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In this paper, it is shown that the addition of simple and linguistically motivated forms of lexical 
rules to grammatical theories based on subcategorization lists, such as categorial grammars 
(CG) or head-driven phrase structure grammars (HPSG), results in a system that can generate 
all and only the recursively enumerable languages. The proof of this result is carried out by 
means of a reduction of generalized rewriting systems. Two restrictions are considered, each of 
which constrains the generative power of the resulting system to context-free languages. 

1. Introduct ion 

In recent grammatical theories, there has been an increasing trend toward the lexical- 
ization of syntactic information. This is particularly evident in the case of categorial 
grammars (CG) and head-driven phrase structure grammars (HPSG), where a small 
number of highly schematic syntactic rules are assumed to apply universally. With 
this assumption of a universal syntax, the task of explaining the variations between 
languages must be carried out in the lexicon. Rather than assuming that the lexicon is 
simply an unstructured list associating words with syntactic categories, organization 
is usually imposed by means of hierarchical inheritance systems, linking theories re- 
lating lexical semantics to grammatical categories and finally with lexical rules. It is 
the lexical rule component of these grammars that we investigate in this paper. 

We present a straightforward formalization of categorial grammars with lexical 
rules based in part on the systems of Dowty (1978, 1979), Bach (1984), Keenan and 
Faltz (1985), Keenan and Timberlake (1988), Hoeksema and Janda (1988), and the HPSG 
lexical rule systems of Flickinger et al. (1985), Flickinger (1987), and Pollard and Sag 
(1987). We show that even using such a simple form of lexical rules, any recursively 
enumerable language can be recognized. Thus the addition of lexical rules leads to 
systems in which it is not possible to effectively decide whether a string is accepted 
by a grammar. We first introduce a pared-down formalism that captures the way in 
which heads combine with complements in CG and HPSG. We then provide examples 
to motivate a very straightforward and natural system of lexical rules. 

To show that arbitrary recursively enumerable languages may be generated by 
the resulting system, we provide a reduction of generalized rewriting systems (Type 0 
grammars). Though the details of our reduction are different, our method is reminis- 
cent of that used by Uszkoreit and Peters (1986) to show that context-free grammars 
with metarules could generate arbitrary recursively enumerable languages. The anal- 
ogy between CG lexical rules and GPSG metarules is strengthened by the fact that 
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GPSG as presented in Gazdar et al. (1985) restricts the application of metarules to 
lexical phrase structure rules. 

Along the way to proving that categorial grammars with lexical rules can generate 
arbitrary recursively enumerable languages, we consider two restrictions that have 
the effect of reducing the generative power of the system to context-free languages. 
The first of these restrictions limits the recursive application of lexical rules, while 
the second puts a bound on the number of complements that can be specified by a 
category. 

2. CGs and HPSGs 

In Generalized Phrase Structure Grammar (GPSG) as presented in Gazdar et al. (1985), 
each lexical head category is assigned a simple integer subcategorization value. Sim- 
ilarly, each lexical phrase structure rule specifies the possible value(s) of the subcate- 
gorization feature occurring on its head daughter. In both CG and HPSG, the subcate- 
gorization value and correspondingly indexed phrase structure rule are replaced with 
a lexical encoding of head/complement structure by means of a subcategorization or 
complement list. The exact characterization of the notion of head has been the subject 
of some debate, but which items are labeled as heads is not important here; we use 
the term head to refer to any category that specifies its complements. Thus heads 
in our sense may be categories traditionally classified as specifiers or adjuncts. The 
subcategorization list of a category determines the number, form, and order of its com- 
plements. The only syntactic rule scheme that we consider is one that allows a head to 
combine with a complement. The result of such a construction is a category just like 
the head, only with the complement removed from its subcategorization list. Many 
extended categorial grammar systems and the HPSG system allow more sophisticated 
rules than this to deal with adjuncts, coordination, and long-distance dependencies, 
but we only need the simple head-complement construction to show that the addition 
of lexical rules leads to undecidability. 

We now turn to a more formal presentation of a framework that incorporates the 
core of both CG and HPSG. We begin with a finite set BasCat of basic categories 
out of which complex categories are constructed. The collection of basic categories is 
usually assumed to contain "saturated" syntactic categories, including nouns, noun 
phrases, sentences, and so forth, but the choice of basic categories is ultimately up to 
the grammar writer. We are not concerned with the details of any particular syntactic 
analysis here. The full set Cat of categories is defined to be the least collection of objects 
of the form b[co,..., cn-1] where b E BasCat is a basic category and ci E Cat for i < n. 
The categories between the brackets specify the arguments of the category, with the 
assumption being that these arguments must be attached in the order in which they 
occur on the subcategorization list. While our notation follows the usage of HPSG and 
Unification Categorial Grammar (Calder et al. 1988), it should be clear how it relates 
to more traditional categorial grammar notation (see Bar-Hillel et al. 1960). 

We assume the following schematic phrase structure rule that allows heads to 
combine with a single complement: 

Definition 1 
b[Cl,..., c,] ~ b[co,..., On] CO 

In most categorial grammars and in HPSG, there are rules in which the complement 
category precedes the head, but we do not even need this much power. For instance, 
a simple transitive verb might be given the category s[np[];np[]], a noun phrase the 
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category np[], a noun n[], and a determiner the category np[n[]]. Thus the rule instance 
s[np[]] > s[np[], np[]] np[] allows the combination of a transitive verb with an object 
noun phrase, while the rule np[] ~ np[n[]] n[] would allow a determiner followed by 
a noun to be analyzed as a noun phrase. 

Let Rule be the set of all instances of the schematic rule applied to Cat. Note that 
this set is totally determined by the choice BasCat of basic categories. 

A l ex icon for our simple grammar formalism consists of a finite relation between 
categories and basic expressions: 

Def in i t ion  2 
Lex C BasExp x Cat. 

We write e := c if (e, c> E Lex. There is no restriction preventing a single expression from 
having more than one lexical entry. What we have with Lex and Rule is a simple phrase 
structure grammar, albeit one with an infinite set of rules. We interpret admissibility 
(well-formedness or grammaticality) in this phrase structure grammar in the usual 
way (see Hopcroft and Ullman 1979:79-87). In particular, we take £Lex(C) to be the set 
of strings of basic expressions of category c. By mutual recursion over Cat we define 
the £Lex(C) as the minimal sets such that: 

Def in i t ion  3 
• e E £Lex(C) if (e,c> E Lex 

• ele2 c £Lex(C[Cl . . . . .  c,]) if el C £Lex(C[C0, Cl,...,  Cn]) and e2 E £Lex(C0). 

It should be fairly obvious at this point how our simple categorial grammar for- 
malism represents the core of both categorial grammars and the subcategorization 
component of HPSG. It should also be noted that such a grammar and lexical as- 
signment reduces to a context-free grammar. This is because only finitely many sub- 
categories of the lexical categories may ever be used in a derivation and thus only 
finitely many instances of the application scheme are necessary for a finite categorial 
lexicon. Somewhat surprisingly, the converse result also holds (Bar-Hillel et al. 1960); 
every context-free language is generated by some categorial grammar in the form we 
have presented. This latter result can be deduced from the fact that every context-free 
language can be expressed with a Greibach normal form grammar where every pro- 
duction is of the form Co ~ aC1 . . .  Cn where n > 0, the C i a r e  nonterminal category 
symbols, and a is a terminal expression (see Hopcroft and Ullman 1979). Taking a ba- 
sic category for every nonterminal of the context-free grammar and a lexical entry of 
the form a := Co [C1 [],..., C, []] for every production of the above form in the context- 
free grammar, we produce a categorial grammar that can be shown by induction on 
derivation length to generate exactly the same language as the Greibach normal form 
context-free grammar. 

Not only is recognition decidable for context-free languages, but Earley's (1970) al- 
gorithm is known to decide them in O(n 3) time where n is the length of the input string 
(in fact, general CFG parsing algorithms can be constructed from matrix multiplication 
algorithms with slightly better worst-case asymptotic performance than Earley's algo- 
rithm [Valiant 1975]). Unfortunatel~ the situation is quite different after the addition 
of lexical rules. 

Before going on, it should be noted that one of the primary reasons for employing 
categorial grammars is its natural relation to a compositional semantics (Montague 
1970). While we do not consider the semantic effects of lexical rules here, the interested 
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reader is urged to consult Carpenter (1991) for details of how a higher-order typed 
semantics can be naturally added to the system of lexical rules presented below. 

3. Adding Lexical Rules 

The form of lexical rules that we propose to add to the basic categorial system are what 
Keenan and Faltz (1985) have termed valency affecting operations. These operations 
allow the permutation, addition, or subtraction of complements and the modification 
of the head or functor category. Our operations do not have any overt morphological 
effects, and are thus often referred to as zero morphemes. The same general lexical 
rule format has been proposed by virtually everyone considering the lexicon from 
a categorial perspective (see Dowty 1978, 1979; Bach 1984; Keenan and Faltz 1985; 
Keenan and Timberlake 1988; and Hoeksema and Janda 1988). Moortgat (1987) and 
Aone and Wittenburg (1990) have presented systems that allow extended categorial 
grammars to operate at both the morphological and syntactic levels, but the operations 
that can be carried out by their extended sets of rules produce results very similar to the 
lexical operations we allow here. Our results are especially relevant in light of recent 
work in HPSG, which admits lexical rules that do the same work as the ones employed 
here (see Flickinger 1987 and Pollard and Sag 1987). In the tradition of Montague, 
Dowty (1979) allowed arbitrary well-defined operations to be applied to lexical entries, 
but none of the rules he considered fall outside of the scope of the system presented 
here. The lexical generalizations studied by Bach (1984) led him to employ lexical 
redundancy rules that are expressed by composing basic functions that pick out the 
head or tail of a subcategorization list as well as the subcategorization list with either 
the head or tail removed. More formally, Bach allowed arbitrary concatenations and 
compositions of the following functions to be applied to subcategorization lists: 

Definition 4 

FIRST(xl'-'Xn) = x l  

RREST(xl ' ' '  X n )  --~ X 2  " " " X n  

LAST(xl . . .x ,)  = x ,  

LREST(xl ... X n )  - ~  x 1 " "  X n -  1 

After we present our lexical rule system, it should be obvious that Bach's system allows 
exactly the same operations to be expressed as we do. The only difference is that we 
recast Bach's functional rules in terms of simple pattern-matching. It is conjectured 
in Hoeksema and Janda (1988) that the resulting system is a proper subset of the 
context-sensitive languages. We show here that this conjecture could not be further 
from the truth, as all of the recursively enumerable languages can be generated using 
these operations. Keenan and Timberlake (1988) also present a collection of lexical 
redundancy rules that would seem to admit the system presented here as a natural 
generalization. In particular, they present an analysis of passive almost identical to the 
one presented below. 

The restriction placed on the form of our rules is similar to the restriction on GPSG 
metarules; we only allow one variable over sequences of categories (see Gazdar et al. 
1985). This allows the manipulation of arguments a specified distance from either end 
of the subcategorization list, but not arbitrary arguments. With obliqueness specified 
in terms of subcategorization order (see Dowty 1982 and Pollard and Sag 1987), lex- 
ical rules are able to specify operations on arguments based on their obliqueness. In 
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general, a lexical rule is of the form: 

Definition 5 
b[co,. . . . . . .  , C n , $ , d o ,  • ,dm] ::~ b'[c'o,. ,%;, $,d~o,... ,d~m ,] 

where $ is taken to be a variable ranging over sequences of categories (as in Ades and 
Steedman 1982). More precisely, we assume that the lexical rules are given by a finite 
relation: 

Definition 6 
LexRule C (BasCat x Cat* x Cat*) x (BasCat x Cat* x Cat*). 

Thus a rule of the form in (5) would be formally represented as: 

Definition 7 
lib, (Co,. ,Cn), (do, . ,dm)),  (b', (Co, , ' ' . . . .  ' . . .  C a , ) ,  (do, . . . ,d~,)))  E LexRule. 

The intended interpretation of an element of LexRule is that if a basic expression is 
assigned to a category that matches its left-hand side, then it is also assigned to a cat- 
egory that matches its right-hand side. We generate the final (possibly infinite) lexicon 
LexRule(BasLex) by closing the basic lexicon under the lexical rules. More formally, we 
define LexRule(BasLex) to be the least relation such that: 

Definition 8 
• BasLex C LexRule(BasLex), and 

if cr := b[co, . . . ,  Cn, eo , . . . ,  ek, d o , . . . ,  din] E LexRule(BasLex) and 
/ / / / b[co , . . . , cn ,$ ,do , . . . , dm]  ~ b [%,...,Cn,,$,do, . . . , d~ , ]  E LexRule 

I I then cr := b [%, • • • ,  C n,' , eo, . . . .  ,ek, dlo, ..,d~,] E LexRule(BasLex). 

Thus, a grammar is determined by the specification of finite sets BasLex and lexRule, 
over some given finite sets BasExp and BasCat of basic expressions and categories. 
In the undecidability proof that follows, it is only really necessary to consider lexical 
rules that modify the subcategorization list; a slightly modified proof goes through if 
lexical rules are prohibited from affecting the basic head category. 

We now take the time to motivate the full power of this lexical rule system. A 
standard example of the application of a lexical rule is passivization, which in our 
system can be stated in the form: 

Example 9 
s{np[]l, $, np[]2] ~ s{$, ppby[]2, np{]l] (Passive) 

The intuitive reading of this rule is that the first argument of any verb can become the 
last argument (subject) and the last argument becomes a prepositional by-phrase; the 
subscripts, while not an actual part of the rule, indicate this swapping of arguments 
and their syntactic markings. For instance, with a ditransitive verb category such as 
s[np[]l, np{]2, rip[]3], the result of applying the passive rule would be s[np[]2, Ppby[]3, np[]l]. 
While we cannot account for the fact that the subject occurs before the verb rather than 
after it in the simplified system presented here, this category reflects the fact that the 
number, order, and category of arguments is permuted as a result of passivization. 
With the stripped-down system presented here, a second lexical rule is required for 
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passives without the prepositional argument. An operation such as detransitivization 
can be stated by the rule: 

Example 10 
s[npN, $] ~ s[$] (Detransitivization) 

The effect of detransitivization is simply to remove the most oblique argument from 
the subcategorization list. A nominalization rule might be stated in the form: 

Example 11 
siS] ~ n[$] (Nominalization) 

Applying nominalization to a verbal lexical entry produces a nominal lexical entry 
with the same arguments. We can capture causative verbs with the following lexical 
rule: 

Example 12 
siS] ~ s[$, np[]] (Causative) 

The causative rule adds another noun phrase argument for the subject in the least 
oblique position and increases the obliqueness of the existing arguments. A rule for 
dative shift could be expressed as: 

Example 13 
s[np[]l, pp&t[]2~ np3[]] ~ s[np2[]~ npl []~ np3[]] (Dative) 

The point of these examples is that very simple lexical regularities such as passives, 
causatives, and detransitives motivate a system of lexical rules that switch, add, and 
delete elements from the subcategorization lists of lexical entries. 

Lexical rules of the form we have here could also be used for what are tradition- 
ally considered to be syntactic operations, such as a rule for headless relatives (see 
Carpenter 1991): 

Example 14 
s[$, np~]] =~ n[$, n[]] (Headless Relativization) 

This rule has the effect of transforming a verbal category into a nominal modifier 
category with the same complements. Of course, to achieve the effect we desire, we 
must be able to mark verbs for their inflectional form and number. It should be ap- 
parent from these examples that the formalization of lexical rules presented here is 
particularly simple and motivated by a wide variety of seemingly lexical regularities. 
Further applications of lexical rules of the form we use here may be found in Dowty 
(1978, 1979), Bach (1984), Hoeksema and Janda (1988), Keenan and Timberlake (1988), 
Flickinger (1987), and Pollard and Sag (1987). 

4. Finite Closure 

We will now consider a restriction on the application of lexical rules that has the re- 
sult of restricting the resulting system to a finite set of lexical entries. In the context 
of GPSG, Thompson (1982) restricted metarules to be nonrecursive so that they could 
not apply to rules that they had a hand in generating. This means that starting with a 
finite set of rules and metarules, only a finite number of rules would result. A similar 
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restriction allows Aone and Wittenburg (1990) to pre-compile the results of closing a 
categorial lexicon under  a set of morphological operations. Let FinCIos(LexRule.BasLex) 
be the finite closure of the set of basic lexical entries under  the metarules with 
the restriction that no rule can apply to its own output.  More formally, we define 
FinCIos(LexRule,Bast.ex) inductively to be the least relation such that: 

Definition 15 
• BasLex C FinClos(LexRule~ BasLex) 

• I f  e :=  c C FinClos(LexRule - R, BasLex) and R c LexRule maps c to c' then 
e := c r E FinClos(LexRule, BasLex). 

This restriction ensures that a lexical rule never applies to its own output,  as a lexical 
rule R can only be applied to a lexical entry that is derived without  application of R. 
We thus have: 

Theorem 1 (Finite Closure) 
If LexRule and BasLex are finite 
then FiaCIos(LexRule,Bastex) is finite. 

Proof 
Trivial by induction on the cardinality of LexRule. [] 

The force of this result is that if we are willing to restrict our lexical rules to 
nonrecursive applications, then we have a finite lexicon and hence generate only a 
context-free language. But Carpenter (1991) argues for recursive lexical rules and pro- 
vides examples from the English verbal system for which recursive rule application 
seems necessary. 

5. Argument Complexity Bounds 

Before moving on to the undecidability result, we define a notion of category com- 
plexity and show that the result of closing a finite lexicon under  a finite number  of 
lexical rules leads to a lexicon for which there is an upper  bound on the complexity 
of the complements in lexical categories. Placing an upper  bound on the complexity 
of entire categories in the lexicon restricts the system to context-free languages and 
ensures decidability. 

Our complexity metric is based purely on the number  of complements for which 
a category subcategorizes and not the complexity of the complements themselves. The 
complexity of a category b[Cl~...~ Cn] is defined to be n, which we write as: 

Definition 16 
Comp(b[q~..., cn]) = n. 

While it is possible to have a lexical rule such as b[$] ~ b[c, $], which allows the deriva- 
tion of categories of unbounded complexity, the complements of categories derived 
by lexical rules are bounded in their complexity. 

Theorem 2 
For any finite base lexicon BasLex and finite set LexRule of lexical rules, there is a bound 
k such that if e := b[q~..., c~] c LexRule(BasLex) then Comp(ci) < k for 1 < i < n. 
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Proof 
Because BasLex is finite, there is an upper bound on argument complexity for any com- 
plement category assigned by BasLex. Similarly, since there are only a finite number of 
rules in LexRule there is an upper bound on the complexity of complements specified 
in the outputs of any rule. Taken together, these facts imply that there is a bounded 
complement complexity in the result of closing BasLex under LexRule, since any com- 
plement category assigned by LexRule(BasLex) must have been a complement category 
either in BasLex or in the complement list of one of the output rules in LexRule. • 

This result shows that the lexical rules cannot modify the structure of complements 
other than by completely replacing them with one of a finite number of alternatives. 

We now note that if we restrict the complexity of lexical categories themselves, 
we wind up with a context-free grammar. Let LexRule(13aslex)(n) be the set of lex- 
ical entries with categories of complexity less than or equal to n, so that (e, c) E 
LexRule(BasLex)(n) if and only if (e,c) E kexRule(BasLex)(n) and Comp(c) < n. 

Theorem 3 
The language generated by LexRule(BasLex)(n) is context-free. 

Proof 
Using the previous theorem, we know that there is a bound k on the size of the 
complements in any lexical entry in LexRule(BasLex), and thus there must only be a 
finite number of lexical entries with complexity of less than or equal to n. Consequently, 
I_exRule(Baslex)(n) is finite and thus a standard finitary categorial grammar lexicon 
that generates a context-free language. • 

6. Generative Power 

As we said in the introduction, we characterize the generative power of our system 
by the reduction of generalized rewriting systems to our head-complement grammars 
with lexical rules. Before doing this,, we review the basic definition of a generalized 
rewriting system. A generalized rewriting system is a quadruple G = (V, s, T ,R )  
where V is a finite set of nonterminal category symbols, s E V is the start symbol, T 
is a set of terminal symbols, and R C_ (V* x V*) U (V x T) is a finite set of rewriting 
rules and lexical insertion rules, which are usually expressed in the forms: 

Definition 17 
• v l . . . v n  ----* Ul""Um where vi:uj E V 

• v > t w h e r e v E V a n d t E T .  

String rewriting is defined so that: 

Definition 18 
pcrp I ~ pv'J 

if p, p' E (V U T)* and if (~ * ~-) E R is a rule. The language L(G) generated by a 
general rewriting system G is defined to be 

Definition 19 
L(G) = {or E T* Is _L_, ~} 
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where s is the start symbol and _L, is the usual transitive closure of the 
It is well known that: 

relation. 

T h e o r e m  4 
A language L is recursively enumerable if and only if there is a generalized rewriting 
system G = IV, s~ T, R / such that L = L(G). 

P r o o f  
See Hopcroft and Ullman (1979:221-223). • 

We now present the fundamental result of this paper, which states that the lan- 
guages that can be characterized by categorial grammars with lexical rules are exactly 
the recursively enumerable languages. 

T h e o r e m  5 (R.E.-Completeness) 
A language S is recursively enumerable if and only if there is a finite lexicon BasLex 
and finite set LexRule of lexical rules such that S is the set of strings assigned to the 
category s[] by LexRule(BasLex). 

P r o o f  
It is trivial to show that the languages generated by our system are recursively enu- 
merable; standard breadth-first search mechanisms that interleave lexical and syntactic 
derivations in order of complexity can be seen to enumerate all analyses. 

Conversely, suppose that we have a recursively enumerable language S and that 
the generalized rewriting system G = (V~s~ T~R I is such that S = L(G) is the set of 
strings generated by G. We show how to construct a categorial grammar using lexical 
rules that assigns the set S of expressions to some distinguished basic category. 

We begin by assuming that: 

D e f i n i t i o n  20 
BasCat = V U {#1 s}. 

We take a basic category for every nonterminal symbol in the generalized rewriting 
system along with two special symbols; the # is used as a delimiter in representing 
sequences of nonterminals by means of circular queues, while the s is used as the 
distinguished category of the grammar (note that s, not s, is the distinguished start 
symbol of G). Our claim is that the lexicon in (21) and lexical rules in (22) generate 
exactly the same language as G. 

D e f i n i t i o n  21 
• t : = v [ ]  i f ( v ~ t )  E R  

• t : =  v[#,s] if (v - - ~  t) E R 

D e f i n i t i o n  22 
• V1[$, V2] ~ Pl IV2, $] if  V 2 E V U {#} 

• v [ $ , v l , . . . , v n ]  ~ V[$ ,Ul , . . . ,Um]  if (Vl'' 'Vn ~ Ul"''Um) E R 

• v[#, v, $] ~ s[$] if  v E V 
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We represent an arbitrary string v l v 2 . . . v ,  E V *  by means of the categorial grammar 
category v[#[], vl [],..., vn []]. In what follows, we omit empty subcategorization lists, 
so that the above category would be abbreviated to v [ # , v l  . . . .  , V n ] .  Note that with 
this encoding, there are as many representations of a string as there are nonterminals 
v E V .  

By repeated application of the first lexical rule in (22), from a |exical entry 

t := v [ # , V l , . . .  ~Vm,Vm+l~. . .  ~Vn] 

we can generate a lexical entry of the form: 

t := V [ V m + l , . . .  , V n , # , v l , . . .  , V m ] .  

The application of this rule is the key to allowing an arbitrary string in the middle 
of a subcategorization list to move to the end so that it may be modified by a lexical 
rule. The # symbol keeps track of the true beginning of the sequence being derived. 

Suppose that the generalized rewriting system allows the one-step derivation: 

x l  . . . X i V l  . . . V n y l  "" " y j  ~ X l  " " " X i U l  " " " U m y l  " " " y j .  

If this rewriting is possible, then ( v ~  . . .  v n  ~ U l  "'" Um) E R so that by a combination 
of the first lexical rule and second lexical rule we can carry out the following lexical 
derivation: 

t " ~  

t : =  

t := 

t : =  

v [ # , x ~ , . . . , x i , v l  . . . .  , v , , y l , . . . , y j ]  

v [ y l , . . ,  Yi, #, x l  . . . .  , x;,  v l ,  • • •, v , ]  

?d[yl,..., y j ,  # ,  X l  . . . .  , x i ,  Ul  . . . .  , Urn] 

V[#, X~,  . . . , Xi ,  U~ . . . .  , Urn, y l , . . . ,  yj]. 

A simple induction then gives us the result that if 

x l  . . . x i  " ~ y l  " " y j  

then we can derive a lexical entry of the form 

t := v[#, y l  . . . .  , Yj]  

from a lexical entry of the form 

t := v[#, X l , . . . ,  Xi].  

Considering the first lexical entry, and our last observation, if 

S ~ V 1 • • • V n  
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according to the generalized rewriting system, then we can derive the lexical entry 

t := v[#, Vl, . . . ,  v,] 

from the lexical entry 

t : =  v[#, s] 

if (v , t) E R. Now suppose that (vi ~ ti) C R for 1 < i < n so that h ' "  t, c L(G). 
Beginning with the basic lexical entry 

tl :=  Vl [#, S] 

representing the lexical rewriting (Vl ----* tl) E R, we can derive the lexical entry: 

tl := Vl [#~ Vl~ . . .~  Vn]. 

From this last entry and our last lexical rule, we may  derive a lexical entry: 

tl := s[v2,.. . ,  Vn]. 

Furthermore, since we have ti :-= vi for 2 < i < n because (Vi ~ ti) E R,  we can assign 
t i t 2 . . ,  tn to the category s[] by repeated application of the categorial grammar  rule 
scheme. In fact, for 1 < i < n we have t l . '  . t i  assigned to s[vi+l,. . .  ,vn]. Thus every 
string that belongs to the language generated by G can also be generated using our 
categorial grammar with lexical rules. 

It simply remains to notice that we have tl := s[v2,...,vn] if and only if tl := 
vl [#, Vl , . . . ,  vn], which holds if and only if s * ~vl . . .  Vn and vl ---* h- The only way to 
derive viii from ti is by using a lexical entry which is only possible if (vi , ti) E R.  
Furthermore, the only derivations of category s[] in the categorial grammar must  be 
derived in this manner, as the only way s can arise is by lexical rule application in the 
above situation. Also note that while the # category can be removed by applying some 
lexical rule, there are no expressions that are assigned to #[] by our grammar. Thus 
the only way that the string tl . . .  tn can be assigned to category s[] is by following a 
lexical derivation that directly mirrors a derivation in G. • 

The fundamental  idea behind our reduction is that the complement specification 
on a categorial grammar category can be used to simulate the intermediate stages of 
a generalized rewriting system derivation. The only complication arises from the fact 
that categorial grammar  lexical rules operate on the ends of subcategorization lists, 
while generalized rewriting systems are allowed to operate on arbitrary substrings. 

7. Conc lus ion  

The system presented here for lexical rules in a simplified form of categorial grammar  
with only one head-complement  rule scheme has proven to generate arbitrary recur- 
sively enumerable languages. The inevitable conclusion is that if we want  a natural 
and effectively decidable lexical rule system for categorial grammars or head-driven 

311 



Computational Linguistics Volume 17, Number 3 

phrase structure grammars,  then we must  place restrictions on the system given here 
or look to state lexical rules at completely different levels of representat ion which 
themselves provide  the restrictiveness desired, such as in terms of some finite set of 
thematic roles and grammatical  relations, as is done in Lexical Function Grammar  
(LFG) (see Bresnan 1982; Levin 1987; Bresnan and Kanerva 1989). The common  as- 
sumption that lexical rules can perform arbitrary operations on subcategorization lists 
based on obliqueness is simply not  restrictive enough to yield an effective recognition 
algorithm. 
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