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The two-level model .of morphology and phonology arose from work on finite-state machine de- 
scriptions of phonological phenomena. However, the two-level rule notation can be given a precise 
declarative semantics in terms of the segmentation of sequences of pairs of symbols, quite inde- 
pendently of any computational representation as sets of finite-state transducers. Thus defined, 
the two-level model can be shown to be less powerful, in terms of weak generative capacity, than 
parallel intersections of arbitrary finite-state transducers without empty transitions (the usual 
computational representation). However, if a special boundary symbol is permitted, the full family 
of regular languages can be generated. Two-level morphological grammars may, without loss of 
generality, be written in a simplified normal form. The set of two-level generated languages can 
be shown to be closed under intersection, but not under union or complementation. 

1. Background 

Koskenniemi (1983a, 1983b, 1984) proposed a rule-system for describing morphological 
regularities in a language, depending centrally on the idea of matching two sequences 
of symbols--a lexical string (made up of the lexical forms of morphemes) and a 
surface string (the sequence of characters in the normal, inflected, form of the word). 
(In general, symbols could be orthographic or phonological; here we shall abstract 
from this linguistic issue, and merely consider strings of atomic symbols, which could 
be phonemes, typewritten characters, or any other separate entities). 

Koskenniemi (1983a) originally described the rules in two alternative forms-- 
high-level rules and finite-state transducers. The high-level rules were given only an 
informal interpretation, and were used as an expository device to state the linguistic 
regularities more perspicuously. The formalism that was actually used to write and im- 
plement two-level morphological grammars was parallel combinations of finite-state 
transducers. Koskenniemi's own implementation was an interpreter for parallel trans- 
ducers, which were directly written by the linguist as rules in their own right. Also, 
various linguistic analyses presented in Dalrymple et al. (1983) follow this approach, 
expressing rules as transition tables for transducers, and Antworth (1990) describes 
a recent implementation based wholly on transducers being written directly. Never- 
theless, Koskenniemi conjectured that an automatic compilation procedure could be 
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devised to transform the more readable high-level form into the more directly im- 
plementable parallel transducer form. Koskenniemi (,1985) refined the notation and 
sketched a compilation method, although he still did not provide a detailed declar- 
ative definition of the meaning of the high-level rules. Various implementations that 
compile variants of the notation into arrangements of transducers have been devel- 
oped (e.g. Karttunen et al. 1987; Ritchie et al. 1991). 

The general view of this earlier work was that the rule notation was a mere 
"syntactic sugar" for parallel combinations of arbitrary transducers, and that there 
was no difference in meaning or power between the two formalisms. 

This paper establishes the following: 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

an alternative (declarative) statement of the meaning of the high-level 
rule notation is possible, without recourse to compilation into finite-state 
transducers; 

the usual two-level morphological mechanism is more limited than 
arbitrary transducers in its ability to define relationships between strings; 

the use of a special boundary symbol slightly increases the generative 
power of the model; 

for any two-level morphological grammar, there is an equivalent one in a 
simpler normal form; 

the family of languages generated by two-level rules is not closed under 
union or complementation, but is closed under intersection. 

2. The Two-Level  Notat ion  

The original notation proposed in Koskenniemi (1983a) included some rather complex 
notational conventions that have not survived into later versions. The formalization 
given here will deal only with the core ideas, as embodied in Koskenniemi (1985) (and 
other implementations such as Karttunen et al. 1987; Ritchie et al. 1991), 

To understand how two-level rules operate, it is useful to consider four separate 
levels, as depicted in Figure 1. The topmost level contains lexical forms, which are 
strings of symbols in some suitable lexical alphabet:. Each string can be thought of 
as the abstract representation of the phonology or orthography of an individual mor- 
pheme or lexeme. The second level consists of a notional automaton "tape" made 
up of any concatenation of strings from the first level (the lexicon), with special null 
symbols inserted anywhere between the symbols of the lexical alphabet (optionally). 
Hence a finite set of lexical strings characterizes an infinite set of possible "lexical 
tapes," produced by concatenation and insertion of nulls. The third level is a similar 
"surface tape" consisting of symbols in a surface alphabet, with the null symbol also 
appearing at arbitrary positions. The fourth level, at the bottom in Figure 1, represents 
the word as spelt (or phonetically represented) in the surface alphabet; the relation- 
ship between the surface tape and the surface form is that the latter can be produced 
from the former by removing all occurrences of the special null symbol. The ordinary 
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m o v e  + e d  

LEXICAL TAPE: 

SURFACE TAPE: 

- I o l v  e e d 

i o o l v  o o l e l d  

SURFACE FORM: 
Figure 1 
Lexical and surface tapes and forms. 

moved 

surface form (such as moved) is related to a sequence of lexical forms (such as move 
and +ed) if a surface tape and a lexical tape exist such that: 

1. the lexical tape is the concatenation of the lexical forms in question, 
possibly with the addition of nulls; 

2. the surface tape contains the symbols of the surface form, possibly with 
the addition of nulls; 

3. the two tapes have the same number of symbols, counting nulls; 

4. the contents of the tapes are related by the two-level rules. 

That is, the two-level rules define possible pairs of equal-length sequences (the two 
"tapes"), and the actual surface form and lexical forms are then related by general 
conventions acting on these sequences. The formalism as a whole can be used to 
describe phenomena involving a surface string of a different length from the lexical 
forms, via the conventions regarding null symbols, but the rules themselves are written 
as statements about symbol-strings of equal length. Hence, the rules can be viewed 
as statements about sequences of symbol-pairs, where each symbol-pair consists of one 
symbol from the lexical tape and its counterpart from the surface tape. Conventionally, 
symbol-pairs are written with an infix colon, rather than as a pair within parentheses. 
The rules specify which sequences of symbol-pairs are or are not valid, by supplying 
contexts (sequences of symbol-pairs) within which a particular symbol-pair may or 
must occur. For example, the rather trivial rule 

e:O => v:v ___ +:0 

would specify that the pair e:0 could occur only if it were surrounded by v:v on 
the left and +:0 on the right, which is a rough approximation to the phenomenon 
illustrated by Figure 1. 

There are three types of rule, but they all have the same overall form--a single 
symbol-pair whose behaviour is being specified, followed by an operator (=>, <--- or 
<--->), a left context, a punctuation ("___" in this paper) to indicate where the symbol 
pair appears relative to the context, and a right context. 
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The three types of rule are as follows: 

Context Restriction (operator =>): states that the given symbol-pair can occur only in 
the given contexts, as in the simple example given above. 

Surface Coercion (operator <=): states that if the contexts occur, and the lexical symbol 
is as given, then the surface symbol must be as specified. For example 

e:l <= l:i +:0 

indicates that where a lexical Z corresponds to a surface ±, there is a pairing of lexical + 
with a surface null symbol one place further to the right, and the intervening symbol- 
pair has a lexical e, then the surface symbol in that pair must be 1. This might be one 
of the rules describing the relationship between possible+ity and possibility. 

Composite (operator <=>): a rule of this sort is merely an abbreviation of two separate 
rules (a context restriction rule and a surface coercion rule) made up of exactly the 
same symbol-pair, left context and right context. For example 

i:y <=> -:- ___ e:O +:0 i:i 

states that lexical ± and surface y are paired only in the context of anything on the left 
(if we assume that the "=" symbol means "any symbol") and a sequence of pairings 
on the right as given. This describes the association of lexical t i e+ ing  with surface 
tying.  The precise meaning of a composite rule is given by re-writing it as a context 
restriction rule and a surface coercion rule; composite rules will be ignored in the 
formalization below, as they add nothing to the abstract mechanism. 

Fuller examples of the use of two-level rules can be found in Koskenniemi (1983a) 
and Ritchie et al. (1987, 1991). 

The interpretation of a set of rules is as follows. For a sequence of symbol-pairs to 
be acceptable, if any symbol-pair in it was the subject of one or more context restriction 
rules, then at least one of these rules must apply to the surrounding sequence (i.e. the 
contexts must match). Also, if the surrounding contexts of any symbol-pair matched 
the context parts of any surface coercion rule, then the symbol-pair must obey that 
rule. That is, in a rule-set (a two-level morphological grammar), all the context re- 
striction rules that have the same symbol-pair on the left-hand side of the ~ operator 
were deemed to be a disjunction of constraints for that symbol-pair, and the surface 
coercion rules were a conjunction of constraints (regardless of which symbol-pair they 
constrained). 

In specifying symbol-pairs in rules (whether in the central pair or within the 
contexts) various convenient abbreviations were available. Symbols denoting sets of 
characters could be used instead of individual characters, thereby making it easier to 
state rules that referred to "all vowels" or other classes. Variables were also available 
for conflating rules that were very similar. 

In specifying contexts (left and right), it was possible to supply more complex 
expressions than just sequences of symbol-pairs. Essentially, regular expressions of 
symbol-pairs were allowed (regular pair expressions as Koskenniemi called them), 
since notation was available to state alternation (disjunction), optionality, and the oc- 
currence of zero or more instances (Kleene star). Also, a single rule could contain 
several pairs of contexts, written as a disjunction of possibilities. 
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In the following illustrative example of a two-level morphological rule (taken from 
Ritchie et al. 1987), angle brackets indicate sequences of pairs and braces indicate 
alternatives; also, C, V, C2, and = represent subsets of the relevant symbol alphabets 
and + is an abstract symbol occurring in certain lexical forms. 

e:0 <=> =:C2 ___ < +:0 V: = > 
or < C:C V:V> ___ <+:0 e:e> 

or {g:g c:c} ___ <+:0 {e:e i:i} > 

or i:0 ___ +:0 
or c:c ___ <+:0 a:0 t:t> 

This rule describes the various contexts in which a lexical e is elided on the surface 
(as in larger, continuing, raced, possibly, or reduction). 

The formalism here will not include symbolic mnemonics for sets of symbols, nor 
variables ranging over sets of symbols. The semantics of both these notations can be 
stated in terms of equivalent sets of rules without such abbreviatory conventions, so 
all that is required is a definition of the interpretation of rules containing only actual 
character symbols. We shall also (in some of our formalization) abstract away from 
the stipulation that the context-expressions must denote regular sets, since none of the 
proofs depend on that characteristic. (This is a slight generalization of the presentation 
in Ritchie 1989.) 

One of the more peripheral aspects of two-level morphology is the role of the 
rules in segmenting surface input strings into lexical forms (i.e. the interface between 
a rule interpreter and a lexicon of morphemes). We shall ignore this issue here (but 
see Ritchie 1989 and Ritchie et al. 1991 for a formal statement of two possible lexical 
interfaces). Our formalization will deal solely with the way in which the two equal- 
length "tapes" are related, as this is the stage of the surface-to-lexicon mapping that 
is explicitly mediated by the rules. 

3. Regular Relations 

The two-level rule compiler of Karttunen et al. (1987) was based on sophisticated 
manipulation of regular expressions in order to define very precisely and rigorously 
the set of transducers produced by the compiler. Kaplan (1988) generalized some 
of this work further, by formalizing the algebraic manipulations of regular sets of 
sequences of pairs of symbols, which he called regular relations. 1 These relations bear 
the same relationship to finite-state transducers that regular languages bear to finite- 
state machines, and his formal definition is exactly analogous to that of a regular 
language: 

the empty set is a regular relation; 

the set consisting of the empty string is a regular relation; 

the set consisting of a single ordered pair of symbols, either of which may be 
the empty string, is a regular relation; 

if R1 and R2 are regular relations, so are R1 U R2, R1R2, and R~ (i.e. the union 
of the two sets, the set consisting of concatenations of elements from the two 

1 The material  in this section is based solely on Kaplan  (1988). For the resul ts  reported,  there are no 
formally publ i shed  details that  I a m  aware  of. 
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sets, and the set consisting of zero or more concatenations of elements from 
a set). 

Regular relations can then be described using regular expressions over symbol- 
pairs in the obvious way. Kaplan observed that every regular relation is accepted 
by some finite-state transducer, and that every finite-state transducer accepts some 
regular relation. One important subtlety is the use of the empty string as an element 
of a symbol-pair, with the consequence that a "regular relation" can associate strings 
of unequal lengths together, assuming the obvious equivalence between a sequence 
of symbol-pairs and a pair of symbol-strings (see Section 2 above). In the associated 
transducer form, the empty symbol corresponds to no symbol being scanned or no 
symbol being output (i.e. one of transducer's "heads" may advance while the other 
does not). 

Kaplan stated various results about regular relations, regular languages, and their 
combinations, including the following. If R1, R2, are regular relations, and L1, L2 are 
regular languages, then the following are regular relations: 

R1 o R2 (the composition of the relations); 

L1 × L2 (the direct product of the sets); 

Id(L1) (the relation in which each element is paired with itself); 

R~ -1 (the inverse relation). 

Also: 

Dom(R1) (the set of sequences of first elements of pairs in R1) is a regular 
language. 

Kaplan pointed out that intersection and complementation of regular relations do not 
in general yield regular relations if empty symbols are involved, but will do where 
all the symbols are nonempty. Since intersection of regular relations corresponds to a 
parallel combination of finite-state transducers, this means that there are combinations 
of transducers that will map a regular language into a nonregular language. This last 
point is illustrated by considering the two regular relations defined as 

(a: b)*(e :c)* 

(e: b)*(a: c)* 

where e denotes the empty string. In transducer terms, the first of these scans any 
number of a symbols on one tape, with the same number of b symbols on the other 
tape; one tape then stays stationary (empty transitions) while the other is scanning 
any number of c symbols. The second expression describes a situation where the first 
head remains stationary, while the second head scans some number of b symbols; then 
an equal number of a and c symbols are scanned on the two tapes. The intersection of 
these will have n occurrences of a on the first tape, but the second tape must contain 
exactly bnc n. Hence a regular language is being associated with a known nonregular 
(context-free) language. There is no single finite-state transducer that will define this 
mapping. 

It is important to note that here e is a genuine empty string, interpreted by a 
transducer as a lack of transition; this is different from two-level morphology's "null" 

46 



Graeme Ritchie Languages Generated by Two-Level Morphological Rules 

symbol 0, which acts as an ordinary symbol for the transducers (or for rule-matching), 
but is treated specially when relating the "tapes" to other linguistic levels (see Section 2 
above). 

Kaplan also developed more subtle results about combinations of regular rela- 
tions and languages, including the result that the following operator IF combines two 
regular relations to form a regular relation: 

IF(R1,R2) =eef {xy I i fy  C R2, then x E R1} 

With these algebraic devices, he expressed the meaning of Koskenniemi's rule- 
notation as regular expressions. Two important points must be noted here---the context 
expressions in Koskenniemi's rules denoted regular sets (the rules formed a regular 
two-level morphological grammar, in the terminology of Section 5 below); also, the 
basic rule-mechanism operates on equal-length sequences of symbols, as outlined in 
Section 2 above, with no genuine empty or null symbols. A context restriction rule of 
the form 

a:b => LC ___ RC 

defines a regular relation that can be expressed as: 

IF(zc*LC, a :bzr*) M IF((zr*a : b)', (RCzr*)') 

where 7r is the set of all possible symbol-pairs, and the prime denotes complementation 
with respect to 7r*. 

Similarly, a surface coercion rule 

a:b <= LC RC 

defines the relation: 

(~*LC(Id(Dom(a: b)) o 7r* ~ {a: b})RCzr*)' 

where ",-J' denotes set-difference. Kaplan did not explicitly define the language that 
would be generated by a set of two-level rules (a full grammar), but it would be 
characterized by an intersection of all the regular relations defined by the individual 
rules. 2 

He also showed that the uniform deletion/insertion of a particular symbol (such 
as the special null symbol used in two-level rules) at arbitrary points in a string could 
be expressed as a regular relation, so the entire lexicon-to-surface mapping sketched 
in Section 2 earlier could be stated as a regular relation. 

The overall result of Kaplan's theoretical work is that the compilation from regular 
two-level rules to parallel transducers is vindicated as theoretically sound, and any- 
thing expressible in the two-level formalism (limited to regular context expressions) is 
expressible in the transducer (regular relation) formalism; that is, the latter is at least 
as powerful as the regular two-level formalism itself. The question of whether the two 
formalisms were equivalent (as had always been assumed) was left open. 

2 Strictly, this would require the two-level grammar to be in the normal form defined in Section 10 below. 
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4. Basic Definitions 

Having established the basis for discussion, we can now formulate a precise set- 
theoretic definition of two-level rules, so as to go on to investigate their formal prop- 
erties. 

Given any two finite symbolic alphabets, A and A', a symbol-pair  from A and A' 
is a pair (a, a') where a c A and a' c A t. Such symbol-pairs will normally be written as 
"a :a" .  A symbol-pair sequence from A and A' is simply a sequence (possibly empty) 
of symbol-pairs from A and A', and a symbol-pair language over A and A' is a set 
of symbol-pair sequences (i.e. a subset of (A x A')*). 

Given two alphabets A and A t, and a symbol-pair sequence G from A and A', a 
sequence (P1,..Pn) of symbol-pair sequences from A and A' is said to be a part i t ion of 

iff 

G = P1P2....Pn 

(i.e. G is made up of the concatenation of the Pi). 
Given two alphabets A and A', a two-level morphological rule over A and A' 

consists of a pair (P, C) where P is a symbol-pair from A and A', and C is a nonempty  
set of pairs (LC,RC) where LC and RC are sets of symbol-pair sequences from A and 
A'; each such set of symbol-pair sequences is called a context set. The reason for 
having C be a set of pairs of context sets, is that we must  cater, in the general case, 
for there being a disjunction of pairs of context sets, as in the illustrative rule given 
in Section 2 earlier. In the case where the set is a singleton, this reduces to the simple 
(nondisjunctive) case. Only one of the formal proofs that follow depends upon C being 
a f ini te  set, but  if infinite sets of context-pairs were required, some suitable notation 
would have to be devised for expressing such infinite sets. There seems to be no 
linguistic motivation to go beyon d finite sets of pairs of context sets. Each individual 
context set (i.e. LC or RC in the above notation) can be an infinite set, and often is. 

The above definition is the generalization beyond regular context expressions men- 
tioned in the previous section. To specialize it to the traditional two-level case, we need 
a further definition: 

A two-level morphological rule is said to be regular if all the context sets in it are 
regular sets. (Notice that even here we have abstracted from the actual notation used 
to represent regular sets). 

A set 0 is said to match at the right-end a symbol-pair sequence G iff there is a 
partition (P1, P2) of ~ such that P2 E 0. 

A set 0 is said to match at the left-end a symbol-pair sequence G iff there is a 
partition (P1, P2) of ~ such that P1 c 0. 

A set R of two-level morphological rules contextually allows a symbol-pair se- 
quence ~ iff, for every partition (P1, a:a t, P2) of ~, either there is no rule of the form 
(a:a', C) c R, or there is at least one rule (a:a', C) c R such that C contains a pair (LC, 
RC) such that LC matches P1 at the right end and RC matches P2 at the left end. 

A two-level morphological rule ((a,a'), C) coercively allows a symbol-pair se- 
quence G iff for every possible partition (P1, b:b t, P2) of ~ and every element (LC, RC) 
E C such that LC matches P1 at the right end, and RC matches P2 at the left end, if b 
= a, then b' = a'. 

An alternative but  equally useful variation on the last definition would  be that a 
two-level morphological rule ((a,at), C) coercively disallows a symbol-pair sequence 

iff there is a possible partition (P1, b:b', P2) of ~ and an element (LC, RC) E C such 
that LC matches P1 at the right end, RC matches P2 at the left end, b = a and b t # a'. 
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5. Feasible Pairs 

Real implementations of two-level morphology have to consider the issue of what 
counts as a feasible pair within a two-level grammar. Roughly speaking, the set of 
feasible pairs is the set of symbol-pairs that have to be considered as potential elements 
of symbol-pair sequences. The normal approach is not to allow the whole cross-product 
A x A' as possible symbol pairs, but to define a subset of this as being the effective 
alphabet under consideration. This is normally done in three ways: 

• Any symbol a that appears in both the lexical alphabet and the surface 
alphabet gives rise to a feasible pair a 'a .  

• Any symbol-pair that is explicitly mentioned in a context-expression 
anywhere in a rule is feasible. 

• Any symbol-pair that is explicitly declared to be feasible (in a list 
supplied along with the rules) is feasible. 

The set of feasible pairs is then used in two ways--any variables or sets occurring in 
the statement of rules are deemed to range only over feasible pairs, not over arbitrary 
symbol-pairs; also, any feasible pair may occur freely in a symbol-pair sequence if not 
otherwise constrained by the rules of the grammar. 

It can be seen that these definitions and conventions are to some extent bound up 
with the concrete textual representation of rules, and the way of stating symbolically 
the contents of the grammar. At the set-theoretic level of abstraction here, a slightly 
different (but compatible) set of definitions is necessary. We are assuming that no 
variables or symbol-set-mnemonics appear in our rules, so the question of using the 
feasible pair set to expand or give meaning to such abbreviations is irrelevant, but 
there is still the question of freedom of occurrence. 

The notion of implicit definition of feasibility can be altered so that instead of 
referring to occurrence within a context-expression, it refers to occurrence with a set 
(for regular sets specified using disjunction, concatenation and indefinite iteration, the 
two are equivalent). Explicit listing of additional feasible pairs can be represented by 
including context restriction rules of the form 

{ ({ },{ 

where c denotes the empty sequence. A trivial rule like this allows the symbol-pair 
to occur freely, since any adjacent material will match the empty string. (The exact 
definition of matching is important here---matching the empty string or sequence 
means that there is some partition of the surrounding string in which the portion 
of the partition next to the symbol-pair of interest is the empty sequence; it does not 

mean that there are no adjacent symbol-pairs). 
That is, no extra mechanism is needed for adding feasible pairs--what would ap- 

pear in a practical implementation as a declaration of an enumerated list can be viewed 
as a convention for defining rather degenerate context restriction rules. The point is 
that the original textually-based definitions of feasibility are merely a notational con- 
venience for conveying (to the human reader or a software interpreter/compiler) a 
set of symbol-pairs that includes at least the pairs from the contexts (and the identity 
pairs), and we shall abstractly regard that set as being part of the definition of the 
grammar, regardless of the notation used to make it manifest. 
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A symbol-pair  a:a' is said to be a s tr ing-const i tuent  in a set 0 of symbol-pair  
sequences if there is at least one element s C 0 such that a:a ~ is an element of the 
sequence s. 

A symbol-pair  a:a ~ is said to occur in a rule (b:b p, C) iff either a:a' = b:b' or for at 
least one element  (LC, RC) of C, a:a' is a string-constituent in at least one of LC and 
RC. 

Given two alphabets A and N ,  a two-level morphological grammar based on 
A and A' consists of a pair (CR, SC) where  CR and SC are finite sets of two-level 
morphological  rules over  A and N .  (The two sets of rules are the context restriction and 
surface coercion rules respectively). Given such a two-level morphological  g rammar  
R = (CR, SC), the set of feasible pairs in R is the set of symbol-pairs: 

{a : a' ] a : a' occurs in some element  of CR U SC} U {a : a I a C A n A'} 

A two-level morphological  g rammar  is said to be regular  if all the rules in it are 
regular. 

6. Languages Generated 

Given a two-level morphological  g rammar  R = (CR, SC), a symbol-pair  sequence E is 
generated by R iff all the following hold: 

1. all the symbol-pairs in ~ are feasible pairs in R; 

2. each rule in SC coercively allows E; 

3. the set CR of rules contextually allows E. 

As ment ioned earlier, the two classes of rules are treated slightly d i f ferent lym 
surface coercion rules are conjoined, forming a set of constraints all of which must  be 
met, and the context restriction rules for a given symbol pair are disjoined, giving a 
set of possible licensing contexts. If no rules apply  to a particular symbol-pair, it is 
acceptable if and only if it is feasible. 

With the above definitions, it is now possible to ask what  sorts of symbol-pair  
languages can be characterized using a two-level morphological  grammar.  

Lemma 1 
Let CR be a set of two-level morphological  rules. Let E1 and E2 be symbol-pair  se- 
quences such that CR contextually allows El, and CR contextually allows E2. Then CR 
contextually allows the concatenation EIE2. 

Proof 
Let a:a ~ be a symbol-pair  occurring in EIE2, such that (P1, a:a',P2) is a part i t ion of 
E1E2. Assume, wi thout  loss of generality, that a:a t occurs in El. That  is, P1 is a proper  
initial subsequence of E1 and/32 = $2E2 for some sequence $2. Since CR contextually 
allows El, for the parti t ion (P1, a:a', $2) of E1 there is at least one rule C in CR that 
contains at least one context-pair (LC, RC) such that LC matches P1 at the right end 
and RC matches $2 at the left end. If RC matches $2 at the left end, then RC will also 
match $2E2 = P2 at the left end. Hence, for the part i t ion (P1, a:a', P2) of E1E2 there is 
at least one rule C in CR that contains at least one context-pair (LC, RC) such that LC 
matches P1 at the right end and RC matches P2 at the left end. A similar a rgument  
can be given for the occurrence of a:a' being in E2. Since this will be true for any such 
a:a ~ in EIE2, CR contextually allows E1E2. • 
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Corollary 
If a two-level grammar is of the form (CR, 0) (i.e. it contains no surface coercion rules), 
then the concatenation of any two strings in its language is also in its language. 

Lemma 2 
Let R = (a:a', C) be a two-level morphological rule. Let E~, E2, E3 be symbol-pair 
sequences such that E1E2E3 is coercively allowed by R. Then E2 is coercively allowed 
by R. 

Proof 
If E2 were not coercively allowed by R, it would mean that there is a partition ($1, a:b, 
$2) of E2 such that for some (LC, RC) in C, LC matches $1 at the right end, RC matches 
$2 at the left end, and b~  a'. If this were the case, there would be a corresponding 
partition (E1S1, a:b, $2E3) of E1E2E3, with LC matching E1S1 at the right end, and 
RC matching $2E3 at the left end. This would (by definition) mean that R does not 
coercively allow E1E2E3, which is not the case by hypothesis. • 

Corollary (a) 
Let C be a set of two-level morphological rules, all of which coercively allow a symbol- 
pair sequence E. Then all of the rules in C coercively allow any subsequence of E. 

Corollary (b) 
If all the context restriction rules in a two-level morphological grammar are trivial, in 
the sense of having vacuous contexts (see Section 5 above), then any substring of an 
element of its language is also in the language. 

Lemma 3 (The Concatenation Property) 
Let G be a two-level morphological grammar (CR, SC), and let L(G) be the set of 
symbol-pair sequences generated by G. Suppose that there are sequences El, E2, E3, 
E4 such that E2 E L(G), E3 E L(G), and E1E2EBE4 c L(G). Then E2E3 ~ L(G). 

Proof 
(i) 

(ii) 

Since E1E2E3E4 C L(G), all the symbol-pairs in it are feasible with respect 
to G, hence all the symbol-pairs in E2E3 are feasible. 

Since E2 and E3 c L(G), it follows that CR contextually allows E2 and E3 
(by definition). By Lemma 1 above, this means that CR contextually 
allows E2E3. 

(iii) Since E1E2E3E4 E L(G), it follows (by definition) that all of the rules in 
SC coercively allow E1E2E3E4. Hence, by Corollary (a) to Lemma 2 
above, all of the rules in SC coercively allow E2E3. 

This establishes the three defining conditions for E2E3 c L(G). • 

7. Comparison with Transducers 

As mentioned in the introduction, two-level grammars have historically been written 
in two different ways--as  rules as defined here, and as sets of finite-state transduc- 
ers. In the latter case, each transducer deals with some linguistic phenomenon, and a 
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sequence of symbol-pairs is generated by the grammar if every transducer in the gram- 
mar accepts it. That is, the symbol-pair sequence must be in the intersection of the lan- 
guages accepted by the transducers (viewed as acceptors); in procedural terms, this is 
often referred to as "having the transducers executed in parallel." Hence, when work- 
ing with the transducer formalism the linguist has to devise independent transducers 
whose intersection is the required language. These transducers, like the two-level rules, 
define a mapping between equal-length symbol sequences, as described earlier; there 
are no "empty transitions." Under these conditions, since the intersection of a set of 
regular languages is also a regular language, it follows that these parallel finite-state 
acceptors define exactly the regular sets of symbol-pair sequences. 

As observed earlier, Kaplan's work on regular relations shows that the "parallel 
transducer" model is at least as powerful as the two-level grammar model defined 
earlier. The obvious question is whether there is a difference in power; in fact, there 
is: 

Theorem 1 
There are regular sets of symbol-pair sequences (i.e. symbol-pair languages character- 
ized by regular expressions of symbol-pairs) that cannot be generated by any two-level 
morphological grammar. 

Proof 
This follows directly from Lemma 3 above. Any language L generated by a two-level 
morphological grammar must have the property that if E2, E3, and EIE2E3E4 C L, then 
E2E3 E L. There are regular symbol-pair languages that do not have this property, such 
as the language defined by the regular expression 

b :bV (a :a  b:b)* 

which contains b : b and a: a b : b but not b : b a: a b : b, even though that sequence is 
a subsequence of other' elements of the language. • 

It was already clear that there are some regular relations that cannot be generated 
by a two-level grammar, since a regular relation can put into correspondence symbol- 
sequences of different lengths; what the above result shows is that there are some 
equal-length regular relations that cannot be generated by any two-level grammar. That 
is, we have the following proper inclusions: 

languages generated by regular two-level morphological grammars 

c regular sets of symbol-pair sequences 

c regular relations 

There is another, rather trivial, difference between the power of two-level morpholog- 
ical rules and arbitrary regular expressions. According to the definitions given here, 
the empty sequence of symbol-pairs is in every language generated by a two-level 
morphological grammar, since it conforms to the definition regardless of the content 
of the rules. The definitions could be altered to exclude the empty sequence from ev- 
ery language, but it is hard to see how the rule mechanism could be used to allow the 
empty sequence in some languages but not others. 
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8. Another Type of Rule 

Karttunen et al. (1987) allow a further rule operator/<= in their rules. A rule of the 
form 

a:b /<= LC --- RC 

means, informally, that the pair a:b must not occur if the contexts LC and RC are 
present. It would be straightforward to extend the definition of a two-level morpho- 
logical grammar to cover this symbol. What would be needed would be to allow a 
grammar to be a triple (CR, SC, CE) in which CR and SC are as before, but CE is a 
set of context exclusion rules of this new sort. The applicability of such rules could 
be defined thus: 

A symbol-pair sequence E is contextually excluded by a rule (a:b, C) 
if there is a partition ($1, a:b, $2) of ~ and some context-pair (LC, RC) 
E C such that LC matches $1 at the right end and RC matches $2 at 
the left end. 

The definition of generation of a sequence E by a grammar (CR, SC, CE) would have 
to be amended to include the additional stipulation (see Section 6 above): 

4. no rule in CE contextually excludes ~. 

Inclusion of this type of context exclusion rule does not affect the proof of Lemmas 
1 and 2, or their corollaries, and the Concatenation Property (Lemma 3) can still be 
proven since the following lemma can be proven by a very simple modification to the 
proof for Lemma 2 : 

Lemma 4 
Let R = (a:a', C) be a two-level morphological rule. Let El, E2, E3 be symbol-pair se- 
quences such that E1E2E3 is not contextually excluded by R. Then E2 is not contextually 
excluded by R. 

Hence, the use of context exclusion rules does not affect any of the results about 
generative power given earlier, or the lack of closure demonstrated in Section 11 below. 

David Weir (personal communication) has pointed out that the use of context ex- 
clusion rules makes surface coercion rules technically redundant, since any stipulation 
of surface coercion can be restated as a set of context exclusion rules. 

9. Boundary Markers 

The two-level formalism, as defined above (and as originally defined by Koskenniemi) 
has no word-boundary symbol to mark the end of a sequence of symbols. Although 
the linguist is free to introduce any symbols that seem empirically useful, none of these 
symbols has any specially defined status beyond what the linguist chooses to state in 
the actual twoqevel morphological grammar, and the apparatus does not stipulate 
that a particular symbol occurs only at the start or end of a complete string. The 
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PC-KIMMO implementation of two-level morphology (Antworth 1990) has a special 
boundary marker "#" with the following properties: 

1. # can appear in both the lexical and the surface component of a 
symbol-pair. 

2. # can be paired only with itself, not with any other symbol. 

3. The pair #:# occurs at the extreme ends of every string. 

4. The pair #:# never occurs at any internal position of a string. 

5. Any two-level rule may refer to the pair #:#, thereby making 
phenomena it describes relative to the end of the sequence. 

6. The symbol-pair #:# is not regarded as part of the sequence generated; 
that is, the rules characterize an extended string with #:# at each end, 
but the generated sequence is defined to be the sequence without 
boundary markers. 

It would be possible, with careful design of the two-level rules, to enforce points 1-5 
without resorting to special treatment for #:#, but point 6 steps outside the two-level 
mechanism; a grammar that merely enforced 1-5 using its rules would, according to 
the basic definitions of generation, have in its language strings that contained #:# (at 
the ends). Karttunen et al. (1987) also allow a lexical boundary marker #, such that 
the symbol-pair # : 0 meets points 3, 4, and 5 above (which can be achieved by writing 
suitable two-level rules without any need for special treatment). However, they do not 
need to rely on the additional stipulation given in 6, since the use of a surface null 
will give the desired effect when considering the entire mapping from lexical forms 
to surface form, with explicit null symbols being removed in the manner outlined in 
Section 2 above (see Ritchie 1989 for a formal definition of this phase). 

We can show that the inclusion of a specially treated boundary symbol slightly 
alters the generative power of the formalism, since this allows any set that can be 
included as a context set to constitute the entire language, as follows. 

Given two sets A and N,  a symbol rx E A, a symbol fl c N,  and a two-level 
morphological grammar G based on alphabets A and A ~, then a symbol-pair sequence 

E (A x A~) * is said to be generated by G with boundary a:fl iff 

1. ~:fl does not occur anywhere in 

2. ~:fl G a:fl is generated by G. 

Notice that under this definition, a sequence ~ may well be "generated by G with 
boundary c~:fl" even though G itself is not generated by G. 

Theorem 2 
Let A and A ~ be sets of symbols, let ~ be some symbol not in A, fl some symbol not 
in A ~ and let L be some set of symbol-pair sequences from A x AE Then there is a 
two-level morphological grammar G based on A U { (~ } and A' U { fl } such that 

L -- {G I G generates G with boundary rx : fl} 
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Proof 
Consider the two-level grammar (written in the usual textual notation): 

(~ : fl =~ - - -  C a : f l  

o r s : t i C  - - -  

where C is some expression denoting the set L (in the usual notation based on regular 
sets, C would be a regular expression). More formally, this grammar G (= (CR, SC)) 
could be written set-theoretically as 

({(~: fl,{({e},L1)(L2,(e})})},O) 

where L1 is the set consisting of all possible concatenations of elements of L with a:fl, 
and L2 is the set consisting of all possible concatenations of c~:fl with elements of L. 

It is straightforward to verify that this grammar generates all and only strings of 
the form o~:flGc~:fl for ~ E L. • 

This theorem may  sound rather odd, since it implies that any set whatsoever can 
be generated in this manner  (in contrast to the earlier result that there are some regular 
languages of symbol-pairs that cannot be generated by two-level rules). However, it is 
important  to note that this theorem not only uses a special boundary  symbol, it relies 
on the generalization of the usual regular-set based two-level rules to rules that allow 
any set as a context set. Essentially it says that, with the augmentat ion of a special 
boundary  symbol, the generative power is limited only by the limits placed on the 
class of sets that can appear as contexts. A more useful and natural specialization of 
this theorem is as follows: 

Corollary 
For any regular set L of symbol-pair sequences, there is a regular two-level morpho- 
logical grammar that generates L with boundary  ~:fl, for some symbols c~, fl that are 
not in the alphabets used for L. 

10. Normal Form 

We define a two-level morphological grammar as being in normal form if there is no 
symbol-pair that is the subject of more than one context restriction rule or more than 
one surface coercion rule. More formally, a grammar (CR, SC) is said to be in normal 
form iff whenever  (a:b, C) c CR and (a:b, C ~) E CR, C = C', and whenever  (a:b, C) c 
SC and (a:b, C') E SC, C --- C'. 

Theorem 3 
For any two-level morphological grammar G, there is a corresponding two-level mor- 
phological grammar G' in normal form that generates the same symbol-pair language. 

Proof 
Suppose G = (CR, SC) is not in normal form. Create the grammar G' = (CR', SC') as 
follows. If there is exactly one rule (a:b, C) in CR for the symbol-pair a:b, include that 
rule in CRL For any set of two or more rules in CR with the same symbol-pair a : b 

(a : b, C1), . . . . ,  ( a  : b, G )  

55 



Computational Linguistics Volume 18, Number 1 

include in CR' a rule: 

(a : b, C1 U C2... Cn). 

Create SC from SC in exactly the same way. It should be clear from this that (a) any 
symbol-pair a:b occurs in the rules in G iff it occurs in the rules in G'; (b) any pair of 
context sets (LC, RC) appears in a rule in CR iff it appears in a rule in CR' with the 
same symbol-pair; (c) any pair of context sets (LC, RC) appears in a rule in SC iff it 
appears in a rule in SC' with the same symbol-pair. 

It is straightforward to prove the equivalence for G and G' of the three defining 
criteria for language membership. • 

11. Closure Properties 

Most classes of formal languages (e.g. regular languages, context-free languages) are 
closed under at least some of the simple set-theoretic operations such as union and 
intersection. Certain results can be proved for two-level morphological languages con- 
cerning their closure (or lack of it). 

Theorem 4 
The set of languages generated by two-level morphological grammars is not closed 
under union. 

Proof 
The proof follows from the "concatenation property" of Lemma 3 above, which allows 
a simple counterexample to be constructed. Consider the grammar G1 which would 
conventionally be written as 

b:b => 

(if we follow the normal practice of omitting textually any context set containing only 
the empty sequence). This generates the language (b : b)*; that is, 

{ ¢, b:b,  b:b b:b,  ...} 

The grammar G2 given by the rules 

b:b => a :a  
a:a => b:b 

(again, omitting mention of contexts that are trivially satisfiable) generates the lan- 
guage (a :a  b:b)*: 

e, a :a  b:b,  a :a  b:b a :a  b:b, . . .  

The union of these languages contains the sequences 

b:b a:a b:b a:a b:b a:a b:b 
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but does not contain the sequence 

b:b  a : a  b:b 

and hence, by Lemma 3, cannot be a language generated by a two-level language. • 
The following result and construction are due to David Weir (personal communi-  

cation). 

T h e o r e m  5 
The set of languages generated by two-level morphological grammars is closed under  
intersection. 

Proof  
Let L1 and L2 be two-level morphological languages, generated by the grammars 
GI=(CR1, SC1) and G2=(CR2, SC2) respectively. It is possible to construct a two-level 
grammar for the intersection L = L1 N L2. Without loss of generality, assume (merely 
to simplify the construction): 

1. For every rule in CR1 or CR2 of the form (P,C) let the set C contain just 
one pair of the form (LC,RC). This assumes that the set of context-pairs 
in a rule is never an infinite set--see Section 4 above. There can be 
several such rules for any given symbol-pair P (i.e. we have to allow the 
grammar to be not in the "normal form" defined in Section 10 above). 
Note that we do not need to make this assumption for the rules in SC1 
and SC2. 

2. For every pair a : b that is a feasible pair in both G1 and G2 there is at 
least one rule in CR1 and CR2 for the symbol pair a : b. In the absence of 
any other rule include (a : b, ({~}, {~})). 

Suppose that • is the set of symbol-pairs that are feasible in both G1 and G2, so 
that ~* is the set of sequences of such symbol-pairs. 

To create the context restriction rules for the intersection grammar G, take 

CR = CR' U CR" 

where CR' is defined to be: 

((p, {((I)*LC1 N c~*LC2, RClC~ * f"l RC2(I)*)}) I 

(p~ {(LCI~RC1)}) E CRI~ and (p~ {(LC2~RC2)}) E ca2} 

and CR" is defined as: 

{(a : b, {({a' : a'}, c)} [ a : b is feasible in exactly one of G1 and G2} 

where a' is a new symbol that is not in a feasible pair in either G1 or G2. 
The set SC' defined below has the effect of making the context a' : a' unobtainable. 

Hence, the above rule makes each a : b that is not feasible in both grammars behave 
as if it were not feasible in the new grammar. There will be no symbol-pair that is 
the subject of a rule in CR' and in CR", since the first of these sets covers the jointly 
feasible pairs and the latter handles others. 
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To construct the surface coercion rules for the intersection grammar G use 

SC = SC1 U SC2 U SC' 

where SC ~ is defined as follows: 

SC' : {(a': a', (({c}, {e})})~ (a': a, (({~}, (¢})})} 

where a' is as above and a is an arbitrary symbol other than a'. 
There is then a fairly straightforward proof that this grammar characterizes a 

symbol-pair sequence if and only if that sequence is in L(G1) rl L(G2). The only slightly 
complicated step involves the proof that if an occurrence of a symbol-pair matches a 
rule in CR1, and also matches a rules in CR2, it must match a rule in CR (in CR', in 
fact). The argument goes as follows. If a partition (S, a:  b, S r) is contextually allowed 
by original rules (a : b, {(LC1,RC1)}) and (a : b, {(LC2~RC2)}), then it follows from the 
definitions in Section 4 above that there is a P1 at the right end of S that is in LC1, 
and a P2 at the right end of S that is in LC2. Hence S ~-- ~*LC1, and S E ~*LC2. Hence 
there is a string (namely S) that is at the right end of S and is in ~*LCI N c~*LC2 (and 
similarly for the right contexts). • 

Corollary (a) 
The set of regular two-level morphological languages is closed under intersection. 

Proof 
The above construction uses combinations that yield regular sets from regular sets. 
Hence if G1 and G2 are regular two-level morphological grammars, so is G. • 

Corollary (b) 
The set of two-level morphological languages is not closed under complementation. 

Proof 
Follows directly from Theorem 4 and Theorem 5, since 

A UB = (A' riB')' 

(a direct counter-example can also be constructed using Lemma 3). • 

12. The Next Stage--Compilation and Complexity 

The above results define more clearly the family of two-level languages, but they 
say nothing about mechanisms for recognizing strings of symbol-pairs, nor how such 
recognition can be integrated with a lexicon of symbol-strings. There are at least two 
methods of compilation and subsequent interpretation for regular two-level grammars 
(i.e. those whose context sets can be written as regular expressions, which is the nor- 
mal practice), both of which rely heavily on finite-state transducers in their compiled 
form. Karttunen et al. (1987) produce an intersecting set of traditional transducers, 
and the recognition process is then a straightforward interpretation of the equivalent 
combined automaton. Ritchie et al. (1991) compile rules into a slightly peculiar form of 
transducer, in which states are marked to indicate different processing requirements; 
a nonstandard interpreter then scans the resulting annotated automaton. There are no 
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published proofs of correctness of either mechanism, but Karttunen et al.'s exposi- 
tion relies heavily on Kaplan's work on regular relations (see Section 3 above), which 
appears to justify its procedures. 

The usual assumed interface to a lexicon (e.g. Koskenniemi 1983a, 1983b; Karttunen 
1983) is via sublexicons for different lexeme classes, with cross-pointers indicating al- 
lowable sequences of lexemes (a formal definition of this can be found in Ritchie 1989). 
Another possibility is to impose a wholly separate rule-driven layer of morphotactic 
description upon the lexical forms; this approach is coupled with a two-level system 
in Ritchie et al. (1991). 

The complexity of the problem of recognizing a string of symbols using the parallel 
transducer formulation of two-level morphology with a single (or cross-linked) lexicon 
has been shown to be NP-complete by Barton et al. (1987), and Ritchie et al. (1991) 
suggest that the proof of NP-hardness could be modified to cover the recognition 
problem for the definition of two-level rules given here (and a single lexicon), but 
exact complexity or decidability results for the compilation/interpretation procedure 
of Ritchie et al. (1991) have not been produced, nor is there any characterization of the 
complexity of determining whether a sequence of symbol-pairs belongs to the language 
generated by a two-level language (without regard for the lexical segmentation issue). 

All these issues lie outside the scope of this paper, but it would be desirable for 
them to be settled. 
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