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This paper examines the problem of classifying linguistic objects on the basis of information 
encoded in the system network formalism developed by Halliday. It is shown that this problem 
is NP-hard, and a restriction to the formalism, which renders the classification problem soluble 
in polynomial time, is suggested. An algorithm for the unrestricted classification problem, 
which separates a potentially expensive second stage from a more tractable first stage, is then 
presented. 

1. Introduction 

In this paper  we describe algorithms that enable the system networks of Systemic 
Grammar  (HaUiday 1976, 1975) to be exploited in applications, such as natural lan- 
guage understanding,  that require incremental description refinement. We are attracted 
to the system network formalism on three main counts: 

Potential Reversibility. System networks fit well with a model  of linguistic behavior  
as goal-directed action, since they encode grammatical information in the form of sets 
of interconnected choices that a language user needs to make in order to produce  
apposite and communicat ive utterances. It seems natural to exploit this information 
for comprehension as well as generation. 

Computational Convenience. System networks look simple, yet are expressive enough 
to allow the deve lopment  of substantial grammars.  If this apparent  simplicity is re- 
flected in the mathematical  properties of the system network formalism then it may  
be possible to design cheap description refinement algorithms that use the networks. 

Wider Applications. If the networks turn out to be easy to process, they may  have 
wider  applications in tasks requiring representation of nonlinguistic knowledge. We 
think that the tasks for which such networks are most likely to be appropriate are those 
for which conventional  taxonomic representations are nearly, but  not quite, sufficient. 
Our  algorithms (presented in the final part  of this paper) operate by convert ing as 
much as possible of the information contained in the networks to taxonomic form. 
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Winograd's pronoun network. 
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In this paper we shall be presenting formal arguments about the capabilities of 
the system network formalism, working at a level of detail that would make the pre- 
sentation of large scale linguistic examples prohibitively tedious. Our main example 
will therefore be the network shown in Figure 1. This network provides information 
about the choices a speaker needs to make in order to correctly produce English pro- 
nouns. Similar networks can describe the choices that have to be made in order to 
generate other components of an utterance, such as sentences, verb phrases, or into- 
nation contours, but for present purposes pronouns will prove sufficient illustration. 
We have applied the ideas described in this paper to a parsing system that accepts 
the language generated by the grammar of a pre-existing (Houghton 1986; Houghton 
and Isard 1987) dialog generation system. 

Our algorithms are presented in a somewhat stylized form, since the primary in- 
tention is to expose the nature of the problems involved rather than to provide detailed 
information about the implementation of our parsers. For instance, we describe data 
structures that are closely related to the tapes of a two-tape Turing machine, but in 
the corresponding implementation the behavior of these data structures is mimicked 
by a program that manipulates nested Prolog terms. Were we to present the details of 
the real implementation, it would tend to obscure the most significant properties of 
the algorithm. 
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Realization Rules 
question animate subjective ~ w h o  

question animate objective ~ w h o m  

question animate possessive ---* w h o s e  

question inanimate --* w h a t  

demonstr singular near -- ,  this 

demonstr singular far ~ that  

demonstr plural near --* these 

demonstr plural far - *  those 

personal first singular subjective --* I 
personal first singular objective --* m e  

personal first singular reflexive --* m y s e l f  

personal first singular possessive ---* m i n e  

personal first singular possdet --* m y  

personal second singular subjective ~ y o u  

personal second singular objective --* y o u  

personal second singular reflexive --* y o u r s e l f  

personal second singular possessive --* y o u r s  

personal second singular possdet ~ y o u r  

personal first plural subjective ~ w e  

personal first plural objective - *  us  

personal first plural reflexive --* ourse lves  

personal first plural possessive --* ours  

personal first plural possdet -- .  our  

personal second plural subjective --* y o u  

personal second plural objective - *  y o u  

personal second plural reflexive --* y o u r s e l v e s  

personal second plural possessive --+ y o u r s  

personal second plural possdet ~ y o u r  

personal third singular subjective feminine ~ she 

personal third singular subjective masculine --* he 

personal third singular subjective neuter --* it 

personal third singular objective feminine --+ her 

personal third singular objective masculine ~ h i m  

personal third singular objective neuter --* it 

personal third singular reflexive feminine --* herse l f  

personal third singular reflexive masculine ~ h i m s e l f  

personal third singular reflexive neuter --* i t se l f  

personal third singular possessive feminine --* hers 

personal third singular possessive masculine --+ his 

personal third singular possessive neuter --* its 

personal third singular possdet feminine --* her  

personal third singular possdet masculine ~ his 

personal third singular possdet neuter --+ its 

personal third plural subjective --* they  

personal third plural objective --* t hem 

personal third plural reflexive --* t hemse l ve s  

personal third plural possessive ~ theirs 

personal third plural possdet --* their 

Figure 2 
Realization rules for Winograd's pronoun network. 
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2. System Networks in NLP 

2.1 Systemic Language Production 
In many language-generation systems, such as those described by Davey (1978), Wino- 
grad (1972), Houghton (1986), Houghton and Isard (1987), and Mann and Matthiessen 
(1985), system networks are used to structure the decisions the system needs to make 
in the course of producing a syntactic constituent. Each network lays out a set of inter- 
connected options, but does not specify how the system chooses between the options 
in a particular situation. 

In systemic grammar, language production involw,~s the task of traversing a net- 
work, gradually making choices that incrementally specify various aspects of the form 
of an utterance. As choices are made the system collects features that are eventually 
realized in an appropriate form. A brief example of how this process might be applied 
to Figure 1 is given below. 

2.1.1 I~oughton's Dialog System. The system on which our work is based (Houghton 
1986; Houghton and Isard 1987) is an unusual synthesis of ideas from systemic gram- 
mar with a unification-based phrase structure grammar. It is at its most systemic in its 
approach to what (Halliday 1975, p. 5) refers to as functions in structure, but contains 
nothing directly corresponding to the macro-functions by which Halliday character- 
izes the functions of language. In other words, Houghton's system retains the role of 
systemic networks in codifying choice, but the architecture does not align with tripar- 
tite systemic distinction between textual, ideational, anti interpersonal macro-functions 
(Winograd 1983, p. 288). 

An interaction between two simulated agents is largely controlled by a representa- 
tional level of interaction frames, which lays out a space of possible moves that allow 
an agent to initiate conversations, request information from an interlocutor, signal as- 
sent, convey information, and so on. This work is in the tradition of Davey (1978) 
and Power (1979), emphasizing the gamelike structure of multi-agent dialog in pref- 
erence to the textual structure of extended monolog. In this context there seems to be 
little need for an explicit representation of the systemic macro-functions: Houghton's 
interaction frames suffice. 

The interaction frames specify a repertoire of actions available to a simple planning 
mechanism that the agents use to carry out tasks specified by the system designer. The 
agents make no distinction between different types of action, and linguistic behavior 
only arises when it becomes necessary for an agent to enlist help to achieve its top- 
level goal. It is just as valid to find something out by looking as by asking, although 
interesting linguistic behavior will only occur in the latter case. 

Houghton (1986) defines the interaction of Making Something Known as follows: 

Participants --- initiator <has_type AGENT> 

addressee <has_type AGENT> 

prop <has_type FACT> 

End Goal --- know(addressee,prop) 

Effect --- know(addressee, 

know(initiator,prop)) 

Precondition --- know(initiator, 

not(know(addressee,prop))) 

Response --- addressee -> update worldview 

initiator -> check acceptance 

Reply --- accept or reject information 
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and comments that 

The goal of this interaction is to get the addressee to know something. 
The immediate effect here is that they will at least know that you know 
it, and the precondition is that the initiator believes the addressee does 
not already know it. The response of an addressee is to attempt to 
integrate that information into its current beliefs. The initiator waits 
for uptake of the information, which is indicated by the addressee's 
reply. (Houghton 1986, p. 90). 

In order to achieve the goal of informing someone that a door is locked, the speaker 
would instantiate i n i t i a t o r  to point to herself, addressee to indicate her addressee 
and prop to stand for something like locked(door_a), setting up the environment 
within which linguistic decisions are to be made. 

In principle an agent is free to draw on any available information in order to 
reach decisions about the choices offered within Houghton's systemic networks, and 
the outcome of these choices will affect the eventual form of the utterance. In practice 
the types of information available to the agent can be brought into a rough and ready 
correspondence with the types of information carried by Halliday's macro-functions. 
We present our view of the correspondence solely to provide orientation for readers 
already familiar with systemic grammar and the tri-partite systemic distinction first 
mentioned above. 

Information about interpersonal factors is available from inspection of 
the state of the current dialog game. This allows the agent to keep' track 
of why it is trying to speak. At this level we are only interested in the 
type of dialog game, the speaker's role within that dialog, and the stage 
that has been reached within the execution of that game. 

Information about ideational factors comes primarily from the 
propositional content embedded within the instantiated interaction 
template. Reference to the propositional content ensures that the system 
knows what it is trying to express. The distribution of propositional 
content between elements of the eventual utterance is mediated by a 
simple (de)compositional semantics using a lambda calculus-like 
representation similar to that provided by Pereira and Shieber (1987). 
The propositional content that is assigned to a particular constituent is 
extensively used by the chooser functions that determine the choices 
made in the course of realizing that constituent, but it is not the sole 
determinant of the eventual form of the utterance. 

Information about the component that Halliday calls textual is almost 
unnecessary in Houghton's system, since the tightly constrained 
structure of the dialogs make explicit signalling of topic or textual 
interconnections largely redundant. Houghton's agents are too simple 
and too single-minded to indulge in the sort of topic shifts that seem 
typical of real dialog, so there is no need to make available textual 
resources capable of signalling such shifts. Textual factors nevertheless 
play a role in the patterning of pronominalization decisions, and the 
information necessary for making these decisions comes primarily from 
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a record of the preceding dialog maintained by  the system. This is part  
of the task of deciding how to say what  it is that needs to be said. 

Given the simplicity of the domain  and the actors, the nature of the dialog, the 
absence of an explicitly represented version of Hall iday's  tripartite distinction, and the 
central role of the planning system, the issue of how tlhe various components  interact 
loses much of the importance it has in standard systemic grammar. While Hough ton  
does provide a mechanism by which making a choice at a particular node of a systemic 
network may, as a side effect, pre-empt  decisions that might  otherwise need to be made  
later, the issue of parallel selection of features does not matter  as much  as it would  in 
a system where  au tonomous  textual, ideational, and interpersonal  components  were 
acting in t andem to constrain the form of a text. 

In s tandard systemic grammars  the connection between features and utterances 
is encoded in the form of realization rules. In Houghton ' s  system the realization rela- 
tions are specified indirectly by  means of an association between sets of features and 
the product ion of a context-free phrase structure grammar.  Generat ion begins with 
a single node that will eventual ly span the whole sentence, and proceeds by recur- 
sively expanding that node until  a complete phrase marker  is produced.  Whenever  a 
node needs to be expanded  the system collects a set of features by traversing one or 
more systemic networks,  then uses the features to select an appropriate  product ion 
from the context-free part  of the grammar. The recursive generation of constituents 
terminates when  it reaches a situation where  all the current leaf nodes can be realized 
lexically. The phrase structure component  encodes the range of available constructions 
and mediates the distribution of semantic content to the leaves of the tree. For a more 
detailed account of the generation process see the descriptions in Hough ton  (1986) 
and Hough ton  and Isard (1987). 

2.1.2 The Generation of Pronouns. Having sketched the reasons for which we became 
interested in the properties of systemic networks and their role in a grammar,  we now 
return to the discussion of system networks as formal objects in their own right, which 
is the main subject of this paper. Sample realization rules for English pronouns  are 
provided in Figure 2. For pronouns,  the realization relationship is particularly simple, 
since every distinct set of features that can be produced  by  the network maps onto a 
single lexical item. Throughout  the rest of the paper  we shall be using the generation of 
pronouns  as a place holder  for the more elaborate generation process outlined above. 

Let us consider two situations in which a hypothetical  language-generat ion system 
might  need to generate a pronoun,  and trace the choices that need to be made. In both 
cases the system is at tempting to brief its client about  a government  decision, but  in 
the first situation it has just p roduced  the sentence The government has decided to raise 
taxes, but  in the second the corresponding sentence was The government have decided 
to raise taxes. These sentences are both grammatically acceptable in British English, but  
in one case the government  are seen as a collection of people while in the other it is 
being treated as an entity in its own right. 1 In either case the system now wants to tell 
the user that the government  i s /a re  unlikely to carry out i t s / the i r  decision before the 
next election. 2 

1 The sentence containing this footnote is deliberately infelicitous, illustrating the mistake that we 
wouldn't want the system to make. 

2 Stephen Isard points out that the parallel sentences The government has fallen and The government have 
fallen describe very different situations; evidently it is an oversimplification to suppose that a 
generation system has an entirely free choice between the alternative ways of referring to governments. 
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The system's understanding of pronoun use is based on the network shown in 
Figure 1, which it will use in choosing an appropriate pronoun for each of these 
situations. 

The traversal of the network starts at the left-hand side. The first choice that has 
to be made is the one between quest ion,  personal  and demonstr. In both cases we 
need a personal  pronoun rather than a ques t ion  pronoun or a demonstr one. We are 
now faced with the need for decisions on CASE, PERSON and NUMBER. Let us stipulate 
that the government, however we describe it, is to be the subject of the sentence; the 
pronoun therefore receives the feature subjec t  i r e  in both cases. The pronoun also has 
to be t h i r d  person, since neither the system nor its client is the subject of the planned 
sentence. However the choice of NUMBER depends on the choice that was made earlier 
in the discourse, so in the first case the system will need to choose s ingu la r  and in the 
second it will need p lura l .  If it chooses p l u r a l  it has reached the edge of the network, 
and can use the collected feature set to access the appropriate pronoun, which is they. 

However, if it chooses s ingu la r  it still needs to decide whether the government 
requires a feminine, masculine or neu te r  pronoun, since otherwise it cannot decide 
between she, he, and it. The system network formalizes the availability or otherwise 
of the GENDER choice by placing the corresponding system in a position that can only 
be reached if the pronoun being generated is both t h i r d  and s ingular .  Of course, a 
more elaborate process is involved in the generation of complex constituents, but the 
principle remains the same: networks are traversed, produce sets of features, and the 
features are used to guide the construction or selection of sub-constituents. 

2.2 Systemic Language Analysis 
By specifying the range of options available to the language user a system network 
defines a set of possible outcomes to the generation process, and hence also a space of 
possible structures corresponding to the various feature sets that can be obtained by 
traversing the network. It may be that the networks admit structures that are never in 
fact used by the system as a whole, but without knowledge of the details of the mecha- 
nism by which choices are made we cannot exploit any additional constraints imposed 
by the process of realization. In this paper we focus on the use of the networks as a 
knowledge source in their own right. Systemic networks form a terminological repre- 
sentation system in the sense of the term used in work on KL-ONE and its successors 
(Brachman and Schmolze 1985; Nebel 1990). We would like to understand the nature 
of the knowledge they express well enough to be able to use system networks as the 
basis of a general, and perhaps computationally convenient, terminological language 
for use in linguistic applications. Our approach is very close to that of Mellish (1988), 
as well as to a multitude of other formalisms involving partial descriptions, such as 
Shieber (1986). 

By way of example, consider the word your, as it is described by the network and 
rules in Figures 1 and 2. Without further information we do not know whether it is 
s ingu la r  or p lu ra l ,  although we can be sure that it is second, personal  and possdet.  
This information will sometimes be provided by context. In the sentence You should 
not take my word for it, but bolster your own intuitions by inspecting the realization rules 
for yourselves, we eventually discover that the writer is addressing the sentence to an 
audience of more than one person. In generation the system would presumably have 
made a decision about which mode of address was more appropriate, but when using 
the same networks and rules for interpretation the partial nature of the information at 
our disposal complicates the task of using the knowledge encoded by the networks. 
Note that the clinching yourselves appears several words after the instance of your in 
question, and that it could equally well have been yourself. 
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2.2.1 Systemic Classification. Following Mellish, we refer to the task of using system 
networks in comprehension as systemic classification. We conceive of this as an ac- 
tivity similar to the taxonomic classification carried out by biologists. By making use 
of the observable features of a specimen we attempt to pin down the point at which 
that specimen ought to be accommodated within the space of structural descriptions 
we have at our disposal. On the assumption that the slpeaker's linguistic options are 
correctly described by a particular collection of networks, a listener is entitled to make 
inferences from this assumption, and to use knowledge of the form of the system 
networks in the search for a plausible global hypothesis about the properties of the 
utterance that the speaker seems to have produced. Because the choices made by a 
speaker are interdependent, a plausible hypothesis about part of the description of an 
utterance may allow us to reconstruct part or all of the missing portion of the descrip- 
tion. The job of a scheme for systemic classification is to provide efficient and correct 
algorithms for the construction of consistent descriptions and the rejection of inconsis- 
tent hypotheses. Nebel (1990) discusses a slightly more general notion of classification, 
applicable to a knowledge representation language like NIKL (Kaczmarek, Bates, and 
Robins 1986), BACK (Von Luck et al. 1986) or LOOM (MacGregor and Bates 1987). 
The notions of subsumption that operate in such rich formalisms are more sophisti- 
cated, but the essential idea of classification, namely the organization of terms into 
a pre-computed subsumption hierarchy, remains the same. As in Mellish's work, the 
main goal is to gain efficiency by pre-computing some or all of the useful subsump- 
tion relationships that hold between descriptions. For the purposes of this paper the 
descriptions are feature-based systemic descriptions and the role of the pre-computed 
subsumption graphs described by Nebel is played by the specially designed encod- 
ings that ensure that subsumption information is readily available at run-time. There 
is of course a price to pay for this run-time efficiency, since we have to pre-process the 
networks in order to establish the encoding relations that will be of use at run-time. 

For the purposes of analyzing an utterance, the most important property of the 
feature system induced by a system network is the following 

Any system network defines a set of atomic labels that can be com- 
bined to form descriptions of linguistic objects. It also provides a com- 
plex of constraining principles that conspire to declare inconsistent 
certain combinations of features. 

For example, the network in Figure 1 expresses the constraint that no pronoun can 
be specified as both feminine and masculine, and also the constraint that only third 
person singular pronouns can bear either of these features. 

2.3 Prior Work on Systemic Language Analysis 
Winograd (1983) and McCord (1977) have both provided techniques that re-express 
system networks and their associated realization rules as hand-crafted recognition 
programs. 

In both cases this amounts to a proceduralization of the grammar, and runs the 
risk of making it even harder than necessary to debug a malfunctioning grammar. We 
prefer to adopt a more declarative approach, in which the grammar is represented in 
a form as close as possible to that with which linguists actually work. 

Patten and Ritchie (1986) have produced a formal account of what a systemic gram- 
mar is. This covers the whole of Systemic Grammar, including the realization rules and 
the details of the way in which choices are made as well as the networks that are the 
present concern. Patten and Ritchie are primarily concerned with language-generation 
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rather than comprehension, but since they aim for a declarative specification of the 
generation relationship between systemic grammars and the utterances they license, 
it might be possible to use their grammars in either direction. For Patten and Ritchie 
a systemic grammar is encoded as a set of rules for a production system, and the 
generation process involves the application of these rules. 

Kasper (1987a, 1987b) has designed algorithms that involve the encoding of both 
system networks and the associated realization rules as constraints expressed within a 
feature logic involving disjunction. He then implements the key operation of unifica- 
tion by applying a general technique for unification of disjunctive feature descriptions 
(Kasper 1988). These techniques decompose the problem of disjunctive unification into 
three stages, only the last of which is exponentially hard. We are not attempting to 
match his general algorithms for disjunctive unification, but rather to design special 
purpose algorithms that are particularly suitable for use with system networks, and 
particularly for those networks that play a role in Houghton's system. 

In practice the set of constraints that Kasper develops from his systemic grammar 
is too large to solve conveniently with the constraint-solving technology available 
to him, so he augments the constraint grammar with a small hand-crafted phrase 
structure component. The main motivation for this move is the search for efficiency 
rather than any particular wish to use a phrase structure grammar. Kasper's basic 
strategy remains that of building up a large set of constraints that can then be solved 
by general theorem-proving techniques. 

Like Kasper, we use a chart parser, but in our case the phrase structure grammar 
is an essential component of the knowledge used by the system rather than a small ad- 
dition required for the sake of efficiency. This makes no difference from a formal point 
of view, but reflects our strategy of using appropriate special purpose mechanisms in 
preference to potentially costly general techniques. Although system networks, sys- 
temic realization rules, and context-free grammars can all be translated into formulae 
of Kasper's extended FUG, our approach has been to investigate ways in which the 
knowledge contained in these components can be exploited using simpler methods. 

While Kasper's approach involves the translation of system networks into a more 
general constraint formalism, Mellish (1988) displays encodings that reduce the key 
operations of systemic classification to straightforward manipulations of PROLOG- 
like terms. Unfortunately, it turns'out that system networks sometimes need a rather 
opaque encoding, which would require costly re-translation if users needed to inspect 
the workings of an NLP system that used it. The general encoding is in principle 
capable of handling any system of constraints expressed in the propositional calculus, 
and makes no use of the particular structure of systemic descriptions. 

Mellish's approach to the implementation of systemic classification is to construct 
structure preserving mappings from the space of systemic descriptions to an isomor- 
phic space in which classes of entities are represented by terms taken from the GAF 
lattice. 3 These terms act as partial descriptions of linguistic objects, and are combined 
using the operation of term unification. Unfortunately the only generally applica- 
ble mapping that Mellish is able to offer has unpleasant properties, producing large 
terms whose internal structure has little in common with the structure of relation- 
ships between the descriptive feature labels used in the network. 4 Although the terms 
produced by the brute force mapping are spectacularly large, our main objection to 

3 For most purposes this lattice is the same as the recursively defined space of terms used by PROLOG, 
but for a technical introduction see (Reynolds 1970). 

4 The terms produced represent classes of objects by a technique little different from exhaustive 
enumeration. 
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this approach is the loss of transparency associated with the mapping. It doesn't seem 
likely that a linguist would feel comfortable with the output of the mapping, so a 
grammar development system would presumably have to include facilities for trans- 
lating the machine representation back into more readable form. Although the simpler 
mappings that Mellish has developed for more restricted forms of network do offer 
more perspicuity, we feel that even in those cases our representations are at least as 
accessible to the human user as Mellish's, which do not in any case generalize to the 
full system network formalism. 

Our view of the nature of system networks is close to those of Mellish and Kasper, 
since we try to separate questions about the underlying meaning of the networks from 
decisions about the processes by which they can be exploited. We treat system net- 
works as alternative notations for sets of logical axioms constraining the co-occurrence 
of property symbols in descriptions. Nothing more elaborate than the propositional 
calculus is required. In principle one could apply standard theorem-proving techniques 
to these axioms, but in practice it is better to employ special purpose techniques that 
make more use of the structure inherent in the networks. The translation of system 
networks into logical axioms is very similar to the one described in Mellish (1988), but 
by adopting a slightly different labeling scheme we obtain a little extra clarity, which 
helps when we come to design algorithms that make use of the axioms produced. 

2.3.1 Classification and Consistency Checking. In order to carry out classification we 
need to answer the following questions 

1. When is an object an instance of a given description? 

2. When may two given descriptions describe the same object? 

3. Given two descriptions of the same object, how may the descriptions be 
combined to produce a more fully specified description? 

and in order to answer the questions we need to understand the behavior of the key 
operations of subsumption checking and unification as they apply to the description 
space within which we are operating. Both these operations can effectively be treated 
as special cases of consistency checking. 

This is the operation of checking a conjunction of positive and negative boolean 
attributes for consistency with the axioms derived from a network. This should succeed 
if the conjunctive description picks out a nonempty class of objects from those capable 
of being derived from the network, but to fail if there is no object which can meet the 
constraints imposed. 

Unification. For descriptions consisting of atomic symbols generated from a system 
network the operation of unification between two descriptions D1 and D2 consists of 
two stages. 

1. The formation of the conjunction D such that D contains the union of all 
the feature specifications given in D1 or D2. 

2. The checking of this new description D for consistency with the 
constraints arising from the system network. 

We shall see that it is the consistency checking that makes this operation potentially 
costly. 
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Subsumption. One description D1 subsumes another D2 if all possible objects correctly 
described by D2 are also correctly described by D1. If A subsumes B then B D A. If 
that is so then B A -~A is unsatisfiable. If A is an atomic symbol then B A -~A can be 
checked directly for consistency; otherwise -~A has to be expanded out, yielding 

(B A -~al) V (B A -~a2) V.. .  (B A -~an) 

In order to prove that B D A we have to show that none of the alternatives given 
above can ever be satisfied. The subsumption check fails the moment any of the dis- 
junctive alternatives is found to be a description of a legal object. While the individual 
branches of this checking process can be carried out as efficiently (or inefficiently) as 
unification itself, the preliminary expansion to disjunctive normal form is potentially 
costly. This is doubly unfortunate since the expansion depends on the input expres- 
sions, and therefore cannot be carried out at compile time. This problem evaporates 
if we restrict ourselves to networks lacking disjunctive systems, 5 since Mellish's term- 
encoding techniques allow both subsumption and unification to be implemented using 
standard operations familiar in logic programming. 

Realization Rules and Disjunction. Although the features mentioned in the system 
networks may in fact correspond to large disjunctions of different low-level features 
when the networks and the realization rules are compiled together into one large 
constraint system, we treat the realization rules by a different mechanism and can 
therefore continue to regard the features as atomic. Our primary concern is to ensure 
that the basic feature-matching operation carried out by our chart parser is efficient 
enough to be carried out many times in the course of analyzing utterances. The im- 
plicit disjunction between the different productions of Houghton's phrase structure 
grammar is handled by the usual techniques of chart parsing, which are described 
in, for example, section 3.6 of Winograd's textbook (Winograd 1983). Since these tech- 
niques are acceptably efficient, there is no pressing need to adopt Kasper's approach, 
within which the realization rules are conjunctive constraints, and the effect of includ- 
ing realizations is to change the representation of choice systems from disjunctions of 
atomic formulae into disjunctions of complex formulae. As before, our approach is to 
replace the general mechanism with a less powerful technique that is well attuned to 
the task in hand. 

2.4 Labeling System Networks 
This section describes the process of translating system networks into logical axioms. 
As an intermediate stage we build a specially labeled version of the network with 
which we are working. In order to do this we need a more formal characterization of 
system networks than we have yet presented. 

A system network is made up of possibly labeled lines tied together by systems. 
In the system networks described by Mellish some, but not necessarily all, of the lines 
are labeled with items chosen from a set of distinct atomic symbols. The example 
in Figure 1 shows such a labeling. In this scheme there is only one sort of label, no 
distinction being made between words that are usually thought of as feature names 
(such as NUMBER) and those that would more naturally be feature values (such as 
s ingular  or plural) .  We would in any case like a labeling scheme that makes a 
clean distinction between feature names and feature values, and it turns out that 

5 These are defined in the next section. 
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Figure 3 
Types of system. 

suitable slight modifications in Mellish's scheme greatly simplify the task of translating 
networks into equivalent sets of axioms. We start by introducing the new labeling 
scheme, and showing where it differs from Mellish's version. 

The differences between the labeling schemes are small. Networks labeled in our 
style continue to represent the same information as would be contained in the same 
networks labeled by Mellish or Winograd. All that is gained is a measure of uniformity 
and clarity, which helps simplify the task of translating networks into logic. 

2.4.1 Types of System. There are four distinct types of system, each of which has one 
collection of lines as its right-hand side and another collection as its left-hand side. 
For a given system s these are notated as RHS(s) and LHS(s), respectively. 

The choice system has one line on its left-hand side and a number of lines greater 
than one as its right-hand side. Informally it represents a choice of exactly one attribute 
from those given by the labels attached to the lines in the right-hand side. 

The system at the top left of Figure 3 is a choice system in which the alternation 
between feminine, masculine, and neuter is expressed. 

The system at the top right of the figure represents a form of conjunction. Where 
the choice system contains a vertical line standing for disjunction, the and system 
represents conjunction with a left curly bracket (i.e. {). Again exactly one line must 
appear on the left-hand side of the system, and there should be a larger number of 
lines on the right-hand side. And systems mean that all the right-hand lines of the 
system will be tried whenever the left-hand line is reached. Since no choice is made, 
no feature is generated by traversing an and system. 

The next two types of system both have compound entry conditions, with one 
line on their right-hand side, but several feeding in to their left-hand side. Since they 
represent forms of disjunction and conjunction they will be referred to as disjunctive 
systems and conjunctive systems respectively. We only make progress through the 
right-hand line of a conjunctive system if all the left-hand lines of the system are 
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traversed. For disjunctive systems we can get through to the r ight-hand line if one or 
more of the lines on the left-hand side are traversed. The system at the bot tom left 
of the figure is a disjunctive system, and the one at the bot tom right is a conjunctive 
system. 

2.4.2 Well-Formedness Requirements for System Networks. This section sets out our  
definition of what  it means when  we say that a system network is well formed. Given 
a system network,  the precedes relation between lines is the smallest relation such that 

1. nl precedes n2 if 

nl E LHS(s), n2 E RHS(s) 

for some system s in the network. 

2. nl precedes n2 if for any line n3 in the network nl precedes n3 and n3 
precedes n2. 

If nl precedes n2 then nl is a predecessor of n2. In a well-formed system network no 
line may precede itself. Strictly speaking, this is a deviation from Systemic Grammar  as 
presented in Hudson  (1971), which explicitly permits  cyclic systems. For our  purposes  
cyclic networks are unsatisfactory, because useful cyclic paths in the network have to 
be traversed more than once. If network traversal is to terminate, the choices made  on 
the last traversal of such a path have to differ from those made  on earlier traversals. 
The sets of features that could be generated by a ne twork would  then depend not just 
upon the structure of the network but  also on the way  it was used by a particular 
generation system. Our techniques would have nothing to say about  this situation, 
since we are examining the networks in their own right, and do not have access to the 
criteria by which the choices are made. We are therefore outlawing cyclic networks 
for the moment.  

Assuming that the graph formed by the system network is acyclic implies that 
there must  be at least one line that is not preceded by any other. If there is more 
than one such line, then the network has multiple entry points and no obvious intu- 
itive meaning. For the sake of definiteness we decree that such networks will not be 
translated as such, but  will instead be prefixed with a single and connective, whose 
left-hand side contains a single new line, and whose right-hand side comprises the 
set of lines that would otherwise have had no predecessor. There is now exactly one 
line with no predecessor, which can be referred to as the root. The root of Figure 4 
is the line labeled with e. It is possible to draw networks in which certain regions of 
the network can never  be reached. The simplest case of this involves distinct branches 
of a choice system feeding into a conjunctive system, as shown in Figure 4. Here the 
choice between bl and b2 will never  be reached. At best this is a waste of space. We 
say that networks containing unreachable portions are unparsimonious,  and declare 
them to be ill formed. While it may  not always be easy to see whether  a complicated 
network is parsimonious,  the necessary work  can be carried out when  the network is 
defined, and need not carry a run-t ime cost. 

2.4.3 Basic Labelings. In this section we introduce the idea of a basic labeling, which 
is intended as a formalization of what  we take to be the uncontroversial  part  of the 
process of labeling a system network. A basic labeling is defined to be a partial function 
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Figure 4 
An unparsimonious system. 

from lines to names such that 

a line receives a name if and only if there is a choice system to whose  
right-hand side it is directly attached. 

no two lines carry the same name. 

In practice, system networks are labeled in ways  that are very  nearly basic label- 
ings. The major difference is that some nodes attached to the left but  not to the right of 
choice systems get given labels that correspond approximately  to feature names. Since 
these labels add nothing to the meaning of the network they can safely be ignored. 

The restriction to networks wi thout  duplicated labels simplifies the discussion in 
the rest of the paper, but  it is not hard to t ransform networks with duplicated labels 
into ones in which all labels are distinct. The details of this t ransformation are not 
discussed here. 

2.4.4 Exhaust ive Labelings..  Every exhaustive labeling builds on a basic labeling, and 
is a labeling in which every line in the network is labeled with some value. In contrast 
to the conventional  systemic labelings, in which labels are constrained to be atomic 
names, exhaustive labelings assign boolean conjunctions and disjunctions of atomic 
names as labels for some lines. The full definition of an exhaustive labeling follows. 

Let Y" be a 1-1 function from lines to names for these lines. ~- is an exhaustive 
labeling of a ne twork if and only if the following conditions hold: 

1. That part  of Y that provides names for lines attached directly to the 
right of choice systems must  be a basic labeling. 

2. If Y: assigns a line name llhs to the line directly attached to the left-hand 
side of an and system, then it must  also assign that name to the lines 
directly attached to the right-hand side of that system. 
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Figure 5 
An exhaustively labeled network. 

3. If Y assigns line names 11,12~... Im to the lines entering a conjunctive 
system (where l I is the label for the line appearing at the top of the 
system and lm that at the bottom), then it must assign the label 
ll A 12/k... lm to the line that leaves that system. 

4. If 3 v assigns line names 11~ 12~... lm to the lines entering a disjunctive 
system (adopting the same ordering convention as above), then it must 
assign the label 11 V 12 V.. .  Im to the line that leaves that system. 

The ordering convention we introduced above is a technical convenience rather than an 
essential part of the nature of an exhaustive labeling; all that matters is that appropriate 
expressions representing conjunctions and disjunctions are propagated to the right- 
hand lines of conjunctive and disjunctive systems. 

One exhaustive labeling for the sample network given earlier is shown in Figure 5. 
Three of the systems in the diagram involve complex entry conditions. This expresses 
itself in the presence of complex labels having the form of boolean combinations. 
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2.5 Translating the Labeled Networks 
In this section we show how to convert an exhaustively labeled network into a set of 
axioms expressing the information from the network in the framework of propositional 
calculus. This work is closely related to a similar translation scheme given in Mellish 
(1988), but because our scheme works with slightly different labelings the results are 
a bit easier to understand. 

The translation scheme in Mellish's paper can be applied to all four types of 
systems in an exhaustively labeled network, and the correct results will be produced, 
but it turns out that many of the systems in an exhaustively labeled network map into 
uninteresting tautologies. 

Mellish proposed that a choice system such as the one for GENDER in Figure I should 
be translated as 

AMO{femininG masculine, neuter} (1) 

GENDER - feminine V masculine V neuter (2) 

where AMO stands for a complex formula meaning 'at most one of.' (Mellish actually 
presents these axioms in a predicate calculus notation, but we have suppressed this 
detail, which makes no difference.) In the example of a choice system given above the 
full expansion of the complex formula would be 

-~(feminine A masculine)A 

~(feminine A neuter) A -~(masculine A neuter) (3) 

In Figure 5 we have removed the GENDER label from the left-hand side of the choice 
system and replaced it with the appropriate complex label. When we employ Melish's 
scheme the translation becomes: 

AMO{feminine, masculine, neuter} (4) 

third A singular -- feminine V masculine V neuter (5) 

but the essential principle remains the same. Two intimately linked axioms arise from 
each choice system. Where necessary we shall refer to the axiom involving AMO as the 
exclusivity axiom and the other one as the accessibility axiom. It is easy to construct 
the exclusivity axiom given the corresponding accessibility axiom, but the converse is 
not true. We shall therefore be basing our implementation on the use of the accessibility 
axiom, with the exclusivity axiom understood to be implicitly present. 

For and systems Mellish proposes a translation that is as if the label from the left of 
the and system had been written onto the lines to the direct right of the and system. In 
our scheme the label actually has been written there by the time the translation comes 
into operation, so there is no need to provide an independent translation for and 
systems. Instead the systems to the right of the and system will automatically receive 
translations reflecting the presence of the and system. This happens for the three and 
systems of Figure 5, with question, personal,  and demonstr being propagated across 
the system in the appropriate way. 

For disjunctive and conjunctive systems applying Mellish's translation would again 
yield a tautology. Where Mellish translates the disjunctive system of Figure 3 (which 
carries the feature name NUMBER on its right-hand branch) as 

personal V demonstr =_ NUMBER (6) 
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applying Mellish's translation to our labeling scheme yields the tautologous 

personal V demonstr =_ personal V demonstr (7) 

Intuitively it looks as if the real work that goes on in a system network happens 
in choice systems, and the other lines exist only in order to link together choice sys- 
tems in the appropriate ways. From any point of view except that of a mathematical 
troublemaker this was probably obvious from the outset. 

The axioms derived from the pronoun network in Figure 5 are the following. 

question =_ animate V inanimate (8) 

demonstr =_ near v far 

question V personal =_ subj v obj V refl V possess V possdet 

personal V demonstr =- singular V plural 

personal ~ first V second V third 

third A singular =_ feminine V masculine V neuter 

(9) 

(10) 

(11) 

(12) 

(13) 

The algorithm for translating system networks into a more standard form is now 
complete, so we move on to consider the ways in which this information can be used. 

2.6 Computational Tractability 
In the next section we address the question of whether the labeling schemes developed 
so far can form the basis of efficient algorithms for carrying out the task of systemic 
classification. 

We start by showing that system networks can be used to express NP-hard prob- 
lems. This is something of a disappointment, since the original goal of this work was 
to show that the network formalism could function as a low-power version of more 
general feature formalisms. The idea was that linguists who chose to express their 
grammars within the network formalism would be sacrificing a measure of notational 
convenience in order to gain a guarantee of acceptable computational behavior. Since 
we must currently assume that NP-hard problems are intractable, we are unable to 
provide the desired guarantee. 

2.6.1 Systemic Classification is NP-Hard. In this section we show that the problem 
of systemic classification is at least as hard as problems known to be NP-hard. This 
is done by constructing a polynomial time mapping 11 from instances of the NP-hard 
problem called 3SAT to networks that can be tricked into solving this problem for us. 
This is a standard technique from complexity theory. For an introduction to similar 
linguistic applications of complexity theory see Barton, Berwick, and Ristad (1988). 

If there were a polynomial time algorithm for checking arbitrary system networks, 
it would follow that 3SAT could be solved by the composition of the mapping that con- 
structs the network with the algorithm that checks the network. Since this composition 
is itself a polynomial time algorithm we would then have a polynomial time solution 
for 3SAT, and hence for all other problems of the complexity class W'•. Thus the suc- 
cessful construction of 1I implies that systemic classification is itself NP-hard. (Whether 
NP-hard problems can be solved in polynomial time is still an open question at the 
time of writing, but, for the moment at least, they must be considered intractable). 
Kasper's demonstration that general disjunctive unification is NP-complete, taken to- 
gether with the reducibility of systemic classification to that problem, indicates that 
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Figure 6 
A network for 3SAT. 

systemic classification is NP-complete as well as NP-hard. We think this upper bound 
on the complexity class to be of purely theoretical interest, since our parsers depend 
on efficient description-matching as a primitive, and an NP-hard problem is in our 
view already too expensive to be solved regularly in an efficient parsing system. We 
are aware that the complexity result only applies to the worst case, but in the absence 
of a satisfactory account of precisely what constraints a grammar writer has to observe 
to avoid the bad cases, we are uneasy about providing these grammar writers with a 
potentially explosive general mechanism. Our guess is that there is something about 
the human cognitive system that ensures that hard cases won't  arise naturally, but it is 
dangerous to assume that they won't arise, not least because one possible way of us- 
ing the technology provided here is as a target representation for automatic grammar 
development environments that present the user with higher level primitives. What- 
ever modularity constraints may be observed by a human writer, it is unclear that 
similar constraints will automatically hold over the output of an automatic grammar 
transformer. 

The 3SAT problem. 3SAT is the problem of determining the satisfiability of a boolean 
formula, stated in conjunctive normal form, in which exactly three variables occur in 
each clause of the conjunction. These variables may either be positive or negated, and 
may be repeated from clause to clause. It is known that 3SAT is just as hard as the 
problem of satisfiability for general boolean formulae (Barton, Berwick, and Ristad 
provide a demonstration of this fact on pp. 52-55 of Barton, Berwick, and Ristad 
[1988]). A sample input formula for 3SAT is 

(x vyv~) /x  (y vz v u) A (~vy v u) A (xvz v~) (14) 
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and the problem is to find an assignment of t rue  and f a l s e  to variables such that the 
whole expression comes out true. 

A mapping from 3SAT instances to networks. We now construct the mapping II 
that takes a 3SAT instance and constructs a network that can be used to solve that 
instance. The following steps are necessary. Let the name of the 3SAT instance be E 
and its length NE. 

Make a list of the variable names used in E, counting positive and 
negative occurrences of a variable as the same. This can certainly be 
done in time polynomial in NE using a standard sorting algorithm such 
as merge sort. Let the name of the list of variable names be V and its 
length Nv. Because the drawings are prone to get very intricate we use 
the example of the very simple expression 

( xVyVz)  A (z V ~V~) (15) 

(which has already been illustrated in Figure 6 ) 

Construct a network consisting of a large and system feeding Nv parallel 
binary choice systems. Each choice system carries two labels, one 
corresponding to a variable name in V and the other formed by negating 
the label on the other branch of the system. The choice of prefix should 
be such that all labels on the resulting network are unique. This part of 
the process is polynomial in the length of V. 

For every clause in E, add a ternary disjunctive system linking the lines 
of the network having the labels corresponding to the three symbols of 
the clause. This part of the process involves scanning down the Nv 
systems of the network once for each clause of E, and is therefore also 
polynomial in NE. 

Finally, binary choice systems are attached to the outputs of all the 
disjunctive systems introduced in the last stage. These systems are labeled 
with generated labels distinct from those already used in the network. 
This step is clearly also polynomial in NE, requiring the creation of a 
number of choice systems equal to the number of clauses in E. 

The network given in Figure 6 is the one that would be produced from E. In order 
to use the constructed network to solve the satisfiability problem for E, we check an 
expression corresponding to the conjunction of all the three member clauses in E. This 
is built by choosing an arbitrary label from each of the rightmost choice systems. The 
conjunction of these labels is a consistent description whenever all the clauses of E 
can be satisfied by the same value assignment. The choice systems to the left of the 
disjunction express the facts that no variable can be simultaneously true and false. It 
should now be obvious that any correct checking algorithm will in fact succeed in just 
those circumstances where there is at least one value assignment for the variables of E 
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that makes E come out true. This means that systemic classification cannot be solved 
in polynomial time unless 3SAT, and hence all of A/'7 v, can. 

3. Algorithms for Consistency Checking 

3.1 Isolating the Sources of Intractability 
Given that there is no efficient way of applying all the constraints imposed by a system 
network, it would help if we could isolate the source or sources of the inefficiency. 
If this can be done, it might allow an algorithm for constraint application in which 
a cheap first stage does most of the work, calling on an expensive second stage only 
when it is needed. It turns out that the presence of disjunctive systems is the main cause 
of the inefficiency, so we now move to a method for the removal of these systems. 
The idea is that the nondisjunctive version of a disjunctive network expresses some, 
but not all, of the constraints present in the original network. 

We have two equivalent representations for the constraints induced by a system 
network, and shall feel free to switch between the view of networks as geometric 
objects and the view of axiom sets as constraints on the structure of linguistic entities. 
We shall refer to diagrams of networks in the hope that this will help the reader gain 
intuitions about what is going on. Readers who find the diagrams unhelpful should 
ignore them. 

There is a simple transformation that maps networks involving disjunction into 
nearly equivalent versions not containing any disjunctive systems. Although this tem- 
porarily ignores some of the information implicit in the disjunctive network, every 
description the transformed network would reject as inconsistent is also rejected by 
the full network from which it is derived. The right-hand sides of choice systems are 
left untouched by the transformation, so the exclusivity axioms of the original network 
continue to hold. 

System networks form directed acyclic graphs, so it is possible to use the prece- 
dence relationship defined above to form a topologically sorted list of the atomic labels 
in the network. Precedence is not a total ordering on the atomic labels, so some other 
criterion, such as lexicographic ordering, is needed to produce an unambiguously or- 
dered list. We call the position of a label in this list its depth. It does not matter what 
the extra criterion for ordering the depth list is, as long as it is consistently applied 
and no two labels have the same depth. By extension, choice systems also have a 
depth, defined to be the depth of the shallowest label in the right-hand side of the 
system. Atomic symbols in the sets of axioms derived from system networks inherit 
the depth of the corresponding labels in the network, and axioms inherit the depth of 
the corresponding choice systems. 

The idea is that every fragment of the original network that flows out of the right 
of a disjunctive system is detached from that system and re-attached nearer the root of 
the network. This point is the point at which the various paths leading from the root 
to the disjunctive system most recently diverged. Although the formal details of how 
to do this in a general network are somewhat intricate, an illustration is provided in 
Figure 7. The two systems that have been moved are those that were originally fed 
by disjunctive systems in Figure 5, namely those which express choices for CASE and 
NUMBER. These have both been moved back from their original location and re-attached 
immediately to the right of the root of the network. 

The new network now allows various combinations of features not allowed by 
the original network. It would, for example, permit the generation of a r e f l ex ive ,  
demonstrative, far ,  s ingular  pronoun, if one existed (it would presumably be that- 
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Figure 7 
A simplified network. 

self). Some of the constraints expressed in the original network are lost in the trans- 
formed version. 

3.2 Relaxing Sets of Axioms 
Relaxation is the formal counterpart  of the network rewriting described in the last 
section. For clarity, it is defined over sets of axioms rather than over networks, simply 
because it is far easier to achieve the necessary clarity when working in the domain 
of propositional formulae. 

In a set of axioms, the precedes relationship between labels in the axioms is defined 
in much the same way as it was for labels in a network, namely, as the smallest relation 
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A small example network. 

such that: 

1. ll precedes 12 if 
I1 E LHS(a), 12 E RHS(a) 

for some axiom a. 

2. ll precedes 12 if for any label 13 in the set of axioms ll precedes 13 and 13 
precedes 12. 

The common predecessors of a set of symbols S are defined to be the members 
of that set P(S) that precede every member of S. Every fully elaborated description 
containing any member of S must also contain every member of P(S). The deepest 
common predecessors of S are those members of P(S) having no successor in P(S). The 
transformed set of axioms is formed by replacing every axiom involving disjunction 
in the LHS with a rule made up of the same RHS and a new LHS consisting of 
the conjunction of a specially generated identifying feature with the deepest common 
predecessors of the elements of the old LHS. As an example we use the network given 
in Figure 8, which was used by MeUish to demonstrate the necessity for repeated 
variables in the terms representing systemic descriptions. It has been exhaustively 
labeled, showing the disjunction introduced by the presence of a disjunctive system 
feeding the rightmost choice system. This network demonstrates that the consistency of 
descriptions is not always deriveable from information about the pairwise consistency 
of individual features. For example, while al is consistent with b2 and also with cl, it 
does not follow that the combined description al A b2 A Cl is also consistent. 

In Figure 9 the result of peeling away the disjunction is shown. Immediately 
preceding the choice system for Cl and c2 is a degenerate choice system with one entry 
and one exit. This system is there in order that the special marker feature genfeat can 
be inserted on the right-hand side of a choice system, and goes hand in hand with the 
definition of basic labelings given earlier. 
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Figure 9 
A transformed version of the example. 

A record is kept of the correspondences between the features introduced to stand 
for left-hand sides and the expansions for which they stand. This is used, if necessary, 
in a second stage of checking. In the example above we would have had to note that 

genfeat ~ cl V C 2 

and to retain this information for future checking. 

3.3 Overview of the Checking Algorithm 
Our consistency checking algorithm works by implementing a sort of parallel search, 
working back from the right of the network toward its root. The run-time behavior 
of the algorithm depends on the properties of the networks used. If the network 
involves disjunctive systems then true parallelism is required, with multiple processes 
constructing mutually inconsistent partial descriptions on the basis of the same seed 
description. Since parallel processes may need private copies of part or all of the target 
expression, this approach will involve us in potentially exponential amounts of work 
copying data structures. 

If disjunctive systems are not present, cheaper approaches are possible, because 
we can organize matters so as to require no more than one copy of the target expres- 
sion. This allows us to demonstrate the tractability of consistency checking for system 
networks lacking disjunction, while the checking procedure for full system networks 
remains just as costly as we would expect given its equivalence to 3SAT. 

In what follows we shall be introducing a way of decomposing sets of axioms into 
components corresponding to a nondisjunctive network and a group of disjunctive 
subnetworks. This involves the construction of new expressions based on the axioms 
of the original network. Strictly we ought not to use the term 'axiom' for the results 
of our manipulations, but we shall continue to do so, since the algorithms apply 
equally well to networks that never had disjunctive systems in the first place as to the 
transformed versions of networks that did. 
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Our algorithms decompose the problem of systemic classification into three stages: 

. 

. 

. 

An off-line step in which a general system network is broken down into 
a relaxed version lacking disjunction ancl a set of constraints expressing 
the information missing from the relaxed version of the network. 

A first stage of checking in which the relaxed form of the network is 
applied to an input expression. 

A second (optional) stage in which the information missing from the 
relaxed network is re-applied to the results of the first cheek. 

In the compilation step the axioms from the original network are converted into an 
ordered list of relaxed axioms. These axioms contain special generated features that act 
as hooks for a group of aliasing rules that have the job of expressing the information 
present in the original axioms but absent from their relaxed counterparts. 

The first stage of checking involves successive inspection of the relaxed axioms 
for applicability to the expression being checked. If the right-hand side of an axiom 
matches the expression then the left-hand side of the axiom is combined to form an 
extension of the expression. Because the compilation step has organized the axioms 
in order of depth this algorithm is able to make all legitimate deductions from the 
relaxed form of the network, and also to fail if the expression given is outlawed by 
this relaxed form. 

In the second stage of checking we use the output of the first stage, attempting to 
discharge any generated features that have been introduced. In the worst case this will 
involve polynomial expense, since the problem is that of simultaneously satisfying a 
number of constraints each of which may individually be satisfiable in a number of 
different ways. 

Although the difficulty of this constraint satisfaction task depends both on the 
structure of the network and on the details of the expression being checked, we can 
make a certain amount of progress with this task even in the compilation step. This 
is because the structure of the network may tell us that the constraint satisfaction 
problem can be decomposed into subtasks that will never interact whatever the nature 
of the input expression. By inspection of a system network we can derive a metric that 
indicates the possible computational cost of applying the information contained in that 
network, as well as an indication of how much of that information can be recovered 
without getting involved in the costly search processes that can be occasioned by the 
presence of disjunctive systems. 

3.4 Representation 
.This section deals with the way in which expressions and axioms are represented for 
use in the checking algorithm. As mentioned previously this presentation is somewhat 
abstract, and describes idealized data structures rather than their somewhat more 
intricate realizations. 

For the network in Figure 8 the original set of axioms is 

e ~ al V a2 (16) 

e ~ bl V b2 (17) 

a2 V bl --- cl v c2 (18) 
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and the checking rules relevant to the first stage are 

e ~ a l V a 2  (19) 

e = bl V b2 (20) 

e A genfeatl ~ cl V c2 (21) 

3.4.1 Representation of Expressions. All boolean expressions can be reduced to the 
form of a disjunction of conjunctions of (possibly negated) atomic symbols. The ex- 
pressions to be checked will consist either of simple conjunctions of unnegated atomic 
symbols, or, if we need to support subsumption checking, conjunctions of a single 
negated atomic symbol with a number of unnegated symbols. The algorithm will in 
fact handle any number of negated atomic symbols, but we do not make any use of 
this capability. An appropriate representation of such expressions is as a vector of slots 
capable of taking three values along each dimension. Each of the N slots corresponds 
to one and only one of the N atomic symbols in the set of axioms, and the order of the 
slots is the order of increasing depth given by the depth relationships in the network. 
We shall illustrate these vectors using strings of symbol specifications. Within such a 
string there are three possible types of symbol specification: 

• the presence of a positive specification for a symbol is represented using 
a boldface capital letter (A1) 

• the presence of a negated specification for a symbol is represented with a 
boldface capital letter with a line above ( ~ )  

• the absence of any specification for a symbol is represented using a 
lighter lower case font (al). Explicit representation of absent symbols 
means that every symbol in the repertoire must appear (in some form) in 
every vector. 

For the example network in Figure 8 the correspondence between expressions and 
their representations is as follows. 

al A b2 

is represented by 

and 

is represented by 

(C2~ C1~ B2, bl, a2, A1, e) 

-~C 1 

(C2~ C1} b2} bl, a2~ a~, e) 

The elements of a symbol vector are implicitly conjoined, and there is no mechanism 
for expressing disjunction. 

3.4.2 Representation of Axioms. The right-hand sides of axioms consist of ranges of 
atomic symbols having neighboring depths. In principle one can represent these ranges 
by specifying a starting depth and a number of symbols, or one can use a slightly 
more intuitive representation as vectors of implicitly disjoined feature specifications. 
The individual feature specifications would then be represented in the way used above 
for those in target expressions. 
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For the purposes of the algorithm all we actually :need to know is the range of 
depths over which the mutually exclusive alternatives !in the axiom extend, since we 
are primarily interested in checking how many members the right-hand side of an 
axiom shares with the target expression. 

The left-hand sides of axioms are more problematic, requiring the representation of 
arbitrary boolean expressions in disjunctive normal form. However, for the simplified 
sets of axioms in which we are primarily interested, this form reduces to a single 
conjunction of atomic symbols, which can readily be represented using the scheme for 
target expressions given above. 

Examples of axioms and their representation follow. 

e ~ R 1 V a 2 

is represented by 

(C2, Cl, b2, bl, a2, al, e) ~ (c2, Cl, b2, bl, A2, A1, e) 

while 

is represented by 

a2 V bl ~ Cl V c2 

(C2, Cl, b2, bl, A2, al, e) V (c2, Cl, b2, B1, a2, al, e) = (C2, C1, b2, bl, a2, al, e) 

In order to convert these axioms into nondisjunctive equivalents we transform the 
disjunctive axiom by generating a new feature for its left-hand side, giving 

e A genfeatl =~ cl V C 2 

which is represented by an eight-element vector (because we have introduced an extra 
feature name, and need an extra slot). The axiom becomes 

(c2, cl, b2, bl, a2, al, GENFEAT1, E) =- (C2, C1, b2, bl, a2, al, genfeatl, e) 

This illustrates the fact that the representations of expressions in the first and second 
stage of checking differ slightly because of the introduction of generated features. 

The checking algorithm organizes the axioms into a list of decreasing depth. The 
axiom at the head of this list (initially, the deepest axiom of all) is the current axiom. 
In the set of axioms given above the appropriate order would be axiom 21, axiom 20, 
then axiom 19. 

3.5 The First Stage of Checking 
The current axiom a is applicable to the target expression E if E contains a positive 
occurrence of at least one of the elements of RHS(a). In this case we have to distinguish 
between the case where the intersection contains exactly one element and that where 
it contains more than one. In the latter case we have a violation of the exclusivity 
axiom associated with the accessibility axiom that we have explicitly represented. The 
target expression is therefore inconsistent with the network from which the axioms 
were derived. 

If a is applicable and does not lead directly to an inconsistency we need to insert the 
material from LHS(a) into E, forming a new expression E'. This is fairly straightforward 
for networks lacking disjunction in the left-hand side of axioms. The substitution can 
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fail if the target expression already includes a negated specification for any of the 
features contained in the left-hand side of the axiom, but otherwise the substitution 
results in the generation of an expression E t, which is simply the conjunction of E and 
LHS(a). At this stage we do not need to check for mutually exclusive features, since 
this kind of failure will be detected in a later iteration of the procedure. 

If LHS(a) is a disjunction containing multiple elements, as can happen if we are 
dealing with a full system network, rather than a relaxed version that has been trans- 
formed to remove the disjunction, then the algorithm requires the setting up of as 
many parallel processes as there are elements in the disjunction, as well as extensive 
copying of those parts of the target expression that may yet be modified. Each process 
may attempt to write a different combination of features in its own personal copy of 
the relevant parts of the target expression, and it is crucial that the activities of the 
separate processes, whether or not they actually run in parallel, be prevented from 
interfering with one another, as would happen if they modified a common copy of the 
same data structure. This is obviously the expensive part of the checking procedure, 
since there can be a very considerable number of quasi-parallel or parallel processes 
if we happen to be dealing with an awkward case. 

3.6 The Cost of the First Stage of Checking 
It is possible to code up the algorithm for the first stage of checking as an algorithm 
operating on a two-tape Turing machine, in which one input tape represents the axioms 
used and the other represents the expression to be checked. Analysis of this algorithm 
reveals that it is the substitution step that will prove most costly. It turns out that the 
possible space needed to represent the axiom tape is proportional to the square of 
the number of atomic labels in the set of axioms, and that the Turing machine needs 
no more than three passes over this tape to complete the necessary substitutions. In 
any event both time and space bounds for the first stage of checking are certainly 
polynomial in the number of labels in the network being checked. 6 

3.7 The Second Stage of Checking 
The second stage of checking has the job of re-imposing the constraints that were 
ignored in the first stage. By inserting generated features, we have effectively marked 
the locations at which extra material may have to be introduced. While it would 
obviously work to simply throw away the results of the first stage of checking, and 
re-check the original expression (using the original axioms) from scratch, it is more 
satisfactory to turn the work we have already done to our advantage. This section 
describes one way of doing this. The parsing system adopts a different, but in essence 
equivalent, approach, building PROLOG terms as the output of the first stage, then 
compiling the alias rules into clauses of a procedure that attempts to find a consistent 
substitution for generated features. 

In Winograd's pronoun network (shown in Figure 1) the first stage of checking 
for the description 

subjective A singular (22) 

would yield 
subjective A singular A genfeatl A genfeat2 A pn (23) 

6 A l though  we int roduce a potentially large n u m b e r  of extra labels in the t ransformat ion  from disjunctive 
to nondis junct ive  networks,  these can be omit ted wi thout  affecting the correctness of the first s tage of 
checking. The labels are in t roduced as a convenience for use  dur ing  the second s tage of checking, 
rather  than  as an  essential  part  of the first stage. In any  case, as pointed out  by an a n o n y m o u s  referee, 
the n u m b e r  of these labels is b o u n d e d  by the n u m b e r  of choice sys tems  in the  ne twork  as a whole.  
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which contains two generated features, 7 one corresponding to the expression 

genfeatl - question V personal (24) 

and the other to 

genfeat2 =_ personal V demonstr. (25) 

In this case it should be obvious that all we have to do is choose compatible values from 
the disjunctive parts of expressions 24 and 25, and that this is achieved by choosing 
personal  in both cases. This has no further consequences. In this simple case we find 
that the fullest description we can be sure of on the basis of what we know is: 

subjective A singular A personal A pn. (26) 

Unfortunately, looking for noncontradictory choices of substitution for generated fea- 
tures will not always gain us the information which we need to know. We illustrate 
this with reference to Figure 10, which provides a network for the pronoun system of 
an imaginary language closely related to English. 

The path leading from pn to the choice between f i r s t ,  second, and t h i r d  involves 
passing through an extra choice system encoding the alternation between honor i f i c  
and fami l ia r ,  so we would have inserted f a m i l i a r  rather than personal. The dia- 
gram abbreviates personal, honorific, and familiar to pers, hon, and faln respec- 
tively. In the imaginary language in question the choice of an honorific makes it unnec- 
essary to consider further features of the pronoun. Translating the network produces 

subjective A singular A familiar A pn (27) 

We now need to know whether a pronoun that is f a m i l i a r  is necessarily also per- 
sonal, which involves the re-use of the axiom, 

personal = honorific V familiar (28) 

and we also need 
pn =_ question V personal V demonstr 

to ensure that the ill-formed 

...familiar A question... 

does not get accepted. 
In the worst case it actually turns out that nearly all the axioms present in the 

original network can be needed for the second stage of checking. In more typical net- 
works, such as the one constructed by glueing together the networks from Houghton's 
dialog generation application, only a few axioms will be involved in the second stage 
of checking, and this subset of the axioms can be picked out as a preprocessing step, 
which we will shortly describe. 

7 The pn in expression 23 arises because the left-hand sides of the transformed axioms are made from the 
conjunction of the generated feature and the deepest enclosing features, rather than simply the 
generated features on their own. 

402 



Chris Brew Systemic Classification and its Efficiency 

question 

hon 

demonstr 

I 
animate 

inanimate 

first 

second 

third 

subjective 
objective 

reflexive 
possessive 

possdet 

singular 

plural 

near 

far 

feminine 
masculine 

neuter 

Figure 10 
The pronouns of an imaginary language. 

3.8 Islands of Uncertainty 
One way of viewing the transformation that originally removed disjunction is as a 
device for temporarily allowing an island of uncertainty to persist in part of the net- 
work. The job of the second stage of checking is to deal with this uncertainty, and 
the potential complexity arises from the possibility that many interacting axioms con- 
tribute to the uncertainty. Often there will be several small and independent islands 
of uncertainty, each involving only a few axioms, and it will be possible to decompose 
the checking task into more manageable portions. 

We now show how to characterize the subsets of axioms involved in each island of 
uncertainty. The starting point for this operation is the original network, not the trans- 
formed version containing generated features. The relevant portion of the network 
for any given generated feature is that falling between the corresponding disjunctive 
system and the deepest common predecessors of the left-hand lines of that system. 
Anything nearer to the root than that will have been checked in the first stage of 
checking. So in order to pick out the potentially relevant axioms for each generated 
feature, we form a list of labels starting with those involved in the left-hand side of 
the disjunctive system and working back to the deepest common predecessors, which 
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do not need to be included. This list is then used to choose axioms; every axiom that 
has a right-hand side containing one of the features on the list must be included. 

In the case of Winograd's network (Figure 5), the list for the disjunctive systems is 

[question,personal, demonstr] 

and the only relevant axiom is 

pn =_ question v personal V demonstr (29) 

For the imaginary language introduced above we would construct the list 

[familiar, question,personal,demonstr] 

and we therefore need the axiom 

personal - familar V honor!tic (30) 

as well as axiom 29. 
For every generated feature in the network we collect a set of relevant axioms. 

Ideally the sets of axioms will be disjoint, which means that the islands of uncertainty 
induced by the disjunctive left-hand sides can be handled independently. In fact the 
examples we are using represent the opposite case, in which different generated fea- 
tures are associated with nondisjoint (actually identical) sets of axioms. Our method 
for carrying out the substitutions collects nondisjoint sets of axioms into larger sets. 
The procedure operates on structures of the form 

I/= {Ei, Ai} 

where Ei is a set of expressions relating generated features to disjunctive left-hand 
sides, and Ai is the union of the sets of axioms found to be relevant to these left- 
hand sides. The sets of axioms Ai must be disjoint. Each Ii can therefore be processed 
separately. 8 

We construct ways of substituting for generated features by replacing each gen- 
erated feature with an element of the corresponding disjunctive left-hand side. The 
number of possible substitutions depends both on the number of generated features 
in the network and on the way they interact. The more sharing there is between the 
sets of axioms corresponding to the generated features the greater will be the number 
of distinct ways of substituting for the generated features. 

In the first example we have to consider the following possibilities: 

genfeatl = question genfeat2 = personal (31) 

genfeatl = question genfeat2 = demonstr (32) 

genfeatl = personal genfeat2 = personal (33) 

genfeatl = personal genfeat2 = demonstr (34) 

of which only the expression 33 satisfies the exclusivi W axiom for axiom 29. Since there 
are no other relevant axioms either for genfeatl or for genfeat2 the check is complete. 

8 There may be more efficient algorithms than this, but we have not yet found the need to explore them. 
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In the second example, axiom 29 does not do quite as much for us, because the 
possible combinations of substitutions are: 

genfeat l = question 

genfeatl = question 

genfeatl = familiar 

genfeatl = familiar 

genfeat2 = familiar (35) 

genfeat2 = demonstr (36) 

genfeat2 = familiar (37) 

genfeat2 = demonstr (38) 

only one of which (expression 36) can be eliminated by checking against the exclusivity 
axioms. Instead we find ourselves checking 

subjective A singular A familiar A question A pn (39) 

subjective A singular A familiar A pn (40) 

subjective A singular A familiar A demonstr A pn (41) 

against the axioms. In fact the presence of f ami l i a r  combines with axiom 30 to 
demand the addition of personal.  Demonstr and quest ion are incompatible with 
personal  so only the expression produced from expression 40 can satisfy axiom 29. 
The full expansion of this expression is 

subjective A singular A familiar A personal A pn (42) 

which is the required answer. 
It may seem unnecessarily elaborate to separate out the effects of disjunctive ax- 

ioms, but a major reason for doing so is that the partitioning of the set of axioms that 
is involved can be carried out as a compilation step, which both prepares the axioms 
for the simpler first stage of checking and gives us an informal measure of the extent 
to which we are going to be able to decompose the potentially expensive second stage 
of the problem into small and independent problems. 

In the set of axioms coming from the network in Figure 6, we find that every 
introduced feature interacts with every other one, producing a compile time clue that 
if we are unlucky we shall have to check an unreasonably large number of possible 
ways of carrying out the substitution. If a situation like this arose in a natural language 
application we should probably begin to look for a way of redesigning the network, 
and consider whether the costly accuracy produced by the second stage of checking 
actually helps our application much or at least start to suspect that the application 
should not be expected to produce reliable real-time response. 

For Houghton's networks it turns out that the second stage of checking is rarely 
needed at all, so we have implemented only a simple version of the second stage of 
checking. In this implementation we make the pessimistic assumption that all gen- 
erated features may interact. The more sophisticated approach outlined above will 
certainly produce significant improvements for some networks, but we do not cur- 
rently have access to a large corpus of independently constructed networks, so cannot 
tell for sure whether the effort of implementing the slightly trickier algorithm would 
in fact be justified by linguistic practice. 

4. Conclusions 

This paper has explored the potential of system networks as a classification tool for 
linguists. The results of this enterprise can be divided into a group of technical re- 
suits about networks as such and a collection of less formal ideas about the practical 
implications of these results for the working computational linguist. 
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The technical results come first. 

. 

. 

The problem of systemic classification is an inherently hard one, for 
which computational tractability cannot be guaranteed. 

The source of the intractability is the use of disjunctive systems in the 
networks. Restricting the algorithm to use only choice, and, and 
conjunctive systems gains us tractability at the expense of some loss of 
expressive power. Mellish (1988) reports an application in which this 
route was taken with satisfactory results. It is :not yet clear whether the 
restriction to nondisjunctive networks will be acceptable as a basis for 
large natural language grammars. 

Note that the networks are not the only possible source of disjunction in a large 
natural language system, since when realization rules are taken into account the 
choice systems of the system networks can stand for disjunctions of general feature 
structures. 9 This objection carries most force in the context of a purely constraint based 
system like Kasper's, since in our hybrid parser each line of analysis is committed to a 
particular choice of realization rule before feature matching is necessary. Effectively the 
control regime of the nondeterministic parser is dealing with some of the search that 
is necessary in order to resolve the disjunctions implicit in the grammar. The chart- 
parsing part of this involves only a number of feature-matching operations polynomial 
in the size of the grammar and the length of the input string, 1° so the complexity of 
the overall parsing process hinges on the efficiency of the feature-matching algorithm 
involved. The actual performance of the parser may be much better than that indicated 
by the theoretical properties of the algorithm, but if so the efficiency depends upon 
contingent properties of the grammar used, so it would be unwise to provide a defini- 
tive guarantee that a parser will maintain acceptable performance as the grammar is 
developed and extended. 

For practical purposes the following results are probably of more interest. 

1. A given system network can be compiled into a set of axioms without 
reference to the particular expressions to be checked with these axioms. 
Although this process is potentially expensive, it can be carried out 
off-line. 

2. The potentially expensive part of systemic classification can be separated 
from a cheaper first stage. The first stage is comparable in cost to 
taxonomic classification, and can be implemented efficiently using 
current technology. The second stage may turn out to be exponentially 
expensive in the worst case, but for some applications, such as the 
parsers we have implemented, the second stage proves unnecessary. The 
issue of how the algorithms would perform on yet larger grammars is as 
yet unexplored. 

3. Even the second stage can often be rendered more manageable by the 
decomposition of the algorithm into two stages, since the 'islands' of 
potential intractability tend to be isolated from one another, and can 

9 This was pointed out to us by one of the Computational Linguistics referees. 
10 These results, and the reasons for treating them with some caution, are covered by Barton, Berwick, 

and Ristad (1988), particularly in Chapters 7 and 8. 
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. 

often be treated as independent  subproblems. In the worst case axioms 
are interdependent,  and general algorithms for the unification of 
disjunctive constraints, such as the ones of Kasper (1987b) and Eisele and 
D6rre (1988) are likely to out-perform the techniques described here. We 
see our algorithms more as illustrations of the nature of the problem than 
as competitors of the more sophisticated algorithms presented by others. 

The representations used by our algorithms are close to those present in 
the networks themselves, so systems built on our algorithms should be 
easier to debug than those in which the networks are compiled into 
low-level formalisms. As a by-product of the production of these 
representations we can obtain an informal measure of the likely cost of 
using a particular set of networks. 

We have provided a preliminary analysis of the nature of the information contained in 
system networks, indicated why  the flexible use of this information is likely to be costly, 
and sketched techniques that will somewhat  alleviate the undesirable consequences of 
this situation. While we are unable to provide the linguist with the desired guarantee of 
computational tractability in the general case, we have provided tools and techniques 
that will aid linguists and implementors in the production of efficient grammars built 
in the systemic formalism. 
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