
Systemic Classification and its Efficiency

C h r i s B r e w "
Depar tment of Experimental Psychology
and
H u m a n Communicat ion Research
Centre

This paper examines the problem of classifying linguistic objects on the basis of information
encoded in the system network formalism developed by Halliday. It is shown that this problem
is NP-hard, and a restriction to the formalism, which renders the classification problem soluble
in polynomial time, is suggested. An algorithm for the unrestricted classification problem,
which separates a potentially expensive second stage from a more tractable first stage, is then
presented.

1. Introduction

In this paper we describe algorithms that enable the system networks of Systemic
Grammar (HaUiday 1976, 1975) to be exploited in applications, such as natural lan-
guage understanding, that require incremental description refinement. We are attracted
to the system network formalism on three main counts:

Potential Reversibility. System networks fit well with a model of linguistic behavior
as goal-directed action, since they encode grammatical information in the form of sets
of interconnected choices that a language user needs to make in order to produce
apposite and communicat ive utterances. It seems natural to exploit this information
for comprehension as well as generation.

Computational Convenience. System networks look simple, yet are expressive enough
to allow the deve lopment of substantial grammars. If this apparent simplicity is re-
flected in the mathematical properties of the system network formalism then it may
be possible to design cheap description refinement algorithms that use the networks.

Wider Applications. If the networks turn out to be easy to process, they may have
wider applications in tasks requiring representation of nonlinguistic knowledge. We
think that the tasks for which such networks are most likely to be appropriate are those
for which conventional taxonomic representations are nearly, but not quite, sufficient.
Our algorithms (presented in the final part of this paper) operate by convert ing as
much as possible of the information contained in the networks to taxonomic form.

• University of Sussex, U.K., and 2 Buccleuch Place, Edinburgh, U.K., currently at Sharp Laboratories of
Europe Ltd., Oxford, U.K. Supported by a studentship provided by the Science and Engineering
Research Council's Information Technology Initiative. I am grateful to several colleagues for
constructive discussions of this work, and particularly to Stephen Isard and Robert Dale, who were
kind enough to provide detailed commentary on earlier drafts. I am also indebted to two anonymous
referees for suggestions that substantially improved the paper. None of those mentioned are
responsible for any remaining errors or infelicities.

Q 1991 Association for Computational Linguistics

Computational Linguistics Volume 17, Number 4

question

ANIMACY

PN

personal PERSON

demonstr f
PLACE I

Figure 1
Winograd's pronoun network.

animate

inanimate

CASE

first

second

third

subjective
objective

reflexive
possessive

possdet

singular

NUMBER I plural

near

far

I feminine
GENDER masculine

neuter

In this paper we shall be presenting formal arguments about the capabilities of
the system network formalism, working at a level of detail that would make the pre-
sentation of large scale linguistic examples prohibitively tedious. Our main example
will therefore be the network shown in Figure 1. This network provides information
about the choices a speaker needs to make in order to correctly produce English pro-
nouns. Similar networks can describe the choices that have to be made in order to
generate other components of an utterance, such as sentences, verb phrases, or into-
nation contours, but for present purposes pronouns will prove sufficient illustration.
We have applied the ideas described in this paper to a parsing system that accepts
the language generated by the grammar of a pre-existing (Houghton 1986; Houghton
and Isard 1987) dialog generation system.

Our algorithms are presented in a somewhat stylized form, since the primary in-
tention is to expose the nature of the problems involved rather than to provide detailed
information about the implementation of our parsers. For instance, we describe data
structures that are closely related to the tapes of a two-tape Turing machine, but in
the corresponding implementation the behavior of these data structures is mimicked
by a program that manipulates nested Prolog terms. Were we to present the details of
the real implementation, it would tend to obscure the most significant properties of
the algorithm.

376

Chris Brew Systemic Classification and its Efficiency

Realization Rules
question animate subjective ~ w h o

question animate objective ~ w h o m

question animate possessive ---* w h o s e

question inanimate --* w h a t

demonstr singular near -- , this

demonstr singular far ~ that

demonstr plural near --* these

demonstr plural far - * those

personal first singular subjective --* I
personal first singular objective --* m e

personal first singular reflexive --* m y s e l f

personal first singular possessive ---* m i n e

personal first singular possdet --* m y

personal second singular subjective ~ y o u

personal second singular objective --* y o u

personal second singular reflexive --* y o u r s e l f

personal second singular possessive --* y o u r s

personal second singular possdet ~ y o u r

personal first plural subjective ~ w e

personal first plural objective - * us

personal first plural reflexive --* ourse lves

personal first plural possessive --* ours

personal first plural possdet -- . our

personal second plural subjective --* y o u

personal second plural objective - * y o u

personal second plural reflexive --* y o u r s e l v e s

personal second plural possessive --+ y o u r s

personal second plural possdet ~ y o u r

personal third singular subjective feminine ~ she

personal third singular subjective masculine --* he

personal third singular subjective neuter --* it

personal third singular objective feminine --+ her

personal third singular objective masculine ~ h i m

personal third singular objective neuter --* it

personal third singular reflexive feminine --* herse l f

personal third singular reflexive masculine ~ h i m s e l f

personal third singular reflexive neuter --* i t se l f

personal third singular possessive feminine --* hers

personal third singular possessive masculine --+ his

personal third singular possessive neuter --* its

personal third singular possdet feminine --* her

personal third singular possdet masculine ~ his

personal third singular possdet neuter --+ its

personal third plural subjective --* they

personal third plural objective --* t hem

personal third plural reflexive --* t hemse l ve s

personal third plural possessive ~ theirs

personal third plural possdet --* their

Figure 2
Realization rules for Winograd's pronoun network.

377

Computational Linguistics Volume 17, Number 4

2. System Networks in NLP

2.1 Systemic Language Production
In many language-generation systems, such as those described by Davey (1978), Wino-
grad (1972), Houghton (1986), Houghton and Isard (1987), and Mann and Matthiessen
(1985), system networks are used to structure the decisions the system needs to make
in the course of producing a syntactic constituent. Each network lays out a set of inter-
connected options, but does not specify how the system chooses between the options
in a particular situation.

In systemic grammar, language production involw,~s the task of traversing a net-
work, gradually making choices that incrementally specify various aspects of the form
of an utterance. As choices are made the system collects features that are eventually
realized in an appropriate form. A brief example of how this process might be applied
to Figure 1 is given below.

2.1.1 I~oughton's Dialog System. The system on which our work is based (Houghton
1986; Houghton and Isard 1987) is an unusual synthesis of ideas from systemic gram-
mar with a unification-based phrase structure grammar. It is at its most systemic in its
approach to what (Halliday 1975, p. 5) refers to as functions in structure, but contains
nothing directly corresponding to the macro-functions by which Halliday character-
izes the functions of language. In other words, Houghton's system retains the role of
systemic networks in codifying choice, but the architecture does not align with tripar-
tite systemic distinction between textual, ideational, anti interpersonal macro-functions
(Winograd 1983, p. 288).

An interaction between two simulated agents is largely controlled by a representa-
tional level of interaction frames, which lays out a space of possible moves that allow
an agent to initiate conversations, request information from an interlocutor, signal as-
sent, convey information, and so on. This work is in the tradition of Davey (1978)
and Power (1979), emphasizing the gamelike structure of multi-agent dialog in pref-
erence to the textual structure of extended monolog. In this context there seems to be
little need for an explicit representation of the systemic macro-functions: Houghton's
interaction frames suffice.

The interaction frames specify a repertoire of actions available to a simple planning
mechanism that the agents use to carry out tasks specified by the system designer. The
agents make no distinction between different types of action, and linguistic behavior
only arises when it becomes necessary for an agent to enlist help to achieve its top-
level goal. It is just as valid to find something out by looking as by asking, although
interesting linguistic behavior will only occur in the latter case.

Houghton (1986) defines the interaction of Making Something Known as follows:

Participants --- initiator <has_type AGENT>

addressee <has_type AGENT>

prop <has_type FACT>

End Goal --- know(addressee,prop)

Effect --- know(addressee,

know(initiator,prop))

Precondition --- know(initiator,

not(know(addressee,prop)))

Response --- addressee -> update worldview

initiator -> check acceptance

Reply --- accept or reject information

378

Chris Brew Systemic Classification and its Efficiency

and comments that

The goal of this interaction is to get the addressee to know something.
The immediate effect here is that they will at least know that you know
it, and the precondition is that the initiator believes the addressee does
not already know it. The response of an addressee is to attempt to
integrate that information into its current beliefs. The initiator waits
for uptake of the information, which is indicated by the addressee's
reply. (Houghton 1986, p. 90).

In order to achieve the goal of informing someone that a door is locked, the speaker
would instantiate i n i t i a t o r to point to herself, addressee to indicate her addressee
and prop to stand for something like locked(door_a), setting up the environment
within which linguistic decisions are to be made.

In principle an agent is free to draw on any available information in order to
reach decisions about the choices offered within Houghton's systemic networks, and
the outcome of these choices will affect the eventual form of the utterance. In practice
the types of information available to the agent can be brought into a rough and ready
correspondence with the types of information carried by Halliday's macro-functions.
We present our view of the correspondence solely to provide orientation for readers
already familiar with systemic grammar and the tri-partite systemic distinction first
mentioned above.

Information about interpersonal factors is available from inspection of
the state of the current dialog game. This allows the agent to keep' track
of why it is trying to speak. At this level we are only interested in the
type of dialog game, the speaker's role within that dialog, and the stage
that has been reached within the execution of that game.

Information about ideational factors comes primarily from the
propositional content embedded within the instantiated interaction
template. Reference to the propositional content ensures that the system
knows what it is trying to express. The distribution of propositional
content between elements of the eventual utterance is mediated by a
simple (de)compositional semantics using a lambda calculus-like
representation similar to that provided by Pereira and Shieber (1987).
The propositional content that is assigned to a particular constituent is
extensively used by the chooser functions that determine the choices
made in the course of realizing that constituent, but it is not the sole
determinant of the eventual form of the utterance.

Information about the component that Halliday calls textual is almost
unnecessary in Houghton's system, since the tightly constrained
structure of the dialogs make explicit signalling of topic or textual
interconnections largely redundant. Houghton's agents are too simple
and too single-minded to indulge in the sort of topic shifts that seem
typical of real dialog, so there is no need to make available textual
resources capable of signalling such shifts. Textual factors nevertheless
play a role in the patterning of pronominalization decisions, and the
information necessary for making these decisions comes primarily from

379

Computational Linguistics Volume 17, Number 4

a record of the preceding dialog maintained by the system. This is part
of the task of deciding how to say what it is that needs to be said.

Given the simplicity of the domain and the actors, the nature of the dialog, the
absence of an explicitly represented version of Hall iday's tripartite distinction, and the
central role of the planning system, the issue of how tlhe various components interact
loses much of the importance it has in standard systemic grammar. While Hough ton
does provide a mechanism by which making a choice at a particular node of a systemic
network may, as a side effect, pre-empt decisions that might otherwise need to be made
later, the issue of parallel selection of features does not matter as much as it would in
a system where au tonomous textual, ideational, and interpersonal components were
acting in t andem to constrain the form of a text.

In s tandard systemic grammars the connection between features and utterances
is encoded in the form of realization rules. In Houghton ' s system the realization rela-
tions are specified indirectly by means of an association between sets of features and
the product ion of a context-free phrase structure grammar. Generat ion begins with
a single node that will eventual ly span the whole sentence, and proceeds by recur-
sively expanding that node until a complete phrase marker is produced. Whenever a
node needs to be expanded the system collects a set of features by traversing one or
more systemic networks, then uses the features to select an appropriate product ion
from the context-free part of the grammar. The recursive generation of constituents
terminates when it reaches a situation where all the current leaf nodes can be realized
lexically. The phrase structure component encodes the range of available constructions
and mediates the distribution of semantic content to the leaves of the tree. For a more
detailed account of the generation process see the descriptions in Hough ton (1986)
and Hough ton and Isard (1987).

2.1.2 The Generation of Pronouns. Having sketched the reasons for which we became
interested in the properties of systemic networks and their role in a grammar, we now
return to the discussion of system networks as formal objects in their own right, which
is the main subject of this paper. Sample realization rules for English pronouns are
provided in Figure 2. For pronouns, the realization relationship is particularly simple,
since every distinct set of features that can be produced by the network maps onto a
single lexical item. Throughout the rest of the paper we shall be using the generation of
pronouns as a place holder for the more elaborate generation process outlined above.

Let us consider two situations in which a hypothetical language-generat ion system
might need to generate a pronoun, and trace the choices that need to be made. In both
cases the system is at tempting to brief its client about a government decision, but in
the first situation it has just p roduced the sentence The government has decided to raise
taxes, but in the second the corresponding sentence was The government have decided
to raise taxes. These sentences are both grammatically acceptable in British English, but
in one case the government are seen as a collection of people while in the other it is
being treated as an entity in its own right. 1 In either case the system now wants to tell
the user that the government i s /a re unlikely to carry out i t s / the i r decision before the
next election. 2

1 The sentence containing this footnote is deliberately infelicitous, illustrating the mistake that we
wouldn't want the system to make.

2 Stephen Isard points out that the parallel sentences The government has fallen and The government have
fallen describe very different situations; evidently it is an oversimplification to suppose that a
generation system has an entirely free choice between the alternative ways of referring to governments.

380

Chris Brew Systemic Classification and its Efficiency

The system's understanding of pronoun use is based on the network shown in
Figure 1, which it will use in choosing an appropriate pronoun for each of these
situations.

The traversal of the network starts at the left-hand side. The first choice that has
to be made is the one between quest ion, personal and demonstr. In both cases we
need a personal pronoun rather than a ques t ion pronoun or a demonstr one. We are
now faced with the need for decisions on CASE, PERSON and NUMBER. Let us stipulate
that the government, however we describe it, is to be the subject of the sentence; the
pronoun therefore receives the feature subjec t i r e in both cases. The pronoun also has
to be t h i r d person, since neither the system nor its client is the subject of the planned
sentence. However the choice of NUMBER depends on the choice that was made earlier
in the discourse, so in the first case the system will need to choose s ingu la r and in the
second it will need p lura l . If it chooses p l u r a l it has reached the edge of the network,
and can use the collected feature set to access the appropriate pronoun, which is they.

However, if it chooses s ingu la r it still needs to decide whether the government
requires a feminine, masculine or neu te r pronoun, since otherwise it cannot decide
between she, he, and it. The system network formalizes the availability or otherwise
of the GENDER choice by placing the corresponding system in a position that can only
be reached if the pronoun being generated is both t h i r d and s ingular . Of course, a
more elaborate process is involved in the generation of complex constituents, but the
principle remains the same: networks are traversed, produce sets of features, and the
features are used to guide the construction or selection of sub-constituents.

2.2 Systemic Language Analysis
By specifying the range of options available to the language user a system network
defines a set of possible outcomes to the generation process, and hence also a space of
possible structures corresponding to the various feature sets that can be obtained by
traversing the network. It may be that the networks admit structures that are never in
fact used by the system as a whole, but without knowledge of the details of the mecha-
nism by which choices are made we cannot exploit any additional constraints imposed
by the process of realization. In this paper we focus on the use of the networks as a
knowledge source in their own right. Systemic networks form a terminological repre-
sentation system in the sense of the term used in work on KL-ONE and its successors
(Brachman and Schmolze 1985; Nebel 1990). We would like to understand the nature
of the knowledge they express well enough to be able to use system networks as the
basis of a general, and perhaps computationally convenient, terminological language
for use in linguistic applications. Our approach is very close to that of Mellish (1988),
as well as to a multitude of other formalisms involving partial descriptions, such as
Shieber (1986).

By way of example, consider the word your, as it is described by the network and
rules in Figures 1 and 2. Without further information we do not know whether it is
s ingu la r or p lu ra l , although we can be sure that it is second, personal and possdet.
This information will sometimes be provided by context. In the sentence You should
not take my word for it, but bolster your own intuitions by inspecting the realization rules
for yourselves, we eventually discover that the writer is addressing the sentence to an
audience of more than one person. In generation the system would presumably have
made a decision about which mode of address was more appropriate, but when using
the same networks and rules for interpretation the partial nature of the information at
our disposal complicates the task of using the knowledge encoded by the networks.
Note that the clinching yourselves appears several words after the instance of your in
question, and that it could equally well have been yourself.

381

Computational Linguistics Volume 17, Number 4

2.2.1 Systemic Classification. Following Mellish, we refer to the task of using system
networks in comprehension as systemic classification. We conceive of this as an ac-
tivity similar to the taxonomic classification carried out by biologists. By making use
of the observable features of a specimen we attempt to pin down the point at which
that specimen ought to be accommodated within the space of structural descriptions
we have at our disposal. On the assumption that the slpeaker's linguistic options are
correctly described by a particular collection of networks, a listener is entitled to make
inferences from this assumption, and to use knowledge of the form of the system
networks in the search for a plausible global hypothesis about the properties of the
utterance that the speaker seems to have produced. Because the choices made by a
speaker are interdependent, a plausible hypothesis about part of the description of an
utterance may allow us to reconstruct part or all of the missing portion of the descrip-
tion. The job of a scheme for systemic classification is to provide efficient and correct
algorithms for the construction of consistent descriptions and the rejection of inconsis-
tent hypotheses. Nebel (1990) discusses a slightly more general notion of classification,
applicable to a knowledge representation language like NIKL (Kaczmarek, Bates, and
Robins 1986), BACK (Von Luck et al. 1986) or LOOM (MacGregor and Bates 1987).
The notions of subsumption that operate in such rich formalisms are more sophisti-
cated, but the essential idea of classification, namely the organization of terms into
a pre-computed subsumption hierarchy, remains the same. As in Mellish's work, the
main goal is to gain efficiency by pre-computing some or all of the useful subsump-
tion relationships that hold between descriptions. For the purposes of this paper the
descriptions are feature-based systemic descriptions and the role of the pre-computed
subsumption graphs described by Nebel is played by the specially designed encod-
ings that ensure that subsumption information is readily available at run-time. There
is of course a price to pay for this run-time efficiency, since we have to pre-process the
networks in order to establish the encoding relations that will be of use at run-time.

For the purposes of analyzing an utterance, the most important property of the
feature system induced by a system network is the following

Any system network defines a set of atomic labels that can be com-
bined to form descriptions of linguistic objects. It also provides a com-
plex of constraining principles that conspire to declare inconsistent
certain combinations of features.

For example, the network in Figure 1 expresses the constraint that no pronoun can
be specified as both feminine and masculine, and also the constraint that only third
person singular pronouns can bear either of these features.

2.3 Prior Work on Systemic Language Analysis
Winograd (1983) and McCord (1977) have both provided techniques that re-express
system networks and their associated realization rules as hand-crafted recognition
programs.

In both cases this amounts to a proceduralization of the grammar, and runs the
risk of making it even harder than necessary to debug a malfunctioning grammar. We
prefer to adopt a more declarative approach, in which the grammar is represented in
a form as close as possible to that with which linguists actually work.

Patten and Ritchie (1986) have produced a formal account of what a systemic gram-
mar is. This covers the whole of Systemic Grammar, including the realization rules and
the details of the way in which choices are made as well as the networks that are the
present concern. Patten and Ritchie are primarily concerned with language-generation

382

Chris Brew Systemic Classification and its Efficiency

rather than comprehension, but since they aim for a declarative specification of the
generation relationship between systemic grammars and the utterances they license,
it might be possible to use their grammars in either direction. For Patten and Ritchie
a systemic grammar is encoded as a set of rules for a production system, and the
generation process involves the application of these rules.

Kasper (1987a, 1987b) has designed algorithms that involve the encoding of both
system networks and the associated realization rules as constraints expressed within a
feature logic involving disjunction. He then implements the key operation of unifica-
tion by applying a general technique for unification of disjunctive feature descriptions
(Kasper 1988). These techniques decompose the problem of disjunctive unification into
three stages, only the last of which is exponentially hard. We are not attempting to
match his general algorithms for disjunctive unification, but rather to design special
purpose algorithms that are particularly suitable for use with system networks, and
particularly for those networks that play a role in Houghton's system.

In practice the set of constraints that Kasper develops from his systemic grammar
is too large to solve conveniently with the constraint-solving technology available
to him, so he augments the constraint grammar with a small hand-crafted phrase
structure component. The main motivation for this move is the search for efficiency
rather than any particular wish to use a phrase structure grammar. Kasper's basic
strategy remains that of building up a large set of constraints that can then be solved
by general theorem-proving techniques.

Like Kasper, we use a chart parser, but in our case the phrase structure grammar
is an essential component of the knowledge used by the system rather than a small ad-
dition required for the sake of efficiency. This makes no difference from a formal point
of view, but reflects our strategy of using appropriate special purpose mechanisms in
preference to potentially costly general techniques. Although system networks, sys-
temic realization rules, and context-free grammars can all be translated into formulae
of Kasper's extended FUG, our approach has been to investigate ways in which the
knowledge contained in these components can be exploited using simpler methods.

While Kasper's approach involves the translation of system networks into a more
general constraint formalism, Mellish (1988) displays encodings that reduce the key
operations of systemic classification to straightforward manipulations of PROLOG-
like terms. Unfortunately, it turns'out that system networks sometimes need a rather
opaque encoding, which would require costly re-translation if users needed to inspect
the workings of an NLP system that used it. The general encoding is in principle
capable of handling any system of constraints expressed in the propositional calculus,
and makes no use of the particular structure of systemic descriptions.

Mellish's approach to the implementation of systemic classification is to construct
structure preserving mappings from the space of systemic descriptions to an isomor-
phic space in which classes of entities are represented by terms taken from the GAF
lattice. 3 These terms act as partial descriptions of linguistic objects, and are combined
using the operation of term unification. Unfortunately the only generally applica-
ble mapping that Mellish is able to offer has unpleasant properties, producing large
terms whose internal structure has little in common with the structure of relation-
ships between the descriptive feature labels used in the network. 4 Although the terms
produced by the brute force mapping are spectacularly large, our main objection to

3 For most purposes this lattice is the same as the recursively defined space of terms used by PROLOG,
but for a technical introduction see (Reynolds 1970).

4 The terms produced represent classes of objects by a technique little different from exhaustive
enumeration.

383

Computational Linguistics Volume 17, Number 4

this approach is the loss of transparency associated with the mapping. It doesn't seem
likely that a linguist would feel comfortable with the output of the mapping, so a
grammar development system would presumably have to include facilities for trans-
lating the machine representation back into more readable form. Although the simpler
mappings that Mellish has developed for more restricted forms of network do offer
more perspicuity, we feel that even in those cases our representations are at least as
accessible to the human user as Mellish's, which do not in any case generalize to the
full system network formalism.

Our view of the nature of system networks is close to those of Mellish and Kasper,
since we try to separate questions about the underlying meaning of the networks from
decisions about the processes by which they can be exploited. We treat system net-
works as alternative notations for sets of logical axioms constraining the co-occurrence
of property symbols in descriptions. Nothing more elaborate than the propositional
calculus is required. In principle one could apply standard theorem-proving techniques
to these axioms, but in practice it is better to employ special purpose techniques that
make more use of the structure inherent in the networks. The translation of system
networks into logical axioms is very similar to the one described in Mellish (1988), but
by adopting a slightly different labeling scheme we obtain a little extra clarity, which
helps when we come to design algorithms that make use of the axioms produced.

2.3.1 Classification and Consistency Checking. In order to carry out classification we
need to answer the following questions

1. When is an object an instance of a given description?

2. When may two given descriptions describe the same object?

3. Given two descriptions of the same object, how may the descriptions be
combined to produce a more fully specified description?

and in order to answer the questions we need to understand the behavior of the key
operations of subsumption checking and unification as they apply to the description
space within which we are operating. Both these operations can effectively be treated
as special cases of consistency checking.

This is the operation of checking a conjunction of positive and negative boolean
attributes for consistency with the axioms derived from a network. This should succeed
if the conjunctive description picks out a nonempty class of objects from those capable
of being derived from the network, but to fail if there is no object which can meet the
constraints imposed.

Unification. For descriptions consisting of atomic symbols generated from a system
network the operation of unification between two descriptions D1 and D2 consists of
two stages.

1. The formation of the conjunction D such that D contains the union of all
the feature specifications given in D1 or D2.

2. The checking of this new description D for consistency with the
constraints arising from the system network.

We shall see that it is the consistency checking that makes this operation potentially
costly.

384

Chris Brew Systemic Classification and its Efficiency

Subsumption. One description D1 subsumes another D2 if all possible objects correctly
described by D2 are also correctly described by D1. If A subsumes B then B D A. If
that is so then B A -~A is unsatisfiable. If A is an atomic symbol then B A -~A can be
checked directly for consistency; otherwise -~A has to be expanded out, yielding

(B A -~al) V (B A -~a2) V.. . (B A -~an)

In order to prove that B D A we have to show that none of the alternatives given
above can ever be satisfied. The subsumption check fails the moment any of the dis-
junctive alternatives is found to be a description of a legal object. While the individual
branches of this checking process can be carried out as efficiently (or inefficiently) as
unification itself, the preliminary expansion to disjunctive normal form is potentially
costly. This is doubly unfortunate since the expansion depends on the input expres-
sions, and therefore cannot be carried out at compile time. This problem evaporates
if we restrict ourselves to networks lacking disjunctive systems, 5 since Mellish's term-
encoding techniques allow both subsumption and unification to be implemented using
standard operations familiar in logic programming.

Realization Rules and Disjunction. Although the features mentioned in the system
networks may in fact correspond to large disjunctions of different low-level features
when the networks and the realization rules are compiled together into one large
constraint system, we treat the realization rules by a different mechanism and can
therefore continue to regard the features as atomic. Our primary concern is to ensure
that the basic feature-matching operation carried out by our chart parser is efficient
enough to be carried out many times in the course of analyzing utterances. The im-
plicit disjunction between the different productions of Houghton's phrase structure
grammar is handled by the usual techniques of chart parsing, which are described
in, for example, section 3.6 of Winograd's textbook (Winograd 1983). Since these tech-
niques are acceptably efficient, there is no pressing need to adopt Kasper's approach,
within which the realization rules are conjunctive constraints, and the effect of includ-
ing realizations is to change the representation of choice systems from disjunctions of
atomic formulae into disjunctions of complex formulae. As before, our approach is to
replace the general mechanism with a less powerful technique that is well attuned to
the task in hand.

2.4 Labeling System Networks
This section describes the process of translating system networks into logical axioms.
As an intermediate stage we build a specially labeled version of the network with
which we are working. In order to do this we need a more formal characterization of
system networks than we have yet presented.

A system network is made up of possibly labeled lines tied together by systems.
In the system networks described by Mellish some, but not necessarily all, of the lines
are labeled with items chosen from a set of distinct atomic symbols. The example
in Figure 1 shows such a labeling. In this scheme there is only one sort of label, no
distinction being made between words that are usually thought of as feature names
(such as NUMBER) and those that would more naturally be feature values (such as
s ingular or plural) . We would in any case like a labeling scheme that makes a
clean distinction between feature names and feature values, and it turns out that

5 These are defined in the next section.

385

Computational Linguistics Volume 17, Number 4

demonstr

feminine

masculine

neuter

Choice system

demonstr
V

personal

personal

Disjunctive system

pn

pn

And!ys t em pn

singularthird } singularthirdA

Conjunctive system

Figure 3
Types of system.

suitable slight modifications in Mellish's scheme greatly simplify the task of translating
networks into equivalent sets of axioms. We start by introducing the new labeling
scheme, and showing where it differs from Mellish's version.

The differences between the labeling schemes are small. Networks labeled in our
style continue to represent the same information as would be contained in the same
networks labeled by Mellish or Winograd. All that is gained is a measure of uniformity
and clarity, which helps simplify the task of translating networks into logic.

2.4.1 Types of System. There are four distinct types of system, each of which has one
collection of lines as its right-hand side and another collection as its left-hand side.
For a given system s these are notated as RHS(s) and LHS(s), respectively.

The choice system has one line on its left-hand side and a number of lines greater
than one as its right-hand side. Informally it represents a choice of exactly one attribute
from those given by the labels attached to the lines in the right-hand side.

The system at the top left of Figure 3 is a choice system in which the alternation
between feminine, masculine, and neuter is expressed.

The system at the top right of the figure represents a form of conjunction. Where
the choice system contains a vertical line standing for disjunction, the and system
represents conjunction with a left curly bracket (i.e. {). Again exactly one line must
appear on the left-hand side of the system, and there should be a larger number of
lines on the right-hand side. And systems mean that all the right-hand lines of the
system will be tried whenever the left-hand line is reached. Since no choice is made,
no feature is generated by traversing an and system.

The next two types of system both have compound entry conditions, with one
line on their right-hand side, but several feeding in to their left-hand side. Since they
represent forms of disjunction and conjunction they will be referred to as disjunctive
systems and conjunctive systems respectively. We only make progress through the
right-hand line of a conjunctive system if all the left-hand lines of the system are

386

Chris Brew Systemic Classification and its Efficiency

traversed. For disjunctive systems we can get through to the r ight-hand line if one or
more of the lines on the left-hand side are traversed. The system at the bot tom left
of the figure is a disjunctive system, and the one at the bot tom right is a conjunctive
system.

2.4.2 Well-Formedness Requirements for System Networks. This section sets out our
definition of what it means when we say that a system network is well formed. Given
a system network, the precedes relation between lines is the smallest relation such that

1. nl precedes n2 if

nl E LHS(s), n2 E RHS(s)

for some system s in the network.

2. nl precedes n2 if for any line n3 in the network nl precedes n3 and n3
precedes n2.

If nl precedes n2 then nl is a predecessor of n2. In a well-formed system network no
line may precede itself. Strictly speaking, this is a deviation from Systemic Grammar as
presented in Hudson (1971), which explicitly permits cyclic systems. For our purposes
cyclic networks are unsatisfactory, because useful cyclic paths in the network have to
be traversed more than once. If network traversal is to terminate, the choices made on
the last traversal of such a path have to differ from those made on earlier traversals.
The sets of features that could be generated by a ne twork would then depend not just
upon the structure of the network but also on the way it was used by a particular
generation system. Our techniques would have nothing to say about this situation,
since we are examining the networks in their own right, and do not have access to the
criteria by which the choices are made. We are therefore outlawing cyclic networks
for the moment.

Assuming that the graph formed by the system network is acyclic implies that
there must be at least one line that is not preceded by any other. If there is more
than one such line, then the network has multiple entry points and no obvious intu-
itive meaning. For the sake of definiteness we decree that such networks will not be
translated as such, but will instead be prefixed with a single and connective, whose
left-hand side contains a single new line, and whose right-hand side comprises the
set of lines that would otherwise have had no predecessor. There is now exactly one
line with no predecessor, which can be referred to as the root. The root of Figure 4
is the line labeled with e. It is possible to draw networks in which certain regions of
the network can never be reached. The simplest case of this involves distinct branches
of a choice system feeding into a conjunctive system, as shown in Figure 4. Here the
choice between bl and b2 will never be reached. At best this is a waste of space. We
say that networks containing unreachable portions are unparsimonious, and declare
them to be ill formed. While it may not always be easy to see whether a complicated
network is parsimonious, the necessary work can be carried out when the network is
defined, and need not carry a run-t ime cost.

2.4.3 Basic Labelings. In this section we introduce the idea of a basic labeling, which
is intended as a formalization of what we take to be the uncontroversial part of the
process of labeling a system network. A basic labeling is defined to be a partial function

387

Computational Linguistics Volume 17, Number 4

al /

/

a3

bl

b2

Figure 4
An unparsimonious system.

from lines to names such that

a line receives a name if and only if there is a choice system to whose
right-hand side it is directly attached.

no two lines carry the same name.

In practice, system networks are labeled in ways that are very nearly basic label-
ings. The major difference is that some nodes attached to the left but not to the right of
choice systems get given labels that correspond approximately to feature names. Since
these labels add nothing to the meaning of the network they can safely be ignored.

The restriction to networks wi thout duplicated labels simplifies the discussion in
the rest of the paper, but it is not hard to t ransform networks with duplicated labels
into ones in which all labels are distinct. The details of this t ransformation are not
discussed here.

2.4.4 Exhaust ive Labelings.. Every exhaustive labeling builds on a basic labeling, and
is a labeling in which every line in the network is labeled with some value. In contrast
to the conventional systemic labelings, in which labels are constrained to be atomic
names, exhaustive labelings assign boolean conjunctions and disjunctions of atomic
names as labels for some lines. The full definition of an exhaustive labeling follows.

Let Y" be a 1-1 function from lines to names for these lines. ~- is an exhaustive
labeling of a ne twork if and only if the following conditions hold:

1. That part of Y that provides names for lines attached directly to the
right of choice systems must be a basic labeling.

2. If Y: assigns a line name llhs to the line directly attached to the left-hand
side of an and system, then it must also assign that name to the lines
directly attached to the right-hand side of that system.

388

Chris Brew Systemic Classification and its Efficiency

question

personal

demonstr

question

question

personal

personal

personal

demonstr

demonstr

animate

inanimate

personal
V

question

first

second

subjective
objective

reflexive
possessive

possdet

third third

singular
personal

V singular

demonstr t plural

near

far

feminine
masculine

neuter

Figure 5
An exhaustively labeled network.

3. If Y assigns line names 11,12~... Im to the lines entering a conjunctive
system (where l I is the label for the line appearing at the top of the
system and lm that at the bottom), then it must assign the label
ll A 12/k... lm to the line that leaves that system.

4. If 3 v assigns line names 11~ 12~... lm to the lines entering a disjunctive
system (adopting the same ordering convention as above), then it must
assign the label 11 V 12 V.. . Im to the line that leaves that system.

The ordering convention we introduced above is a technical convenience rather than an
essential part of the nature of an exhaustive labeling; all that matters is that appropriate
expressions representing conjunctions and disjunctions are propagated to the right-
hand lines of conjunctive and disjunctive systems.

One exhaustive labeling for the sample network given earlier is shown in Figure 5.
Three of the systems in the diagram involve complex entry conditions. This expresses
itself in the presence of complex labels having the form of boolean combinations.

389

Computational Linguistics Volume 17, Number 4

2.5 Translating the Labeled Networks
In this section we show how to convert an exhaustively labeled network into a set of
axioms expressing the information from the network in the framework of propositional
calculus. This work is closely related to a similar translation scheme given in Mellish
(1988), but because our scheme works with slightly different labelings the results are
a bit easier to understand.

The translation scheme in Mellish's paper can be applied to all four types of
systems in an exhaustively labeled network, and the correct results will be produced,
but it turns out that many of the systems in an exhaustively labeled network map into
uninteresting tautologies.

Mellish proposed that a choice system such as the one for GENDER in Figure I should
be translated as

AMO{femininG masculine, neuter} (1)

GENDER - feminine V masculine V neuter (2)

where AMO stands for a complex formula meaning 'at most one of.' (Mellish actually
presents these axioms in a predicate calculus notation, but we have suppressed this
detail, which makes no difference.) In the example of a choice system given above the
full expansion of the complex formula would be

-~(feminine A masculine)A

~(feminine A neuter) A -~(masculine A neuter) (3)

In Figure 5 we have removed the GENDER label from the left-hand side of the choice
system and replaced it with the appropriate complex label. When we employ Melish's
scheme the translation becomes:

AMO{feminine, masculine, neuter} (4)

third A singular -- feminine V masculine V neuter (5)

but the essential principle remains the same. Two intimately linked axioms arise from
each choice system. Where necessary we shall refer to the axiom involving AMO as the
exclusivity axiom and the other one as the accessibility axiom. It is easy to construct
the exclusivity axiom given the corresponding accessibility axiom, but the converse is
not true. We shall therefore be basing our implementation on the use of the accessibility
axiom, with the exclusivity axiom understood to be implicitly present.

For and systems Mellish proposes a translation that is as if the label from the left of
the and system had been written onto the lines to the direct right of the and system. In
our scheme the label actually has been written there by the time the translation comes
into operation, so there is no need to provide an independent translation for and
systems. Instead the systems to the right of the and system will automatically receive
translations reflecting the presence of the and system. This happens for the three and
systems of Figure 5, with question, personal, and demonstr being propagated across
the system in the appropriate way.

For disjunctive and conjunctive systems applying Mellish's translation would again
yield a tautology. Where Mellish translates the disjunctive system of Figure 3 (which
carries the feature name NUMBER on its right-hand branch) as

personal V demonstr =_ NUMBER (6)

390

Chris Brew Systemic Classification and its Efficiency

applying Mellish's translation to our labeling scheme yields the tautologous

personal V demonstr =_ personal V demonstr (7)

Intuitively it looks as if the real work that goes on in a system network happens
in choice systems, and the other lines exist only in order to link together choice sys-
tems in the appropriate ways. From any point of view except that of a mathematical
troublemaker this was probably obvious from the outset.

The axioms derived from the pronoun network in Figure 5 are the following.

question =_ animate V inanimate (8)

demonstr =_ near v far

question V personal =_ subj v obj V refl V possess V possdet

personal V demonstr =- singular V plural

personal ~ first V second V third

third A singular =_ feminine V masculine V neuter

(9)

(10)

(11)

(12)

(13)

The algorithm for translating system networks into a more standard form is now
complete, so we move on to consider the ways in which this information can be used.

2.6 Computational Tractability
In the next section we address the question of whether the labeling schemes developed
so far can form the basis of efficient algorithms for carrying out the task of systemic
classification.

We start by showing that system networks can be used to express NP-hard prob-
lems. This is something of a disappointment, since the original goal of this work was
to show that the network formalism could function as a low-power version of more
general feature formalisms. The idea was that linguists who chose to express their
grammars within the network formalism would be sacrificing a measure of notational
convenience in order to gain a guarantee of acceptable computational behavior. Since
we must currently assume that NP-hard problems are intractable, we are unable to
provide the desired guarantee.

2.6.1 Systemic Classification is NP-Hard. In this section we show that the problem
of systemic classification is at least as hard as problems known to be NP-hard. This
is done by constructing a polynomial time mapping 11 from instances of the NP-hard
problem called 3SAT to networks that can be tricked into solving this problem for us.
This is a standard technique from complexity theory. For an introduction to similar
linguistic applications of complexity theory see Barton, Berwick, and Ristad (1988).

If there were a polynomial time algorithm for checking arbitrary system networks,
it would follow that 3SAT could be solved by the composition of the mapping that con-
structs the network with the algorithm that checks the network. Since this composition
is itself a polynomial time algorithm we would then have a polynomial time solution
for 3SAT, and hence for all other problems of the complexity class W'•. Thus the suc-
cessful construction of 1I implies that systemic classification is itself NP-hard. (Whether
NP-hard problems can be solved in polynomial time is still an open question at the
time of writing, but, for the moment at least, they must be considered intractable).
Kasper's demonstration that general disjunctive unification is NP-complete, taken to-
gether with the reducibility of systemic classification to that problem, indicates that

391

Computational Linguistics Volume 17, Number 4

V

Y -qy

X

b?_

I bl

a2

I al

Figure 6
A network for 3SAT.

systemic classification is NP-complete as well as NP-hard. We think this upper bound
on the complexity class to be of purely theoretical interest, since our parsers depend
on efficient description-matching as a primitive, and an NP-hard problem is in our
view already too expensive to be solved regularly in an efficient parsing system. We
are aware that the complexity result only applies to the worst case, but in the absence
of a satisfactory account of precisely what constraints a grammar writer has to observe
to avoid the bad cases, we are uneasy about providing these grammar writers with a
potentially explosive general mechanism. Our guess is that there is something about
the human cognitive system that ensures that hard cases won't arise naturally, but it is
dangerous to assume that they won't arise, not least because one possible way of us-
ing the technology provided here is as a target representation for automatic grammar
development environments that present the user with higher level primitives. What-
ever modularity constraints may be observed by a human writer, it is unclear that
similar constraints will automatically hold over the output of an automatic grammar
transformer.

The 3SAT problem. 3SAT is the problem of determining the satisfiability of a boolean
formula, stated in conjunctive normal form, in which exactly three variables occur in
each clause of the conjunction. These variables may either be positive or negated, and
may be repeated from clause to clause. It is known that 3SAT is just as hard as the
problem of satisfiability for general boolean formulae (Barton, Berwick, and Ristad
provide a demonstration of this fact on pp. 52-55 of Barton, Berwick, and Ristad
[1988]). A sample input formula for 3SAT is

(x vyv~) /x (y vz v u) A (~vy v u) A (xvz v~) (14)

392

Chris Brew Systemic Classification and its Efficiency

and the problem is to find an assignment of t rue and f a l s e to variables such that the
whole expression comes out true.

A mapping from 3SAT instances to networks. We now construct the mapping II
that takes a 3SAT instance and constructs a network that can be used to solve that
instance. The following steps are necessary. Let the name of the 3SAT instance be E
and its length NE.

Make a list of the variable names used in E, counting positive and
negative occurrences of a variable as the same. This can certainly be
done in time polynomial in NE using a standard sorting algorithm such
as merge sort. Let the name of the list of variable names be V and its
length Nv. Because the drawings are prone to get very intricate we use
the example of the very simple expression

(xVyVz) A (z V ~V~) (15)

(which has already been illustrated in Figure 6)

Construct a network consisting of a large and system feeding Nv parallel
binary choice systems. Each choice system carries two labels, one
corresponding to a variable name in V and the other formed by negating
the label on the other branch of the system. The choice of prefix should
be such that all labels on the resulting network are unique. This part of
the process is polynomial in the length of V.

For every clause in E, add a ternary disjunctive system linking the lines
of the network having the labels corresponding to the three symbols of
the clause. This part of the process involves scanning down the Nv
systems of the network once for each clause of E, and is therefore also
polynomial in NE.

Finally, binary choice systems are attached to the outputs of all the
disjunctive systems introduced in the last stage. These systems are labeled
with generated labels distinct from those already used in the network.
This step is clearly also polynomial in NE, requiring the creation of a
number of choice systems equal to the number of clauses in E.

The network given in Figure 6 is the one that would be produced from E. In order
to use the constructed network to solve the satisfiability problem for E, we check an
expression corresponding to the conjunction of all the three member clauses in E. This
is built by choosing an arbitrary label from each of the rightmost choice systems. The
conjunction of these labels is a consistent description whenever all the clauses of E
can be satisfied by the same value assignment. The choice systems to the left of the
disjunction express the facts that no variable can be simultaneously true and false. It
should now be obvious that any correct checking algorithm will in fact succeed in just
those circumstances where there is at least one value assignment for the variables of E

393

Computational Linguistics Volume 17, Number 4

that makes E come out true. This means that systemic classification cannot be solved
in polynomial time unless 3SAT, and hence all of A/'7 v, can.

3. Algorithms for Consistency Checking

3.1 Isolating the Sources of Intractability
Given that there is no efficient way of applying all the constraints imposed by a system
network, it would help if we could isolate the source or sources of the inefficiency.
If this can be done, it might allow an algorithm for constraint application in which
a cheap first stage does most of the work, calling on an expensive second stage only
when it is needed. It turns out that the presence of disjunctive systems is the main cause
of the inefficiency, so we now move to a method for the removal of these systems.
The idea is that the nondisjunctive version of a disjunctive network expresses some,
but not all, of the constraints present in the original network.

We have two equivalent representations for the constraints induced by a system
network, and shall feel free to switch between the view of networks as geometric
objects and the view of axiom sets as constraints on the structure of linguistic entities.
We shall refer to diagrams of networks in the hope that this will help the reader gain
intuitions about what is going on. Readers who find the diagrams unhelpful should
ignore them.

There is a simple transformation that maps networks involving disjunction into
nearly equivalent versions not containing any disjunctive systems. Although this tem-
porarily ignores some of the information implicit in the disjunctive network, every
description the transformed network would reject as inconsistent is also rejected by
the full network from which it is derived. The right-hand sides of choice systems are
left untouched by the transformation, so the exclusivity axioms of the original network
continue to hold.

System networks form directed acyclic graphs, so it is possible to use the prece-
dence relationship defined above to form a topologically sorted list of the atomic labels
in the network. Precedence is not a total ordering on the atomic labels, so some other
criterion, such as lexicographic ordering, is needed to produce an unambiguously or-
dered list. We call the position of a label in this list its depth. It does not matter what
the extra criterion for ordering the depth list is, as long as it is consistently applied
and no two labels have the same depth. By extension, choice systems also have a
depth, defined to be the depth of the shallowest label in the right-hand side of the
system. Atomic symbols in the sets of axioms derived from system networks inherit
the depth of the corresponding labels in the network, and axioms inherit the depth of
the corresponding choice systems.

The idea is that every fragment of the original network that flows out of the right
of a disjunctive system is detached from that system and re-attached nearer the root of
the network. This point is the point at which the various paths leading from the root
to the disjunctive system most recently diverged. Although the formal details of how
to do this in a general network are somewhat intricate, an illustration is provided in
Figure 7. The two systems that have been moved are those that were originally fed
by disjunctive systems in Figure 5, namely those which express choices for CASE and
NUMBER. These have both been moved back from their original location and re-attached
immediately to the right of the root of the network.

The new network now allows various combinations of features not allowed by
the original network. It would, for example, permit the generation of a r e f l ex ive ,
demonstrative, far , s ingular pronoun, if one existed (it would presumably be that-

394

Chris Brew Systemic Classification and its Efficiency

PN

CASE

subjective

objective

reflexive

[P °;seSdie: e

animate

question inanimate

near

demonstr I

far

first

person second
third

NUMBER

sing

plu

feminine

GENDER masculine
neuter

Figure 7
A simplified network.

self). Some of the constraints expressed in the original network are lost in the trans-
formed version.

3.2 Relaxing Sets of Axioms
Relaxation is the formal counterpart of the network rewriting described in the last
section. For clarity, it is defined over sets of axioms rather than over networks, simply
because it is far easier to achieve the necessary clarity when working in the domain
of propositional formulae.

In a set of axioms, the precedes relationship between labels in the axioms is defined
in much the same way as it was for labels in a network, namely, as the smallest relation

395

Computational Linguistics Volume 17, Number 4

a2

bl

b2

Cl
a2 V bl r

1 C2

Figure 8
A small example network.

such that:

1. ll precedes 12 if
I1 E LHS(a), 12 E RHS(a)

for some axiom a.

2. ll precedes 12 if for any label 13 in the set of axioms ll precedes 13 and 13
precedes 12.

The common predecessors of a set of symbols S are defined to be the members
of that set P(S) that precede every member of S. Every fully elaborated description
containing any member of S must also contain every member of P(S). The deepest
common predecessors of S are those members of P(S) having no successor in P(S). The
transformed set of axioms is formed by replacing every axiom involving disjunction
in the LHS with a rule made up of the same RHS and a new LHS consisting of
the conjunction of a specially generated identifying feature with the deepest common
predecessors of the elements of the old LHS. As an example we use the network given
in Figure 8, which was used by MeUish to demonstrate the necessity for repeated
variables in the terms representing systemic descriptions. It has been exhaustively
labeled, showing the disjunction introduced by the presence of a disjunctive system
feeding the rightmost choice system. This network demonstrates that the consistency of
descriptions is not always deriveable from information about the pairwise consistency
of individual features. For example, while al is consistent with b2 and also with cl, it
does not follow that the combined description al A b2 A Cl is also consistent.

In Figure 9 the result of peeling away the disjunction is shown. Immediately
preceding the choice system for Cl and c2 is a degenerate choice system with one entry
and one exit. This system is there in order that the special marker feature genfeat can
be inserted on the right-hand side of a choice system, and goes hand in hand with the
definition of basic labelings given earlier.

396

Chris Brew Systemic Classification and its Efficiency

al

a2

e genfeat

bl

b2

Cl

C2

Figure 9
A transformed version of the example.

A record is kept of the correspondences between the features introduced to stand
for left-hand sides and the expansions for which they stand. This is used, if necessary,
in a second stage of checking. In the example above we would have had to note that

genfeat ~ cl V C 2

and to retain this information for future checking.

3.3 Overview of the Checking Algorithm
Our consistency checking algorithm works by implementing a sort of parallel search,
working back from the right of the network toward its root. The run-time behavior
of the algorithm depends on the properties of the networks used. If the network
involves disjunctive systems then true parallelism is required, with multiple processes
constructing mutually inconsistent partial descriptions on the basis of the same seed
description. Since parallel processes may need private copies of part or all of the target
expression, this approach will involve us in potentially exponential amounts of work
copying data structures.

If disjunctive systems are not present, cheaper approaches are possible, because
we can organize matters so as to require no more than one copy of the target expres-
sion. This allows us to demonstrate the tractability of consistency checking for system
networks lacking disjunction, while the checking procedure for full system networks
remains just as costly as we would expect given its equivalence to 3SAT.

In what follows we shall be introducing a way of decomposing sets of axioms into
components corresponding to a nondisjunctive network and a group of disjunctive
subnetworks. This involves the construction of new expressions based on the axioms
of the original network. Strictly we ought not to use the term 'axiom' for the results
of our manipulations, but we shall continue to do so, since the algorithms apply
equally well to networks that never had disjunctive systems in the first place as to the
transformed versions of networks that did.

397

Computational Linguistics Volume 17, Number 4

Our algorithms decompose the problem of systemic classification into three stages:

.

.

.

An off-line step in which a general system network is broken down into
a relaxed version lacking disjunction ancl a set of constraints expressing
the information missing from the relaxed version of the network.

A first stage of checking in which the relaxed form of the network is
applied to an input expression.

A second (optional) stage in which the information missing from the
relaxed network is re-applied to the results of the first cheek.

In the compilation step the axioms from the original network are converted into an
ordered list of relaxed axioms. These axioms contain special generated features that act
as hooks for a group of aliasing rules that have the job of expressing the information
present in the original axioms but absent from their relaxed counterparts.

The first stage of checking involves successive inspection of the relaxed axioms
for applicability to the expression being checked. If the right-hand side of an axiom
matches the expression then the left-hand side of the axiom is combined to form an
extension of the expression. Because the compilation step has organized the axioms
in order of depth this algorithm is able to make all legitimate deductions from the
relaxed form of the network, and also to fail if the expression given is outlawed by
this relaxed form.

In the second stage of checking we use the output of the first stage, attempting to
discharge any generated features that have been introduced. In the worst case this will
involve polynomial expense, since the problem is that of simultaneously satisfying a
number of constraints each of which may individually be satisfiable in a number of
different ways.

Although the difficulty of this constraint satisfaction task depends both on the
structure of the network and on the details of the expression being checked, we can
make a certain amount of progress with this task even in the compilation step. This
is because the structure of the network may tell us that the constraint satisfaction
problem can be decomposed into subtasks that will never interact whatever the nature
of the input expression. By inspection of a system network we can derive a metric that
indicates the possible computational cost of applying the information contained in that
network, as well as an indication of how much of that information can be recovered
without getting involved in the costly search processes that can be occasioned by the
presence of disjunctive systems.

3.4 Representation
.This section deals with the way in which expressions and axioms are represented for
use in the checking algorithm. As mentioned previously this presentation is somewhat
abstract, and describes idealized data structures rather than their somewhat more
intricate realizations.

For the network in Figure 8 the original set of axioms is

e ~ al V a2 (16)

e ~ bl V b2 (17)

a2 V bl --- cl v c2 (18)

398

Chris Brew Systemic Classification and its Efficiency

and the checking rules relevant to the first stage are

e ~ a l V a 2 (19)

e = bl V b2 (20)

e A genfeatl ~ cl V c2 (21)

3.4.1 Representation of Expressions. All boolean expressions can be reduced to the
form of a disjunction of conjunctions of (possibly negated) atomic symbols. The ex-
pressions to be checked will consist either of simple conjunctions of unnegated atomic
symbols, or, if we need to support subsumption checking, conjunctions of a single
negated atomic symbol with a number of unnegated symbols. The algorithm will in
fact handle any number of negated atomic symbols, but we do not make any use of
this capability. An appropriate representation of such expressions is as a vector of slots
capable of taking three values along each dimension. Each of the N slots corresponds
to one and only one of the N atomic symbols in the set of axioms, and the order of the
slots is the order of increasing depth given by the depth relationships in the network.
We shall illustrate these vectors using strings of symbol specifications. Within such a
string there are three possible types of symbol specification:

• the presence of a positive specification for a symbol is represented using
a boldface capital letter (A1)

• the presence of a negated specification for a symbol is represented with a
boldface capital letter with a line above (~)

• the absence of any specification for a symbol is represented using a
lighter lower case font (al). Explicit representation of absent symbols
means that every symbol in the repertoire must appear (in some form) in
every vector.

For the example network in Figure 8 the correspondence between expressions and
their representations is as follows.

al A b2

is represented by

and

is represented by

(C2~ C1~ B2, bl, a2, A1, e)

-~C 1

(C2~ C1} b2} bl, a2~ a~, e)

The elements of a symbol vector are implicitly conjoined, and there is no mechanism
for expressing disjunction.

3.4.2 Representation of Axioms. The right-hand sides of axioms consist of ranges of
atomic symbols having neighboring depths. In principle one can represent these ranges
by specifying a starting depth and a number of symbols, or one can use a slightly
more intuitive representation as vectors of implicitly disjoined feature specifications.
The individual feature specifications would then be represented in the way used above
for those in target expressions.

399

Computational Linguistics Volume 17, Number 4

For the purposes of the algorithm all we actually :need to know is the range of
depths over which the mutually exclusive alternatives !in the axiom extend, since we
are primarily interested in checking how many members the right-hand side of an
axiom shares with the target expression.

The left-hand sides of axioms are more problematic, requiring the representation of
arbitrary boolean expressions in disjunctive normal form. However, for the simplified
sets of axioms in which we are primarily interested, this form reduces to a single
conjunction of atomic symbols, which can readily be represented using the scheme for
target expressions given above.

Examples of axioms and their representation follow.

e ~ R 1 V a 2

is represented by

(C2, Cl, b2, bl, a2, al, e) ~ (c2, Cl, b2, bl, A2, A1, e)

while

is represented by

a2 V bl ~ Cl V c2

(C2, Cl, b2, bl, A2, al, e) V (c2, Cl, b2, B1, a2, al, e) = (C2, C1, b2, bl, a2, al, e)

In order to convert these axioms into nondisjunctive equivalents we transform the
disjunctive axiom by generating a new feature for its left-hand side, giving

e A genfeatl =~ cl V C 2

which is represented by an eight-element vector (because we have introduced an extra
feature name, and need an extra slot). The axiom becomes

(c2, cl, b2, bl, a2, al, GENFEAT1, E) =- (C2, C1, b2, bl, a2, al, genfeatl, e)

This illustrates the fact that the representations of expressions in the first and second
stage of checking differ slightly because of the introduction of generated features.

The checking algorithm organizes the axioms into a list of decreasing depth. The
axiom at the head of this list (initially, the deepest axiom of all) is the current axiom.
In the set of axioms given above the appropriate order would be axiom 21, axiom 20,
then axiom 19.

3.5 The First Stage of Checking
The current axiom a is applicable to the target expression E if E contains a positive
occurrence of at least one of the elements of RHS(a). In this case we have to distinguish
between the case where the intersection contains exactly one element and that where
it contains more than one. In the latter case we have a violation of the exclusivity
axiom associated with the accessibility axiom that we have explicitly represented. The
target expression is therefore inconsistent with the network from which the axioms
were derived.

If a is applicable and does not lead directly to an inconsistency we need to insert the
material from LHS(a) into E, forming a new expression E'. This is fairly straightforward
for networks lacking disjunction in the left-hand side of axioms. The substitution can

400

Chris Brew Systemic Classification and its Efficiency

fail if the target expression already includes a negated specification for any of the
features contained in the left-hand side of the axiom, but otherwise the substitution
results in the generation of an expression E t, which is simply the conjunction of E and
LHS(a). At this stage we do not need to check for mutually exclusive features, since
this kind of failure will be detected in a later iteration of the procedure.

If LHS(a) is a disjunction containing multiple elements, as can happen if we are
dealing with a full system network, rather than a relaxed version that has been trans-
formed to remove the disjunction, then the algorithm requires the setting up of as
many parallel processes as there are elements in the disjunction, as well as extensive
copying of those parts of the target expression that may yet be modified. Each process
may attempt to write a different combination of features in its own personal copy of
the relevant parts of the target expression, and it is crucial that the activities of the
separate processes, whether or not they actually run in parallel, be prevented from
interfering with one another, as would happen if they modified a common copy of the
same data structure. This is obviously the expensive part of the checking procedure,
since there can be a very considerable number of quasi-parallel or parallel processes
if we happen to be dealing with an awkward case.

3.6 The Cost of the First Stage of Checking
It is possible to code up the algorithm for the first stage of checking as an algorithm
operating on a two-tape Turing machine, in which one input tape represents the axioms
used and the other represents the expression to be checked. Analysis of this algorithm
reveals that it is the substitution step that will prove most costly. It turns out that the
possible space needed to represent the axiom tape is proportional to the square of
the number of atomic labels in the set of axioms, and that the Turing machine needs
no more than three passes over this tape to complete the necessary substitutions. In
any event both time and space bounds for the first stage of checking are certainly
polynomial in the number of labels in the network being checked. 6

3.7 The Second Stage of Checking
The second stage of checking has the job of re-imposing the constraints that were
ignored in the first stage. By inserting generated features, we have effectively marked
the locations at which extra material may have to be introduced. While it would
obviously work to simply throw away the results of the first stage of checking, and
re-check the original expression (using the original axioms) from scratch, it is more
satisfactory to turn the work we have already done to our advantage. This section
describes one way of doing this. The parsing system adopts a different, but in essence
equivalent, approach, building PROLOG terms as the output of the first stage, then
compiling the alias rules into clauses of a procedure that attempts to find a consistent
substitution for generated features.

In Winograd's pronoun network (shown in Figure 1) the first stage of checking
for the description

subjective A singular (22)

would yield
subjective A singular A genfeatl A genfeat2 A pn (23)

6 A l though we int roduce a potentially large n u m b e r of extra labels in the t ransformat ion from disjunctive
to nondis junct ive networks, these can be omit ted wi thout affecting the correctness of the first s tage of
checking. The labels are in t roduced as a convenience for use dur ing the second s tage of checking,
rather than as an essential part of the first stage. In any case, as pointed out by an a n o n y m o u s referee,
the n u m b e r of these labels is b o u n d e d by the n u m b e r of choice sys tems in the ne twork as a whole.

401

Computational Linguistics Volume 17, Number 4

which contains two generated features, 7 one corresponding to the expression

genfeatl - question V personal (24)

and the other to

genfeat2 =_ personal V demonstr. (25)

In this case it should be obvious that all we have to do is choose compatible values from
the disjunctive parts of expressions 24 and 25, and that this is achieved by choosing
personal in both cases. This has no further consequences. In this simple case we find
that the fullest description we can be sure of on the basis of what we know is:

subjective A singular A personal A pn. (26)

Unfortunately, looking for noncontradictory choices of substitution for generated fea-
tures will not always gain us the information which we need to know. We illustrate
this with reference to Figure 10, which provides a network for the pronoun system of
an imaginary language closely related to English.

The path leading from pn to the choice between f i r s t , second, and t h i r d involves
passing through an extra choice system encoding the alternation between honor i f i c
and fami l ia r , so we would have inserted f a m i l i a r rather than personal. The dia-
gram abbreviates personal, honorific, and familiar to pers, hon, and faln respec-
tively. In the imaginary language in question the choice of an honorific makes it unnec-
essary to consider further features of the pronoun. Translating the network produces

subjective A singular A familiar A pn (27)

We now need to know whether a pronoun that is f a m i l i a r is necessarily also per-
sonal, which involves the re-use of the axiom,

personal = honorific V familiar (28)

and we also need
pn =_ question V personal V demonstr

to ensure that the ill-formed

...familiar A question...

does not get accepted.
In the worst case it actually turns out that nearly all the axioms present in the

original network can be needed for the second stage of checking. In more typical net-
works, such as the one constructed by glueing together the networks from Houghton's
dialog generation application, only a few axioms will be involved in the second stage
of checking, and this subset of the axioms can be picked out as a preprocessing step,
which we will shortly describe.

7 The pn in expression 23 arises because the left-hand sides of the transformed axioms are made from the
conjunction of the generated feature and the deepest enclosing features, rather than simply the
generated features on their own.

402

Chris Brew Systemic Classification and its Efficiency

question

hon

demonstr

I
animate

inanimate

first

second

third

subjective
objective

reflexive
possessive

possdet

singular

plural

near

far

feminine
masculine

neuter

Figure 10
The pronouns of an imaginary language.

3.8 Islands of Uncertainty
One way of viewing the transformation that originally removed disjunction is as a
device for temporarily allowing an island of uncertainty to persist in part of the net-
work. The job of the second stage of checking is to deal with this uncertainty, and
the potential complexity arises from the possibility that many interacting axioms con-
tribute to the uncertainty. Often there will be several small and independent islands
of uncertainty, each involving only a few axioms, and it will be possible to decompose
the checking task into more manageable portions.

We now show how to characterize the subsets of axioms involved in each island of
uncertainty. The starting point for this operation is the original network, not the trans-
formed version containing generated features. The relevant portion of the network
for any given generated feature is that falling between the corresponding disjunctive
system and the deepest common predecessors of the left-hand lines of that system.
Anything nearer to the root than that will have been checked in the first stage of
checking. So in order to pick out the potentially relevant axioms for each generated
feature, we form a list of labels starting with those involved in the left-hand side of
the disjunctive system and working back to the deepest common predecessors, which

403

Computational Linguistics Volume 17, Number 4

do not need to be included. This list is then used to choose axioms; every axiom that
has a right-hand side containing one of the features on the list must be included.

In the case of Winograd's network (Figure 5), the list for the disjunctive systems is

[question,personal, demonstr]

and the only relevant axiom is

pn =_ question v personal V demonstr (29)

For the imaginary language introduced above we would construct the list

[familiar, question,personal,demonstr]

and we therefore need the axiom

personal - familar V honor!tic (30)

as well as axiom 29.
For every generated feature in the network we collect a set of relevant axioms.

Ideally the sets of axioms will be disjoint, which means that the islands of uncertainty
induced by the disjunctive left-hand sides can be handled independently. In fact the
examples we are using represent the opposite case, in which different generated fea-
tures are associated with nondisjoint (actually identical) sets of axioms. Our method
for carrying out the substitutions collects nondisjoint sets of axioms into larger sets.
The procedure operates on structures of the form

I/= {Ei, Ai}

where Ei is a set of expressions relating generated features to disjunctive left-hand
sides, and Ai is the union of the sets of axioms found to be relevant to these left-
hand sides. The sets of axioms Ai must be disjoint. Each Ii can therefore be processed
separately. 8

We construct ways of substituting for generated features by replacing each gen-
erated feature with an element of the corresponding disjunctive left-hand side. The
number of possible substitutions depends both on the number of generated features
in the network and on the way they interact. The more sharing there is between the
sets of axioms corresponding to the generated features the greater will be the number
of distinct ways of substituting for the generated features.

In the first example we have to consider the following possibilities:

genfeatl = question genfeat2 = personal (31)

genfeatl = question genfeat2 = demonstr (32)

genfeatl = personal genfeat2 = personal (33)

genfeatl = personal genfeat2 = demonstr (34)

of which only the expression 33 satisfies the exclusivi W axiom for axiom 29. Since there
are no other relevant axioms either for genfeatl or for genfeat2 the check is complete.

8 There may be more efficient algorithms than this, but we have not yet found the need to explore them.

404

Chris Brew Systemic Classification and its Efficiency

In the second example, axiom 29 does not do quite as much for us, because the
possible combinations of substitutions are:

genfeat l = question

genfeatl = question

genfeatl = familiar

genfeatl = familiar

genfeat2 = familiar (35)

genfeat2 = demonstr (36)

genfeat2 = familiar (37)

genfeat2 = demonstr (38)

only one of which (expression 36) can be eliminated by checking against the exclusivity
axioms. Instead we find ourselves checking

subjective A singular A familiar A question A pn (39)

subjective A singular A familiar A pn (40)

subjective A singular A familiar A demonstr A pn (41)

against the axioms. In fact the presence of f ami l i a r combines with axiom 30 to
demand the addition of personal. Demonstr and quest ion are incompatible with
personal so only the expression produced from expression 40 can satisfy axiom 29.
The full expansion of this expression is

subjective A singular A familiar A personal A pn (42)

which is the required answer.
It may seem unnecessarily elaborate to separate out the effects of disjunctive ax-

ioms, but a major reason for doing so is that the partitioning of the set of axioms that
is involved can be carried out as a compilation step, which both prepares the axioms
for the simpler first stage of checking and gives us an informal measure of the extent
to which we are going to be able to decompose the potentially expensive second stage
of the problem into small and independent problems.

In the set of axioms coming from the network in Figure 6, we find that every
introduced feature interacts with every other one, producing a compile time clue that
if we are unlucky we shall have to check an unreasonably large number of possible
ways of carrying out the substitution. If a situation like this arose in a natural language
application we should probably begin to look for a way of redesigning the network,
and consider whether the costly accuracy produced by the second stage of checking
actually helps our application much or at least start to suspect that the application
should not be expected to produce reliable real-time response.

For Houghton's networks it turns out that the second stage of checking is rarely
needed at all, so we have implemented only a simple version of the second stage of
checking. In this implementation we make the pessimistic assumption that all gen-
erated features may interact. The more sophisticated approach outlined above will
certainly produce significant improvements for some networks, but we do not cur-
rently have access to a large corpus of independently constructed networks, so cannot
tell for sure whether the effort of implementing the slightly trickier algorithm would
in fact be justified by linguistic practice.

4. Conclusions

This paper has explored the potential of system networks as a classification tool for
linguists. The results of this enterprise can be divided into a group of technical re-
suits about networks as such and a collection of less formal ideas about the practical
implications of these results for the working computational linguist.

405

Computational Linguistics Volume 17, Number 4

The technical results come first.

.

.

The problem of systemic classification is an inherently hard one, for
which computational tractability cannot be guaranteed.

The source of the intractability is the use of disjunctive systems in the
networks. Restricting the algorithm to use only choice, and, and
conjunctive systems gains us tractability at the expense of some loss of
expressive power. Mellish (1988) reports an application in which this
route was taken with satisfactory results. It is :not yet clear whether the
restriction to nondisjunctive networks will be acceptable as a basis for
large natural language grammars.

Note that the networks are not the only possible source of disjunction in a large
natural language system, since when realization rules are taken into account the
choice systems of the system networks can stand for disjunctions of general feature
structures. 9 This objection carries most force in the context of a purely constraint based
system like Kasper's, since in our hybrid parser each line of analysis is committed to a
particular choice of realization rule before feature matching is necessary. Effectively the
control regime of the nondeterministic parser is dealing with some of the search that
is necessary in order to resolve the disjunctions implicit in the grammar. The chart-
parsing part of this involves only a number of feature-matching operations polynomial
in the size of the grammar and the length of the input string, 1° so the complexity of
the overall parsing process hinges on the efficiency of the feature-matching algorithm
involved. The actual performance of the parser may be much better than that indicated
by the theoretical properties of the algorithm, but if so the efficiency depends upon
contingent properties of the grammar used, so it would be unwise to provide a defini-
tive guarantee that a parser will maintain acceptable performance as the grammar is
developed and extended.

For practical purposes the following results are probably of more interest.

1. A given system network can be compiled into a set of axioms without
reference to the particular expressions to be checked with these axioms.
Although this process is potentially expensive, it can be carried out
off-line.

2. The potentially expensive part of systemic classification can be separated
from a cheaper first stage. The first stage is comparable in cost to
taxonomic classification, and can be implemented efficiently using
current technology. The second stage may turn out to be exponentially
expensive in the worst case, but for some applications, such as the
parsers we have implemented, the second stage proves unnecessary. The
issue of how the algorithms would perform on yet larger grammars is as
yet unexplored.

3. Even the second stage can often be rendered more manageable by the
decomposition of the algorithm into two stages, since the 'islands' of
potential intractability tend to be isolated from one another, and can

9 This was pointed out to us by one of the Computational Linguistics referees.
10 These results, and the reasons for treating them with some caution, are covered by Barton, Berwick,

and Ristad (1988), particularly in Chapters 7 and 8.

406

Chris Brew Systemic Classification and its Efficiency

.

often be treated as independent subproblems. In the worst case axioms
are interdependent, and general algorithms for the unification of
disjunctive constraints, such as the ones of Kasper (1987b) and Eisele and
D6rre (1988) are likely to out-perform the techniques described here. We
see our algorithms more as illustrations of the nature of the problem than
as competitors of the more sophisticated algorithms presented by others.

The representations used by our algorithms are close to those present in
the networks themselves, so systems built on our algorithms should be
easier to debug than those in which the networks are compiled into
low-level formalisms. As a by-product of the production of these
representations we can obtain an informal measure of the likely cost of
using a particular set of networks.

We have provided a preliminary analysis of the nature of the information contained in
system networks, indicated why the flexible use of this information is likely to be costly,
and sketched techniques that will somewhat alleviate the undesirable consequences of
this situation. While we are unable to provide the linguist with the desired guarantee of
computational tractability in the general case, we have provided tools and techniques
that will aid linguists and implementors in the production of efficient grammars built
in the systemic formalism.

References
Barton, G. Edward; Berwick, Robert C.; and

Ristad, Eric Sven. (1988). Computational
Complexity and Natural Language.
Cambridge, MA: The MIT Press.

Brachman, Ronald J., and Schmolze,
James G. (1985). "An overview of the
KL-ONE knowledge representation
system." Cognitive Science, 9(2):171-216.

Davey, Anthony. (1978). Discourse
Production: A Computer Model of Some
Aspects of a Speaker. Edinburgh, U.K.:
Edinburgh University Press.

Eisele, Andreas, and D6rre, Jochen. (1988).
"Unification of disjunctive feature
descriptions." In Proceedings, 25th Annual
Meeting of the Association for Computational
Linguistics. Buffalo, NY.

Halliday, M. A. K. (1976). "The form of a
functional grammar." In Halliday: System
and Function in Language, edited by
G. R. Kress, 7-25. Oxford, U.K.: Oxford
University Press.

Halliday; M. A. K. (1975). Learning How to
Mean - - Explorations in the Development of
Language. London: Edward Arnold.

Houghton, George A. (1986). "The
production of language in dialogue: A
computational model." Doctoral
dissertation, University of Sussex.

Houghton, George A., and Isard, Stephen D.
(1987). "Why to speak, what to say and
how to say it: modelling language
production in discourse." In Modelling

Cognition, edited by P. Morris, 249-267,
New York: John Wiley.

Hudson, Richard A. (1971). English Complex
Sentences. Dordrecht: North Holland.

Kaczmarek, Thomas S.; Bates, Raymond;
and Robins, Gabriel. (1986). "Recent
developments in NIKL." In Proceedings,
5th National Conference of the American
Association for Artificial Intelligence.
Philadelphia, PA.

Kasper, Robert T. (1988). "An experimental
parser for systemic grammars." In"
Proceedings, 12th International Conference on
Computational Linguistics (COLING 88).
Budapest.

Kasper, Robert T. (1987). "Feature structures:
A logical theory with application to
language analysis." Doctoral dissertation,
University of Michigan.

Kasper, Robert T. (1987). "A unification
method for disjunctive feature
descriptions." In Proceedings, 25th Annual
Meeting of the Association for Computational
Linguistics. Stanford, CA.

von Luck, Kai; Nebel, Bernhard; Peltason,
Christoph; and Schmiedel, Albrecht.
(1986). "BACK to consistency and
incompleteness." In GWAI-85: 9th German
Workshop on Artificial Intelligence, edited
by H. Stoyan, 245-257, Berlin: Springer
Verlag.

MacGregor, Robert, and Bates, Raymond.
(1987). "The loom knowledge
representation language." Technical

407

Computational Linguistics Volume 17, Number 4

Report ISI/RS-87-188 Information
Sciences Institute, University of Southern
California.

Mann, William C., and Matthiessen,
Christian. (1985). "Nigel: A systemic
grammar for text generation." In Systemic
Perspectives on Discourse, edited by
R. O. Freedle, Ablex.

McCord, Michael. (1977). "Procedural
systemic grammars." International Journal
of Man-Machine Studies, 9(3):255-286.

Mellish, C. S. (1988). "Implementing
systemic classification by unification."
Computational Linguistics, 14(1):40-51.

Nebel, Bernhard. (1990). "Reasoning and
Revision in Hybrid Representation
Systems." Number 422 in Lecture Notes in
Artificial Intelligence. Berlin: Springer
Verlag.

Patten, Terry, and Ritchie, Graeme. (1986). A
Formal Model of Systemic Grammar.
Research Paper 290, Department of A.I.,
Edinburgh University.

Pereira, Fernando A., and Shieber, Stuart M.

(1987). Prolog and Natural Language
Analysis. CSLI Lecture Notes No. 10.
Center for the Study of Language and
Information, Stanford, CA.

Power, Richard. (1979). The organization of
purposeful dialogue. Linguistics.
17(1-2):107-152.

Reynolds, John C. (1970). "Transformational
systems and the algebraic structure of
atomic formulae." In Machine Intelligence,
Volume 5, edited by Bernard Meltzer and
Donald Michie. Edinburgh, U.K.:
Edinburgh University Press.

Shieber, Stuart M. (1986). An Introduction to
Unification Based Approaches to Grammar.
CSLI Lecture Notes, Number 4. Center for
the Study of Language and Information,
Stanford, CA.

Winograd, Terry. (1972). Understanding
Natural Language. New York: Academic
Press.

Winograd, Terry. (1983). Language as a
Cognitive Process: Volume 1: Syntax.
Reading, MA: Addison-Wesley.

408

