
An Estimate of an Upper Bound for the 
Entropy of English 

Peter E Brown* 
Vincent J. Della Pietra* 
Robert L. Mercer* 
IBM T.J. Watson Research Center 

Stephen A. Della Pietra* 
Jennifer C. Lai* 

We present an estimate of an upper bound of 1.75 bits for the entropy of characters in printed 
English, obtained by constructing a word trigram model and then computing the cross-entropy 
between this model and a balanced sample of English text. We suggest the well-known and widely 
available Brown Corpus of printed English as a standard against which to measure progress in 
language modeling and offer our bound as the first of what we hope will be a series of steadily 
decreasing bounds. 

1. Introduction 

We present an estimate of an upper bound for the entropy of characters in printed 
English. The estimate is the cross-entropy of the 5.96 million character Brown Corpus 
(Kucera and Francis 1967) as measured by a word trigram language model that we 
constructed from 583 million words of training text. We obtain an upper bound of 1.75 
bits per character. 

Since Shannon's 1951 paper, there have been a number of estimates of the entropy 
of English. Cover and King (1978) list an extensive bibliography. Our approach differs 
from previous work in that 

1. We use a much larger sample of English text; previous estimates were 
based on samples of at most a few hundred letters. 

2. We use a language model to approximate the probabilities of character 
strings; previous estimates employed human subjects from whom 
probabilities were elicited through various clever experiments. 

3. We predict all printable ASCII characters. 

2. Method 

Our estimate for the entropy bound is based upon the well-known fact that the cross- 
entropy of a stochastic process as measured by a model is an upper bound on the 
entropy of the process. In this section, we briefly review the relevant notions. 

2.1 Entropy, Cross-Entropy, and Text Compression 
Suppose X = {... X-2, X- l ,  Xo, X1, X2...} is a stationary stochastic process over a finite 
alphabet. Let P denote the probability distribution of X and let Ep denote expectations 
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with respect to P. The entropy of X is defined by 

H(X) =_ H(P) =_ -EplogP(Xo l X_I,X_2,...). (1) 

If the base of the logarithm is 2, then the entropy is measured in bits. It can be shown 
that H(P) can also be expressed as 

H(P) = l i m - E p l o g P ( X o [ X - 1 , X - 2 , . . . , X _ n )  = l i m - 1 E p l o g P ( X 1 X 2 . . . X n ) .  (2) 

If the process is ergodic, then the Shannon-McMillan-Breiman theorem (Algoet and 
Cover 1988) states that almost surely 

H(P) = lim - 1 log P(X1X2... Xn). (3) 
n---* cx~ y/ 

Thus, for an ergodic process, an estimate of H(P) can be obtained from a knowledge 
of P on a sufficiently long sample d rawn randomly  according to P. 

When P is not known,  an upper  bound to H(P) can still be obtained from an 
approximation to P. Suppose that the stationary stochastic process M is a model for 
P. The cross-entropy of P as measured by M is defined by 

H(P,M) =-- -Ep logM(Xo l X_I,X_2,...). (4) 

Under suitable regularity conditions, it can be shown that 

H(P,M) = l i m - E p l o g M ( X o l X _ I , X _ E , . . . , X _ n )  = l im-1-EplogM(X1X2. . .Xn) .  
n'--+ CX~ n" -*  DO n 

(s) 
If P is ergodic, then it can be shown that almost surely for P 

H(P, M) = lim - 1 logM(XIX2... Xn). (6) 
n ---+ o o  n 

The cross-entropy H(P, M) is relevant to us since it is an upper  bound  on the 
entropy H(P). That is, for any model  M, 

H(P) < H(P,M). (7) 

The difference between H(P, M) and H(P) is a measure of the inaccuracy of the model  
M. More accurate models yield better upper  bounds  on the entropy. Combining Equa- 
tions (6) and (7) we see that almost surely for P, 

H(P) < lim - 1 log M(X1X2... Xn). (8) 
n---*OO n 

Entropy and cross-entropy can be understood from the perspective of text com- 
pression. It is well known that for any uniquely decodable coding scheme (Cover and 
Thomas 1991), 

Ep I(XIX2... Xn) ~ -Ep log e(XlX2... Xn) , (9) 

where I(X1X2...Xn) is the number  of bits in the encoding of the string X1X2...Xn. 
Combining Equations (2) and (9), we see that H(P) is a lower bound  on the average 
number  of bits per symbol required to encode a long string of text d rawn from P: 

H(P) <__ lira 1Ep I(X1X2...Xn). (10) 
n ---* o o  n 
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On the other hand, an arithmetic coding scheme (Bell, Cleary, and Witten 1990) using 
model M will encode the sequence xlx2.. .  Xn in 

IM(XlX2... Xn) = r -- logM(XlX2... Xn) + 11 (11) 

bits, where [r] denotes the smallest integer not less than r. Combining Equations (7) 
and (11) we see that H(P,M) is the number of bits per symbol achieved by using 
model M to encode a long string of text drawn from P: 

H(P,M) = lim llM(X1X2...Xn). (12) 
n---*oo n 

2.2 The Entropy Bound 
We view printed English as a stochastic process over the alphabet of 95 printable ASCII 
characters. This alphabet includes, for example, all uppercase and lowercase letters, all 
digits, the blank, all punctuation characters, etc. Using Equation (8) we can estimate 
an upper bound on the entropy of characters in English as follows: 

1. Construct a language model M over finite strings of characters. 

2. Collect a reasonably long test sample of English text. 

3. Then 

H(English) <_ __1 log M(test sample), 
n 

(13) 

where n is the number of characters in the sample. 

We emphasize that for this paradigm to be reasonable, the language model M 
must be constructed without knowledge of the test sample. Without this proscription, one 
might, for example, construct a model that assigns probability one to the test sample 
and zero to any other character string of the same length. Even quite subtle use of 
knowledge of the test sample can have a profound effect on the cross-entropy. For 
example, the cross-entropy would be noticeably lower had we restricted ourselves to 
characters that appear in the test sample rather than to all printable ASCII characters, 
and would be lower still had we used the actual vocabulary of the test sample. But 
these values could not be trumpeted as upper bounds to the entropy of English since 
Equation (13) would no longer be valid. 

3. The Language Model 

In this section, we describe our language model. The model is very simple: it captures 
the structure of English only through token trigram frequencies. Roughly speaking, 
the model estimates the probability of a character sequence by dissecting the sequence 
into tokens and spaces and computing the probability of the corresponding token 
sequence. The situation is slightly more complicated than this since, for a fixed token 
vocabulary, some character sequences will not have any such dissection while others 
will have several. For example, the sequence abc xyz might not have any dissection 
while the sequence bedrock might be dissected as one token or as two tokens without 
an intervening space. 

We address the difficulty of sequences that cannot be dissected by introducing an 
unknown token that can account for any spelling. We address the problem of multiple 
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dissections by considering the token sequences to be hidden. The model generates a 
sequence of characters in four steps: 

1. It generates a hidden string of tokens using a token trigram model. 

2. It generates a spelling for each token. 

3. It generates a case for each spelling. 

4. It generates a spacing string to separate cased spellings from one another. 

The final character string consists of the cased spellings separated by the spacing 
strings. 

The probability of the character string is a sum over all of its dissections of the 
joint probability of the string and the dissection: 

M(character~tring) = ~ M(character~string, dissection). (14) 
dissections 

The joint probability of the string and a dissection is a product of four factors: 

M ( character_string, dissection) = 
Mtoken (tokens) Mspetl (spellings I tokens) Mease (cased_spellings [ spellings, tokens) 

Mspace( character_string I cased_spellings, spellings, tokens). (15) 

3.1 The Token Trigram Model 
The token trigram model is a second-order Markov model that generates a token string 
tit2..,  tn by generating each token ti, in turn, given the two previous tokens ti-1 and 
ti-2. Thus the probability of a string is 

n 
Mtoken(tlt2... tn)= Mtoken(tlt2) I-I Mtoken(ti ] ti-2ti-1) 

i=3 
(16) 

The conditional probabilities Mtoken(t 3 [ tit2) are modeled as a weighted average of 
four estimators fi 

Mtoken(t3 ] tl t2) = &3( t l t2 ) f3( t31 t l t2 )q- .~2( t l t2 ) f2( t3  I t 2 )q -~ l ( t l t 2 ) f l ( t 3 )q - /~O( t l t 2 ) fo ,  (17) 

where the weights ,~i satisfy ~ ),i = 1 and /~i ~ 0. 
The estimators fi and the weights ;~i are determined from the training data using a 

procedure that is explained in detail by Jelinek and Mercer (1980). Basically, the training 
data are divided into a large, primary segment and a smaller, held-out segment. The 
estimators fi are chosen to be the conditional frequencies in the primary segment, 
while the smoothing weights )~i are chosen to fit the combined model to the held- 
out segment. In order to decrease the freedom in smoothing, the ,~i are constrained 
to depend on (tit2) only through the counts c(tlt2) and c(t2) in the primary training 
segment. When c(tlt2) is large, we expect )~3(ht2) to be close to 1, since in this case 
the trigram frequency in the primary segment should be a reliable estimate of the 
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frequency in the held-out segment. Similarly, when c(tlt2) is small, but c(t2) is large, 
we expect/k3(tlt2) to be close to 0 and &2(tit2) to be close to 1. 

The token vocabulary consists of 

1. 293,181 spellings, including a separate entry for each punctuation 
character; 

2. a special unknown_token that accounts for all other spellings; 

3. a special sentenced;oundary_token that separates sentences. 

3.2 The Spelling Model 
The spelling model generates a spelling $1s2... Sk given a token. For any token other 
than the unknown_token and sentence_boundary_token, the model generates the spelling of 
the token. For the sentence_boundary_token, the model generates the null string. Finally, 
for the unknown_token, the model generates a character string by first choosing a length 
k according to a Poisson distribution, and then choosing k characters independently 
and uniformly from the printable ASCII characters. Thus 

Mspell(SlS2... Sk [ unknown_token) )~k = e -.~-k ~. e ,  (18) 

where & is the average number of characters per token in the training text, 4.1, and 
1/p is the number of printable ASCII characters, 95. 

3.3 The Case Model 
The case model generates a cased spelling given a token, the spelling of the token, 
and the previous token. For the unknown_token and sentence_boundary_token, this cased 
spelling is the same as the spelling. For all other tokens, the cased spelling is obtained 
by modifying the uncased spelling to conform with one of the eight possible patterns 

L + U + UL + ULUL + ULLUL + UUL + UUUL + LUL + 

Here U denotes an uppercase letter, L a lowercase letter, U + a sequence of one or 
more uppercase letters, and L + a sequence of one or more lowercase letters. The case 
pattern only affects the 52 uppercase and lowercase letters. 

The case pattern C for a token t is generated by a model of the form: 

Mcase(C [ t,b) = /~2( t ) f (CI t ,  b) +/~l ( t ) f (C I b) + ,~0(t). (19) 

Here b is a bit that is 1 if the previous token is the sentence_boundary_token and is 0 
otherwise. We use b to model capitalization at the beginning of sentences. 

3.4 The Spacing Model 
The spacing model generates the spacing string between tokens, which is either null, 
a dash, an apostrophe, or one or more blanks. It is generated by an interpolated model 
similar to that in Equation (19). The actual spacing that appears between two tokens 
should depend on the identity of each token, but in our model we only consider the 
dependence on the second token. This simplifies the model, but still allows it to do 
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a good job of predicting the null spacing that precedes many punctuation marks. For 
strings of blanks, the number of blanks is determined by a Poisson distribution. 

3.5 The Entropy Bound 
According to the paradigm of Section 2.2 (see Equation (13)), we can estimate an 
upper bound on the entropy of characters in English by calculating the language 
model probability M(character_string) of a long string of English text. For a very long 
string it is impractical to calculate this probability exactly, since it involves a sum 
over the different hidden dissections of the string. However, for any particular dis- 
section M(character-string) > M(character-string, dissection). Moreover, for our model, a 
straightforward partition of a character string into tokens usually yields a dissection 
for which this inequality is approximately an equality. Thus we settle for the slightly 
less sharp bound 

H(English) <_ __1 log M(character_string, dissection) 
n 

(20) 

where dissection is provided by a simple finite state tokenizer. By Equation (15), the joint 
probability M(characterstring, dissection) is the product of four factors. Consequently, 
the upper bound estimate (20) is the sum of four entropies, 

H(English) < Htoken(character-string) + Hspell(character-string) 
+ Hcase (character_string) + Hspacing (character-string). (21) 

4. The Data 

4.1 The Test Sample 
We used as a test sample the Brown Corpus of English text (Kucera and Francis 1967). 
This well-known corpus was designed to represent a wide range of styles and varieties 
of prose. It consists of samples from 500 documents, each of which first appeared in 
print in 1961. Each sample is about 2,000 tokens long, yielding a total of 1,014,312 
tokens (according to the tokenization scheme used in reference [Kucera and Francis 
1967]). 

We used the Form C version of the Brown Corpus. Although in this version only 
proper names are capitalized, we modified the text by capitalizing the first letter of 
every sentence. We also discarded paragraph and segment delimiters. 

4.2 The Training Data 
We estimated the parameters of our language model from a training text of 583 million 
tokens drawn from 18 different sources. We emphasize that this training text does not 
include the test sample. The sources of training text are listed in Table 1 and include text 
from: 

1. 

. 

several newspaper and news magazine sources: the Associated Press; the 
United Press International (UPI); the Washington Post; and a collection of 
magazines published by Time Incorporated; 

two encyclopedias: Grolier's Encyclopedia and the McGraw-Hill 
Encyclopedia of Science and Technology; 

36 



Brown et al. An Estimate of an Upper Bound for the Entropy of English 

Table 1 
Training corpora. 

Source Mil l ions  of words 

United Press International 203.768 
IBM Depositions 93.210 
Canadian Parliament 85.016 
Amoco PROFS (OC) 54.853 
Washington Post 40.870 
APHB 30.194 
Associated Press 24.069 
IBM Poughkeepsie (OC) 22.140 
Time Inc. 10.525 
Grolier's Encyclopedia 8.020 
McGraw-Hill Encyclopedia 2.173 
IBM Sterling Forest (OC) 1.745 
IBM Research (OC) 1.612 
Bartlett's Familiar Quotations 0.489 
Congressional Record 0.344 
Sherlock Holmes 0.340 
Chicago Manual of Style 0.214 
World Almanac and Book of Facts 0.173 

Total 582.755 

3. two literary sources: a collection of novels and magazine articles f rom 
the American Printing House  for the Blind (APHB) and a collection of 
Sherlock Holmes novels and short stories; 

4. several legal and legislative sources: the 1973-1986 proceedings of the 
Canadian parliament; a sample issue of the Congressional Record; and 
the depositions of a court  case involving IBM; 

5. office correspondence (OC) from IBM and from Amoco; 

6. other miscellaneous sources: Bartlett's Familiar Quotations, the Chicago 
Manual of Style, and The World Almanac and Book of Facts. 

4.3 The  Token Vocabulary 
We constructed the token vocabulary by taking the union of a number  of lists includ- 
ing: 

1. two dictionaries; 

2. two lists of first and last names: a list der ived from the IBM on-line 
phone  directory, and a list of names we purchased from a market ing 
company;  

3. a list of place names der ived from the 1980 U.S. census; 

4. vocabulary lists used in IBM speech recognition and machine translation 
experiments.  
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Table 2 
Tokens in the test sample but not in the 293,181-token vocabulary. 

Token Occurrences 

*J 1776 
*F 1004 
Khrushchev 68 
Kohnstamm 35 
skywave 31 
Prokofieff 28 
Helva 22 
patient's 21 
dikkat 21 
Podger 21 
Katanga 21 
ekstrohm 20 
Skyros 20 
PIP 17 
Lalaurie 17 
roleplaying 16 
Pont's 15 
Fromm's 15 
Hardy's 15 
Helion 14 

The resulting vocabulary contains 89.02% of the 44,177 distinct tokens in the Brown 
Corpus, and covers 99.09% of 1,014,312-token text. The twenty most frequently occur- 
ring tokens in the Brown Corpus not contained in our vocabulary appear in Table 2. 
The first two, *J and *F, are codes used in the Brown Corpus to denote formulas and 
special symbols. 

5. Results  and Conclus ion  

The cross-entropy of the Brown Corpus and our model is 1.75 bits per character. Table 3 
shows the contributions to this entropy from the token, spelling, case, and spacing 
components (see Equation (21)). The main contribution is, of course, from the token 
model: The contribution from the spelling model comes entirely from predicting the 
spelling of the unknown_token. The model here is especially simple-minded, predicting 
each of the 95 printable ASCII characters with equal probability. While we can easily 
do better, even if we were able to predict the characters in unknown tokens as well 
as we predict those in known tokens, the contribution of the spelling model to the 
entropy would decrease by only 0.04 bits. Likewise, we can entertain improvements 
to the case and spacing models but any effect on the overall entropy would be small. 

Our bound is higher than previous entropy estimates, but it is statistically more 
reliable since it is based on a much larger test sample. Previous estimates were nec- 
essarily based on very small samples since they relied on human subjects to predict 
characters. Quite apart from any issue of statistical significance, however, it is probable 
that people predict English text better than the simple model that we have employed 
here. 

The cross-entropy of a language model and a test sample provides a natural quan- 
titative measure of the predictive power of the model. A commonly used measure of 
the difficulty of a speech recognition task is the word perplexity of the task (Bahl et 
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Table 3 
Component contributions to the cross-entropy. 

Component Cross-Entropy (bits) 

Token 1.61 
Spelling 0.08 
Case 0.04 
Spacing 0.02 

Total 1.75 

al. 1977). The cross-entropy we report here is just the base two logarithm of the char- 
acter perplexity of a sample of text with respect to a language model. For a number 
of natural language processing tasks, such as speech recognition, machine translation, 
handwriting recognition, stenotype transcription, and spelling correction, language 
models for which the cross-entropy is lower lead directly to better performance. 

We can also think of our cross-entropy as a measure of the compressibility of the 
data in the Brown Corpus. The ASCII cod4 for the characters in the Brown Corpus has 8 
bits per character. Because only 95 of the characters are printable, it is a straightforward 
matter to reduce this to 7 bits per character. With a simple Huffman code, which allots 
bits so that common characters get short bit strings at the expense of rare characters, 
we can reach 4.46 bits per character. More exotic compression schemes can reach fewer 
bits per character. For example, the standard UNIX command compress, which employs 
a Lempel-Ziv scheme, compresses the Brown Corpus to 4.43 bits per character. Miller 
and Wegman (1984) have developed an adaptive Lempel-Ziv scheme that achieves 
a compression to 4.20 bits per character on the Brown Corpus. Our language model 
allows us to reach a compression to 1.75 bits per character. 

We do not doubt that one can reduce the cross-entropy below 1.75 bits per charac- 
ter. A simple way to do this is to find more reliable estimates of the parameters of the 
model by using a larger collection of English text for training. We might also consider 
structural changes to the model itself. Our model is static. One can imagine adaptive 
models that profit from the text in the early part of the corpus to better predict the 
later part. This idea is applicable to the token model and also to the spelling model. 

From a loftier perspective, we cannot help but notice that linguistically the trigram 
concept, which is the workhorse of our language model, seems almost moronic. It 
captures local tactic constraints by sheer force of numbers, but the more well-protected 
bastions of semantic, pragmatic, and discourse constraint and even morphological and 
global syntactic constraint remain unscathed, in fact unnoticed. Surely the extensive 
work on these topics in recent years can be harnessed to predict English better than 
we have yet predicted it. 

We see this paper as a gauntlet thrown down before the computational linguistics 
community. The Brown Corpus is a widely available, standard corpus and the subject 
of much linguistic research. By predicting the corpus character by character, we obviate 
the need for a common agreement on a vocabulary. Given a model, the computations 
required to determine the cross-entropy are within reach for even a modest research 
budget. We hope by proposing this standard task to unleash a fury of competitive 
energy that will gradually corral the wild and unruly thing that we know the English 
language to be. 
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