983b). "Two-level
model for morphological analysis." In
Proceedings, Eighth International Joint
Conference on Artificial Intelligence,
Karlsruhe: 683-685.

Koskenniemi, Kimmo (1984). "A general
computational model for word-form
recognition and production." In
Proceedings, lOth International Conference on
Computational Linguistics/22nd Annual
Meeting of the ACL, Stanford, CA: 178-181.

Koskenniemi, Kimmo (1985). "Compilation
of automata from morphological
two-level rules." Papers from the Fifth
Scandinavian Conference of Computational
Linguistics, Helsinki, Finland: 143-149.

Ritchie, Graeme (1989). "On the generative
power of two-level morphological rules."
In Proceedings, Fourth Conference of the
European Chapter of the Association for
Computational Linguistics, Manchester:
51-57.

Ritchie, Graeme D.; Pulman, Stephen G.;
Black, Alan W.; and Russell, Graham J.
(1987). "A computational framework for
lexical description." Computational
Linguistics 13 (3-4):290-307.

Ritchie, Graeme D.; Russell, Graham J.;
Black, Alan W.; and Pulman, Stephen G.
(1991). Computational Morphology.
Cambridge: The MIT Press.

59

