
AN EDITOR FOR THE EXPLANATORY AND COMBINATORY

DICTIONARY OF CONTEMPORARY FRENCH (DECFC)

Michel D~cary
Guy Lapalme

D~partement d'Informatique et Recherche Op~rationnelle
Universit~ de Montreal

C.P. 6128, Succursale A
Montreal, Quebec H3C 3J7

Canada

This paper presents a specialized editor for a highly structured dictionary. The basic goal in building that
editor was to provide an adequate tool to help lexicologists produce a valid and coherent dictionary on the
basis of a linguistic theory. If we want valuable lexicons and grammars to achieve complex natural language
processing, we must provide very powerful tools to help create and ensure the validity of such complex
linguistic databases. Our most important task in building the editor was to define a set of coherence rules that
could be computationaily applied to ensure the validity of lexical entries. A customized interface for
browsing and editing was also designed and implemented.

1 INTRODUCTION (WHAT IS THE DECFC?)

The Dictionnaire Explicatif et Combinatoire du Fran~ais
Contemporain (DECFC) is an attempt to provide a for-
mally complete and adequate description of the French
lexicon. It is based on the "Meaning-Text" theory (Mel~uk
1973), which was the source of several projects in natural
language processing and especially in automatic transla-
tion. One of the most important principles of the DECFC is
that the greater part of the information needed to describe
a natural language should be compiled within the diction-
ary. This is in contrast with the current practice of giving
preference to grammars.

Far from being a modest and secondary appendix to a
good grammar, the dictionary becomes the main (in
effect, only) basis of all grammars and, in general, of all
linguistic descriptions (Mel~uk 1973).

As the dictionary is used as the basis of linguistic descrip-
tion, it becomes a very complex database for different types
of information with many links and constraints. A well-
defined methodology is needed to build such a dictionary;
adequate computerized tools are also needed, otherwise the
task becomes almost impossible. Our editor is an attempt to
provide such a tool.

1.1 OVERVIEW OF THE MEANING-TEXT THEORY

To really understand the goal of the DECFC, it is impor-
tant to put it in the perspective of the Meaning-Text

Theory (MTT) for which it is the foundation. We now
briefly sketch the MTT and show its implications for the
dictionary. A comprehensive presentation can be found in
Mel6uk (1973); a more computer science-oriented view is
Boyer and Lapalme (1984), where it is used as the basis of
a system for generating paraphrases. Mel~uk and Polgu6re
(1987) describe the formal approach that underlies the
construction of the DECFC.

As stated by Mel~uk, the purpose of the MTT "consists
in establishing correspondences between any given mean-
ing and (ideally) all synonymous texts having this meaning."
The MTT is essentially descriptive and is not concerned
with procedures for moving from meanings to texts and vice
versa. In MTT, an utterance u is represented at seven
levels:

• the Sem(antic)R(epresentation), which is a linguistic
object, an utterance in a pictorial language. Its role is to
represent a class of synonymous sentences, weeding them
out of all their syntactic information. A semantic graph
is a connected directed graph with labeled nodes and
arcs. The node labels are either predicates or names of
objects. The arc labels are integers; the arc labeled by i
leads to the ith argument of the predicate.

• the D(eep-)Synt(actic)Representation is a tree whose
nodes are labeled with "meaningful lexemes" of u.

• the S(urface-)Synt(actic)R(epresentation) is also a tree,
but its nodes are labeled with all actual lexemes of u.

• MTT also introduces the Deep and Surface representa-
tions for morphology and phonology.

Computational Linguistics Volume 16, Number 3, September 1990 145

Michel D6cary and Guy Lapalme An Editor for the DECFC

For example, consider the following simple network,

many

change

1 -- sale y z 20

which represents the sentence "The sales have increased by
20 units." This network is incomplete because there is no
indication about the time of the action and about the
determination of the sales (do we know exactly what sales
we are talking about?). To transform a S e m R to a D S y n t R ,

we have to cover all the nodes of the S e m R with "network
schemata" found in the DECFC and merge the correspond-
ing trees also given by the DECFC.

Suppose now that our dictionary contains only of three
definitions composed of the "network schema," the corre-
sponding tree and the conditions under which the definition
can apply to a network.

N E T W O R K

1) change

x y z w

2) many 1 ~ x

3) sale

TREE

<inc rease_by , ve,a >

X' W

CONDITIONS

free(z)
free(z)
integer(w)>O

x' (plur) name(x')

<sale,name,<fem,n> > none

The first rule indicates that if the y and z arguments are
free variables and that w is a positive integer, then the
c h a n g e (x , y , z , w) predicate can be transformed to the
tree corresponding to x ' i n c r e a s e _ b y w. x ' corresponds
here to the x node obtained by using the dictionary defini-
tions. In this case, the s a l e node gives the node
(s a l e , n a m e , (f e m , n)) . So applying rules 1), 2), and 3) we
obtain the three following trees:

<increase,ve,a>

x ' 20

rule 1

(x' =) <sale,name,<fem,n> > rule 3

(x' =) < < _, plur> > rule 2

Boyer and Lapalme (1984) describe a variant of the classi-
cal unification algorithm for merging these trees (where
underlines indicate free variables); we get the following

D S y nt R :

<increase,ve,a>

/ i
<sale,name,<fem,plur> > 20

We could continue by applying similar rules to trans-
form between the different levels of representation. The
transformation rules have to be very precise, and thus the
dictionary becomes a complex database involving many
relations between words. A formal approach to the diction-
ary building is needed because the transformations are
essentially automatic and data-driven (in our case diction-
ary-d.riven). Building the DECFC is an enormous task
because it has to deal not only with the lexemes but also
with their intricate relations. The appendix gives the full
ent:ry for the lexeme r e s p e c t where it can be appreciated
that a tool to help in writing and checking entries and
relations would be very useful.

However, the basic goal of the DECFC project is not to
create a version of the dictionary that could be used by a
computer program (for text analysis or generation, for
instance) but rather to edit a printable version for human
readers. This means that the way information is presented
and[edited is not always as formal as could be expected
from the theory. For instance, definitions of lexemes, which
are represented by semantic networks in the theory, are
represented in the DECFC by French sentences derived
from the network by following a set of principles (but no
formal rules). Despite this, the DECFC is built applying a
systematic methodology that could in principle be pro-
grammed, the main difference being that the information is
not always as explicit as it could be. A lexicologist could,
for instance, retrieve the exact semantic network from a
DECFC definition, but a computer could not. Further-
more, the DECFC includes some redundancies that would
not be needed from a theoretical point of view. Even if there
are a few differences between the DECFC and the formal
lexicon of the MTT, there is a clear and direct correspon-
dence between the two.

Our discussion emphasizes the validations the system has
to ensure and the way to implement them. We first give a
description of the DECFC structure. We then concentrate
on specific problems of coherence and verification through
the dictionary. We finally discuss the way lexicographers
can interact with the system through a specialized interface
to the editor. Mel6uk and Polgu6re (1987) give more
details about the structure of this explanatory and combina-
torial dictionary. We only give here what is relevant for our
system.

2 CONTENTS OF THE D E C F C

Each, lexical entry of the DECFC gives two basic kinds of
information: semantic information, a systematic and rigor-

146 Computational Linguistics Volume 16, Number 3, September 1990

Michel D~cary and Guy Lapalme An Editor for the DECFC

ous description of the meanings of words and phrases, and
combinatorial information, a description of the way individ-
ual words can combine syntactically and lexically. The
DECFC is thus an "explanatory" and "combinatorial"
dictionary.

2.1 UNITS OF LEXICOGRAPHIC DESCRIPTION

The basic unit of description is the lexeme. An entry
corresponds to only one lexeme, and a lexeme is described
in only one entry. A lexeme is a single word taken in only
one precise meaning, which is a practice that differs from
the traditional dictionaries. Each exception of a word which,
in a traditional dictionary, would be described within the
same article is given a separate description because each
lexeme has its own semantics and combinatorics.

But obviously, certain lexemes have similar meanings
and behavior; to take this into account, the DECFC uses
the concept vocable. A vocable is the set of all lexemes that
have the same form (they are written the same way) and
share a nontrivial meaning component. Within a vocable,
each lexeme is numbered according to its meaning proxim-
ity with the other lexemes. The DECFC uses three levels of
numbering, corresponding to three levels of semantic dis-
tances. Because lexemes have different meanings and dif-
ferent syntax, distinguishing lexemes from each other is
essential for the theory. However, the fact that those
numbers also represent a certain measure of meaning
proximity is a redundancy introduced only for human
readers of the dictionary, as this is a current practice of
most printed dictionaries. Nevertheless, there is a well-
defined methodology for attributing those numbers. ~

For example, the vocable R E S P E C T contains four lex-
emes numbered as follows: 2

respect I: attitude 6motionelle favorable
e.g., le respect pour les parents

respect II. 1: fait de tenir compte des prescriptions
e.g., le respect des lois

respect II.2a: fait de tenir compte de quelque chose en
ne lui portant pas atteinte
e.g., le respect de la propri6t6 des parcs

respect II.2b: fait de ne pas porter atteinte ~ quelque
chose
e.g., le temps n'a pas de respect pour
quiconque

2.2 SEMANTIC INFORMATION

Semantic information contained in a DECFC entry opens
the possibility of building a global semantic network corre-
sponding to the meaning of a sentence according to MTT.

Lexemes can have semantic arguments, expressing the
various actants involved in the meaning defined by the
lexeme, and syntactic arguments realizing the semantic
arguments in a text. In the DECFC semantic arguments
are represented by capital letters, and syntactic arguments
are represented by numbers. When the meaning is repre-
sented by a network, arguments are explicitly represented

in the network. However, in the " text" version of defini-
tions, we must first specify the number and name of seman-
tic arguments and then use those arguments in the defini-
tion. The first part is called the definiendum and the second
the definiens. For example, the definition of respect I looks
as follows:

Respec t de X envers Y =
at t i tude bmotionel le favorab le de X h l 'bgard de Y . . .

The expression to the left of the equal i ty sign
(definiendum) expresses the fact that respect I uses two
semantic actants. Theoretically, it would have been enough
to express it as re spec t (X ,Y) ; however, as it is intended for
human readers, the DECFC prefers to include the argu-
ment 's name into an expression closer to the normal syntax
of language. The semantic informations must also take into
account the following:

• Definitions must never use ambiguous words: each lex-
eme appearing in a definition is distinguished by its
number. But during the writing of the dictionary, it is not
always possible to know these numbers before the corre-
sponding lexemes have been defined. So our editor will
have to deal with these "vague" references that later can
be made more precise when more information becomes
available.

• Definitions must not create "vicious circles." In other
words, a systematic replacement of lexemes by their
definition, and this recursively at all levels, must never
use the initial lexeme. This implies that there are lex-
emes that we will not be able to define; these lexemes
would then be identified as semantic primitives. One of
the goals of the work on the DECFC is to find these
primitives.

2.3 THE GOVERNMENT PATTERN

The government pattern describes the way semantic act-
ants can be syntactically manifested in a correct sentence.
It is a table where each column corresponds to a semantic
actant and specifies for it the corresponding syntactic act-
ant and the different ways it can be expressed. Take for
example the lexeme respect I, whose government pattern is
given in Figure 1.

For example, the expression "X = 1" in column 1 means
that the semantic actant referred to as "X" in the definition
can be expressed syntactically by a dependency relation

X = I Y = 2 Z = 3

1. de N 1. de N 1. pour N
2. Aposs 2. pour N

3. A 3. envers N

Figure I Government Pattern for the Lexeme
respect L

Computational Linguistics Volume 16, Number 3, September 1990 147

Michel l~cary and Guy Lapalme An Editor for the DECFC

numbered "1 ." This relation can have the form de N, which
means de (o f) followed by a noun. Row 2 of column 1
expresses the fact that X can be expressed by a possessive
pronoun (as in his respect).

In the following sentence:
Le peuple respecte le pr6sident pour son courage,

X = "le peuple,"
Y = "le pr6sident,"
Z = "le courage du pr6sident."

Looking at the government pattern, we can deduce that it is
correct to say:

for the first actant:
le respect du peuple
son r e s p e c t . . . ,
le respect populaire

for the second actant:
son respect du prbsident,
le respect pour le prbsident,
le respect envers le prbsident,

for the third actant:
le respect du peuple envers le pr6sident pour son
courage.

The government pattern is supplied with so-called restric-
tions; these are constraints on the combination of forms
occurring in different columns.

For respect I, the restrictions are

1) CI.1 + C2.1
C2.2 + C3.1 are impossible
C3 without C2

2) C1.3 + C2.1: is not desirable.

The symbol "C" followed by a number refers to a column
in the government pattern; if followed by a dot and a
number, it refers to a row in that column. The symbol " + "
means "together with." The first expression in the example
could thus be read "to have the first realization of the first
syntactic actant together with the first realization of the
second actant is impossible" (ie: the sentence *Le respect
du peuple du prbsident is not possible). Other examples
are:

*Le respect au peuple du pr6sident 3
*Le respect du peuple pour le pr6sident pour son courage

are impossible, while

?Le respect populaire au pr6sident

is not desirable.

2.4 LEXICAL COMBINATORIC

Usually, the meaning of a group of lexemes is the combina-
tion of the meanings of the original lexemes. For example,
the meaning of respect du peuple is the combination of the
meanings of respect and peuple. But it often happens that

the resulting meaning is not this combination, for example
pomme de terre is not the combination of the meanings of
pomme and terre.

The lexical combinatoric of the DECFC describes the
syntax and meaning of those idiomatic or semi-idiomatic
exp:ressions containing the lexeme. The authors of the
DECFC have isolated about 50 elementary meanings (with
specific syntactic roles) the terms of which, taken either
alone or in combination, can express the meanings of many
semi-idiomatic expressions. These elementary meanings
and their legitimate combinations are called lexicalfunc-
tions. Lexical functions also include a set of "substitution
functions," which express semantic or syntactic relations
between lexemes. Examples of lexical functions are:

Magn, meaning very intense when applied to app~tit,
defines the expressions [appbtit] de loup and [appbtit]
gargantuesque.
Oper 1 represents a semantically empty verb taking the
first actant of the head lexeme as its grammatical sub-
ject and the lexeme itself as its direct object. When
Oper n is applied to respect it defines avoir [du respect]
or bprouver [du respect].
Func 0 represents a semantically empty verb taking the
lexeme as its subject. When applied tofeu, for instance,
it yields [faire rage].
Sya represents synonyms of the lexeme.
Anti represents antonyms of the lexeme.

Each lexical function along with its results is expressed
in the DECFC following a specific syntax. Furthermore,
there are semantic constraints on the results, and our editor
has to enforce them.

2.5 OTHER INFORMATION

The dictionary also gives other morphologic information,
such as syntactic category, gender, etc. It also describes a
few syntactic peculiarities, such as the position of an adjec-
tive around a noun. And finally, a list of examples of use of
the lexeme is given with other textual information (like the
one 'usually found in traditional dictionaries but of not
special interest for the formal part). This information is not
of any real use for the automatic processing of natural
language, but it helps the human reader.

3 THE NEED FOR AN EDITOR

Le,dcographers working on the DECFC were faced very
early with the problem of verifying the correctness of
lexical entries. Because of the very complex structure of
lexical information and the many links between various
pieces of information, manual verification becomes nearly
impossible as soon as the number of lexemes in the diction-
ary reaches a few hundred. In many cases, a small modifi-
cation in the description of one lexeme may require check-
ing many others to ensure its validity. These verifications
are of two kinds: a syntax verification that ensures that
each piece of information respects the formal language of

148 Computational Linguistics Volume 16, Number 3, September 1990

Michel D6cary and Guy Lapalme An Editor for the DECFC

representation used in the DECFC, and a coherence
verification that makes sure that no piece of information is
in contradiction with another and that some general rules
of construction (e.g., the avoiding of circular definition) are
respected.

3.1 SYNTACTIC VERIFICATION

Syntactic verification is actually not a very difficult prob-
lem as it only has to deal with local rules that bear no
relation outside the point of verification. These verifications
are also the easiest ones to do by computer. A large part of
ensuring the syntactic correctness is done simply by the
way the editing process is constrained within the system.
The user often has to select keywords in a menu or fill a
predefined template. Less constrained sections of informa-
tion are checked using an appropriate grammar of represen-
tation for this kind of information. Nevertheless, syntactic
correctness is essential, as a formal and structured represen-
tation of information is a prerequisite for defining and
applying more complex coherence rules.

3.2 COHERENCE VERIFICATION

The problem of ensuring coherence in the DECFC is a very
complex one. It is not limited to the simple problem of
conflict or contradiction between pairs of information, but
it leads to a broader range of difficulties. Among them is the
fact that much information in the dictionary is expressed
with words, the same words being described in the diction-
ary. This means that a complete verification of coherence
would have to ensure that each word in the dictionary is
used in accordance with its own description.

Furthermore, overall coherence is only verifiable when
the whole dictionary is completed. Before that point we are
always dealing with incomplete information. For example,
very often a word inside a definition is not described in the
dictionary when it is first mentioned. But the sole fact that
a word is used somewhere in the dictionary already gives
information about this word. In this sense, to check coher-
ence implies having to know what is correct and incorrect
about actual information and also an ability to construct
deductions about words that are not actually in the diction-
ary but that will eventually be.

Before building our intelligent editor for the DECFC, we
first identified and formalized coherence rules and then
defined how they could be implemented. We show only the
study of two coherence problems: synonymic relations and
circularity of definitions.

3.2.1 COHERENCE OF SYNONYMIC RELATIONS

Synonymic relations are used to name different kinds of
lexical relations where lexemes share the same (or approxi-
mately the same) meaning. This includes the following (the
symbol used by the DECFC is shown inside parentheses):

• synonyms (SYN): same meaning and same syntactic
category

• antonyms (ANTI): same meaning except that the defini-
tion of one of the two lexemes includes a negation

• syntactic derivates: same meaning but different syntac-
tic categories such as: Nominalization (So), Verbaliza-
tion (Vo), Adverbialization (Advo), Adjectivization
(Adjo)

• Converses (CONV): same meaning and same syntactic
category, but the order of syntactic actants with respect
to semantic actants is different.

Furthermore, the DECFC distinguishes four different
degrees in which those relations can occur:

• Exact (=) : same meaning
• Larger (>): the meaning of the first lexeme includes the

second
• Smaller (<): the meaning of the first lexeme is included

in the second
• Intersection (<>): the meanings of the two lexemes

intersect

The degree of synonymic relations is defined manually
on the base of the comparison of two semantic networks.
This information is thus redundant and could be computed
automatically if the networks were available. It is mostly
intended for human readers. However, as synonyms ex-
press a direct relation between definitions of lexemes, they
can be used by our editor to check overall coherence of
definitions without having to rely much on the definitions
themselves.

Synonymic relations are subject to numerous rules of
coherence. Apart from the more general rule of coherence
between relations themselves, which we will look at more
closely here, some others were studied. For instance:

• Synonymy and definition: depending on the kind of
relation, a lexeme in a synonymic relation with another
must, can, or must not appear in its definition. This
problem is simpler when dealing with semantic net-
works. For example, the semantic network for a larger
synonym of a word A must be included in the semantic
network of A (this is the definition of larger synonyms!).
When the definition is expressed in terms of a sentence
representing the network, the rules are a little trickier.
For example, if a word A has exact or larger synonyms,
one of the synonyms will have to appear in the definition
of A. Exact synonyms will be preferred to larger ones;
derivates will be preferred to converses, e t c . . .
Synonymy and numbering: both numbering of lexemes
and synonymous relations between lexemes are measures
of semantic proximity and thus must comply with some
identified rules. For example, if two lexemes differ only
by the third level of numbering, they must be synonyms.
These rules are derived from the methodology used to
define numbering and the methodology used to identify
synonyms (both methodologies being based on an analy-
sis of the semantic network).
Synonymy and government: there is a relation between
sharing meaning and sharing government. Among other

Computational Linguistics Volume 16, Number 3, September 1990 149

Michel D6cary and Guy Lapalme An Editor for the DECFC

things, the number of syntactic actants of each lexeme
must be the same (exact synonyms have the same num-
ber of semantic arguments).

The reason that synonymic relations are so present in the
problem of verifying coherence is they express a direct and
explicit link between units of description inside the diction-
ary. Furthermore, these relations possess two important
properties:

• each relation has an opposite;
• with some limitations, relations can be composed to form

new relations (i.e., If .4 is in relation with B and B is in
relation with C, in most cases there is a relation between
.4 and C).

The most important consequence of those properties is
that from a set of correct relations it is possible to validate
any new relation given by the user or even to propose a list
of new relations. Of course, we have to define clearly what
is the opposite of each relation and how relations combine
to form new ones. For instance, if we have the relations
SYN>(huge) = big and ANTI(big) = small, those rules of
derivation will be able to verify that ,4NTI<(small) =
huge.

The problem is easy when we deal with exact synonyms,
but it becomes fuzzy when meanings only intersect. For
example, if we have

SrN>(huge) = big
SYN>(gigantic) = big

(i.e., the meaning of huge contains the meaning of big, and
the meaning of gigantic also contains the meaning of big),
then what is the relation between ,4 and C? Is it possible
that no relation exists? Is SYN>(huge) = gigantic more
probable than SYN<>(huge) = gigantic? To answer those
types of questions, each case (relations and degree) has
been studied and the results are shown in Figures 2 and 3.
What appears clearly is that the type and degree of syn-
onymic relations are independent in regard to the result of

relation composition. Figure 2 shows how types of relation
are composed. This always gives a unique result (except in
the case of CONV and CONV, where the result could be
S Y N in the trivial case where the second converse relation
put,; the syntactic arguments back in place).

Not all compositions give an existing relation as their
result. We have used the symbol Comp in that case (e.g., if
A N T I (A) = B and CONV(B)=C, then the relation result-
ing from the composition is simply ANTI(CONV(A))----C).
These compound relations are not indicated in the diction-
ary.

But even then, it is important to consider them because
when composed with another relation they can eventually
simplify and return a single relation. For example, if we
have the following relations: CONV213(buy) = sell,
So(sell) = sale, CONV213(sale) = purchase, no com-
positions can be made according to Figure 2. However,
combin ing the th ree re la t ions would lead to
CONV213(So(Conv213)buy))) = purchase. This larger ex-
pression can be reduced to So(buy) = purchase if some
rules of simplification are used (commutativity, elimina-
tion, simplification of derivates, etc.). A set of rules for
simplifying composition of synonymic relation was found,
and some mathematical proofs of those rules are given by
D6cary (1986). Those rules when applied, for example, to a
large compound like:

CONV213(Vo(So(,4NTI(CONV213(.4))))) = D

would simply give

,4NTI(,4) = D

whe, n simplified (If.4 is a noun).
Simplifying these synonymic relations is important, be-

cause it helps validate any new relations and it gives the
system the capacity to generate hypotheses about semantic
links between lexemes. These hypotheses could then be
used by lexicographs to build new entries or to correct
existing ones. According to MTT, the meanings of lexemes
are bailt upon the meaning of other lexemes, and there is a

R 2

Syn An t i C o n v ~ Vo Ao A d v o

Syn Syn Anti Conv Vo Ao Advo

Ant i Anti Syn Comp omp Comp Comp Comp

C o n v Conv Comp Conv? omp Comp Comp Comp

R1 So So Comp Comp a So So So

Vo Vo C o m p Vo o Vo Vo Vo

Ao Ao Comp Comp o Ao Ao Ao

A d v o Advo Comp Comp dvo Advo Advo Advo

Figure 2 Composition of Synonymic Relations.

150 Computational Linguistics Volume 16, Number 3, September 1990

Michel D~cary and Guy Lapaime An Editor for the DECFC

R2

exact(=) smaller(<) larger(>) intersection(<>)
= = < > ~ >

R1 < < < =,<,>,<>,* <,<>,*
> > = , < , > , ~ > > , < >

< > < , ~ > , < ~ , * = , < , > , ~ , *

Figure 3 Composition of Degrees in Synonymic Relations.

set of semantic primitives that cannot be defined. The
DECFC lexicologists think that the surest way to find those
primitives is to start by defining complex words and work-
ing their way down to simpler lexemes. In doing so, lexicol-
ogists try to use a clear methodology, but they also have to
rely on intuition. Identification of definition as well as of
synonymic relations relies on intuition at some point in
process. So, when a lexicologist enters a new synonymic
relation, he or she expresses by a different mean, the same
intuitions about equivalence and hierarchy of meaning as in
definitions. The composition of synonymic relations done in
our editor has to generate all possible consequences from
such choices. For instance, if a lexeme uses a word in its
definition, our editor could find out that this word has to be
a near synonym and, by that, generates a list of relations
that would have to be true. Lexicologists could then see
clearly the scope and consequences of their intuition, which
would result eventually in a better structuring and integra-
tion of those intuitions.

As synonymic relations also have degrees, those must be
combined as well. Figure 3 expresses the way relation
degrees are combined. This is clearly different from rela-
tion composition, because in many cases more than one
result is possible (the symbol * indicates the possibility of
having no relation). It is important to note here that the

inclusion of meanings does not follow the same rules as the
inclusion of sets. For example, if A contains B and B
contains C, then A contains C if A,B,C are sets, but it is not
always true for synonymic relations. This is due to the fact
that a synonymic relation exists only if the meaning shared
is important enough (i.e., both definitions share a nontrivial 4
part). Thus, it is possible that C is too different from A to
lead to a synonymic relation.

This shows that when near-synonymic relations are com-
bined, we do not always get a single result but often a set of
possibilities. This is sufficient for the purpose of ensuring
the coherence of new information entered in the system. To
be more precise would involve comparing the definitions of
both lexemes, considering the numbering of the lexemes
within their vocable and using statistical data.

We have now defined some properties of synonymic
relations that are helpful in checking if relations in a given
state of the dictionary are coherent. We still have to know
how this verification takes place.

I f we take all synonymic relations in the dictionary and
represent them as two nodes linked by an arrow, we obtain
a set of networks like the one in Figure 4. From there, we
can check any new relations entered in the system by
considering the network in which the new relation appears
(this could imply the merging of two networks). We look at

r e s p e c t u e u x I . I

J Syn<
r e s p e c t I ~ v 6 n e r a t i o n

r e s p e c t e r I c o n s i d 6 r a t i o n m e p r i s I

v 6 n 6 r e r m 6 p r i s e r I m 6 p r i s a n t I

Figure 4 Network of Synonymic Relations for respect I.

Computational Linguistics Volume 16, Number 3, September 1990 151

Michel D~cary and Guy Lapalme An Editor for the DECFC

all the paths linking the two nodes in the new relations
(even the paths going in the reverse direction of an arrow as
we can define an inverse for all relations). We then combine
the relation on each of these paths using the rules we
defined. The relation is coherent if no contradiction occurs
between the new relation and what is obtained on any of the
paths. 5

Using this method, our editor ensures that an overall
coherence is maintained between those relations, which is
close to impossible to do manually. Now we look at another
kind of coherence verification: circular definition.

3.2.2 AVOIDING CIRCULAR DEFINITIONS

When the meaning of any word in a dictionary is expressed
in terms of other words in the same language, circular
definitions become unavoidable. This means that if we take
a definition and replace each word by its definition and so
on, either the first word (the one we started up with) is
found somewhere in the process (we call this strong circu-
larity) or we have to use a word that has a strong circular
definition (we call this weak circularity). This is due to the
fact that the process of replacing words by their definition is
infinite but the lexicon is not. In fact these conditions imply
that each definition in the dictionary is circular.

To avoid that situation we accept that some words may
not have a definition. They are the semantic primitives on
which more complex meanings are built. One of the objec-
tives of the DECFC is to find those primitives. The authors
of the theory believe that the identification of semantic
primitives can only be done by experimentation through the
building of an actual dictionary. In respect to that goal, it
becomes essential that each case of circularity be detected.
Once again, this task is nearly impossible to realize without
the help of an automatic tool.

As we have seen, there are two kinds of circularity. But,
as weak circularity presupposes the existence of strong
circularity in the dictionary, only the latter must be looked
for. There are two ways to analyze a definition for that
purpose: top-down or bottom-up. The top-down approach
consists of trying to find the word being defined in its own
definition, and then in the definition of the words used to
define it, and so on. The bottom-up method tries to find all
the words that are not allowed and then to coznpare this list
with the definition. For example, let's say we want to check
if the definition of eye is circular. We first build a list of all
the words in whose definitions eye appears. We then add to
this list by doing the same thing for all the words in the list
and so on. These two methods give the same result, but the
latter has the advantage of generating a list of forbidden
words that can be of some use to the lexicographers when
writing definitions.

Unfortunately, these simple mechanisms are not enough
to get rid of circular definitions. This is because circular
definitions are not created when the word being defined is
repeated, but more precisely when its meaning is used to
define it. This means that using an exact synonym in a

definition also causes a definition to be circular. This is true
for exact synonyms, but we need some precisions for imper-
fect ones. Let's look at the four possible cases given that B is

SYN(A) =, using B to define A is forbidden;
SYN(A)>, using B to define A is perfectly acceptable
because B has a more simple meaning than A (i.e. the
n~teaning of A is B plus something else);
SYN(A)<, using B to define A is forbidden because B is
more complex than A;
SYN(A)<>, using B to define A is forbidden because B
has a part of meaning that A does not have. On the
other hand, it would not create a circular definition but
an incoherent one;

Thus, to detect circular definitions, we have to take the
synonymic relations into account. For example, in the
top-down method we check not only for the word being
deft:ned but also for exact, larger, and intersection syn-
onyms (and of course antonyms, converse and derivates).
As a list of other relations can be deduced from a single set
of synonymic relations, many "deductions" are only a list
of po,;sibilities. To ensure maximum validation, those rela-
tions have to be taken into account so that the system
indicates potential circular definitions and explains what
are the assumptions. But more important is that a circle
can be introduced in a definition simply by adding a new
synon, ymic relation, and this implies watching for circular
definition each time a synonymic relation is added or
modified.

C.ircular definition and synonymous relations are amongst
the major coherence problems of DECFC we have worked
on. Many others have been studied, and still more needs to
be diefined and analyzed.

4 IMPLEMENTATION

A prototype of the DECFC editor has been implemented on
a Xerox 1108 Lisp Machine. We now only present the data
structure, the definition of algorithms for verification, and
the user interface.

We implemented our editor on a Xerox Lisp Machine
because it provides a multi-windowing environment that
enables different processes to be going on at the same time
on different parts of the screen. For our editor, this is
especially important since the validity of information is
always related to other pieces of information elsewhere in
the dictionary and it is essential for the user to be able to
view, on a single screen, different parts of the dictionary.
This becomes even more important when the system re-
ports a coherence error: at this point, the user can see the
two (or more) chunks of information that are in conflict and
can browse elsewhere in the dictionary to really understand
what the problem is. Furthermore, users often need to
compare different entries or to use older entries as a model
for new ones. For those reasons, we need much more than
the u:mal single context view.

152 Computational Linguistics Volume 16, Number 3, September 1990

Michel D6cary and Guy Lapalme An Editor for the DECFC

We also defined a data structure that reflects the real
structure of the dictionary and eases the application of
coherence rules to information. The general mechanism
used for syntactic verification is a BNF grammar inter-
preter. When analyzing a section of information, the sys-
tem applies an appropriate BNF grammar to the data. In
some cases, context-free rules are not powerful enough and
specific functions are used for verifying contextual rules of
formation.

The implementation of coherence rule verification poses
two problems. First, the algorithms for our theoretically
defined coherence rules, and second, the order of applica-
tion of the verification rules. In particular, we had to define
what actions to take when a piece of information is added,
modified, or deleted. For example when a synonymic rela-
tion is modified, many things would have to be checked (Is
the syntax ok? Did the change remove some incoherences
present in the system? Is the relation incoherent? Could the
relation be incoherent if some hypothesis were true? Does
the relation introduce a vicious circle?). A general flow of
control for applying rules was designed but not imple-
mented.

Finally, we designed an interface that allows a useful and

efficient use of the system. The interface has the following
facilities:

• Browsing is simple and flexible because it follows the
structure of the DECFC.

• Information is presented similarly as to what lexicogra-
phers are used to seeing (in the actual printed version of
the DECFC, for instance).

• The system shows different parts of the dictionary at the
same time with few or no constraints.

• The system communicates efficiently with the user by
presenting and explaining incoherences and errors, by
guiding the user for correction, and by showing general
information about the actual state of the dictionary.

• Editing is customized for each section of information
(e.g. a definition is not edited like a lexical function).

We defined a model of structured editing in which a
structure editor is viewed as a set of specialized editors and
a set of specialized selectors. Each node in the structure of
the dictionary is then assigned either an editor (when it is
an editable information) or a selector (when it is seen as a
structure itself). For instance, as lexemes are simply lists of

LE$ REFERENCES DE AIDE i . b 80NT:

DEFIN{IION DE ASSISTANCE I I , 3

A D M I R A T I O N 1,
A D M I R A T I O N 2,

DIGTIONNAIFIE
VOCABLES MENIlONNES

CFIEEFI UN NOUVEAU VOCABI
ETAT DU DICTIONNAIBE

IMPRESSION DE VOCABLES
TEFIMINEB LA SESSION

AumLKAIIUN UE X DEVANT Y POUR Z: ATTITUDE EMOTIONNELLE
FAVORABLE DE X POUR Z OAUSEE PAR LE FAIT SUIVANT.
X OROIT QUE LE$ AOTIONS~ L'ETAT OU LE8 PROPRIETE~ Z
DE Y 80NT ABSOLUMENT EXTRAOROINAIRES,

1 / DE N 1. DE N
A P08S 2. POUR N
A , DEVANT N

, ENVER8 N

1, POUR N

~ EN MEME TEt4PO, IL NE POUVAIT 8E RETENIR D'EPROUVER
UNE SECRETE ADM,IRATION POUR OE BITURBIE QUI ALLI~II LA
FIERTE ET L'ADRESOE

Figure 5 State of the Screen at One Point during the Editing Process.

Computational Linguistics Volume 16, Number 3, September 1990 153

Michel D~eary and Guy Lapalme An Editor for the DECFC

fields of information, the specialized selector is a menu for
selecting or deleting a field. In the case of definition, it is a
text editor based on a general template for definition with

some specific validation functions.
In our model, a specialized editor is made out of four

elements: an interface (a text editor for instance), an
output filter (a function that maps the internal representa-
tion of the information into the editable form), an input
filter (the opposite), and a validation filter (a function that
applies coherence and syntactic rules). This reflects the fact
that complex structures are often made out of very different
substructures. Each of those substructures must then be
viewed and edited in a different way.

The actual prototype contains an implementa t ion of this
specialized interface. Browsing and editing through the
whole dict ionary is possible, but only syntactic checking of
information and some simple coherence rules checking
have actual ly been implemented. Figure 5 shows a copy of
the screen at one point during the editing process.

5 CONCLUSION

We have described some problems and solutions related to
the building of a specialized dict ionary editor. Two tasks

were identified:

• defining and implement ing a set of validation procedures
to ensure an overall coherence and well-formedness

throughout the dictionary;
• defining and implement ing a customized interface for an

efficient interaction between lexicographs and the editor.

We have implemented a prototype of the interface that
will evolve as lexicographers express new or more specific
needs. The team of lexicologists working on the D E C F C
showed a great interest for the project and the prototype.
We are presently discussing with them the possibility of
creating a fully functional system for their use.

Some of the validation rules and procedures imple-
mented in our project were discussed in this paper and some
not, but these are few compared to the large quant i ty of
coherence rules that are still to be found. Building a
complete formal description of something as complex as a
na tura l language has never been done thoroughly. We
believe that one of the main reasons for this is the lack of

efficient and powerful tools. The D E C F C editor is an
a t tempt to provide such a tool for a specific linguistic
theory. In other words, our efforts were not directed toward
the creation of a linguistic database for na tura l language
processing, but mainly toward providing efficient tools to

help linguists achieve good and complete descriptions of
na tura l languages. Those descriptions could then be used as

the base of N L P systems.

ACKNOWLEDGMENTS

We would like to thank M. Igor Mel~uk for his continued interest in our
work and his patience in going through previous versions of this report. We
thank also Lise Cinq-Mars, who did some very useful programming.
Finally, we are grateful to an anonymous referee who helped us very much
by pointing out important issues that were not so clearly addressed in a
previov:s version of this paper.

REFERENCES

Alterman R. 1985 A Dictionary Based on Concept Coherence. Artificial
Intelligence 25: 153-186.

Boyer, M. and Lapalme, G. 1985 Generating Paraphrases from Meaning-
Text Semantic Networks. Computational Intelligence 1(3-4): 103-
117.

D6cary, M. 1986 Un bditeur sp~cialis~ pour le dictionnaire explicatif et
combinatoire du Franeais contemporain. Document de travail #181,
Dept. Informatique et recherche op6rationnelle, Universit6 de Mon-
tr6al.

Mel~iuk, I. 1973 Towards a Linguistic "Meaning < = > Text" Model. In:
Trends in Soviet Theoretical Linguistics. F. Kiefer, ed., Reidel Publish-
ing Co., Dordrecht, The Netherlands.

Mel~!u'x, 3. and Polgu6re, A. 1987 A Formal Lexicon in the Meaning-Text
Theory (or How to Do Lexica with Words). Computational Linguistics
13: 261-274.

MeR!uk, I., A. Clas et al. 1984-1988 Dictionnaire explicatifet combina-
toire du Fran#ais contemporain, Vol. 11, Les Presses de l'Universit6 de
Montr6al.

NOTES

1. 'rile finest level of numbering (letters) indicates a lexical transfer (like
metonymy) that is productive in the language. The second level
(numbers) shows a lexical transfer that is not generally productive in
the language. The first level (roman numbers) indicates any kind of
semantic proximity.

2. We use examples in French because our work dealt with French
words. Of course, the same principles would apply to another lan-
guage, and we do not dare invent equivalent examples in English.

3. Sentences preceded by an asterisk are "impossible," while those
preceded by a question mark are "not desirable."

4. They share a part that is at least 50% of the whole definition. This part
is in the head position and is not a semantic primitive.

5. In doing this we used two assumptions (which we proved in D6cary
[1986]):

• paths passing more than one time by the same arrow should not
be considered;

• if the network is coherent before the adding of the new relation
no contradiction can appear between two paths but only between
a path and the new relation.

154 Comp~tational Linguistics Volume 16, Number 3, September 1990

