
TECHNICAL CORRESPONDENCE

PARSING DISCONTINUOUS CONSTITUENTS IN
DEPENDENCY GRAMMAR

Discontinuous constituents--for example, a noun and its
modifying adjective separated by words unrelated to them---
arc common in variable-word-order languages; Figure I
shows examples. But phrase structure grammars, including
ID /LP grammars, require each constituent to be a contigu-
ous series of words. Insofar as standard parsing algorithms
are based on phrase structure rules, they are inadequate for
parsing such languagesJ

The algorithm presented here, however, does not require
constituents to be continuous, but merely prefers them so.
It can therefore parse languages in which conventional
parsing techniques do not work. At the same time, because
of its preference for nearby attachments, it prefers to make
constituents continuous when more than one analysis is
possible. The new algorithm has been used successfully to
parse Russian and Latin (Covington 1988, 1990).

This algorithm uses dependency grammar. That is, in-
stead of breaking the sentence into phrases and subphrases,
it establishes links between individual words. Each link
connects a word (the "head") with one of its "dependents"
(an argument or modifier). Figure 2 shows how this works.
The arrows point from head to dependent; a head can have
many dependents, but each dependent can have only one
head. Of course the same word can be the head in one link
and the dependent in another. 2

Dependency grammar is equivalent to an X-bar theory
with only one phrasal bar level (Figure 3) - - the dependents
of a word are the heads of its sisters. Thus dependency
grammar captures the increasingly recognized importance
of headship in syntax. At the same time, the absence of
phrasal nodes from the dependency representation stream-
lines the search process during parsing.

The parser presupposes a grammar that specifies which
words can depend on which. In the prototype, the grammar
consists of unification-based dependency rules (called
D-rules) such as:

"category:noun] r category:verb]
person:X I
number." Y I "~ |person:X |
case:nominativeJ Lnumber:Y J

This rule sanctions a dependency relation between any two
words whose features unify with the structures shown--in
this case, the verb and its subject in a language such as
Russian or Latin. The arrow means "can depend on" and
the word order is not specified. X and Y are variables.
D-rules take the place of the phrase structure rules used by
Shieber (1986) and others; semantic information can easily

be added to them, and the whole power of unification-based
grammar is available.

The parser accepts words from the input string and keeps
track of whether or not each word is "independent" (not yet
known to depend on another word), indicated by + or - in
Figure 4. On accepting a word W, the parser does the
following:

(1) Search the independent words (those marked +) ,
mosl~ recent first, for words that can depend on W. If any
are tbund, establish the dependencies and change the mark-
ing of the dependents from + to - .

(21) Search all words so far seen, most recent first, for a
worct on which W can depend. If one is found, establish the
dependency and mark Was - . Otherwise mark Was +.

Figure 4 shows the process in action. The first three
words, ultima Cumaei venit, are accepted without creating
any links. Then the parser accepts iam and makes it depend
on venit. Next the parser accepts carminis, on which Cu-
maei, already in the list, depends. Finally it accepts aetas,
which becomes a dependent of venit and the head of ultima
and carminis.

The most-recent-first search order gives the parser its
preference for continuous constituents. The search order is
significant because it is assumed that the parser can back-
track, i.e., whenever there are alternatives it can back up
and try them. This is necessary to avoid "garden paths"
such as taking animalia (ambiguously nominative or accu-
sative) to be the subject of animalia vident pueri "boys see
animals."

With ordinary sentences, however, backtracking is rela-
tively seldom necessary. Further, there appear to be other
constraints on variable word order. Ades and Steedman
(1982) propose that all discontinuities can be resolved by a
pushdown stack. (For example, pick up ultima, then Cu-
maei, then put down Cumaei next to carminis, then put
down ultima next to aetas. Crossing movements are not
permitted.) Moreover, there appears to be an absolute
constraint against mixing clauses together? If these hypoth-
eses hold true, the parser can be modified to restrict the
search process accordingly.

Most dependency parsers have followed a "principle of
adjacency" that requires every word plus all its direct and
indirect dependents to form a contiguous substring (Hays
and Ziehe 1960; Starosta and Nomura 1986; Fraser 1989;
but not Hellwig 1986 and possibly not J/ippinen et al.
1986). This is equivalent to requiring constituents to be
continuous. This parser imposes no such requirement. To
add the adjacency requirement, one would modify it as
follows:

(1) When looking for potential dependents of W, never

234 Computational Linguistics Volume 16, Number 4, December 1990

Technical Correspondence

S

VP NP

A d ~ N

Adj V Adv N

I I I I
ulll"nTa Cumael venil Jam corm]his oe las
last Cumean has come now song age

'The last era of the Cumean song has now arrived'
(Latin; Vergil. Eclogues IV.d)

S

NP Aux NP V

i i
k u r d u - n g k u ka m a h d i waj])~lll"-nyi w i l a -ngk u
child dog chase small

'The small child is chasing the dog'
(Warlpiri; Siewierska 1988:158. citing Nash)

Figure I. Examples of discontinuous constituents.

).he big dog chased Lhe cat

Figure 2. Dependency representation of a
scntence. Arrows point from each word to its

depcndents (modifiers or arguments).

A B C D

D

A B C D

Figure 3. Equivalence of dependency network to
X-bar tree.

I.

2.

ulLllrn a
+

ul[Zrna Curnael
+ +

3. uHima Cumaei venil
÷ + 4-

4. u/lima Cumaei veni[iam
+ + + --

5. ultZrna Cumael venH ibm carmmis
+ - - + - - 4 -

ulHma Cumaei venH ibm carmimL~ aeLas

Figure 4. The parser accepts words one by one and
tries to link them together; ' + ' marks words that

do not (yet) depend on other words.

skip over an independent word. That is, if an independent
word is found that cannot depend on IV, then neither can
any earlier independent word.

(2) When looking for the word on which W depends,
consider only the previous word, that word's head, the
head's head if any, and so on.

With these requirements added, the algorithm would be
the same as one implemented by Hudson (1989).

Formal complexity analysis has not been carried out, but
my algorithm is simpler, at least conceptually, than the
variable-word-order parsers of Johnson (1985), Kashket
(1986), and Abramson and Dahl (1989). Johnson's parser
and Abramson and Dahl's parser use constituency trees
with explicit discontinuity ("tangled trees"), with all their
inherent unwieldiness. Kashket 's parser, though based on
GB theory, is effectively a dependency parser since it relies
on case assignment and subcategorization rather than tree
structure.

M i c h a e l A . C o v i n g t o n

Artificial Intelligence Programs
The University of Georgia
Athens, GA 30602

REFERENCES

Abramson, Harvey and Dahl, Veronica. (1989). Logic Grammars.
Springer.

Ades, Anthony E. and Steedman, Mark J. (1982). "On the order of
words." Linguistics and Philosophy, 4:517-558.

Computational Linguistics Volume 16, Number 4, December 1990 235

Technical Correspondence

Covington, Michael A. (1990). "A dependency parser for variable-word-
order languages." In Computer Assisted Analysis and Modeling on the
IBM 3090, edited by Hilton U. Brown, MIT Press.

Covington, Michael A. (1988). "Parsing variable-word-order languages
with unification-based dependency grammar." Research report 01-.
0022, Artificial Intelligence Programs, The University of Georgia.

Fraser, Norman M. (1989). "Parsing and dependency grammar." UCL
Working Papers in Linguistics, 1: 296--319.

Hays, David G. (1964). "Dependency theory: a formalism and some
observations." Language 40:511-525.

Hays, David G. and Ziehe, T. W. (1960). "Studies in machine translation,
10---Russian sentence-structure determination." Research memoran-
dum RM-2358, The RAND Corporation, Santa Monica, CA.

Hellwig, Peter. (1986). "Dependency unification grammar." In Proceed-
ings of the 1 I th International Conference on Computational Linguis-
tics (COLING-86). 195-198.

Hudson, Richard. (1989). "Towards a computer-testable word grammar
of English." UCL Working Papers in Linguistics, 1:321-339.

Hudson, Richard. (1984). Word Grammar. Blackwell.
J[ippinen, Harri; Lehtola, Aarno; and Valkonen, Karl (1986). "Func-

tional structures for parsing dependency constraints." In Proceedings
of the l lth International Conference on Computational Linguistics
(COLING-86), 461463.

Johnson, Mark. (1985). "Parsing with discontinuous constituents." Pro-
ceedings of the 23rd Annual Meeting of the Association for Computa-
tional Linguistics, 127-132.

Kashket, Michael B. (1986). "Parsing a free-word-order language:
Warlpiri." Proceedings of the 24th Annual Meeting of the Association
for Computational Linguistics, 60-66.

Mel'~uk, 1. A. (1988). Dependency Syntax: Theory and Practice. State
University Press of New York.

Rohinson, Jane J. (1970). "Dependency structures and transformational
rules." Language 46:259-285.

Schubert, Klaus. (1987). Metataxis: Contrastive Dependency Syntax for
Mr,~chine Translation. Foris.

Shieber, Stuart M. (1986). An Introduction to Unification-Based Ap-
prc,aches to Grammar. (CSLI Lecture Notes, 4.) Stanford: CSLI.

Starosta, Stanley. (1988). The Case for Lexicase. Pinter.
Starosta, Stanley and Nomura, Hirosato. (1986). "Lexicase parsing: a

lex:icon-driven approach to syntactic analysis. In Proceedings of the
l lth International Conference on Computational Linguistics (COL-
ING-86).

Tesni~re, Lucien. (1959). Elkments de la Syntaxe Structurale. Klinck-
sleek.

NOTES

1. The early stages of this work were supported by National Science
F;oundation grant IST-85-02477. I am grateful to Norman Fraser and
Pdchard Hudson for comments and encouragement.

2. On dependency grammar in general see Tesni6re 1959, Hays 1964,
Robinson 1970, Hudson 1986, Schubert 1987, Mel'~uk 1988, and
Starosta 1988. In Hudson's system, a single word can have two heads
provided the grammatical relations connecting it to them are distinct.

3. As pointed out by an anonymous reviewer for Computational Linguis-
tics.

236 Computational Linguistics Volume 16, Number 4, December 1990

