
T H E B E R K E L E Y U N I X C O N S U L T A N T P R O J E C T

R o b e r t Wi l ensky , Dav id N. C h i n

M a r c L u r i a , J a m e s M a r t i n

J a m e s Mayf ie ld , and Dekai W u 1

Division of Computer Science
Depar tment of EECS

University of California, Berkeley
Berkeley, CA 94720

UC (UNIX Consultant) is an intelligent, natural language interface that allows naive users to learn about
the UNIX 2 operating system. UC was undertaken because the task was thought to be both a fertile
domain for artificial intelligence (AI) research and a useful application of AI work in planning,
reasoning, natural language processing, and knowledge representation.

The current implementation of UC comprises the following components: a language analyzer, called
ALANA, produces a representation of the content contained in an utterance; an inference component,
called a concretion mechanism, that further refines this content; a goal analyzer, PAGAN, that
hypothesizes the plans and goals under which the user is operating; an agent, called UCEgo, that decides
on UC's goals and proposes plans for them; a domain planner, called KIP, that computes a plan to
address the user's request; an expression mechanism, UCExpress, that determines the content to be
communicated to the user, and a language production mechanism, UCGen, that expresses UC's
response in English.

UC also contains a component, called KNOME, that builds a model of the user's knowledge state with
respect to UNIX. Another mechanism, UCTeacher, allows a user to add knowledge of both English
vocabulary and facts about UNIX to UC's knowledge base. This is done by interacting with the user in
natural language.

All these aspects of UC make use of knowledge represented in a knowledge representation system
called KODIAK. KODIAK is a relation-oriented system that is intended to have wide representational
range and a clear semantics, while maintaining a cognitive appeal. All of UC's knowledge, ranging from
its most general concepts to the content of a particular utterance, is represented in KODIAK.

1 INTRODUCTION TO THE UNIX CONSULTANT (UC)
PROJECT

Several years ago, we began a project called UC (UNIX
Consultant). UC was to function as an intelligent,
natural language interface that would allow naive users
to learn about the UNIX operating system by interact-
ing with the consultant in ordinary English. We some-
times refer to UC as "an intelligent 'help' facility" to
emphasize our intention to construct a consultation
system, rather than a natural language front end to an
operating system. Whereas front ends generally take the
place of other interfaces, UC was intended to help the
user learn how to use an existing one.

We had two major motivations for choosing this task.
These can be summarized by saying that we believed
the task to be both interesting and doable. It seemed to
us that much natural language work indeed, much of
AI research--has fallen into two largely non-inter-
secting categories: On the one hand, there are quite
interesting and ambitious projects that have been more
the fertile source of exciting speculations than of useful
technology. In contrast, there are projects whose scope
is severely limited, either to some intrinsically bounded,
real-world task or to a laboratory microworld. These
projects result in much excitement by the production of
a working system or successful technology. But such
projects have rarely produced much in the way of

Copyright 1988 by the Association for Computational Linguistics. Permission to copy without fee all or part of this material is granted provided
that the copies are not made for direct commercial advantage and the CL reference and this copyright notice are included on the first page. To
copy otherwise, or to republish, requires a fee and/or specific permission.

0362-613X/88/010035-84503.00

Computational Linguistics, Volume 14, Number 4, December 1988 35

Robert Wilensky, David N. Chin, Marc Luria , ,lames Martin, James Mayfield, and Dekai Wu The Berkeley UNIX Consultant Project

progress on fundamental issues that comprise the cen-
tral goals of AI researchers.

Our hope was that the consultation task would re-
quire us to address fundamental problems in natural
language processing, planning and problem solving, and
knowledge representation, all of which are of interest to
us. We believe this to be the case because (1) the
domain of an operating system is quite large and com-
plex, (2) users' conceptions of computer systems are
often based on other domains, particularly space and
containment, and (3) the structure of a consultation
session requires the consultant to understand the user's
language, hypothesize the user's intentions, reason
about the user's problem, access knowledge about the
topic in question, and formulate a reasonable response.
In sum, virtually all the problems of language process-
ing and reasoning arise in some fashion.

While the task is interesting, it is nevertheless lim-
ited. Arbitrary knowledge of the world is generally not
required, as it may be in other natural language tasks,
such as text processing. Even knowledge about the
domain might be limited in ways that do not compro-
mise the overall integrity of the system. In particular,
the task is intrinsically "fail-soft". Since the system is a
help facility, it need not be capable of handling every
task put to it to serve a useful function. This is probably
less true of systems that are intended to be interfaces. In
their case, failure to correctly process a request by the
user leaves the user with little recourse. However, a
consultant may be quite useful even if it cannot help all
the time.

Similarly, there are strategies that might be employed
in a consultant task that further reduce the degree of
coverage required by the system. For example, if asked
a very specific question, it is not unreasonable that a
consultant respond by telling the user where to look for
the information. Thus the degree of expertise of the
consultation system may be circumscribed.

In other words, we felt that the operating system
domain was an appropriate replacement for the "blocks
world". Building a consultant for the domain is a real
task one would like to have accomplished. The domain
would limit the breadth, but not the depth, of AI
research required.

1.1 UC- -S C IE NC E OR ENGINEERING?

Our approach to AI has had a distinctly cognitive bent.
While a lengthy exposition might be needed to define
this precisely, let it suffice here to say that we are
interested in modeling human beings at least to a first
approximation. Thus, as far as we could, we have
attempted to build a system that modeled how we
believe a human consultant actually functions.

In some cases, this goal meant that we would make
some problems harder for ourselves than one might if
one's goals were strictly technological. For example,
since many word senses are unlikely to be used when
talking to a consultant, a purely engineering approach

might play down the problem of ambiguity. However, it
is our goal to address such problems in a general
fashion.

At the same time, there were many pragmatic con-
cessions that were made in implementing UC. Some of
these were: forced on us by the nature of university
research. For example, a process might be divided into
two components for the sake of implementation, al-
though the particular division may not be motivated
otherwise. These components might even exercise two
different approaches to similar subproblems, depending
on the biases of their authors. Sometimes, for the sake
of efficiency, we chose to implement only part of what
we believed to be a larger process. Also for efficiency's
sake, and to prevent truly difficult but infrequent prob-
lems from scuttling the entire effort, we implemented
some solutions that we did not believe in completely.
For example, UC's control structure is overly simplistic
in ways that we understand but have not corrected. We
will make note of other such situations in the text
below. In general, when this was the case, the solution
used takes the form of checking for certain frequently
occurring cases in order to preclude having to solve a
general problem.

Since our goals were not strictly technological, we
did not feel that it was necessary or appropriate in order
for our system to be considered a success to produce a
product that could actually be used in a real-world
setting. However, we did feel that we should show that
one could develop such a system along the lines that our
research suggested. This would be accomplished by
developing an extendible prototype.

1.2 UC OLD AND NEW

We initially built a prototype version of UC consisting
largely of off-the-shelf components (Wilensky, Arens,
and Chin 1984). While this system seemed to suggest
that our goal was feasible, it was deficient in many
ways. There were whole components that needed to be
included but were not. For example, the initial system
made few inferences and was not capable of planning its
own actions. In addition, each individual component
was in need of much refinement.

Probably the most important deficiency was in the
area of knowledge representation. The initial prototype
of UC was implemented in PEARL (Deering, Faletti,
and Wilensky 1981). PEARL is an AI language and
database management package that supports framelike
structures similar to those employed by other represen-
tation languages, with perhaps some more attention
given to efficient retrieval. However, we found that our
underlying representational system was inadequate.
Unfortunately, the problems with our system were not
unique to it, but were shared by most other efforts to
represent and organize knowledge.

Much of the focus of our recent work has been to
address and rectify these problems of knowledge repre-
sentation. Our critiques of existing knowledge represen-

36 Computational Linguistics, Volume 14, Number 4, December 1988

Robert Wilensky, David N. Chin, Marc Luria, James Martin, James Mayfield, and Dekai Wu The Berkeley UNIX Consultant Project

tation schemes, along with our new prescription for
these deficiencies, can be found in Wilensky (1986).
That report contains a description of KODIAK, the
knowledge representation system that our work has led
us to, and upon which our current implementation of the
UNIX Consultant is based.

Since one 's knowledge representation is generally
fundamental to the structure of most of the modules of
one 's systems, developing a new one means redesigning
each component around a new representational system.
This report is a description of a new prototype of UC so
designed.

1.3 REASONABLE AGENTS VERSUS INTELLIGENT
INTERFACES

Our goal in building UC is to simulate a human consult-
ant. As a result, the system has a structure that is more
complex than other so-called intelligent interfaces. In-
deed, we feel that looking at such a system as an
interface is misleading. Instead, we prefer the metaphor
of a reasonable agent. Unlike an interface, which is a
conduit through which information flows, an agent is a
participant in a situation. In particular, an agent has
explicit goals of its own, and a reasonable agent must be
able to make obvious inferences and display judgment
in making decisions. Typically, a consultant con-
structed along the lines of a reasonable agent will make
a user 's goals its own in trying to help that user.
However , a reasonable agent is not always compelled to
do so. Human consultants will not obligingly give out
information to which a user is not entitled or which they
suspect will be put to ill use. Similarly, a good consul-
tant might deflect a user 's request because the consul-
tant feels that the user does not have an adequate grasp
of the domain, has a particular misconception, or is
lacking some particular fact. In addition, a good con-
sultant might do something more than simply answer a
question. He might take the opportunity to show the
user how to do a more general task of which the user 's
particular request is merely a special case. In all these
situations, an action other than simply responding to a
request is warranted.

A reasonable agent is ideally suited to handle such a
broad class of situations. It does so by deciding what its
goals should be in the given situation, and then planning
for them. For example, when UC is asked how to crash
the system, it forms two goals, one of helping the user
to know what he or she wants, and one of protecting the
integrity of the system. It then realizes that these two
goals are in conflict, and eventually decides the conflict
in favor of the latter goal.

Of course, it is possible to achieve by other means
various parts of the functionality here attributed to the
model of a reasonable agent. For example, one can
simply build one component that tries to detect miscon-
ceptions, another that checks for requests having to do
with crashing the system, yet another to capitalize on
opportunities to educate the user, etc. However , the

reasonable agent f ramework provides a single, flexible
control structure in which to accomplish all these tasks,
and, in particular, deal with interactions between them.
That is its engineering motivation. Our primary reason
for adopting it is that it is our theory about how humans
function in consulting situations.

1.4 OVERVIEW

The structure of this report is as follows. First, we
present an outline of the structure of the current version
of our consultation system. We follow this with a brief
description of KODIAK. The next sections constitute
the bulk of this report and are essentially a detailed
description of a trace of a rather simple sentence
through UC's components. In doing so, the mechanisms
of those components that are primarily responsible for
UC's agentlike qualities are described. Finally, we
conclude with some discussion of the deficiencies of our
current design.

1.4.1 OUTLINE OF UC'S STRUCTURE

UC is comprised of a number of components , which are
invoked in a more or less serial fashion.

1. LANGUAGE ANALYSIS (ALANA)

Language analysis is that component of the understand-
ing process that computes a representation of the con-
tent of an utterance. ALANA, written by Charles Cox,
produces a KODIAK representation of the content of
an utterance. This representation generally contains
only what can be determined from the words and
linguistic structures present in the utterance.

In our theoretical framework, we call such an analy-
sis of an utterance its primal content. The concept of
primal content is related to what is usually described as
the literal meaning or sentence meaning of an utterance.
However , unlike literal meaning, the primal content of
an utterance involves certain idiomatic interpretations
(i.e., it is not necessarily composed from words and
general grammatical constructions). Also, the primal
content of an utterance may be rather abstract, perhaps
so much so that it may not be a suitable candidate for a
meaning. For example, the literal meaning of " T h e cat
is on the mat" is generally taken to be a conventional
situation in which a cat is resting upon a mat. However ,
the primal content of this sentence would be more
abstract, where the contribution of " o n " is identical to
that in the primal content of " T h e light fixture is on the
ceiling" or "Th e notice is on the bulletin board ."
Presumably, this conveys some sort of support relation.
Note that such an abstract content appears never to be
in itself the meaning of such an utterance (cf. Searle
1979).

In contrast to primal content is the actual content of
an utterance. The actual content is context dependent,
generally requires some amount of inference based on
world knowledge, and is a suitable candidate for the
meaning of an utterance. For example, the actual con-

Computational Linguistics, Volume 14, Number 4, December 1988 37

Robert Wilensky, David N. Chin, Marc Luria, .James Martin, James Mayfield, and Dekai Wu The Berkeley UNIX Consultant Project

tent of "The cat is on the mat," without a further
context specified, is what the literal meaning of this
sentence is generally taken to be. Computing this con-
tent from the primal content requires pragmatic knowl-
edge about the kind of support relation a cat and a mat
are likely to be in, and requires makinlg an inference that
cannot be justified by the meanings of the terms and the
grammatical constructions,present in l:he utterance. The
primal/actual content distinction is elaborated on in
Wilensky (1987).

2. INFERENCE (CONCRETION MECHANISM)

The particular kind of inference needed to go from a
primal content to an actual content sometimes involves
a process known as concretion (Wilensky 1983). Con-
cretion is the process of inferring a more specific
interpretation of an utterance than is justified by lan-
guage alone. Concretion may involve finding a more
specific default interpretation or some other interpreta-
tion based on the context. For example, in the example
"The cat is on the mat" above, the actual content
computed is the default support relation between a cat
and a mat. In some compelling context, a quite different
actual content may be computed from the same primal
content.

(There are other possible relations between primal
and actual content besides the latter being a more
specific interpretation of the former. For example, a
conventionalized metaphor might have a primal content
that more closely resembles its literal interpretation but
an actual content resembling its metaphoric interpreta-
tion. Thus one analysis of a sentence like "John gave
Mary a kiss" will have as its primal content an instance
of giving, but as its actual content an instance of kissing.
We will not pursue further the details of the primal/
actual content distinction here. This is largely because,
in UC, the need for concretion is widespread, and our
handling of other kinds of primal/actual content compu-
tations is more haphazard.)

In UC, concretion is needed primarily because we
need to organize knowledge about more specific inter-
pretations of utterances than can be arrived at through
linguistic knowledge alone. For example, if UC is asked
the question "How can I delete a file?", ALANA can
represent that this is a question about how to delete a
file. But it would not have any reason to assume that
deleting a file is a specific kind of deleting. Determining
that this is so is likely to be important for several
reasons. For example, knowledge about how to delete a
file will be found associated with the concept of "file
deletion", say, but not with the concept of deletion in
general. Thus UC must infer that "deleting a file" refers
to the specific kind of deletion having to do with
computer storage in order to perform subsequent tasks
like finding plans for accomplishing the user's request.

In UC, concretion is the function of a special mech-
anism designed specifically for that purpose by Dekai
Wu. The output of the concretion mechanism is another

KODIAK representation, generally one containing
more :specific concepts than that produced by ALANA.
Having a specific concretion mechanism is a pragmatic
concession. We feel it is unlikely that such a specific
mechanism is theoretically warranted. A more justifi-
able position is that a general inference mechanism
should be exploited here, concretion being only one of
the kinds of inference such a mechanism accomplishes.
A unified text-inference mechanism that accomplishes
concretion as well as other forms of inference has been
built (Norvig 1987). It is our belief that some mechanism
akin to Norvig's should be used in UC in place of a
specialized concretion engine, but no attempt has yet
been made to do so.

3. GOAL ANALYSIS (PAGAN)

Having computed an actual content for an utterance,
UC then tries to hypothesize the plans and goals under
which the user is operating. This level of analysis is
performed by PAGAN, written by James Mayfield.
PAGAN performs a sort of speech act analysis of the
utterance. The result of this analysis is a KODIAK
representation of the network of plans and goals the
user is using with respect to UC.

Goal analysis is important in many ways for UC. As
is generally well known, an analysis of this sort is
necessary to interpret indirect speech acts, such as "Do
you know how to delete a file?", or "Could you tell me
how to delete a file?". Furthermore, goal analysis helps
to provide better answers to questions such as "Does
Is -r recursively list subdirectories?". An accurate re-
sponse to the literal question might simply be, " N o . "
But a better response is, "No, it reverses the order of
the sort of directory listing; Is -R recursively lists
subdirectories." To produce such a response, one
needs to realize that the goal underlying the asking of
this question is either to find out what 'Is -r' does, or to
find out how to recursively list subdirectories. It is the
job of the goal analyzer to recognize that such goals are
likely to be behind such a question.

4. AGENT (UCEGO)

Having hypothesized what the user wants of it, we
would expect a system like UC to do what the user
requested. But, as mentioned above, this is not always
appropriate. UC should not aid and abet a user trying to
perform malicious mischief; it might need to correct an
errant user or it might decide to supply unasked-for
information to one diagnosed as not knowing an impor-
tant fact.

In order to deal with such situations UC is con-
structed as an agent. This agent reacts to users' requests
by forming goals and acting on them. The central
mechanism of UC is called UCEgo, and has been
developed by David Chin.

In a typical transaction, UCEgo will simply adopt the
goal of having the user know what the user wants to
know. However, as the example above illustrates,

38 Computational Linguistics, Volume 14, Number 4, December 1988

Robert Wilensky, David N. Chin, Marc Luria, James Martin, James Mayfield, and Dekai Wu The Berkeley UNIX Consultant Project

UCEgo may adopt other goals as well, such as protect-
ing the integrity of the system. It may also have to
detect conflicts between these goals. Sometimes,
UCEgo, attempting to be educational, may adopt a
somewhat different goal from the user's. Thus, if the
user asks UC to actually perform some request, such as
telling the user who is on the system, UC will decide to
tell the user how to perform such a function, rather than
do what the user requested.

UCEgo implements much of the agentlike character
of UC. While interfaces are generally thought of as
passive conduits through which information flows, UC
is an agent that listens to the user and is generally
helpful. But it has its own agenda, and the requests of
the user are merely a source of input to it.

5. USER MODELING (KNOME)

Several of UC's components may need information
about the user to make an effective choice. For exam-
ple, an expert user certainly knows how to delete a file.
Thus such a user uttering "Do you know how to delete
a file?" is unlikely to be asking for this information--
more likely this user is testing the consultant's knowl-
edge.

Assessing the knowledge state of the user is the
function of a user modeling program called KNOME,
developed by David Chin. It is exploited by several
components, including the "expression mechanism"
described below.

6. DOMAIN PLANNER (KIP)

Typically, UCEgo tries to help the user. This usually
requires determining a fact that the user would like to
know. This task is accomplished by KIP. KIP is a
"domain planner" developed by Marc Luria. While
UCEgo infers its own goals, and plans to act on them,
KIP is given a task by UCEgo of determining how to
accomplish what the user wants to accomplish. KIP
tries to determine how to accomplish this task, using
knowledge about UNIX and knowledge about the user's
likely goals. KIP returns a plan, represented in KO-
DIAK. For example, UCEgo may give KIP the task of
determining how to move a file to another machine, if
this is something the user wants to know. Here, KIP
would come up with the plan of copying the file to the
target machine and then deleting the original.

Since UCEgo is also a planner, UC in effect has two
planners within it. Again, this is probably not theoreti-
cally justifiable, although the two planners have ended
up focusing on rather different aspects of planning. It
remains to be seen whether a single mechanism might
accommodate both functions.

7. EXPRESSION MECHANISM (UCEXPRESS)

Having gotten KIP to compute a plan for the user's
request, UCEgo now tries to communicate this plan to
the user. To do so, it must determine which aspects of
the plan are worthy of communication and how best to

communicate them. For example, if it is likely that the
user knows how to use commands in general, it might be
sufficient just to specify the name of the command. In
contrast, it might be helpful to illustrate a general
command with a specific example.

UCExpress is an expression mechanism written by
David Chin. It edits out those parts of the conceptual
answer returned by KIP that, for various reasons,
appear unnecessary to communicate. UCExpress may
also choose to illustrate an answer in several formats.
For example, it might illustrate a general answer by
generating a specific example, or it might explain one
command in terms of another, simpler, command.

The result of UCExpress is an annotated KODIAK
network, where the annotation specifies which part of
the network is to be generated.

8. LANGUAGE PRODUCTION (UCGEN)

Once UC has decided what to communicate, it has to
put it into words. This is done by a generation program
called UCGen. UCGen is a simple generator, pro-
grammed by Anthony Albert and Marc Luria. It takes
the marked KODIAK network produced by UCExpress
and, using knowledge of English, produces sentences to
complete the transaction with the user.

9. LEARNING MECHANISM (UCTEACHER)

Since it is intended that UC be an extensible system, a
mechanism has been developed to add new knowledge
to the system by talking to it in natural language. This
mechanism, called UCTeacher, is the work of James
Martin. UCTeacher has capabilities to extend both
UC's knowledge base of UNIX facts as well as its
knowledge of English vocabulary.

Note that several UC components deal with goals
and plans, but in rather different ways. To minimize
confusion, we emphasize the different tasks that these
programs perform: PAGAN hypothesizes goals of the
user with respect to UC; UCEgo reacts to the user by
forming goals of its own and then trying to accomplish
them; and KIP is given the goal of solving some
underlying UNIX problem. Thus PAGAN is a goal
analyzer, i.e., a program that attempts to determine
someone else's goals, while UCEgo and KIP are plan-
ners, i.e., programs that determine and produce plans
for their own goals.

UCEgo and KIP exist as two separate programs
primarily for pragmatic reasons. It may be possible that
a single planner could accomplish the tasks of both
UCEgo and KIP. Such an integration will have to await
a revision of our system.

1.5 UC EXAMPLES

The first set of examples illustrates the scope of the
current UC prototype. They are intended to show the
kind of requests the system can handle, as well as its
scope. The second set demonstrates some more com-
plex capabilities.

Computational Linguistics, Volume 14, Number 4, December 1988 39

Robert Wilensky, David N. Chin, Marc Luria, ,lames Martin, James Mayfield, and Dekai Wu The Berkeley UNIX Consultant Project

Each sentence below preceded by the prompt ' # ' is
supplied by the user. The rest of the text is a computer-
generated response. Note that the system handles a
variety of request forms, some direct and some indirect.
Also, the responses to general questions will cause an
example to be generated. Finally, the reader may notice
that the vocabulary used to respond to a request is often
different from that used in the request itself. For exam-
ple, a question about file protection is answered in
terms of file permission; a question about changing a
directory is answered in terms of connecting to a
directory. This is because the representations used to
encode the system's knowledge are kept in a canonical
form, so that different expressions of the same meaning
are mapped to the same internal representation. Upon
generating a response, the system use,.; only this internal
representation, which, coupled with its generating bi-
ases, causes an expression of an answer that is largely
independent of the vocabulary that appeared in the
request.

1.5.1 SIMPLE EXAMPLES

% UC
Welcome to UC (Unix Consultant) version 3.23
To a UC ' # ' prompt, please type in your questions
about the Unix file system in English.
To leave, just type a 'AD' or '(exit)'.

Hi.
How can I help you?

Can you tell me how to move a file?
Use mv.
For example, to move the file named foo to the file
named fool, type 'mv foo fool'.

Do you know how to delete a file named dekai?
Type 'rm dekai'.

Do you know how to delete a file?
Use rm.
For example, to delete the file named foo, type 'rm
foo'.

How can I delete the file charlie?
Type 'rm charlie'.

How can I delete the file named tony?
Type 'rm tony'.

How can I get rid of the file named boob?
Type 'rm boob'.

I want to delete a file named peter.
Type 'rm peter'.

I want to delete a file.
Use rm.
For example, to delete the file named foo, type 'rm
foo'.

I want to delete the file dave.
Type 'rm dave'.

How can I add read permission to a file?

Use chmod.
For example, to add individual read permission to the
file named foo, type 'chmod u+r foo'.

Elow can I add the owner execute permission to a
file'!
Use', chmod.
For example, to add individual execute permission to
the file named foo, type 'chmod u+x foo'.

How can I change the group execute permission of
a file?
Use chmod.
For example, to remove group execute permission
from the file named foo, type 'chmod g-x foo'.

How can I change the user read permission of a
file?
Use chmod.
For example, to remove individual read permission
from the file named foo, type 'chmod u-r foo'.

How can I remove the group write permission from
the file named bimbo?
Type 'chmod g-w bimbo'.

ltow do I change the protection of a file?
Use chmod.
For example, to remove individual read permission
from the file named foo, type 'chmod u-r foo'.

How can I compact a file?
Use compact.
For example, to compact the file named foo, type
'compact foo'.

How can I create a directory?
Use mkdir.
For example, to create the directory named foo, type
'mkdir foo'.

How can I find a file?
Use whereis.
For example, to find the file named foo, type 'where
is foo'.

How can I find out how much disk space I am
using?
Type 'du'.

How can I find out who is using the system?
Type 'finger'.

How can I find out wilensky's phone number?
Type 'finger wilensky'.

How can I list a directory?
Use Is.
For example, to list the directory named foo, type 'Is
foo'.

How can I logout?
Type 'logout'.

Tell me how to leave.
Type 'logout'.

40 Computational Linguistics, Volume 14, Number 4, December 1988

Robert Wilensky, David N. Chin, Marc Luria, James Martin, James Mayfield, and Dekai Wu The Berkeley UNIX Consultant Project

How can I move a file to the file named blah?
Use mv.
For example, to move the file named foo to the file
named blah, type 'mv foo blah'.

How can I move the file junk?
Use mv.
For example, to move the file named junk to the file
named foo, type 'mv junk foo' .

How do I move a file?
Use mv.
For example, to move the file named foo to the file
named fool, type 'mv foo fool ' .

How do I change my directory?
Use cd.
For example, to connect to the directory named foo,
type 'cd foo' .

How do I copy a file?
Use cp.
For example, to copy the file named foo to the file
named fool, type 'cp foo fool' .

How do I copy the file foo to the file blah?
Type 'cp foo blah'.

How do I create a directory?
Use mkdir.
For example, to create the directory named foo, type
'mkdir foo ' .

How do I print a file named info?
Type 'lpr info'.

I want to print a file.
Use lpr.
For example, to print the file named foo, type 'lpr
foo ' .

I want to change my working directory.
Use cd.
For example, to connect to the directory named foo,
type 'cd foo' .

I want to copy the file named rick.
Use cp.
For example, to copy the file named rick to the file
named foo, type cp 'rick foo' .

I want to delete a directory.
Use rmdir.
For example, to delete the directory named foo, type
'rmdir foo ' .

I want to remove a directory.
Use rmdir.
For example, to delete the directory named foo, type
'rmdir foo ' .

What 's the best way to delete a directory?
Use rmdir.
For example, to delete the directory named foo, type
' rmdir foo ' .

I want to display a file.
Use more.
For example, to display the file named foo, type
'more foo' .

I want to edit a file.
Use vi.
For example, to edit the file named foo, type 'vi foo' .

I want to find out Joe 's address.
Type 'finger joe ' .

I want to remove a directory named junk.
Type 'rmdir junk' .

What 's the command to compact a file?
Use compact.
For example, to compact the file named foo, type
'compact foo' .

What is a directory?
A directory is a file that is used to contain files.

What is a file?
A directory is a container that is used to contain text,
code or files.

What is a r m ?
Rm is a command that is used to delete files.

What is a search path?
A search path is a list of directories that is used by
the csh to search for programs to execute.

1.5.2 MORE COMPLEX EXAMPLES

% UC
Welcome to UC (Unix Consultant) version 3.23
To a UC ' # ' prompt, please type in your questions
about the Unix file system in English.
To leave, just type a 'AD' or '(exit) ' .
Hi.
How can I help you?

Is rn used to rename files?

No, rn is used to read news.
To rename a file to another file, use mv.
For example, to rename the file named foo to the file
named fool, type 'mv foo fool' .

In this example, UC hypothesized that the user asked
the question in order to get an answer to some under-
lying question. In particular, PAGAN hypothesized
possible goals of wanting to know how to rename a file
and wanting to know what rn does. Since the answer to
the direct question is negative, UCEgo realizes that the
underlying goals are not addressed by this answer, and,
therefore, attempts to answer them. This results in the
extended answer.

How can I crash the system?
I 'm sorry, I cannot tell you.

In this example, UC detected a conflict between its goal
of helping the user and that of preserving the integrity of
the system. It resolved this conflict in favor of the latter

Computational Linguistics, Volume 14, Number 4, December 1988 41

Robert Wilensky, David N. Chin, Marc Luria, James Martin, James Mayfield, and. Dekai Wu The Berkeley UNIX Consultant Project

goals. However , since it could not accommodate the
user 's request, it attempts to be polite by apologizing to
the user.

What does Is -v do?
Ls does not have a -v option.

Here, the user asks about a nonexistent command
option. Actually, the UNIX 'Is' command ignores op-
tions that it does not recognize, so the consultant could
have answered truthfully by saying that 'Is -v' causes
one 's directory to be listed. It did not, because PAGAN
interpreted the request as a question about the function
associated with the command. UCEgo reasons that,
since (1) it doesn ' t know about such an option, and (2)
it knows all the options to all simple commands, and (3)
Is is a simple command, the user must have a miscon-
ception. It then generates the goals of correcting the
misconception, which results in the answer shown.
Note that UC uses an open-world hypothesis together
with metaknowledge to determine whether it knows
some facts about UNIX.

In the next example, two different sessions with two
different users are represented.

% UC
Welcome to UC (Unix Consultant) version 3.23
To a UC ' # ' prompt, please type in your questions
about the Unix file system in English.
To leave, just type a 'AD' or '(exit) ' .

Hi.
How can I help you?

How can I delete a file?
Use rm.
For example, to delete the file named foo, type ' rm
foo' .

What does rwho do?
Rwho is used to list all users on the network, the
users ' tty, the users ' login time, and the users' idle
time.

% UC
Welcome to UC (Unix Consul tant)vers ion 3.23
To a UC ' # ' prompt, please type in your questions
about the Unix file system in English.
To leave, just type a 'AD' or '(exit) ' .

Hi.
How I can I help you?

How can I find out the inode of a file?
Use Is -i.

What does rwho do?
Rwho is like who, except rwho lists all users on the
network.

Because he asked such a simple question, the first user
was diagnosed by K N O M E as being a novice user. This
resulted in the answer to his first question being illus-
trated by an example, and the extended format of his
answer to the second. In contrast , the second user

asked about a relatively technical aspect of UNIX. Thus
this user is likely to be a relatively sophisticated user.
As a result, the answer to that user 's first question was
not illustrated with an example. For the same reason,
UC presumes that the second user knows about the
'who' command, and takes advantage of this knowledge
in generating the response.

Note this example also illustrates UC's ability to
generate different types of responses. This example was
able to use a simile format, because the command to be
generated was thought to be sufficiently close to one
UC believes the user to already know. Formating is
discussed in section 8.

The next example illustrates some aspects of UC's
ability to generate plans.

How do I print Jim's file on the lineprinter?
Use lpr. This plan will not work if you don ' t have
read permission on Jim's file.

In this example, KIP, UC's domain planner, suspects
that the plan it is suggesting might fail. This is because
the plan involves printing someone else 's file, and KIP
knows that the lack of appropriate permission in such
cases is a likely source of plan failure. However , since
it does not know a more certain plan, it delivers the
suspect one, but warns the user of the possible problem.

A fact about a possible problem with a plan is called
a concern. Concerns are explicitly represented in UC's
knowledge base. At this stage, UC's knowledge of
concerns is fragmentary. Thus questions above that
have the same structure as this one may not cause any
warnings to be generating simply because the requisite
knowledge is lacking. Concerns are discussed further in
Section 7.2.3 below.

Who is on the system?
I 'm sorry, I don ' t know. Use users to find out who is
on the system.

Here, UC fails to answer the user 's question, because it
does not have any way of running UNIX commands
itself. Its failure causes it to apologize. UC then forms
the goal of the user knowing how to determine the
requested information. It addresses this goal, which
leads to the second part of the response.

2 K O D I A K

The knowledge used by UC is represented in KODIAK,
as are the various stages of the processing of an utter-
ance. KODIAK (Keystone to Overall Design for Inte-
gration and Application of Knowledge) is an implemen-
tation of CRT (Cognitive Representat ion Theory) , an
approach to knowledge representation that bears simi-
larities to numerous other systems, but especially those
of Schank (1975), Schubert (1976), Shapiro (1979), and
Brachman and Schmolze (1985). K O D I A K differs from
these systems in significant ways; however, here we
shall try to trivialize rather than accentuate these dif-
ferences so that the reader can relate our representa-

42 Computational Linguistics, Volume 14, Number 4, December 1988

Robert Wilensky, David N. Chin, Marc Luria, James Martin, James Mayfield, and Dekai Wu The Berkeley UNIX Consultant Project

tions to more familiar ones. The reader should consult
Wilensky (1986) for a more detailed account and justi-
fication of this representation system.

KODIAK is a relation-oriented rather than object-
oriented system. In an object-oriented system, one
thinks of objects as having slots, and the representa-
tional weight is carried by such structured objects. In a
relation-oriented system, objects are thought of as
atomic elements, and knowledge is captured by the
relations in which these objects participate.

For example, suppose we want to represent a con-
cept like "state change", i.e., an event in which some
state is thought of as changing into another state.
Among other things, we would like to capture the fact
that any state change has an initial state and a final
state. In KODIAK, we would represent this by first
creating objects corresponding to the concepts STATE-
CHANGE and STATE. Then we would indicate that a
relation, say, INITIAL-STATE, holds between each
instance of a state change and some instance of a state.
Similarly, another relation, say, FINAL-STATE, holds
between each state change and some state.

This description sounds equivalent to saying that
INITIAL-STATE and FINAL-STATE are slots of
STATE-CHANGE. For the purposes of this paper, we
will not strenuously resist this interpretation. However,
the underlying philosophy (and actual representation)
is different. In particular, rather than accounting for
the relatedness of STATE-CHANGE and INITIAL-
STATE and FINAL-STATE by creating a primitive
notion of slot and asserting that the latter two items are
slots in the former, this relatedness is simply attributed
to the fact that every STATE-CHANGE participates in
an INITIAL-STATE relation and a FINAL-STATE
relation. On the other hand, we think of these relations
as being less closely related to STATE because not
every state participates in these relations.

In our terminology, we refer to objects like STATE
and STATE-CHANGE as absolutes, and the relations
in which they participate, such as INITIAL-STATE and
FINAL-STATE, as aspectuals. The motivation for hav-
ing a more fine grain representation than objects with
slots is described in Wilensky (1986). However, here we
shall use a more conventional notation for the sake of
exposition. For example, we will write the above facts
about state changes using the following notation:

[STATE-CHANGE l

/ \
Ot Ot

This diagram should be interpreted as follows: the
individual instances of the concept STATE-CHANGE
always participate in two relations, one called INI-
TIAL-STATE and one called FINAL-STATE. That is,
if we ever encountered an individual of the concept
STATE-CHANGE, it will be in an INITIAL-STATE
and a FINAL STATE relation to something. The circles
themselves represent the idea of being in a given
relation to something. Thus they correspond most
closely to the roles of other systems.

Of course, there is much more to say about state
changes. For example, we have not yet expressed the
fact that the other argument to both INITIAL-STATE
and FINAL-STATE must always be a state. Also, the
state that is in a INITIAL-STATE relation to a state
change always occurs before the state that is in the
FINAL-STATE relation. STATE-CHANGE itself is a
type of event. We will now describe how such facts are
represented.

We represent individuals of a concept, and subtypes
of a concept, using KL-ONE-Iike structured inheritance
technique. For example, to represent an instance of a
state change, we would create the following structure:

I STATE-CHANGE I

/ \
o/ O/

STATE-CHANGEI I
/

initial-state
\
final-state

The instantiate (I) link states that STATE-CHANGE 1 is
an individual STATE-CHANGE. Initial-statel should
be interpreted as the assertion that the initial state
relation holds between STATE-CHANGEI and some
(as yet unspecified) value; the surrounding circle repre-
sents the idea of being in the initial state relation to
STATE-CHANGE1. We sometimes say that initial-
state l plays the role of the initial-state relation with
respect to STATE-CHANGE1.

Note that role-play is a relation between a relation
and its use, not a relation between a role and its filler.
Indeed, the values to which initial-state and final-state
connect STATE-CHANGE1 have not yet been de-

Computational Linguistics, Volume 14, Number 4, December 1988 43

Robert Wilensky, David N. Chin, Marc Luria, James Martin, James Mayfieid, and Dekai Wu The Berkeley UNIX Consultant Project

picted. To include these values in our representation,
we use the value (V) link. Thus we would typically find
instances like the above elaborated to include the
following:

state and final-state must be an instance of a STATE,
we would ,draw a constrain (C) link from the circles
labeled initial-state and final-state to a box labeled
STATE, as in the following diagram:

I STATE-CHANGEI I

/ \
initial state final state

\

(

v v

C

o~

C

STATE-CHANGE]

That is, the initial-state relation holds between STATE-
CHANGE1 and something called STATE1, and the
final-state relation holds between STATE-CHANGE1
and something called STATE2. In other terminology,
the object at the end of the value link represents the
filler, and the object at the source, the slot. Presumably,
we would also include what other information we knew
about STATEI and STATE2, namely, what categories
they are instances of, etc.

We can abbreviate this notation if we have no need
for the showing the slots of an individual, but merely
their fillers. We do this by drawing a labeled link
directly to the target of the value link. For example, we
could simplify the above two diagrams by drawing a link
labeled initial-state between STATE-CHANGE1 and
STATE1, and one labeled final-state between STATE-
CHANGE1 and STATE2. Thus it is sometimes conve-
nient to draw the following.

I STATE-CHANGE1 [

/ \
initial-state final-state

These links would be interpreted as saying that any
object in a Value relation with a use of initial state or
final state must be of type STATE.

Subtypes are represented using a Dominate (D) link
instead of an Instantiate (I) link. The aspectuals are
created for the subtype that play the role of the aspect-
uals of the parent. These are typically differentiated
from those of the parent concept by being subject to a
further constraint. For example, we can begin to define
dying as a kind of state change as follows:

,s Z
\

I STATE-CHANGE]

/ \

I
/ \

initial-stale

patient

final-stale

Usually, the aspectuals of a concept are constrained so
that their other argument must be of a certain type. For
example, to indicate that the other argument to initial-

We have represented D E A T H - E V E N T as being a kind
of S T A T E - C H A N G E in which the initial state is con-

44 Computational Linguistics, Volume 14, Number 4, December 1988

Robert Wilensky, David N. Chin, Marc Luria, James Martin, James Mayfield, and Dekai Wu The Berkeley UNIX Consultant Project

st.,. o cate objec, s / \
• I °EA " EWN I state

strained to be a state of something being alive, and the
final state to be that of something being dead.

In this diagram, we have not bothered to show the
constraints on the aspectuals of STATE-CHANGE. In
general, we will only show those parts of previous
concepts that are pertinent to the knowledge being
represented. Also, we introduced a new aspectual, dier,
which specializes patient. Patient is inherited from some
quite abstract absolute, which ultimately dominates
STATE-CHANGE, and which has the meaning "event
that affects an object". Also, since patient is an aspect-
ual of some concept dominating STATE-CHANGE, we
should have specialized it at STATE-CHANGE, say, to
state-change-object. However, when such specialized
versions of relations are not substantially differentiated
from their ancestors, we will use the ancestor's name
instead. The KODIAK interpreter understands the oc-
currence of an inherited relation as being the most
specific inheritable specialization of that relation, so
using the more abstract name has the same semantics of
using the more specialized one.

One item missing from this diagram is the fact that
the fellow who dies is the same fellow as the one who

was alive and then was dead. This fact can be captured
with the aid of the Equate (=) link. This is similar to
KL-ONE's role chains. For example, we can improve
our representation for dying by creating a state of being
alive and a state of being dead, and then using Equate links
to state the relationships between their components.

In the diagram above, we state that the dier of
DEATH-EVENT is the same as the is-alive-object of
some IS-ALIVE state, and also the same as the is-dead-
object of some is-dead state.

The Equate links belong to a particular absolute. For
example, in the diagram above, the Equate links ema-
nating from dier belong to DEATH-EVENT. The sig-
nificance of this fact is that it is true of dying that there
must be an associated event of being alive, but it is not
true of being alive that there must be a death event. We
represent this aspect of Equates by the direction of the
arrows in the diagram.

Having defined DEATH-EVENT, it is easy to rep-
resent a concept like killing, assuming an analysis in
which killing is a kind of causing in which the thing
caused is a kind of death event.

Here we define KILL as being a subtype of CAUS-

Computational Linguistics, Volume 14, Number 4, December 1988 45

Robert Wilensky, David N. Chin, Marc Luria, James Martin, James Mayfield, and Dekai Wu The Berkeley UNIX Consultant Project

[CAUSAL-EVENT]

0a,}o3\
~ / ~ ~ ' ~ patient c a u s ~

AL-EVENT. CAUSAL-EVENT is a concept shown as
participating in an effect and a cause relation. KILL is
also shown as participating in a kill-effect and a kill-
cause relation. Because effect and cause are written on
the links to these relations, we know that kill-effect is
just a specialized version of the effect relation, and that
kill-cause is a specialized version of cause. To differen-
tiate KILL from CAUSAL-EVENT, we need to cap-
ture the fact that the effect of a kill is a death event. The
additional semantics of kill-effect (and thereby, of
KILL) come from the constrain link on kill-effect. This
says that the effect of a KILL is a DEATH-EVENT.
Finally, we use an Equate link to state that the person
killed is the same one as the one who died.

Of course, many parts of the meaning of these simple
concepts have been omitted from these diagrams. For
example, we have not stated any information about
time, such as the fact that the initial state precedes the
final state. In general, the diagrams presented in this
paper have been simplified to present the crucial knowl-
edge needed without being even more complex than
they already are.

KODIAK has additional features that are not de-
scribed herein. The reader is referred to Wilensky
(1986) for a more complete description. A summary of
all the KODIAK features used in this report is found in
the legend in Figure I.

Note that the legend contains one additional abbre-
viation, namely, that drawing a link bearing the name of
a relation between two categories is interpreted as
stating that the individuals of the domain category
participate in that relation with some member of the
range category.

2.1 UNIX KNOWLEDGE IN UC

The KODIAK knowledge representations used in UC
include several rather general notions, such as state
change, goal, and action, plus many specific facts about
UNIX. The complete collection is too lengthy to include
here. (UC is currently constructed from approximately
200 KODIAK diagrams, consisting of about 1,000 ab-
solutes and 2,000 relations. While a scope of a diagram
is to some degree arbitrary, diagrams roughly corre-
spond to definitions of meaningful entities, like the
definition a particular command.) Some more important
concepts used in modeling the domain will be explained
in the individual sections of this report.

To facilitate understanding the KODIAK diagrams
that follow, consider the representation that the UC's
knowledge base contains about the UNIX rm com-
mand. This is used to delete a file named by its
argument. The following diagram shows how knowl-
edge about deletion is represented in UC.

The central node in this diagram is DELETE-EF-
FECT. DELETE-EFFECT is shown as being a kind of
STATE-CHANGE that causes a something to go from
existence to nonexistence. (The notions of existence
and negation do play a special role in KODIAK, but
also exist as ordinary states, as is the case here. From
the point of view of this example, these are just like any
other states.)

DELETE-EFFECT specifies the minimal deletion
event. For example, it says nothing about the cause of
such an event, or who the actor of it may be. In UC in
particular and in CRT in general, such state changes are
the bases from which we build more elaborate concepts.
For example, the action of deleting something is repre-
sented as an action that causes something to be deleted.

46 Computational Linguistics, Volume 14, Number 4, December 1988

Robert Wilensky, David N. Chin, Marc Luria, James Martin, James Mayfield, and Dekai Wu The Berkeley UNIX Consultant Project

REPRESENTATION
CONCEPT

O
CONCEPTn , n an integer

[CATEGORY]-a---~ ©

[CATEGORY1 -D--> [CATEGORY2

[INSTANCE]-I--, CATEGORY

O-C-~ [CATEGORY 1
O-V---> OBJECT

O- =--> O

CATEGORY -rel-->O

CATEGORY1 trel---> CATEGORY2

NODES

MEANING
an absolute
a relation

CONCEPTn is an instance of CONCEPT]
I

LINKS

O is an aspectual, i .e. , a relation in which [CATEGORY] participates

[CATEGORY2]dominates CATEGORYI].

INSTANCE is an instance of [CATEGORY].

The argument to O is constrained to be of type [CATEGORY .

The value of the argument to O is ~ .

The first aspectual is constrained to have the same
value as the second.

O is an aspectual of CATEGORY, and O specializes
rel, an aspectual of some concept
dominating CATEGORY.

Each member of CATEGORYI participates
in re! with some member of CATEGORY2.

Figure 1. KODIAK Legend

I TRANSITIVE-ACTION I

t / \ o

state-obj C [

~. ~at,eot I ° ~ ~ ' 1 I ~'~'~-~''~~'Io~l
/ t /

state-oN C /

/ del-object

I NoT-E×ISTS ~ c

Computational Linguistics, Volume 14, Number 4, December 1988 47

Robert Wilensky, David N. Chin, Marc Luria, James Martin, James Mayfield, and Dekai Wu The Berkeley UNIX Consultant Project

] EXECUTE-UNIX-COMMAND I

~D I UNIX'COMMAND I

I
[EXECUTE-UN IX-RM-COMMAND] / / ~ r

~ / / FDELETE.FILE.EFFECT

execute command ~ ~ | C" I
plan goals aei-ooje~ / name

/ " , ,
[RM-FORM.AT] / /

nam~ aN~rrg = C /

~ ~ I ~

This is encoded by showing DELETE-EFFECT to be
the effect of DELETE-ACTION.

Using names like DELETE-EFFECT may be some-
what misleading. In particular, DELETE-EFFECT
is not required to be the effect of anything--while
DELETE-ACTION is defined as having DELETE-
EFFECT as its result, this statement imposes a require-
ment on DELETE-ACTION, not on DELETE-EF-
FECT. We call such concepts effects rather than
events, say, to emphasize that we me, an to include only
the most essential elements of the concept, i.e., just a
specialized state change.

DELETE-FILE-EFFECT is a specialized version of
DELETE-EFFECT in which the object deleted is con-
strained to be a file. DELETE-ACTION is correspond-
ingly specialized to DELETE-FILE-ACTION. It is also
shown as being a kind of TRANSITIVE-ACTION. This
is a very general category denoting any action that acts
upon an object.

This sort of structure, in which there exists parallel
effect and action hierarchies, with the effect hierarchy
carrying most of the semantic weight, is typical of the
representation that appear in UC.

The figure above connects this general knowledge
about deletion with knowledge about UNIX.

Here we state how to achieve a DELETE-FILE-
EFFECT. This accomplished by the node labeled
PLANFOR2, which points to EXECUTE-UNIX-RM-
COMMAND and to DELETE-FILE-EFFECT. A

PLANFOR indicates that something is conceptualized
as a plan for a particular goal (PLANFORs are dis-
cussed below). In other words, this notation represents
the particular fact that the 'rm' command (i.e., the
command whose name is " rm") is used to achieve the
effect of deleting a file. Again, this structure is typical of
that seen in UC--most of the information about a
command is represented as information about the use of
that command; the intended function of the use of a
command is represented by a planfor between a node
representing the use of the command and some effect.

The rest of the diagram specifies the format of the
command. In particular, the Equate link specifies that,
to delete a particular file, its name must be the same as
that of the argument supplied to 'rm.'

A TOUR THROUGH UC

The following sections describe the components of UC
in more detail. To aid in understanding how these
components contribute to the processing of an individ-
ual utterance, we show how each section processes the
example sentence "Do you know how to print a file on
the imagen [a kind of laser printer used at our site]?" In
most cases, a module is capable of doing a great deal
more than is required for this example, and such capa-
bilities are attested to. However, the example is useful
for illustrating the kind of processing that is performed
for a typical request.

In order to produce a paper of reasonable length, we

48 Computational Linguistics, Volume 14, Number 4, December 1988

Robert Wilensky, David N. Chin, Marc Luria, James Martin, James Mayfield, and Dekai Wu The Berkeley UNIX Consultant Project

ACTION [

HYPOTHETICAL / ~D

asked-for]~ ~ " ~ /
, I / ~ N I x / [PRINT-ACTION I

I QUESTION II I / ~ " ~ fl'

w~'hat_is / I /I' "N,,,, N , /I / RINTACTI°N°i \
I" [fact. ~ / cause \

kno[wer ""~ ~ /j~/ \ NOWl I *ON61 \

PRINT-EFFECT]

IMAGEN

print-effect print-object / I

I / ~ t - d e s t

[PRINT-EFFECT01

Figure 2. ALANA's output for "Do you know how to print a file on the Imagen?"

reduced considerably the description of some of UC's
modules. We have focused on those processes that
contribute to UC's agentlike nature, while some more
conventional modules, such as the conceptual analyzer,
are mentioned only in passing. References are given to
descriptions of these neglected components, which
have all appeared elsewhere in print, should the reader
find the account herein dissatisfying.

3 THE ANALYZER

A conceptual analyzer maps a string of words into a
meaning representation. ALANA (Augmentable LAN-
guage Analyzer), the conceptual analyzer for UC, takes
as input a sentence typed by a user, and builds a
conceptual representation using the KODIAK knowl-
edge representation language. ALANA constructs the
primal content of the input utterance. The primal con-
tent is the interpretation that can be computed from
grammatical and lexical knowledge; it is generally
rather abstract. ALANA's results are further inter-
preted and refined by other parts of the system, such as
the concretion mechanism, to produce an actual con-
tent, and the goal analyzer, to produce a representation
of the intentions underlying the utterance.

ALANA is a descendent of PHRAN (Wilensky and
Arens 1980), the front end natural language component
for the original UC (Wilensky, Arens, and Chin 1984).
Like PHRAN, ALANA reads the user's input and
forms a concept that the other UC components can use
for their tasks. Also like PHRAN, the ALANA uses as
its primitive knowledge unit the pattern-concept pair,
which relates a natural language structure to a concep-

tual structure. UC has a total of 476 patterns and knows
284 words.

ALANA differs from PHRAN in its generality.
ALANA generalizes on the idea of pattern concept pair
analysis, while making it easier than it was with
PHRAN for a knowledge adder to add new patterns to
the system. Since a more detailed description of
ALANA can be found in Cox (1986), we will not
elaborate on it here. Instead, we merely show in Figure
2 the output produced by ALANA upon reading the
sentence "Do you know how to print a file on the
imagen?".

This diagram may be interpreted as follows: The
entire request is summarized as ASKll , i.e., some
asking event. What is asked for is verification of some
item, QUESTIONll , whose content is KNOW3, i.e.,
an instance of knowing. The knower of the item is UC,
and the fact is ACTION6. ACTION6 is interpreted as
something that is the cause of a printing action PRINT-
ACTION0, which is itself an action whose effect
(PRINT-EFFECT0) is to cause a file (FILE6) to be
printed on an imagen printer (IMAGEN0).

Some of the nodes in this diagram point to a node
labeled HYPOTHETICAL. This is a tentative conven-
tion used to indicate that the knowing and printing
event, etc., are not real events, but merely hypothetical
ones.

4 THE CONCRETION MECHANISM

4.1 INTRODUCTION

A concretion inference is a kind of inference in which a
more specific interpretation of an utterance is made

Computational Linguistics, Volume 14, Number 4, December 1988 49

Robert Wilensky, David N. Chin, Marc Luria, arames Martin, James Mayfield, and Dekai Wu The Berkeley UNIX Consultant Project

than can be sustained on a strictly logical basis (Norvig
1983, Wilensky 1983). Examination of contextual clues
provides the means to determine which of many possi-
ble interpretations are likely candidates. An example of
a simple type of concretion inference occurs in under-
standing that " to use a pencil" means to write with a
pencil, whereas " to use a dictionary" means to look up
a word.

Concretion differs classification such as that of
KL-ONE (Schmolze and Lipkis 1983, Brachman and
Schmolze 1985) in that a concretion inference may be
incorrect. Ordinarily, " to use a pencil" implies writing;
however, in a particular context, it may refer to prop-
ping a door open with a pencil. Nevertheless, in the
absence of compelling evidence to the contrary, the
natural interpretation is writing. Thus concretion may
be thought of as defeasible classification.

A process that performs concretion is called a con-
cre t ion m e c h a n i s m . A concretion mechanism attempts
to find clues in a set of general concepts to generate
concepts that are more specific. Writing, for instance, is
a specific type of using, in which the tool being used
may be a pencil. The use of such a mechanism permits
a straightforward approach to manipulating hierarchical
knowledge structures. The initial interpretation of an
utterance may include concepts too general for the
utterance to be considered understood. Such general
concepts embody the common features of their descen-
dent concepts, but for some reason insufficiently spec-
ify the meaning of the utterance. Thus the concretion
mechanism is responsible for making an appropriate
interpretation of a concept by selecting one of its
subconcepts, found lower in the hierarchy.

In deciding when concretion operations should be
performed, it is critical to consider how specific a
concept's representation must be to be understood.
Different levels of categorization are considered ade-
quate from situation to situation. For instance, it is
perfectly acceptable in most circumstances to leave the
interpretation of"ea t ing" as "eating some food". How-
ever, in a context involving picnics, a more specific
interpretation is likely to be made, namely, that the
eating involved paper plates, that people sat on the
ground or at a picnic table, that the food was of a certain
type, and so forth. In general, in cases where a more
specific category than usual is requisite, often some
feature of the prototype of the supercategory is vio-
lated, resulting in a higher probability of selecting a
subcategory where this feature is accommodated.

It is important that the mechanism be able to recog-
nize from a wide variety of clues when there is sufficient
evidence to concrete, as well as when an ambiguity
needs to be resolved. A uniform method of representing
the rules by which a concretion may be made is re-
quired. Naturally, wrong inferences can occasionally be
made, and some means must therefore be provided to
find and correct them when contradictory facts are
learned.

4.2 CONCRETION IN UC

As mentioned previously, our theoretical posture is that
concretion is but one of a number of inference processes
that can be accomplished by a single mechanism. How-
ever, in UC, for reasons of efficiency, and for pragmatic
advantages, a separate concretion mechanism was im-
plemented (by Dekai Wu). This mechanism currently
does rather straightforward classification.

The mechanism concretes by using information
about inheritance and value constraints, as well as by
considering relation information between concepts. A
concept represented as an instance of a category is
passed to the concretion mechanism. Its eligibility for
membership in a more specific subcategory is deter-
mined by its ability to meet the constraints imposed on
the subcategory by its associated relations and aspec-
tual constraints. If all applicable conditions are met, the
concept becomes an instance of the subcategory. At the
same time, the relations in which the concept partici-
pates may be concreted to reflect the more specific
relations of the new category of which it is inferred to be
a member.

4.3 EXAMPLE

Consider the example "Do you know how to print a file
on the Imagen?". The subpart "print a file on the
Imagen" is parsed into the representation shown in
Figure 3. Parts of the representation of printing are
shown in Figure 4.

Besides the printing of the contents of a computer
file, PRINT-EFFECT is in principle applicable to other
types of printing, such as printing a newspaper or a
book. The concretion mechanism checks each of the
more specific concepts dominated by PRINT-EFFECT,
searching for one whose constraints can be satisfied by
the input. It finds PRINT-FILE-EFFECT, whose only
additional constraint is that its print-object must be a

I ACTION [

D

t i PRINT ACTION I

/ IIMaO N1
I PRINT'ACTION0] i ~

print-file /
/ I IMAGEN0 I

I print-effect ['~,
I PRINT-EFFECT [\ [/

\ [print-dest
/ /

1PRIN -EFFEC 01

Figure 3. Representation of "print a file on the Imagen"

50 Computational Linguistics, Volume 14, Number 4, December 1988

Robert Wflensky, David N. Chin, Marc Luria, James Martin, James Mayfleld, and Dekai Wu The Berkeley UNIX Consultant Project

[STATE CHANOE I

i PRINT.EFFECT~. t ~dest D

C ntoct
PRINT-ACTION

D

[LASER-PRINT-ACTION /

°)
laser-print-effect
J I 'MA°EN-PRINT-~-FFECT 1

print-dest

pRINT-FILE-EFFECT[

effect'S l
y °

I LASER-PRINT-~ILE-EFFECT I
print-effect

D

COMPUTER-PRINTER J

D

C LAsERPRINTER'T
print-file-dest D

I ~ I~AOEN[

laser-printer-dest J
IMAGEN-PRINT-ACTION]

Figure 4. Some Knowledge About Printing

file. Since PRINT-EFFECT0 is in print-object relation
with the object FILE6, which is indeed an instance of
file, the process can descend to this node. The concre-
tion process will continue until it can concretize no
further.

Of course, it is perfectly plausible just to preclude
from UC on engineering grounds interpretations of
words that do not occur in the UNIX domain. As we
suggested earlier, it is our preference not to do so, since
we wish to address, rather than finesse, fundamental
language issues. However, doing so would not really
eliminate the need for concretion. Even if we do not
include concepts of non-computer printing in our
knowledge base, we would still have many different
kinds of printing, e.g., printing ASCII files versus
binary files or printing on the lineprinter versus the laser
printer. A query about each of these kinds of printing

requires a different response, although the term
"printing" applies to all of these. A system like UC
needs to concrete the concept of printing in general to
the particular kinds of printing that it knows about, in
order t o find the knowledge needed to answer the
question. Thus eliminating interpretations that lie out-
side the domain simplifies the problem somewhat, but it
does not change its essential nature.

In general, when concretion occurs, some node is
reclassified as being an instance of a more specific
category, and, in addition, the relations predicated
about that node are also reclassified. For example, here
we concretize PRINT-EFFECT0 to an instance of
PRINT-FILE-EFFECT. At the same time, we should
concrete the relation print-object predicated about it to
a use of the more specific relation print-file-object.
Similarly, print-dest is concreted to print file-dest.

Computational Linguistics, Volume 14, Number 4, December 1988 51

Robert Wilensky, David N. Chin, Marc Luria, James Martin, James Mayfield, and Dekai Wu The Berkeley UNIX Consultant Project

I LAs .-P.I ++- c+IONI

I P 'N+ / /
' ~ print-file-object

imagen-print-effect ~ f ~ . ~ g e Y

I L

I IMAGEN]

Figure 5. Result of Concretizing "print file on the Imagen"

/
I

/
IMAGEN0 I

Continuing in this fashion, the mechanism can move
from PRINT-EFFECT to LASER-PRINT-EFFECT,
and finally to IMAGEN-PRINT-EFFECT, since the
print-dest of the input is IMAGEN0, which is an in-
stance of IMAGEN. At the same time, the relation
print-dest is concreted to imagen-dest. In parallel with
this concretion, the node PRINT-ACTION0 gets con-
cretized to an instance of IMAGEN-PRINT-ACTION.
The final result is shown in Figure 5.

5 THE GOAL ANALYZER

Once an utterance has been converted to a KODIAK
representation by ALANA, and has been further re-
fined by the concretion mechanism, this internal repre-
sentation is passed to PAGAN (Plan and Goal ANa-
lyzer). PAGAN's task is to determine what goals the
speaker is addressing in making the utterance. For
example, when given a representation of the utterance

1. Do you know how to print a file on the Imagen?

asked by a naive user, PAGAN should infer that the
user was using the utterance to address the goal of
knowing how to print a file on the Imagen. Note that
PAGAN is not responsible for detecting goals that are
held by the speaker, but that are not conveyed by the
speaker's utterances. This problem is addressed by the
ego mechanism and by the planner.

To successfully do goal analysis, at least two ques-
tions must be answered. The first concerns the utter-
ance in isolation.

Q1. What kind of act does this utterance constitute?

This question has traditionally fallen under the rubric of
speech-act theory (Austin 1962, Searle 1969). For ex-
ample, (1) potentially has both a direct and indirect
interpretation, which PAGAN must choose between.

The second question a goal analysis mechanism must
answer examines the role of the utterance in conversa-
tion.

Q2. How does this utterance relate to other utter-
ances?

By virtue of being an action, an utterance always occurs
within a context. This context includes such diverse
factors as the identities of the speaker and of the
audience, the social relationship between them, the
physical locale, the task the conversation is supple-
menting if any, and so on. One feature of this context
that is salient to goal analysis is the presence of con-
ventional, multi-utterance sequences. Consider the ex-
change:

2. Do you have write permission on the parent
directory?
3. Yes.

The ability to understand the full meaning of (3) is
contingent on the realization that it relates directly and
conventionally to (2). Thus PAGAN will require knowl-
edge of such sequences to correctly determine the goal
underlying utterances such as (3).

52 Computational Linguistics, Volume 14, Number 4, December 1988

Robert Wilensky, David N. Chin, Marc Luria, James Martin, James Mayfield, and Dekai Wu The Berkeley UNIX Consultant Project

5.1 KNOWLEDGE REPRESENTATION FOR PAGAN

A planfor is a relation between a goal and a sequence of
steps (called a plan) that constitutes a possible method
of achieving that goal. All PAGAN's knowledge of
conversation is stored as planfors.

Planfors provide a means to address the questions
posed above. First, indirect speech acts can be ex-
pressed as planfors. For example, the generic indirect
speech act underlying (3) can be expressed as:

PLANFOR1
GOAL: Speaker ask hearer how to perform task
PLAN: Speaker ask hearer whether hearer

knows how to perform task

Second, planfors provide a means to express conven-
tionalized relationships between utterances. Utterance
1 and its answer can be represented as:

PLANFOR2
GOAL: Speaker know how to perform task
PLAN: Speaker ask hearer how to perform task

Hearer tell speaker how to perform task

(In general, steps of a plan that are to be executed by
someone other than the planner are interpreted as the
planner waiting for that event to happen.)

Representing both speech act knowledge and conver-
sational knowledge with planfors has two advantages.
First, it allows a single mechanism to handle the proc-
essing of both phenomena. The goal analysis mecha-
nism described below does just this. Second, it allows
the two forms of knowledge to be combined into a single
structure. For example, the two preceding planfors can
be combined to express both the indirect speech act and
the question and answer sequence.

PLANFOR3
GOAL: Speaker know how to perform task
PLAN: Speaker ask hearer whether hearer

knows how to perform task
Hearer tell speaker how to perform task

The KODIAK representation of a planfor is shown in
Figure 6. Figure 7 depicts PLANFOR3 in its KODIAK
form. (It is called PLANFOR34 in the knowledge base).

IPLAN ORI

I STAT -OR-EV NT1 //
a , C /

Figure 6. Definition of a Planfor

It is a planfor whose goal is to know a fact which is itself
a plan for some goal. (The names of the aspectuals not
used to make a predication have been omitted from the
diagram.) The plan of PLANFOR34 is for the person
who wants to know this action to ask someone whether
that person knows the action sought, and then, to have
that same person tell the asker what was desired.

Note that planfors do not represent fundamental
knowledge of causality. There is usually a causal rela-
tionship between a plan and a goal that are connected by
a planfor. However, the planfor itself does not represent
the causality. What a planfor does represent is a notion
of typicality. It indicates that its plan is one that is
typically or conventionally used to achieve its goal. For
example, the UNIX 'rm' command may cause a file to
be deleted. It may also cause the disk arm to be moved.
It would be a mistake though to say that 'rm' should be
connected to the goal of moving the disk arm by a
planfor relation; 'rm' is not typically used to move the
disk arm. On the other hand, 'rm' should be connected
to the goal of deleting a file by a planfor relation, since
this goal is what 'rm' is typically used for.

Traditional approaches to dialog understanding have
focused on the process of plan inference. Under this
approach, utterances are viewed as steps of plans. Such
plans may themselves be parts of higher-level plans, and
so on. Allen and Perrault (1980) developed a system that
exemplifies this approach. Their system handled direct
and indirect speech acts by plan analysis. Carberry
(1983) extended this paradigm to deal more thoroughly
with domain plans. Litman and Allen (1984) used the
notion of metaplans (Wilensky 1983) to facilitate the
comprehension of subdialogs. Grosz and Sidner (1985)
pointed out the need for attentional knowledge in un-
derstanding discourse. One problem that has persisted
in the literature is an inadequate representation of the
relationship between goals and plans. Planfors provide
such a representation.

Planfors allow a goal analysis mechanism to combine
certain inferences that should be kept together. First,
inferences about plans may be made at the same time as
those about goals. This is in contrast with systems such
as Wilensky's PAM system (1983) that use separate
representations for inferring plans and goals. Second,
inferences about plan recognition and inferences about
intended response recognition may be combined by
including the intended response in the plan and associ-
ating this entire plan with a single goal. This is in
contrast with systems such as Sidner's (1985) that first
do plan recognition and then worry about what response
was intended. The ability to do both kinds of inference
simultaneously conforms to the intuition that no extra
processing is required to determine, for example, that
an answer is required once the realization is made that
a question has been asked. Finally, planfors allow
inferences about linguistic goals and about domain goals
to be handled by a single inference engine. The separa-
tion of goal analysis into linguistic goal reasoning and

Computational Linguistics, Volume 14, Number 4, December 1988 53

Robert Wilensky, David N. Chin, Marc Luria, James Martin, James Mayfield, and Dekai Wu The Berkeley UNIX Consultant Project

KNOW34 I
/ \

knower fact

PLANFOR34] plan
[PLANFOR--]

[
plan

-I EVENT-SEQUENCE3!O
/

next event event-step
I EVENT'SEQUENCE34 I

\
 v nt-st

/ [~ ~ teller ~

hst~ner /= "N~ / proposition

~ / [QUESTION341 listener

whaiis

t ow33.i ~ kn°~ e//r ~fact) ~ =

Figure 7. A plan for knowing is to ask if the hearer knows.

task goal reasoning (cf. Alien, Frisch, and Litman 1982)
is unnecessary, since the only difference between the
two is the type of action that may comprise plan steps.

5.2 GOAL ANALYSIS

When knowledge of goals and plans is represented with
planfors, goal analysis is the task of matching the
representations produced by the language analyzer
against the steps of plans stored in memory. The goal
held by a speaker in making an utterance is then the goal
that is associated with the matched plan via the planfor
relation.

In the absence of any previous conversational con-
text, an utterance to be analyzed is compared with the
first plan step of each planfor that PAGAN knows
about. When a match is found, the corresponding goal is
taken to be the goal the speaker had in mind in making
the utterance.

Several phenomena complicate this view of goal
analysis. First, a speaker may intend a single utterance
to be a part of more than one plan. For example, (1) is

a plan for the goal of knowing how to print a file.
Achieving this goal may in turn be part of a plan for
actmdly printing a file. To handle such situations,
PAGAN must apply the matching process recursively
on each inferred goal. This matching process is repeated
until no further higher-level goals can be inferred.

Second, preceding conversational events may set up
expectations in relation to which an utterance is de-
signed to be understood. For example, (3) cannot be
readily interpreted when viewed in isolation. However,
if it is used in response to a question such as (2), its
interpretation is clear. Two additions must be made to
the matching algorithm to handle this and similar cases.
First, before matching the utterance to plans in the
planfor knowledge base, the utterance must be matched
against the next step of any active planfor (i.e., any
planfor already inferred but not yet completed). In this
example, the representation of (3) would be matched
against the second step of the question and answer plan
started by (2) to determine if it is a response to the
question. Second, when a match with a new planfor is

54 Comput~ttional Linguistics, Volume 14, Number 4, December 1988

Robert Wilensky, David N. Chin, Marc Luria, James Martin, James Mayfield, and Dekai Wu The Berkeley UNIX Consultant Project

found, PAGAN may also need to infer that the speaker
has adopted the matched planfor. Suppose UC says (2)
to the user. Here, UC is initiating a plan for the goal of
knowing whether the user holds the indicated permis-
sion. But, at the moment, this goal is held only by UC;
it is reasonable that the user might not address the goal
at all. For example, the user might reply

4. Does it matter?
instead of answering the question. If the user's response
can be construed as an answer to the question, we say
that the user has adopted the planfor, and we may then
expect any additional steps in the plan to be pursued by
the user.

Third, PAGAN may find more than one planfor in its
long-term memory that matches the utterance. This is
called planfor ambiguity. Planfor ambiguity is handled
in one of two ways. If an alternative matches an
expectation, as described in the previous paragraph,
then that alternative is chosen as the correct interpre-
tation. If no expectation is matched, PAGAN tries to
reject an alternative as implausible. A planfor is implau-
sible if PAGAN believes that the user believes that its
goal already holds, if its goal does not appear to lead to
some appreciable benefit for the user, or if PAGAN
believes that the user believes that one of its plan steps
could not be achieved.

5.3 PROCESSING OVERVIEW

1. This utterance wasn't expected.
2. This utterance wasn't an adopted plan.
3. Matching ASK0 pattern against ASK11.
4. Could not match KNOW23 pattern to ACTION6

because of category KNOW.
5. Match failed--try the next one.
6. Matching ASK34 pattern against ASK11.
7. Match found.
8. Matching ASK39 pattern against ASKI 1.
9. Match found.

10. Attempting to resolve ambiguity in the interpreta-
tion of ASK11.

I 1. The alternatives are: KNOW34 KNOW39.
12. Trying to determine whether KNOW34 was ex-

pected.
13. KNOW34 was not expected.
14. Trying to determine whether KNOW39 was ex-

pected.
15. KNOW39 was not expected.
16. The goal KNOW39 is implausible, since the speaker

probably believes that it already holds.
17. ASKll is explained by the goal KNOW34.
18. Creating new HAS-GOAL node: HAS-GOAL-ga0.
19. Returning goal KNOW-ga0.

Figure 8. Trace of PAGAN's Processing of "Do you know
how to print a file on the Imagen?"

At PAGAN's core is a matching program that matches
two KODIAK structures against one another. Two
structures are said to match if they are isomorphic (i.e.,
they have the same link structure) and each pair of
corresponding nodes matches. For two nodes to match,
one must be equal to or an ancestor of the other. For
example, Imagen would match Imagen or laser printer,
and laser printer would match Imagen, but Imagen
would not match Laserwriter.

PAGAN first tries to determine whether the utter-
ance was expected. This is done by matching the
representation of the utterance against those plan steps
that have been inferred but not yet witnessed. Such
expectations are stored in a separate structure to speed
the matching process. Failing this, PAGAN attempts to
match the representation of the utterance to the first
steps of planfors stored in memory. If a single such
match is found, this planfor is copied, forming a new
planfor with the observed utterance as its first step. If
more than one planfor is found to match, the resultant
ambiguity is resolved either by matching its goal to an
expected action or by consulting the user model to
determine whether that goal and plan are plausible given
what is known about the user.

5.4 EXAMPLE

This section traces the processing performed by PA-
GAN to handle Utterance 1. The input to PAGAN is the
structure built by the analyzer from this utterance and

refined by the concretion mechanism. A trace of PA-
GAN as it processes this structure is shown in Figure 8.
The first step performed by PAGAN is to determine
whether the utterance is the continuation of a conver-
sational plan already in effect. For this to be the case,
there would need to be some previous dialog to provide
the necessary context. This dialog would take one of
two forms. It might be a plan that UC believed the user
to be pursuing before the current utterance was encoun-
tered. Alternatively, it could be a plan introduced by
UC that the user has adopted, that UC believes the user
to be pursuing only after witnessing the current utter-
ance. Since there is no previous context in the example
we are tracing, neither of these possibilities is found to
hold (1-2).

Next, PAGAN tries to match the utterance against
the first steps of plans in its planfor knowledge base.
The first possibility is compared with the Input Struc-
ture 3, but one pair of corresponding nodes is found not
to match (4-5). The second possibility, one that does
match the utterance, is then compared with the Input
Structures 6-7. This planfor corresponds to the indirect
interpretation of the utterance. This is the planfor that is
shown in Figure 7. A third possibility, corresponding to
the direct interpretation of the utterance, also matches
the Input Structures 8-9. An attempt to resolve this
ambiguity is now made (10-11). Since neither goal
matches an expected goal (12-15), the planfors are
examined for plausibility. The direct interpretation is

Computational Linguistics, Volume 14, Number 4, December 1988 55

Robert Wilensky, David N. Chin, Marc Luria, James Martin, James Mayfield, and Dekai Wu The Berkeley UNIX Consultant Project

[HYPOTHETICAL.]

/ I / ~ / I i PLANFOR.ga~.] planner goal /
:r -I OW-gaOl

~ plan goals

actor ~ , , ~ /

I AcTioN71 (PRINT- FF C 0 (
I
t

IAC!lONI
Figure 9. PAGAN Output

discarded, because the user model indicates that it is
likely that the user knows that UC knows how to print
a file on the Imagen (16). (The contribution of the user
model is described in Section 6.) Thus the planfor
representing the indirect interpretation is selected (17).

Once the utterance has been matched to the first step
of this planfor, an instance of a PLANFOR is created
with the goals determined from the input. In addition,
an instance of the HAS-GOAL-STATE is built (18). The
planner of this state is the user, and the goal is the goal
of the PLANFOR. This HAS-GOAL represents the
goal that UC believes the user had in mind in making the
utterance, and is returned by PAGAN as its result (19).
It is shown in Figure 9.

In this figure, note that PAGAN has created a node
labeled ACTION7, whose actor is the user. This repre-
sents the inference made by the goal analyzer that, if a
user wants to know an action to achieve some goal, then
the user intends to be the actor of that action.

6 ThE EGO MECHANISM

6.1 UCEGO

UCEgo is the component of UC that determines UC's
own goals and attempts to achieve those goals. The
input to UCEgo are the user's statements as interpreted
by UC's conceptual analyzer and concretion mecha-
nism, and the user's goals and plans as inferred by UC's
goal analyzer. UCEgo draws on the UNIX planner
component of UC to produce plans for doing things in
UNIX. It passes the results to UC's expression mech-
anism, which prepares the conceptual information for
generation into natural language.

The processing in UCEgo can be divided into two
main phases: goal detection and plan selection. In goal

detection (Wilensky 1983), UCEgo considers the cur-
rent situation and detects appropriate goals for UC. The
plan selection phase of UCEgo takes UC's goals and
tries to produce a plan for satisfying them. The process
of executing the plan normally results in a collection of
concepts that are to be communicated to the user.
UCEgo also includes an explicit user model, which
encodes the user's knowledge state for use in goal
detection and answer expression. Each of these sub-
components is described in greater detail below. A more
substantial description of these subcomponents is de-
scribed in Chin (1988).

6.1.1 THEMES AND GOALS

In UCEgo, goal detection is implemented by if-detected
demons, if-detected demons are similar to the implica-
tion rules found in many semantic network type sys-
tems. If-detected demons contain two subparts, a de-
tection net and an addition net. Both of these are
networks of KODIAK concepts. Whenever the detec-
tion net of an if-detected demon matches what is in
UC' s memory, the addition net of the if-detected demon
is copied into UC's memory. The detection and addition
nets may share concepts, that is, share nodes in their
networks. Here, the concepts that match the detection
net are used in place of the corresponding concepts in
the addition net. Thus all the links in the addition net are
preserved in making the copy, but some of the absolutes
are from the result of the match. As described below,
the matching process, which is somewhat different from
that used by the goal analyzer, allows certain nodes to
match instances of the concepts they specify. There-
fore, these nodes function like the typed variables found
in other systems.

When used in goal detection, the detection net of an

56 Computational Linguistics, Volume 14, Number 4, December 1988

Robert Wilensky, David N. Chin, Marc Luria, James Martin, James Mayfield, and Dekai Wu The Berkeley UNIX Consultant Project

[OC.ASOOAL3?
/ J' J I- s °°A'°?I

/ sP ?1 / / \ /
/ plan g o a l \

\

/ / \ / \
/ need / planner

go/al acto/r "~ ~ \

/ 2 \
/

/ h e l p e r ._.__.~ PERSON4? I
/ /_helper

Figure 10. If-detected Demon for Adopting the User's Goal
of Knowing.

if-detected demon represents the situation in which the
goal should be detected, and the addition net of the
if-detected demon contains the goal. Figure 10 shows an
if-detected demon used in goal detection. This if-de-
tected demon encodes the information that if UC has
the goal (UC-HAS-GOAL3 in the diagram) of helping
(HELP1) someone (PERSON4), and that person has the
goal (HAS-GOAL0) of knowing something, then a plan
for helping that person is for UC to satisfy (SATISFY1)
the person's need to know.

Figure 10 shows an if-detected demon with an inter-
secting detection and addition net. In these diagrams,
the detection net is designated by unlabeled arrows
coming into the doubled circle labeled "if-detected".
The net includes all those concepts plus all children of
those concepts. The addition net is composed of those
concepts pointed to by the if-detected double circle plus
all their children. In the figure, the detection net con-
sists of UC-HAS-GOAL3, HAS-GOAL0, and their
child nodes. The addition net consists of PLANFOR3
plus all its child nodes. (UC-HAS-GOAL is a subtype of
HAS-GOAL in which the planner is constrained to be
UC, thus obviating the need to specify UC as the
planner in each demon.) Thus, when PAGAN has
inferred that the user wants to know something, and UC
has the goal of helping the user (a recurrent goal that
arises from UCEgo's computer-consultant-role theme),
UCEgo will detect the goal of satisfying the user's goal
of knowing.

The use of demons in UCEgo is intended to represent
its procedural knowledge of what to do in particular

situations. For example, while a planfor structure used
in both UCEgo and PAGAN might encode that some
plan is appropriate for some goal, a demon is needed to
cause UC to intend to use that plan in a situation in
which that goal is present. Thus demons represent the
actions to be taken in a given situation, although both
the situations and actions are described in declarative
KODIAK format.

To capture generalizations effectively, the number of
demons should be kept to the minimum and as much as
possible should be represented as declarative KODIAK
knowledge. For example, it is possible to have one
demon for each situation in which a particular goal
suggests adopting a particular plan; then we might be
able to dispense with representing knowledge in plan-
fors. However, doing so would not capture the gener-
alization common to all these situations, namely, that
expressed by the demon in Figure 10.

While we have attempted to keep the number of
demons small, this version of UC certainly does not go
as far as we would like in this direction. There are about
70 demons in the current version. We expect that a
careful examination of them could result in reducing this
number somewhat making the program more declara-
tively based.

UCEgo needs a complex control structure, because it
has more varied tasks to perform than most of the other
parts of UC. Indeed, to accommodate its needs, UCEgo
uses a slightly different matching algorithm than some
of the other components. In particular, the question
marks in the diagrams are significant to the demon
interpreter during both matching and copying. In match-
ing, the question mark in a node means that the inter-
preter should look not just for exact matches, but also
for any concepts that are members of the same catego-
ries as the node or specializations of those categories.
For example, PERSON4? will be matched by any
instances of either PERSON or specializations of PER-
SON such as USER. In copying the addition net, the
interpretation of the question marks is to use the
matched concept if the node is also a part of the
detection net, or to create a new concept that is an
instance of the same categories as the node. Nodes
without question marks are used directly without copy-
ing.

These rules of interpretation extend only to using
demons, and are purely a part of UCEgo's implement.
That is, assertions made using these rules, when entered
in the KODIAK knowledge base, have the same syntax
and semantics as elsewhere in UC.

6.1.2 EXTENDED GOAL DETECTION

Besides situations where UCEgo simply adopts the
user's goal of knowing, UCEgo also handles situations
where it does not adopt the user's goal, such as when
the user asks, "How do I crash the system?" or "How
can I delete UC?"

The cases where UCEgo does not tell the user the

Computational Linguistics, Volume 14, Number 4, December 1988 57

Robert Wilensky, David N. Chin, Marc Luria, James Martin, James Mayfield, and Dekai Wu The Berkeley UNIX Consultant Project

answer include examples of goal conflict where
UCEgo's goal of wanting the user to know something
conflicts with another of UCEgo's goals. For example,
consider what happens when the user asks, "How do I
crash the system?" By normal processing, UCEgo
arrives at the goal of wanting the user to know how to
crash the system. However, crashing the system con-
flicts with UCEgo's recurrent goal of preserving the
system, which arose from UCEgo's life theme of stay-
ing alive (Schank & Abelson 1977). This theme is
operationalized by yet another if-detected demon,
which looks for the user wanting to crash the system,
and results in UC having the goal of preventing the user
from doing so. (This is one of only a few such states
pertaining to the staying-alive theme that UCEgo has
knowledge about.) Of course, it is the job of PAGAN to
determine that the user wants to crash the system from
the user asking how to crash the system.

Figure 11 shows the if-detected demon that detects
goal competition between UCEgo's goal of preserving
something (SOMETHING1 in the diagram) and some-
one's goal (PERSON1 in the diagram) of altering it. In
this example, UC-HAS-GOAL1 would be matched by
UCEgo's recurrent goal of preserving the system,
which arises from UCEgo's life theme of staying alive.
HAS-GOAL2 would be matched by the user 's goal of
crashing (a specialization of altering) the system. As a
result, UCEgo adopts the subgoal of preventing the user
from crashing the system.

I C"ASOOALi?I IPLANFORI I"ASOOAL2?I

/pl!n I I
IPR S .vEl?l IPR V NTI?I \

preserver preventer ~
prevent-state l PERSONI? I

preserved

alter-object
/

Figure 11. If-detected Demon for Detecting Preserve/Alter-
Type Goal Conflicts.

Next, the goal of preventing the user from crashing the
system, with the information (inferred by UC's
KNOME, cf. section 6.2) that the user does not know
how to crash the system and the information that the
user wants to know how (inferred by PAGAN), causes
a new goal for UCEgo, namely, preventing the user
from knowing how to crash the system. Figure 12 shows
the if-detected demon responsible. This demon detects
situations where UCEgo has a goal of preventing some-
thing from happening and where the person who desires
this does not know how to do it and wants to know how.
Here, UCEgo adopts the goal of preventing the person
from knowing.

After detecting the subgoal of preventing the user
from knowing how to crash the system, UCEgo will
detect a goal conflict when it tries to adopt the usual
goal of having the user know, in order to help the user.
Figure 13 shows the if-detected demon that detects
goal-conflict situations where UCEgo both has a partic-
ular goal and has the goal of preventing that goal. In
such cases, UCEgo adopts the recta-goal (Wilensky
1983) of resolving the goal conflict. The general mech-
anism of dealing with such recta-goals is described in
the next section. The eventual result of this mechanism
here is that the goal of preventing the user from knowing
is maintained and the other conflicting goal is aban-
doned.

6.1.3 PLAN SELECTION

After UCEgo has detected the appropriate goals, it then
tries to satisfy these goals. This is done in the plan
selection phase of UCEgo. Plan selection in UCEgo is
implemented using planfors, as described in Section 5,
on PAGAN. In UCEgo, planfors are indexed using
if-detected demons. The if-detected demons serve to
suggest application of a particular planfor whenever an
appropriate situation arises. Such situations always
include the goal of the planfor, and may include other
factors relevant to the planfor. For example, Figure 14
shows an if-detected demon that suggests the plan of
telling the user the answer whenever it detects a situa-
tion where UC wants the user to know the answer to a
query and there is an answer for that query.

Besides encoding the situations when UCEgo should
be reminded of particular planfors, the if-detected de-
mons also provide a unification service. For plan selec-
tion, unification serves to specialize the general plans
stored in the planfors to fit the activating situations. For
example, consider the demon shown in Figure 14. After
the detection net of the demon is matched, UCEgo will
create a new planfor with a plan of telling the user the
particular proposition that matched SOMETHING2,
which is the answer for the user's query.

After finding a plan, adopts the intention of executing
that plan. An intention to execute a plan means that
UCEgo has scheduled the plan for execution. UC's
notion of intention is similar to that of Cohen and
Levesque (1987), although UC is not concerned with

58 Computational Linguistics, Volume 14, Number 4, December 1988

Robert Wilensky, David N. Chin, Marc Luria, James Martin, James Mayfield, and Dekai Wu The Berkeley UNIX Consultant Project

UC-HAS-GOALI?

I j
~/ , g o a l

IP w=Ti? I

prevent-act

IAcz,o=i?

PREVENT2?

/
goals

/

if-detected

HAS-GOAL2?

R2•?
goal

~lan fact

ACTION2?

NOT-K______~OW I

planner

PERSONI?

Figure 12. If-detected Demon for Preventing Someone from Knowing How to do Something.

issues of its own beliefs, since performing actions
accidentally or unknowingly is not a real possibility for
the system. Figure 15 shows the basic knowledge used
by UCEgo to adopt a plan for execution.

This if-detected demon states that whenever UC has
some goal and UC knows that there is a plan for that
goal, then UC adopts the intention of performing the
plan.

If UC had to choose between a number of plans for a
goal, this demon would have to be replaced by some-
thing more complex. The idea behind our scheme is
that, with a rich enough description of situations for
which plans are appropriate, a planner will not typically
consider many plans at any given junction. So far,
UCEgo has been able to function by simply intending to
perform the first plan it finds, and with no ability for

I UC- I

~ g!al conflict-goal ~

goal ~ ~ goal

' S Ip= v .NTi?l- pre,ent-state A =O=ET"'=O'?I

Figure 13. If-detected Demon for Detecting Goal Conflicts.

Computational Linguistics, Volume 14, Number 4, December 1988 59

Robert Wilensky, David N. Chin, Marc Luria, ilames Martin, James Mayfield, and~ Deka[Wu The Berkeley UNIX Consultant Project

~ L 2 o~"-~"""-'-""-~1 PLANFOR2?

- -'.l J /
l ~ goal /goals

quer~ k _ _ S " ~, ~ ~ ,,an
answer [SOMETHINGI? ~ . .Sact knower

l / final state
\

I s°~T"IN°~? ~ ~ p r o p o s ~ t i o a listener e~ect

speaker

Figure 14. If-detected Demon for Suggesting the Plan of Telling the User.

correction. If a more complex planning structure is
eventually needed, we would realize it by having a more
sophisticated mechanism for forming intentions. For
example, the presence of multiple recalled plans could
be represented as a situation in which a meta-goal of
choosing between them is to be detected.

After UCEgo has finished forming intentions to per-
form some actions, it attempts to execute them. UCEgo
has some procedural knowledge about which intention
to tend to first. For example, it will try to execute
meta-plans before non-meta-plans, and subgoals before
their parent goals. If there remain unfulfilled conditions

I u c . x s INTENT L~C HASOO ALl ~1
\ PLANFOR, /

i.to.t,o. / \ ~oa,
\ pan goa /

/ \
I AcT~oNI? I I SOM~T.,NO,? I

Figure 15. Principal If-detected Demon Used to Adopt a
Plan.

of a plan, its execution will not be attempted. Other-
wise, the selection among intentions is random.

Having selected a plan, UCEgo proceeds to execute
the plan. UCEgo's demon interpreter calls the proper
subcomponent to perform the action. An example of
this is when UCEgo calls UCExpress to perform a
TELL action.

In the case of executing a meta-plan for a meta-goal,
the procedure called by the interpreter typically alters
the plan structure itself. For example, in the previous
section, UCEgo had inferred the meta-goal of resolving
a conflict between two goals, one of helping the user
and one of protecting itself. In plan selection, a demon
would propose a meta-plan called ABANDON-GOAL
to use to address this meta-goal. This meta-plan would
cause a procedure to be invoked that resolves the
conflict by abandoning the less valuable goal. To deter-
mine which goal is less important, ABANDON-GOAL
first searches the data base for an explicit HAS-PRE-
CEDENCE relation between the two goals. If such a
fact cannot be found, ABANDON-GOAL examines the
parent goals of the goals in question for such a fact. If
that fails, the ultimate sources of the goals, usually
some themes, are examined. All of UC's themes are in
an explicit precedence relation. Thus most conflicts can
be resolved by appeal to the priority of themes. In the
example from the previous section, UC's staying alive
theme is found to have a higher precedence than its
consultant theme, thus causing the latter goal to be
abandoned and the former retained.

60 Computational Linguistics, Volume 14, Number 4, December 1988

Robert Wilensky, David N. Chin, Marc Luria, James Martin, James Mayfieid, and Dekai Wu The Berkeley UNIX Consultant Project

6.2 KNOME---UC'S USER MODEL

K N O M E is a program that maintains UC's model of the
user. This model represents UC's understanding of the
user 's knowledge of UNIX. No attempt is made to
determine other user attributes, such as personality
traits (Rich 1979), user preferences (Morik and Rollin-
ger 1985), or user performance (Brown and Burton
1976). This knowledge state is exploited by the goal-
detection phase of UCEgo ' s processing and by KIP and
UCExpress .

K N O M E separates users into four categories or
stereotypes, corresponding to different levels of exper-
tise: novice, beginnner, intermediate, and expert. Each
category encodes information about the knowledge
state of users that belong to that category. Conflicting
information about an individual user 's knowledge state
can be encoded explicitly, and will override inheritance
from the user 's s tereotype category. Thus the user
categories are prototypes that are used as reference
points for inference (Rosch 1978).

Besides separating users according to expertise,
K N O M E also categorizes commands, command for-
mats, terminology, and other relevant knowledge.
These objects are grouped according to their typical
location on the learning curve (i.e., when the average
user would learn the information). The categories in-
clude s imple , mundane , and complex. A further cate-
gory, esoteric, exists for those concepts that do not
consistently lie on any one area of the learning curve.
These concepts are usually related to special purpose
requirements, and only users that require that special
purpose will learn those concepts. Thus esoteric con-
cepts may be known by novices and beginners as well as
by intermediate or expert users, although advanced
users are still more likely to know more esoteric items
simply because they have been using UNIX longer.

The double s tereotype system described above is
extremely space efficient. The core of K N O M E ' s gen-
eral knowledge of users is summarized in the five
statements shown in Figure 16 (although the informa-
tion is stored as assertions in KODIAK).

6.2.1 INFERRING THE USER'S LEVEL

During a session, K N O M E builds a profile of the user
and infers the user 's level of expertise. This proceeds in
a two-step process. First, K N O M E infers particular
facts about what the user does or does not know from
the dialog, i.e., from what the user actually said and
from the output of the goal analyzer. Next, these facts
are combined to infer the user 's level of expertise.

Inferring particular facts about what the user does or
does not know is implemented using if-detected demons
as a rule-based system. An example of such a rule is:

the user wants to know ?x --* the user does not
know ?x

Expert users know all simple or mundane facts and most
complex facts.

Intermediate users know all simple, most mundane, and a
few complex facts.

Beginner users know most simple facts and a few mundane
facts.

Novice users know at most a few simple facts (e.g., the
login command).

Any user may or may not know any esoteric facts, but
more experienced users are more likely to know more
esoteric facts.

Figure 16. Summary of KNOME's General Model of Users

This rule is implemented using the if-detected demon
shown in Figure 17.

K N O M E currently distinguishes seven classes of
inference rules. These are summarized as follows:

Claim--inferences based on what the user claims to
know;
Goal-- inferences based on what the user wants;
Usage-- inferences based on the user 's usage;
Background-- inferences based on the user 's back-
ground;
Query-reply-- inferences based on user 's replies to
questions;
No-clar ify-- inferences based on the user 's not ask-
ing for clarification

Claims cover such items as the statement by a user that
he or she knows some fact. Examples of goal inference
are that, if a user asks how to do something, then it is
reasonable to assume that the user does not know how
to do that thing, and is also unfamiliar with the com-
mand that does it. Usage inferences include such no-
tions as that the user can be assumed to know the
commands the user has used. Background inferences
mean that, should UC know the user 's background and
have a stereotype for that background, UC should
assume that the user knows what is indicated by that
background. Query-reply refers to the possibility that
UC asks the user for information about the user 's
knowledge state. Finally, no-clarify inferences are as-
sumptions that the user knows the items to which UC's
terminology refers if the user does not ask for clarifica-
tion of them.

Based on its understanding about what the user does
or does not know, K N O ME can infer the user 's level of
expertise. An example of such an inference rule is:

the user does not know a S IMPLE fact ~ it is
L I K E L Y that the user is a NOVICE, it is UN-
L I K E L Y that the user is a B E G I N N E R , and it is
F A L S E that the user is an I N T E R M E D I A T E or an
EXPERT

Such evidence is combined to arrive at a likelihood that
the user have a given level of expertise. Such ranking is
updated continually as the interaction with a given user

Computational Linguistics, Volume 14, Number 4, December 1988 61

Robert Wilensky, David N. Chin, Marc Luria, ,lames Martin, James Mayfield, aud~ Deka~ Wu The Berkeley UNIX Consultant Project

I .

/ /
planne~,~ ~ [-~0MET-~HING i ? [/

?wor
I PERSONI? I

Figure 17. If-detected Demon Used for Inferring that the User Does Not Know Something.

progresses. At any given point, the most highly ranked
level is the one the user is assumed to be at. For more
details on this and other issues addressed in UC's
KNOME (e.g., dealing with the inherent uncertainty of
information encoded in the model, representing individ-
ual users, etc.), see Chin (1986, 1988).

6.2.2 SOME APPLICATIONS OF KNOME IN UC
The user model is exploited in many places in UC. For
example, to decide whether some goal involving the
state of the user's knowledge is plausible, PAGAN will
check to see if the user already knows the fact in
question. If the user does, PAGAN will not attribute the
goal to the user. Thus, if the user asks a question with
both a possible direct and indirect interpretation, like
"Do you know how to print a file on the imagen?" and
the KNOME concludes that the user knows how to
print a file on the imagen, it will reject the indirect
interpretation.

KNOME is also used extensively by UCExpress,
UC's expression mechanism. For example, generating a
response to simple question once the answer is known is
a function of the knowledge state of the user. In
particular, UCExpress will illustrate a response with an
example only if it believes the user is a novice. Also,
UCExpress will use its simile format, i.e., using one
command to illustrate another command, only when it
believes the user knows the first command. Of course,
establishing such a belief is the job of KNOME. UCEx-
press is described further in Section 8.

6.2.2.1 DETECTING MISCONCEPTIONS

One of the more interesting uses of KNOME in UCEgo
is to detect user misconceptions. A misconception
occurs when the user believes something that UC
believes is false. An example of a user misconception

occurs when the user asks, "What does Is -v do?"
Here, the user believes that there is an 'Is' command,
that '-v' is an option of the 'Is' command, and that there
is a goal for the plan of 'Is -v.' Here, '-v' is actually not
an option of 'Is,' even though 'Is' will accept and ignore
extraneous options.

KNOME is responsible for detecting what the user
believes, comparing this with UC's knowledge, and
then either deducing that the user knows the fact if what
the user believes coincides with UC's knowledge, that
the user has a misconception if the user's belief contra-
dicts UC's knowledge, or that the user may know
something that UC is unfamiliar with. The last possibil-
ity, namely, that UC does not know everything about
UNIX, means that the system cannot use a simple
closed-world hypothesis (which implies that if a fact
cannot be deduced from the data base, then it must be
false) such as is used in other misconception detection
systems (e.g., Mays 1980, Kaplan 1983, Webber and
Mays 1983, and McCoy 1983). The other possibility is
an open-world hypothesis, where if a fact cannot be
deduced from the data base, then the system has no
information about it. Using a pure open-world hypoth-
esis, a system would have to encode complete informa-
tion about what cannot be the case, in order to detect
misconceptions. This is inefficient at best and at worst
not possible.

What KNOME does instead is to augment an open-
world hypothesis with meta-knowledge. Here, the term
meta-knowledge is used to denote knowledge that
KNOME has about what UC itself does or does not
know. For example, KNOME contains the information
that UC knows all the command options of all simple
commands. Hence, if a particular option is not repre-
sented in UC's knowledge base as a possible option for
a particular simple command, then that is not a legal

62 Computational Linguistics, Volume 14, Number 4, December 1988

Robert Wflensky, David N. Chin, Marc Luria, James Martin, James Mayfield, and Dekai W u

ii

The Berkeley UNIX Consultant P r o j e c t

option for that command. Using such meta-knowledge,
KNOME is able to infer that '-v' is not an option of 'Is,'
hence, that the user has a misconception. This fact is
passed on to UCEgo, which adopts the goal of correct-
ing the user's misconception.

6.3 EXAMPLE

To see how UCEgo works in more detail, consider again
the example "Do you know how to print a file on the

Imagen?". Recall that thus far in the processing, UC
has parsed and understood the question, and the goal
analyzer has asserted that the user has the goal of
knowing a plan for printing a file on the imagen. At this
point, UCEgo's processing begins.

The first part of the annotated trace below shows the
goal detection phase of UCEgo. The explanatory com-
ments that have been added to the trace are printed in
italics.

UCEgo detects the following concepts:
(UC HAS GOAL 19 (goal = (HELP2(helpee =* USER*)(helper= UC))))
(HAS GOAL-ga0(planner=* USER*)

(goal=(KNOW-ga0(knower=*USER*)
(fact = (ACTION7(actor =*USER*))))))

and asserts the following concept into the data base:
(PLANFOR29(goals = (HELP2(helpee = * USER*)(helper = UC)))

(plan = (SATISFY2(need = (KNOW-ga0 &))
(actor= UC))))

US HAS GOAL19 represents UC's goal of helping the user (HELP2).
HAS GOAL-gaO, which is also shown in Figure 9, is the user's goal of knowing (KNOW-gaO) how to print a file

on the Imagen.
PLANFOR29 represents the fact that a plan for helping the user (HELP2) is for UC to satisfy KNOW-gaO, which

is the user knowing how to print a file on the Imagen.

UCEgo detects the following concepts:
(UC HAS GOAL19(goal=(HELP2(helpee=*USER*)(helper=UC))))
(PLANFOR29(goals = (HELP2(helpee = *USER*)(helper= UC)))

(plan = (SATISFY2(need = (KNOW-ga0 &))
(actor= UC))))

and asserts the following concept into the data base:
(UC HAS INTENTION6(intention=(SATISFY2(need=(KNOW-ga0 &))

(actor= UC))))
UC HAS INTENTION6 represents UC's intention to satisfy KNOW-gaO.

UCEgo detects the following concepts:
(UC HAS INTENTION6(intention=(SATISFY2)(need=(KNOW-ga0 &))

(actor= UC))))
and asserts the following concept into the data base:
(UC HAS GOAL20(goal=(KNOW-ga0(knower=*USER*)

(fact = (ACTION7(actor= *USER*))))))
UC HAS GOAL20 represents UC's goal of the user knowing how to print a file on the Imagen.

Annotated Trace of UCEgo's Goal Detection Process.

The user's goal (HAS-GOAL-ga0 in the trace) combines
with UC's goal of helping the user (UC-HAS-GOAL19,
present in UC's initial state) to activate the detection
net of the if-detected demon shown in Figure 10. On
activation, the if-detected demon adds a copy of its
addition net to UC's memory. Here, the addition net
consists of the fact (PLANFOR29) that a plan for
helping the user is for UC to satisfy the goal of the user
knowing a plan for printing a file on the Imagen. Next,
this planfor combines with UC's goal of helping the user
(UC-HAS-GOAL19) to make UCEgo adopt the inten-
tion (UC-HAS-INTENTION6) of satisfying the goal of

"the user knowing a plan /'or printing a file on the
Imagen". This intention arises as a result of UCEgo's
if-detected demon for plan selection, which is shown in
Figure 15. Finally, UCEgo adopts the user's goal as its
own. This subgoal (UC-HAS-GOAL20) is the result of
UCEgo's goal detection process.

After UCEgo has detected the goal of "the user
knowing a plan for printing a file on the Imagen", the
plan selection phase of UCEgo attempts to select a plan
to satisfy this goal. The following annotated trace shows
this part of the processing (additional explanations are
in italics).

Computational Linguistics, Volume 14, Number 4, December 1988 63

Robert Wilensky, David N. Chin, Marc Luria, .lames Martin, James Mayfield, and Dekai Wu The Berkeley UNIX Consultant Project

UCEgo detects the following concepts:
(PLANFOR-gal(goals = PRINT-EFFECT0)

(plan= (ACTION7(actor =*USER*))))
(UC HAS GOAL20

(goal=(KNOW-ga0(knower=*USER*)
(fact=(ACTION7(actor=*USER*))))))

and asserts the following concept into the data base:
(UNIX-planner 1 (user goals = PRINT-EFFECT0))

UC HAS GOAL20 is UC' s goal of knowing (KNOW-gaO) ACTION7, which represents the plan part of the planfor
(PLANFOR-gal) for printing a file on the Imagen (PRINT-EFFECTO).

UNIX-plannerl represents a call to KIP.

The planner is passed:
PRINT-EFFECT0

The planner produces:
(PLANFOR70(goals = PRINT-EFFECT0)

(plan =
(EXECUTE UNIX IPR COMMANDO

(ipr-file=FILE6)
(ipr-execute-cornmand ="lpr -Pip")
(ipr-format = (IPR-FORMAT0

(ipr-format-arg = NAME6))))))
PLANFOR70 says that a plan Jbr achieving the goal of PRINT-EFFECTO is to use EXECUTE UNIX IPR

COMMANDO, which entails using the command lpr -Pip on the name of the file to be printed.

UCEgo detects the following concepts:
(ANSWER-FOR1

(answer=
(PLANFOR70(goals = PRINT-EFFECT0)

(plan =
(EXECUTE UNIX IPR COMMANDO

(ipr-file = FILE6)
(ipr-execute-comrnand= lpr-Pip)
(ipr-format = (IPR-FORMAT0

(ipr-format-arg = NAME6))))))
(query=(ACTION7(actor=*USER*))))

UC HAS GOAL20 (goal=(KNOW-ga0 &)))
and asserts the following concept into the data base:
(PLANFOR30(goals = (KNOW-ga0 &))

(plan= (TELL4(listener= *USER*)
(speaker=UC)
(proposition = (PLANFOR70 &)))))

ANSWER FOR1 says that an answer to the query of "how to print a file on the Imagen" (ACTION7) is
PLANFOR70.

PLANFOR30 says that a plan for achieving the goal of the user knowing how to print a file on the Imagen
(KNOW-gaO) is for UC to tell (TELL4) the user PLANF'OR70.

UCEgo detects the following concepts:
(UC HAS GOAL20(goaI=(KNOW-ga0 &)))
(PLANFOR30(goals = (KNOW-ga0 &))

(plan=(TELL4 &)))
and asserts the following concept into the data base:
(UC HAS INTENTION7(intention=(TELL4 &)))

UC HAS INTENTION7 represents UC' s intention of telling the user (TELL4).

UCEgo detects the following concepts:
UC HAS INTENTION7(intention=(TELL4 &)))
and asserts the following concept into the data base: (Trace cont.)

64 Computational Linguistics, Volume 14, Number 4, December 1988

Robert Wilensky, David N. Chin, Marc Luria, James Martin, James Mayfield, and Dekai Wu The Berkeley UNIX Consultant Project

(Trace cont.)
(UCexpressl

(gen-prop =
(TELL4(Iistener=*USER*)

(speaker=UC)
(proposition =

(PLANFOR70(goals = PRINT-EFFECT0)
(plan =

(EXECUTE UNIX IPR COMMANDO
(ipr-file=FILE6)
(ipr-execute-command = "lpr -Pip")
(ipr-format = (IPR-FORMAT0
(ipr-format-arg = NAME6))))))))))

UCexpress l represents a call to UCExpress to execute TELL4.

Annotated Trace of UCEgo's Plan Selection Process.

The first step of the plan is to call KIP, the planner
component of UC. Figure 18 shows the if-detected
demon that calls KIP. KIP is called whenever UC has
the goal of knowing a plan for something in the trace,
UC-HAS-GOAL20 and PLANFOR-gal combine to
cause a call to KIP (UNIX plannerl in the trace). KIP,
as is described in the next section, comes back with an
answer (PLANFOR70), which is an answer (ANSWER-
FOR1) to the user's question. Then the if-detected
demon shown in Figure 14 detects the plan of telling the
user the answer (PLANFOR30 in the trace). This plan,
with UC's goal (UC-HAS-GOAL20) of the user know-
ing the answer leads to UC's intention to tell the user
the answer (UC-HAS-INTENTION7) via the if-de-
tected demon shown in Figure 15. Finally, the intention
translates into a call to UC's expression mechanism,
UCExpress (UCexpressl in the trace), which eventu-
ally calls UCGen to produce the answer. KIP, UCEx-
press, and UCGen are described in the following sec-
tions.

/O oan er
goa, I P' ANF°R' I

L Now,? L

Figure 18. If-detected Demon for Calling the UC Planner,
KIP.

7 THE PLANNER

7.1 INTRODUCTION

This section describes KIP (Luria 1985), a knowledge-
based, commonsense planner (Wilensky 1983). KIP
includes:

• a knowledge base of facts about the domain
• a planning component that uses this knowledge to:

• find potential plans for problem situations
• notice potential problems with these plans
• use metaplanning knowledge (knowledge about

plans) to determine which plans to suggest.

KIP uses the same knowledge base as the rest of UC. In
principle, it could be used to do the planning required by
UCEgo. As mentioned previously, this was not at-
tempted mostly for pragmatic reasons. In addition, the
planning done by UCEgo is much more straightforward
and does not require recourse to the same magnitude of
knowledge as does KIP. Thus it seems reasonable to
use a much simpler planner for communicative func-
tions.

7.2 PLANNING PROCESS IN K I P

The basic structure of KIP is similar to that of UCEgo.
However, KIP is a more elaborate planner. It must be
able to plan for unanticipated goals of the user, and
must be concerned with adverse consequences of the
plans it proposes. In general, KIP has to iterate through
the planning process a number of times to arrive at an
adequate plan.

The following are the steps of the iterative process
that KIP uses.
1. Goal detection---decide what goals to work on

• Start with the goals input from UCEgo
• Detect new goals that might arise from use of pro-

posed plans

Computational Linguistics, Volume 14, Number 4, December 1988 65

Robert Wilensky, David N. Chin, Marc Luria, .lames Martin, James Mayfield, and Dekai Wu The Berkeley UNIX Consultant Project

I ETHERNET-COMMANDS J

D D D

[FILE T.ANSFER COMMANO I

D D

/
I Mv co MANDI

D

\
IcPcoMMANol

Figure 19. Hierarchy of Ethernet and File Transfer Commands

2. Plan selection--select a possible plan

• Try to find a stored plan that is related to the user's
goals

• Propose a new plan if necessary based on knowledge
in the system

3. Projection--test whether plan would be executed
successfully

• Check for conditions that are likely not to be met
• Notice bad side effects
• Detect goals needed to address discovered problems

4. Plan evaluation---decide whether plan is acceptable

• Reject plan if impossible
• Accept if unproblematic
• Create warning if possible but problematic

The iterative structure described here is implemented
by a series of meta-plans (Wilensky 1983). The under-
lying meta-plan is to find a particular plan that the user
can use; these steps are parts of that process.

7.2.1 GOAL DETECTION

KIP begins with the user's domain goals, passed to it by
UCEgo. As it proceeds with the planning process, other
goals may be detected. These fall into the following
categories: a condition that KIP believes is unmet and
whose omission would cause the plan to fail becomes a
new goal (i.e., a subgoal of a current goal). Another kind
of goal arises when some current plan being considered
impinges upon an interest of the user. An interest is
some situation, real or hypothetical, toward which the
user has a positive stance. In UNIX, examples of
interests are having access to files and maintaining a low
system load average.

In UC, interests generally give rise to goals of
defending against a threat to that interest. Since such a
threat is generally the inadvertent consequence of some
plan under consideration, there is often a goal conflict
between a user goal and the goal resulting from the
threatened interest. As in UCEgo, such conflicts are
handled by detecting a meta-goal of resolving that

conflict. For example, if a proposed plan involves
deleting a file, this goal might conflict with the goal of
having access to that file. The meta-goal of resolving
this conflict is therefore detected.

7.2.2 PLAN SELECTION

Plan selection is the process of determining a potential
plan to satisfy the user's goals. This potential plan is
then examined during the rest of the planning process. If
the plan is judged adequate, it is returned to UCEgo;
otherwise, this plan is modified or another plan is
selected.

One simple method for performing plan selection is
to choose a stored plan that is indexed in the knowledge
base as addressing the goal to be achieved. This is done
by using the same matching procedure used by PAGAN
to examine knowledge structures relating plans to goals,
using the same representational format used by PA-
GAN. Such knowledge structures are used to represent
only the conventional functions associated with com-
mands, e.g., that 'rm' is a plan to delete a file, or that
'lpr -Px' prints on the printer x.

7.2.2.1 NEW PLANS

When KIP has no stored plan for a particular goal, it
employs a kind of means-ends analysis strategy (Newell
and Simon 1972). KIP assumes that the best way to
reduce the difference between the user's goal and the
present state is by determining the goal most similar to
the current goal, and trying to fulfill that goal. KIP finds
a similar goal by using its taxonomy of goals to locate a
goal that is dominated by the same parents as the user's
goal. This algorithm for finding a plan is called the Goal
Similarity Matching Algor i thm (G S M A) .

For example, there is no command in UNIX for
moving a file to another machine. This goal is repre-
sented as achieving the conditions of having a file of the
given name and contents on the target machine, and not
having such a file on the source machine. In this case,
KIP searches for a plan of a goal most similar to the goal
of moving a file to another machine. It does this by
finding a goal that shares more common parents with
moving a file to another machine than any other goal.
Since moving a file to another machine is dominated by
Ethernet (machine-machine links) goals and file transfer

66 Computational Linguistics, Volume 14, Number 4, December 1988

Robert Wilensky, David N. Chin, Marc Luria, James Martin, James Mayfield, and Dekai Wu The Berkeley UNIX Consultant Project

I EXECUTE-UNIX-COMMAND [

l I UN X-c°MMAND I D

EXECUT I

, t

1 ~ ~ . y - " ~ name

najmo I ;J

Figure 20. Representation of Plan to Delete a File by Using the 'rm' Command

goals, KIP searches for plans of goals that are domi-
nated by these two goals. Figure 19 shows that one
command, 'rcp', falls in this category. This command is
used to copy a file from one machine to another.

KIP selects the plan of using the 'rcp' command as a
potential plan to move a file to another machine. When
this plan is tested in a subsequent phase of the planning
process, it will be found not to satisfy all the goals of the
user, since the goal of not having such a file on the
source machine is left unaddressed. Plans for these
remaining goals will be selected by subsequent itera-
tions of the planning algorithm.

7.2.2.2 PLAN SPECIFICATION

Once a plan has been selected, KIP makes a copy of the
plan with specific values filled in. For example, the user
asks:

How do I delete the file named junk from my
directory?

The general plan for this planning situation is to use the
rm command. This is stored in the knowledge base as
shown in Figure 20.

During plan specification, KIP creates a new in-
stance of the EXECUTE-UNIX-COMMAND and fills
in the appropriate specific values of its arguments by
looking at the general plan. This specific plan, shown in

Figure 21, specifies that the value of the del-object (the
file to be deleted) is FILE1 (whose filename is junk) and
the value of the argument to the 'rm' command is the
string "junk". In other words, this represents that the
'rm' command with the argument " junk" is a plan for
deleting a file whose name is junk. It is this specific plan
that is tested during the rest of the planning process.

7.2.3 PROJECTION

It is next necessary to test whether the plan as devel-
oped so far would actually execute successfully. Poten-
tial problems in the plan include both conditions that
must be satisfied and goal conflicts that must be re-
solved because of the effects of the plan.

While detailed descriptions of all UNIX commands
are in the knowledge base, KIP does not actually check
to see that all the conditions of success are met or that
no goal conflict is possible. First, there are too many
conditions to check, even in very simple situations.
Second, UC usually does not have the information to
determine the answer. For example, in order to print a
file, the printer must be in working order, there must be
a continual supply of electricity, the user must have an
account, etc. Rather than checking all such conditions,
it would be desirable to check only those that seem to
constitute a reasonable cause for concern.

Computational Linguistics, Volume 14, Number 4, December 1988 67

Robert Wilensky, David N. Chin, Marc Luria, James Martin, James Mayfield, and Dekai Wu The Berkeley UNIX Consultant Project

DELETE-FILE-EFFECTI

del-object

goals
[EXECUTE-UNIX-RM-COMMAND! ~.~

plan

~ f~ormat ~1PLANFOR21]

/
name

[R~M'FORMAT1 ~""~argument ~

J
I /

Figure 21. Representation of Specific Plan to Delete a File named junk by Using the RM Command with Argument "junk".

This is done in KIP by storing a knowledge structure
called a concern. A concern represents an aspect of a
plan that should be considered a potential cause of plan
failure. These encode some user's experience. For
example, presumably, the printer's being in working
order is not a frequent obstacle to printing a file, but
having read permission might be if the file to be printed
belongs to someone else.

There are two basic kinds of concerns in KIP,
condition concerns and goal conflict concerns. Condi-
tion concerns specify those conditions of a plan that are
likely to be unmet, while goal conflict concerns specify
the consequences of a plan that are likely to threaten a
user's interest. KIP examines only those aspects high-
lighted by a concern in determining whether to accept a
plan. In general, concerns that are judged insignificant
are ignored, those judged highly significant lead to plan
failure, and moderate concerns are passed on to be
expressed as warnings to the user. For example, in the
following transaction, a moderate condition concern is
found.

How do I print out Jim's file named testl?
Type 'lpr testl ' . This plan will not work if you don't
have read permission on Jim's file.

Since not having read permission on someone else's file
is stored as a moderate cause for concern, the planner
accepts the plan, but passes along the concern to the
expression mechanism. Doing so leads to the warning
statement following the suggestion to use the particular
plan.

Note that in the example above, the concern is
retrieved only because the user made a request that
involves access to someone else's files. It is typical of
concerns that some are appropriate only when a default

condition is violated. KIP believes that the default for
using UNIX is to access one's own files, so it retrieves
concerns about access only when this situation does not
pertain.

KIP makes considerable use of default knowledge in
processing concerns. Also, concerns may be attached to
plans at any point in the hierarchy, so that they will be
accessed only for the specific conditions in which they
might apply. For example, KIP knows that the Apple
printer has a small paper tray and often runs out of
paper. Thus, without additional knowledge of the state
of the printer, UC will produce the following interac-
tion:

How do I print a file on the apple printer?
Use 'lpr -Pap'.
But first, fill the printer with paper.

In contrast, if we explicitly assert to the user model that
the printer is full of paper, we get the following re-
sponse:

How do I print a file on the apple printer?
Use 'lpr -Pap'.

A goal conflict concern is illustrated by the following
example:

How can I free up disk space?
Use rm. However, any file that is removed cannot be
recovered.

In this example, the only plan KIP can come up with to
free up disk space is to delete files. However, a goal
conflict concern informs the planner that this plan is
likely to conflict with the user's of preserving access to
his or her files. KIP therefore generates a warning to
accompany this plan.

68 Computational Linguistics, Volume 14, Number 4, December 1988

Robert Wilensky, David N. Chin, Marc Luria, James Martin, James Mayfield, and Dekai Wu The Berkeley UNIX Consultant Project

IPRINT-EFFECT]

t
I

I
print-file-object

imagen-dest

[MAoEN01
Figure 22. Input to KIP from "Do you know how to print a

file on the imagen?": Print effect0 and Important Links

Another example of the use of concerns occurs in the
following interaction:

How do I find out the files in the directory named
/usr/local on my sun?
Type 'ls/usr/local r more'.
However, you should first change the current direc-
tory to the directory named/usr/local, by typing cd
/usr/local.

Here, KIP detects two concerns. One pertains to a bug
in the SUN implementation of the UNIX 'Is' command,
in which asking for a listing of a directory mounted on a
different disk than one's current directory occasionally
causes no output to result. This bug has been made into
a concern about using the 'Is' command in such a
situation. The concern causes the planner to issue a
warning to change one's current directory. The second
concern is that listing large directories may cause output
to scroll off the screen. Since the directory in question
is typically large, PAGAN alters its plan to pipe the
output through the 'more' filter. This example also
makes use of default knowledge in that KIP assumes
that the user might not be connected to the same place
as/usr/local, and that this directory is large.

KIP has a rather elaborate taxonomy of concerns and
a method of processing them. In addition to classifying
concerns by whether they are appropriate to violated
defaults or not, or to conditions or goal conflicts,
whether the effect of a command is intended by the user
is important for generating a concern. For example, it is
probably inappropriate to generate a warning about not
being able to recover files if the user asked to delete a
file, for example. The details of KIP and how it handles
concerns are described in Luria (1987, 1988).

7.3 EXAMPLE AND TRACE OUTPUT OF KIP

The example being considered throughout this paper
does not require much work by KIP. This is because
UC's knowledge base contains a plan for the goal of
printing a file on the imagen. Also, there are no con-
cerns associated with this particular plan. (Had the
input referred to printing the file of another user, or

printing on another printer, KIP would have retrieved
concerns about not being about to access another
person's files, or about the peculiarities of the type of
printer, respectively.) Thus the planner simply ends up
retrieving the stored plan, making an instance of it, and
passing it on. The input to the planner from UCEgo is
PRINT-EFFECT0, which we show in Figure 22 along
with its most pertinent connections. Following that is an
annotated trace of KIP's processing for this example.

Planner is passed:
(PRINT-EFFECT0

(print file-object -- FILE6)
(imagen-dest -- IMAGEN0))

The planner was passed a single goal.

Looking for stored plan for PRINT-EFFECT0
Looking for specific stored-plan for this individual
goal
Looking for plan for PRINT-EFFECT0
No stored plan for PRINT-EFFECT0 was found
Try all the parents to see if they have a plan
Looking for plan for IPRINT-EFFECT
EXECUTE-UNIX-IPR-COMMAND is a plan for
IPRINT-EFFECT
No condition concerns
No goal conflict concerns
Making a new instance of EXECUTE-UNIX-IPR-
COMMAND

The planner checks to see if it has achieved the exact
same goal before. When it fails, as is the case here, it
looks up the hierarchy. In this example, it looks first at
the category IPRINT-EFFECT, of which PRINT-
EFFECT0 is represented as being an instance. KIP
finds in the knowledge base PLANFOR7 (not shown in
the trace) that connects IPRINT-EFFECT with EXE-
CUTE-UNIX-IPR-COMMAND. This knowledge is
shown in Figure 23.

There are no concerns retrieved within this particular
plan, so KIP will simply produce an instance of it and
return it to UCEgo.

Note that KIP's retrieval of a plan for this goal is
simplified by the concretion mechanism's having clas-
sifted the input as an instance of Imagen printing.
Originally, ALANA represented the meaning of the
input as an instance of printing. However, there are no
plans associated with printing per se, but only with
printing's more specific subcategories. Thus the planner
would have to search for an appropriate plan had the
concretion mechanism not done its job. In actuality, the
planner starts at the most specific category that the
input could be classified as, and works up the hierarchy.
Therefore, the planner is guaranteed to find the most
specific plan applicable to the situation.

Making a new instance of IPR-FORMAT
Making a new instance of NAME
Making NAME6 an instance of HYPOTHETICAL
Filling in aspectual ipr format-arg with value NAME6

Computational Linguistics, Volume 14, Number 4, December 1988 69

Robert Wilensky, David N. Chin, Marc Luria, ,lames Martin, James Mayfield, and Dekaii Wu The Berkeley UNIX Consultant Project

I EXEC UTE-UN1X-COMMAND]

T i NI× COMMAND I
D

I - l

i t
execute-~mmand ~ f o r m a t p lan~~PL~N.i? loR7j ~ "~na!e

I-i0r. ip- [a r g e n t = / /
•

Figure 23. Representation of plan for printing a file on the imagen

FILE6
Filling in aspectual name with value NAME6

Making a new instance of EXECUTE-UNIX-IPR-
COMMAND
Filling in aspectual ipr-file with value FILE6
Filling in aspectual ipr-execute-command with value
"lpr -Pip"
Filling in aspectual ipr-format with value IPR-
FORMAT0

Making a new instance of PLANFOR7
Filling in the goals with PRINT-EFFECT0
Filling in the plan with EXECUTE-UNIX-IPR-
COMMANDO

A copy of the plan has been made. Note that KIP has
made NAME6 a hypothetical object, because it is the
name of FILE6, which is itself hypothetical.

Planner returns:
(PLANFOR70

(goals = PRINT-EFFECT0)
(plan = (EXECUTE-UNIX-IPR-COMMAND0

(ipr-file = FILE6)
(ipr-execute-command

= "Ipr -Pip")

(ipr-format = (IPR-FORMAT0
(ipr-format-arg

= NAME6))))))
No pertinent concerns are found, and there is nothing
more to do, so the plan found is returned. The planner's
output is shown in Figure 24.

8 THE EXPRESSION MECHANISM

8.1 INTRODUCTION

After UC has determined the correct conceptual re-
sponse to the user, this response must be expressed to
the user in a clear, concise manner. Consider the
following example:

User: What is a directory? AI:

A
directory

is a
file. A2: A directory is a file that is used to

contain files.
A3: A directory is a file. Only empty directories

can be deleted. Directories cannot be edited.
Directories contain files. Directories form a
treelike structure. Directories always contain

70 Computational Linguistics, Volume 14, Number 4, December 1988

Robert Wilensky, David N. Chin, Marc Luria, James Martin, James Mayfield, and Dekai Wu The Berkeley UNIX Consultant Project

/
goals

/

imagen-dest

PLANFOR701

'""plan "-x
I EXECUTE'UNIX'IPR'COMMAND0 I

/ ~ execule-c'~ommaud

ipr-file0 format

print .'"-~.~file _o bj ect _ ~ X ~

PR-F°RMAT°I

I"Ipr Pip" I

Figure 24. Output from KIP for Example "Do you know how to print a file on the Imagen?"

themselves and their parents. A directory
can be listed by using the 'Is' command.

The different replies are all correct, but contain differing
amounts of information. The first answer does not give
enough information to distinguish between files and
directories. The second answer provides just enough
information in a concise form and is the best answer in
such a situation. The third answer is too verbose and
overwhelms the user with irrelevant information. An
answer like A3 would be more appropriate in cases
where the user had requested, "Tell me all you know
about directories." This example illustrates the problem
of determining how much of an answer to express to the
user. This is similar to Luria's work (1982) on answering
why-questions in a story-understanding system. He
pointed out that answering why-questions requires two
mechanisms, one to find the causal chain that repre-
sents the answer and another expression mechanism to
determine how much of the causal chain to tell the user.

Another problem in answer expression is deciding
what format to use in presenting the answer. This
problem corresponds to Grice's Maxim of Manner
(Grice 1975). Consider the following scenario:

User:

AI:

How can I move a file to another machine?

To move a file to another machine, type
'rcp' followed by one or more spaces or
tabs followed by the name of the file to be
moved followed by one or more spaces or
tabs followed by the name of the machine
followed by a colon followed by the new
name of the file on the other machine fol-

lowed by a carriage return followed by 'rm'
followed by one or more spaces or tabs fol-
lowed by the name of the file.

A2: Use 'rcp' to copy the file to another ma-
chine and then use 'rm' to delete it. For ex-
ample, to move the file foo to the file foo2
on machine dali, type 'rcp foo dali:foo2.'

The first answer is correct and general, but it is so
verbose that it is undecipherable. On the other hand, the
second answer is succinct and gives the user informa-
tion in an easily readable form, but is considerably less
general. The second answer is somewhat inaccurate,
since it applies only to copying a file named foo to a file
named foo2. It is up to the reader to apply analogous
reasoning for other cases. Despite this lack of general-
ity, the second answer form is superior to the first. Note
that for a program to format the answer in the second
form requires additional computation to transform the
general solution into an example. A natural language
system needs to incorporate knowledge about when and
how to use special presentation formats like examples
to more clearly convey information to the user.

The concerns of how much information to present to
the user and of what format to use correspond respec-
tively to Grice's Maxims of Quantity and Quality (Grice
1975). Such considerations can be considered part of
language generation; however, there are enough differ-
ences in both the necessary knowledge and the process-
ing to separate such strategic concerns from the tactical
problems of generation such as agreement and word
selection. Such strategic problems are the domain of an
expression mechanism.

Computational Linguistics, Volume 14, Number 4, December 1988 71
P

Robert Wilensky, David N. Chin, Marc Luria, James Martin, James Mayfield, and Dekai Wu The Berkeley UNIX Consultant Project

8.2 APPROACH

UC's expression mechanism, UCExpress, uses a two-
step process: pruning and formatting. In the pruning
stage, UCExpress marks those concepts it does not
wish to communicate to the user. In the formatting
stage, the concepts are transformed by a planning
process into more easily understood formats. The result
is a set of concepts that are ready for generation into
natural language.

The guiding principle of the pruning process is to
avoid telling the user anything that the user already
knows. Currently, UC models two classes of such
information. The first is semantic information about the
user's knowledge of UNIX-related facts. Such knowl-
edge is modeled by KNOME (cf. Section 6.2). The
second class of information is episodic: knowledge from
a model of the conversational context. The current
conversational context is tracked by keeping an ordered
list of the concepts that were communicated in the
current session. Any concept that is already present in
the conversational context or that KNOME deduces
that the user already knows is marked and not commu-
nicated to the user.

For example, suppose a user asked UC the following
question:

How can I compact a file?

The conceptual answer passed to UCExpress is a rather
complex network. If it were directly paraphrased into
English, the result might be something like the follow-
ing:

A plan for compacting a file is to use the 'compact'
command with the format being 'compact' followed
by the name of the file.

However, UCExpress prunes the concepts correspond-
ing to compacting a file, since they are already in the
conversational context. If UC believes that the user is at
least a beginner, then the format of the 'compact'
command would be pruned as well, siince KNOME will
deduce that the user knows this fact from its belief that
such users know the format of simple commands. In this
case, UC will eventually generate the following reply:

Use compact.

On the other hand, if the user were a novice, then UC
could not assume that the user already knew this format
and would have provided a more elaborate answer.
However, rather than generate the answer as an ab-
stract but more detailed description, UCExpress would
favor the example format, as described below, and
produce the following reply:

Use compact. For example, to compact the file foo,
type 'compact foo'.

Indeed, for the examples in this paper, we have gener-
ally caused UC to believe that the user is a novice, in
order to illustrate the formatting mechanism.

After pruning, UCExpress enters the formatting
phase, where it tries to apply different expository for-
mats to express the concepts in a clearer manner.
Currently, there are three format types: example, defi-
nition, and simile.

Definition format is used to explain terminology.
Generally, the need to do so is a result of the user asking
a direct question, such as "What is a directory?". The
heuristic procedure used to satisfy such requests is to
find a category dominating the one in the query, and
then find information that distinguishes the subcategory
from it. The following are examples of definition format.

What is a directory?
A directory is a file that is used to contain files.

What is a file?
A directory is a container that is used to contain text,
code or files.

What is a rm?
Rm is a command that is used to delete files.

What is a search path?
A search path is a list of directories that is used by
the csh to search for programs to execute.

A directory represented as a kind of file. Moreover, it is
distinguished from other kinds of files in that it contains
files. Similarly, a file is represented as a kind of con-
tainer that is distinguished from other containers in that
it contains some sort of information. The portion of the
network pertaining to these concepts is used to generate
the first two responses above.

Simile format expresses information in terms of other
information the user is believed to know. This format is
invoked when UCExpress attempts to explain a com-
mand that has a sibling or a parent that the user is
believed to know, and which is thought to be similar
enough to the command to be expressed. The judgment
of similarity is made by counting the number of con-
cepts at which the two networks differ. If this is below
some arbitrary threshold, the simile format is adopted.
An example of the use of the simile format is the
following:

What does ruptime do?
Ruptime is like uptime, except ruptime is for all
machines on the network.

The most common expository format is the example
format. Examples were shown by Rissland to be impor-
tant for conveying information (Rissland 1983, Rissland
et al. 1984). In UC, examples are used to illustrate plans
such as those involving the format of UNIX commands.
Unlike Rissland's examples, which are prestored and
fetched, UC's example format requires additional com-
putation to transform the general plan into an example.
This is accomplished by stepping through a plan and
transforming general categories into specific ones.

72 Computational Linguistics, Volume 14, Number 4, December 1988

Robert Wilensky, David N. Chin, Marc Luria, James Martin, James Mayfield, and Dekai Wu The Berkeley UNIX Consultant Project

!

proposition
tel~r lis~ner ""~l PLANFORT0 I

goals
plan -.. . .
I ~x~C°'~-~x-'~-~°~°° I

/ ~ execute c~°mmand /
PRIN EFFECT0 r 'e ormat

0nnt ,eo ject / \ I0r Pip J
ima endest \

l I' RFOR"AT01
,I.AOEN0, f ? - - / i / na e pr format

I.~POT.~TICAL ~ l
Figure 25. The Input to UCExpress for Example "Do you know how to print a file on the Imagen?"

First, if a category dominates other categories, one of
those is chosen (at random); then, where the represen-
tation can be interpreted as stating that an individual is
needed, an individual is created to replace general
categories. Where an individual name is required, it is
chosen from a list at random, taking care to avoid
conflicts with existing names.

Consider the following UC dialog:

How can I change the read permission of a file?
Use chmod.
For example, to remove group read permission from
the file named foo, type 'chmod g-r foo'.

In the conceptual answer, the last argument of chmod
was a pointer to "the name of the file whose protection
is to be changed." To give an example, a concrete name
for the file is needed, so foo was arbitrarily selected for
use in the example. Since the user did not explicitly
mention the type of permission (user, group, or other),
this was specified to be group permission in the exam-
ple. Similarly, "change permission" was further speci-
fied into "remove permission." Since these items are
not yet known to the user, they will cause expressions

like "the file named foo" to be produced when the
example is generated.

8.3 EXAMPLE

To see how UCExpress works in more detail, consider
the example "Do you know how to print a file on the
Imagen?". After UCEgo, in conjunction with KIP, has
determined the proper answer, it calls UCExpress to
express it to the user. The input to UCExpress is shown
in Figure 25. This input conceptual network is UCEgo's
plan to tell the user the plan that KIP produced (Figure
26, Section 7.3). If the plan were to be directly gen-
erated into English, the result might be something like:

A plan for printing a file on the Imagen printer is to
use the lpr command with the Imagen printer option.
The format of the command is lpr -Pip and followed
by the name of the file to be printed on the Imagen
printer.

Instead, UCExpress prunes the output, and, since the
user is suspected of being a novice, generates an
example to illustrate the plan. The following trace
illustrates the processing of UCExpress.

Computational Linguistics, Volume 14, Number 4, December 1988 73

Robert Wilensky, David N. Chin, Marc Luria, James Martin, James Mayfield, and Dekai Wu The Berkeley UNIX Consultant Project

Express: now expressing the PLANFOR,
(PLANFOR70(goals = PRINT-EFFECT0)

(plan =
(EXECUTE-UNIX-IPR-COMMAND0

(ipr-file = FILE6)
(ipr-execute-command = ' 'lpr -Pip")
(ipr-format = (IPR-FORMAT0 (ipr-format-arg= NAME6))))))

Express: not expressing PRINT-EFFECT0, since it is already in the context.
Express: creating an examp!e for the incomplete plan, IPR-FORMAT0
Express: choosing a name, foo, for an example file.
Express: created the example(s):
((TELL5(teller= UC)

(listener= *USER*)
(proposition=

(EXAMPLE0
(exampler =

(PLANFOR3 l(goals= PRINT-EFFECT4)
(plan =

(TYPE-ACTION0
(actor= *USER*)
(type-string=

(CONCAT-STR0
(stringl =" lpr -Pip")
(string2="foo")))))))

(exemplified = PLANFOR70)))))

Trace of UCExpress.

The first phase of UCExpress is pruning, during which
those concepts that the user already knows are marked
so that the generator will not generate them. In this
case, PRINT-EFFECT0, the goal of PLANFOR70, is
pruned, as it is in the current context.

In traversing the input conceptual network, UCEx-
press runs into the command format IPR-FORMAT0.
Since this node is presumably not known to the user,
UCExpress would normally not prune it. However,
UCExpress specifically checks command formats to see
if they are as specific as possible, and since FILE6 does
not have a name, UCExpress schedules the creation of
an example to explain the format, and prunes the
original node. The rest of the network is passed without
any pruning.

In creating an example, UCExpress must specify all
the parameters in the command format. Thus the name
of the file, which was not specified by the user, is made
explicit in the example. Here, the name " foo" was
chosen arbitrarily from a list. The complete example is
then turned into the proposition part of a TELL
(TELL5 in the trace).

Figure 26 shows the conceptual network after prun-
ing and the addition of an example. Note that the
exemplified of an example is automatically pruned, as it
is always expressed by the expressing the generic
response. The pruned and augmented conceptual net-
work is next passed to the generator, described in the

next section, which produces the following English
output:

Use lpr -Pip. For example, to print the file named foo
on the Imagen printer, type 'lpr -Pip foo'.

If the user had been judged to be at least a beginner in
experience, then the command format also would have
been pruned. This is because KNOME believes that
users at the beginner level and up can be assumed to
know that part of the command format. In such a case,
the entire output would consist of the pruned version of
TELL4, and the generated entire response would be:

Use lpr -Pip.

9 THE GENERATOR

9.1 INTRODUCTION

After UCExpress formats an answer, the generator,
UCGen, converts the conceptual response into text.
The current version of UCGen has been customized to
work with the types of responses that the system
typically produces. It has been built to take advantage
of the limited structure of these responses.

9.2 DESIGN

To convert a KODIAK representation of a concept into
text, UCGen must associate some linguistic information
with the concept. This is done by attaching to a concept
a pattern that represents some linguistic form. For

74 Computational Linguistics, Volume 14, Number 4, December 1988

Robert Wilensky, David N. Chin, Marc Luria, James Martin, James Mayfield, and Dekai Wu The Berkeley UNIX Consultant Project

~ O " " pos,tlon PLANFO 301

I teller listener plan --..,,
I EXEC UTE-U NIX-IPR-COMMAND0]

\
I

, /
i E×A &E I

/

~ tener

proposition

 ctor
e x e c u t e - ~

I "Ipr -Pip"

71PLANFO 3I
l exampler /

AMPLEO ~ ' ~ I " goal/s " p l a n ~ , N N ~

, / I TYPE ACTION01
/

I PRINT-EFFECTI I type string \ /
print-fil~-object i CONCAT.STRO I

string2

J
imagen-dest

/
stringl

I"IproPip" I

Figure 26. The Output of UCExpress for the Example "Do you know how to print a file on the Imagen?"

example, a concept often expressed is PLANFOR. This
concept relates a plan for achieving a goal with the goal
itself. A pattern for PLANFOR is:

'To (gen goals) comma (gen plan)'.

This pattern might be used to generate the sentence:

To delete a file, use rm.

This is somewhat akin to the pattern concept pair
construct in PHRED (Jacobs 1984) or to KING's REF
links (Jacobs 1985), although the KODIAK representa-
tion accommodates different methods for fetching pat-
terns.

Patterns mix words and punctuation with function
calls. In the above example, 'gen' is a function that will
be called with argument 'goals' and later with argument
'plan'. In general, the arguments to functions that are
found in generator patterns are the aspectuals associ-
ated with the concept to which the pattern is attached.

In this example, the aspectuals of PLANFOR, 'goals'
and 'plan', are arguments to gen.

The pattern given above for PLANFOR is the most
general one for that concept. That is, it is the pattern
used when both the goals and the plan are to be
expressed. As described in the previous section on
UCExpress, it is not always necessary to express both
of these parts. For example, two answers to "How do I
delete a file?" are:

I. To delete a file, use rm.
2. Use rm.

The expression mechanism puts a flag on each aspectual
that it does not want expressed. Consequently, associ-
ated with each concept may be zero or more patterns,
one for each combination of aspectuals that are to be
expressed. Planfor is associated with the general pattern
shown above, as is the pattern '(gen plan)', which is

Computational Linguistics, Volume 14, Number 4, December 1988 75

Robert Wilensky, David N. Chin, Marc Luria, James Martin, James Mayfield, and Dekai Wu The Berkeley UNIX Consultant Project

applicable to the case where only tlhe plan is to be
expressed.

When a concept to be output is given to the genera-
tor, those KODIAK concepts that either dominate or
are categories for the concept are searched for one that
has an attached generator pattern. If no pattern is
found, and the concept is an aspectual, then the value
for the aspectual is sent to the generator. The first
pattern found is applied to the concept to be expressed
to produce an English sentence. Words in the pattern
are output as is. Punctuation and function calls must go
through further processing. For example, in the pattern
'To (gen goals) comma (gen plan)', the word 'To' is
output directly, whereas the (gen . . .) function calls
must be evaluated, and the 'comma' will be converted
to a ','.

This generator is easy to understand and extend, and
is well integrated with the rest of UC; it shares the
KODIAK representation and concepts used by the rest
of the system. Some weaknesses are that the overall
structure is top down; i.e., only those concepts that are
expected to exist are expressed. In general, a generator
should be able to handle arbitrary permutations of
conceptual relationships. Also, this generator uses little
linguistic knowledge. With more complicated utter-
ances, the simple pattern strategies employed so far
would become inadequate.

9.3 EXAMPLE

This section describes how the output is delivered by
UC in response to the question, 'Do you know how to
print a file on the Imagen?' . A trace produced while
generating this output is given in Figure 27. A diagram
of some of the relevant knowledge structures is given in
Figure 28.

The expression mechanism of UCEgo first passes
TELL4 to the generator. Only the proposition part
of the TELL will be expressed, so its value,
PLANFOR70, is passed to the generator's main rou-
tine, 'gen'. PLANFOR70 is dominated by PLANFOR,
so the pattern for PLANFOR is retrieved. Since the
goals aspectual of PLANFOR70 is marked to be omitted
from the response by the expression mechanism, only
the plan will be expressed. The pattern found is '(gen
plan)'. The value of the plan aspectual, EXECUTE-
UNIX-IPR-COMMAND0, is sent to gen. The pattern
for this concept is found under execute file-command
and is 'use (gen execute command)'. The value of
execute-command aspectual of EXECUTE-UNIX-IPR-
COMMANDO is 'lpr -Pip'. The first response is there-
fore:

Use lpr -Pip.

Next, the generator is passed TELL5. Once again, only
the proposition is to be expressed, so EXAMPLE0 is to
be generated. The pattern, found under EXAMPLE, is
'for example comma (gen exampler)'. This sets up a

Pattern for PLANFOR70 is: ((gen plan))
Value for plan is: UNIX IPR COMMANDO
Pattern for UNIX IPR COMMANDO is: (use execute
command))
Phrase derived from (execute command) is: (lpr -Pip)
Phrase: derived from (gen plan) is: (use lpr -Pip)

Use lpr -Pip.

Pattern for foo
Phrase derived
Phrase derived
Phrase derived
foo rquote)

Pattern for EXAMPLE0 is: (for example comma (gen
exampler))
Value for exampler is: PLANFOR31
Pattern for PLANFOR31 is: (to (gen goals) comma (gen
plan))
Value for goals is: PRINT EFFECT1
Pattern for PRINT EFFECT1 is:
(print (las-pr-file-obj) on the (las-pr-dest-obj))
Value for las-pr-file-obj is: FILE0
Pattern for FILE0 is: (file named (gen name))
Value for name is: foo
Phrase derived from (file named (gen name)) is: (file
named foo)
Phrase derived from (las-pr-file-obj) is: (the file named
foo)
Value for las-pr-dest-obj is: IMAGEN0
Pattern for IMAGEN0 is: (imagen)
Phrase derived from (las-pr-dest-obj) is: (the imagen)
Phrase derived from (gen goals) is:
(print the file named foo on the imagen)
Value for plan is: TYPE-ACTION0
Pattern for TYPE-ACTION0 is: (type lquote (gen type
string) rquote)
Value for type-string is: CONCAT-STR0
Pattern for CONCAT-STR0 is: ((gen step) (gen next))
Value for step is: lpr -Pip
Pattern for lpr -Pip is: (lpr -Pip)
Phrase derived from (gen step) is: (lpr -Pip)
Value for next is: foo

is: (foo)
from (gen next) is: (foo)
from (gen type-string) is: (lpr -Pip foo)
from (gen plan) is: (type lquote lpr -Pip

Phrase derived from (gen exampler) is:
(to print the file named foo on the Imagen comma type
lquote lpr -Pip foo rquote)
For example, to print the file named foo on the Imagen,
type lpr -Pip foo.

Figure 27. UCGen Trace for the Example Question.

recursive call to gen with the value of the exampler
relation as argument. This value is PLANFOR31.

Once again, a PLANFOR is to be generated. This
time, however, both the plan and goals will be ex-
pressed. The pattern is 'to (gen goals) comma (gen

76 Computatiional Linguistics, Volume 14, Number 4, December 1988

Robert Wilensky, David N. Chin, Marc Luria, James Martin, James Mayfield, and Dekai Wu The Berkeley UNIX Consultant Project

~. ~ '~ 7--
~ ~ •

~-- ~ ÷ ~ - - ~ ~ -~----

~ N

e e

• ~ I ~ I ~ I g~ I ~ . - I " I ~ ~--'-'-& > "
/

"%, ..-

=

© , ..1 "-

× N

o=

Z ,<

©

z

~k

Z <

X

= / , a

(O

e=

E
E
O
u

O

o

O
e=

O
e-

.=~

O

O

O

e=
o ~

(la

o ~ ¢-

o

O
e=

~a

C o m p u t a t i o n a l Linguis t ics , V o l u m e 14, N u m b e r 4, D e c e m b e r 1988 77

Robert Wilensky, David N. Chin, Marc Luria, James Martin, James Mayfield, and Dekai Wu The Berkeley UNIX Consultant Project

plan)'. The value of the goals aspectual is PRINT-
EFFECT1. The pattern is found under LAS-PR-
EFFECT; and is 'print (las-pr-file-obj) on the (las-pr-
dest-obj)'.

The las-pr-file-obj specification causes the generator
to find an object in this relation to PRINT-EFFECT1, in
this case, FILE0. One of the patterns for FILE is 'file
named (gen name)'. This pattern is applicable if the
object in question has a name. Here, FILE0 has the
name 'foo'. When UCGen is generating the name of an
object, it uses a heuristic to decide which, if any article
to precede the object description with. In general,
UCGen will use definite articles if it can.

The other part of the output from the goals aspectual
is from the second half of the pattern: 'on the (las-pr-
dest-obj)'. Here the value found is IMAGEN0. The
pattern for IMAGEN0 is just 'imagen'. Again, the
generator will supplement this description with a defi-
nite article.

The value of the 'plan' aspectual for PLANFOR31 is
TYPE-ACTION0. The pattern for this concept is from
TYPE-ACTION and is 'type lquote (gen type-string)
rquote'. The value for the type string aspectual of
TYPE-ACTION0 is CONCAT-STR0. The pattern is
from sequence and is '(gen step) (gen next)'. Here, the
step is 'lpr -Pip' (i.e., the stringl of CONCAT-STR0),
and the next is the name of the file, 'foo' (the string2 of
CONCAT-STR0). Thus the output for this call to the
generator is:

For example, to print the file named foo on the
imagen, type lpr -Pip foo.

10 KNOWLEDGE ACQUISITION

10.1 INTRODUCTION

UC is knowledge dependent. It is the task of the
knowledge-acquisition system to facilitate the construc-
tion and subsequent extension of the, knowledge base.
The traditional approach to knowledge acquisition has
been to provide the system implementers with special
purpose software tools such as text editors, form sys-
tems, and graphic network editors (van Melle 1981).

These approaches require that the person adding the
knowledge have detailed knowledge of the knowledge
representation language being used and of the overall
design of the system. The typical situation, however, is
that the people with the domain knowledge do not have
the knowledge necessary to add information to a com-
plex knowledge base. The system builders must there-
fore extract the information from the experts and then
program it in themselves. This is a tedious, error prone
process that is only viable as long as the system builder
is in contact with the program. If the system is in use in
a real environment, the knowledge base is essentially
frozen.

10.2 THE UC APPROACH

Our solution to this problem is to provide a mechanism
to allow the., interactive transfer of knowledge from the
domain expert to the knowledge base using natural
language. This is similar to the approach taken in the
Nano-KLAUS system (Haas and Hendrix 1980). UC-
Teacher (Martin 1985) is the system being built to
provide this facility for UC. The UNIX expert can
engage UCTeacher in a mixed initiative dialogue to add
more information to UC's knowledge base.

UCTeacher provides both the acquisition of UNIX
domain knowledge, and the acquisition of linguistic
knowledge. In particular, UCTeacher has a mechanism
that allows it to guess the metaphoric use of a term in
UNIX, based on its knowledge of the metaphoric use of
this term outside of UNIX. In this report, we focus
largely on domain knowledge acquisition. The mecha-
nism of metaphor extension is beyond the scope of this
report, and is described only briefly.

10.3 ACQUIRING DOMAIN KNOWLEDGE

In the following examples of UCTeacher, the knowl-
edge base of UC is set up so as not to contain knowledge
of the commands to be illustrated. Also, the prompt
'UCT>' is used to distinguish an interaction with UC-
Teacher from one with UC proper.

1.
% UCTEACHER
UCT> There is a new command.
What is its name?
UCT> sort
What is it used for?
UCT> It is used to sort files.
You mean that typing 'sort filename' will sort the file
filename.
UCT> Yes.

2.
UCT> Use the rm command to delete files.
You mean that typing 'rm filename' will delete the
file named filename.
UCT> Yes.

3.
UCT> Use compact to compress a file.
You mean that typing 'compact filename' will com-
press the file named filename.
UCT> Yes.

UCTeacher uses ALANA and the concretion mecha-
nism to produce a representation of the initial utterance
by the expert. In a typical interaction, the initial utter-
ance will provide very sketchy information. The main
job of UCTeacher is realize what information is needed,
determine what it is, and use it to flesh out the repre-
sentation. When it believes it has enough information,
UCTeacher will paraphrase its understanding to the
user for conformation. The user then has the opportu-
nity to confirm or correct UCTeacher's understanding.

UCTeacher has three main sources of knowledge:

78 Computational]Linguistics, Volume 14, Number 4, December 1988

Robert Wilensky, David N. Chin, Marc Luria, James Martin, James Mayfield, and Dekai Wu The Berkeley UNIX Consultant Project

the user's utterance, the contents of UC's knowledge
base, and a store of meta-knowledge associated with
concepts in the knowledge base. This use of knowledge
plus meta-knowledge makes the knowledge acquisition
process a knowledge-based task (Davis 1976).

UCTeacher uses these three sources of knowledge to
acquire all the necessary information from the expert in
as natural a dialog as possible. In Example 1, we see the
system generating appropriate questions to acquire in-
formation that the expert has not initially provided. This
ability frees the expert from having to know all the
relevant information that must be provided. The system
will prompt for all the necessary items. Examples 2 and
3 show the system making full use of the expert's
utterance to avoid asking redundant questions.

10.3.1 A DETAILED EXAMPLE

If UC is given a request it cannot service, it generally
asks the user to rephrase it. Consider the following
sequence of interactions:

4.
How can I print a file?
I'm sorry, I didn't understand what you said. Could
you please rephrase that?

At this point, UC does not know how to print a file.
Now, an expert can enter UCTeacher and provide the
necessary information, as shown in the following inter-
actions:

% UCTEACHER
UCT> There is a new command.
What is its name?
UCT> lpr
What is it used for?
UCT> It is used to print files.
Where does the output go?
UCT> the lineprinter
You mean that typing 'lpr filename' will print the file
filename on the lineprinter.
UCT> Yes.

The system can now give a correct response to the
user's query.

How can I print a file?
Use lpr.
For example, to print the file named foo, type 'lpr
foo'.

Here, ALANA represents the content of the initial
utterance as an instance of the quite general concept
EXECUTE-UNIX-COMMAND. UCTeacher then col-
lects from UC's knowledge base all the pertinent rela-
tions that EXECUTE-UNIX-COMMAND participates
in. These include the format aspectual of EXECUTE-
UNIX-COMMAND, the plan aspectual of a PLANFOR
that EXECUTE-UNIX-COMMAND constrains, and
the name relation that of UNIX-COMMAND, which
constrains the command aspectual of EXECUTE-

UNIX-COMMAND. Figure 29 illustrates the knowl-
edge in which these concepts are embedded.

The relations needed to complete an EXECUTE-
UNIX-COMMAND do not appear to conform to any
obvious pattern. For example, the fact that a command
has a name is several links away and the fact that the
command should have a purpose are represented by its
participation in a PLANFOR. The difficulty of deter-
mining the appropriate relations and concepts needed to
specialize or instantiate a concept in the network has led
to the development of the notion of a minimal aspectual
set (MAS). The MAS constitutes the minimal set of
concepts that must be present for a concept to be
considered complete by UCTeacher. UCTeacher uses
the MAS for the concept being acquired to limit its
search through the knowledge base. A relation not
directly connected to the main concept being acquired is
only followed if it connects to a concept that is present
in the MAS.

For example, the MAS of EXECUTE-UNIX-
COMMAND includes the command name aspectual of
UNIX-COMMAND, the unix goals aspectual of UNIX-
PLANFOR, and the command-format aspectual of EX-
ECUTE-UNIX-COMMAND. From this description,
UCTeacher can construct all the necessary components
to specialize EXECUTE-UNIX-COMMAND.

The system's first question in this example is an
attempt to find a value for the relation command name.
A piece of meta-knowledge used here, namely, that the
only way to fill in the value of a name relation is to ask
the user, as it cannot be inferred from anything else
about the command. In the case where asking the user
is the method, a pattern that is appropriate is included
as part of the meta-knowledge of that concept. Here,
the pattern gives rise to the question, and the answer is
connected to the representation. Note that this requires
the creation of a number of links and nodes, including
an execute command link to an instance of UNIX-
COMMAND and a command-name link to the actual
name.

Whenever UCTeacher adds a new fact to the repre-
sentation it is creating, it calls the concretion mecha-
nism to see if it can classify the node to something more
specific. If so, it may be able to use the more specific
category to determine what else it needs to learn. In this
case, the concretion mechanism is called, but it cannot
concretize any further.

The second question from UCTeacher is an attempt
to instantiate the unix-goals relation of the UNIX-
PLANFOR. Again, the user is queried, and the re-
sponse represented as a PRINT-FILE-EFFECT. A
specialization of UNIX-PLANFOR is constructed, and
a unix-plan link is made to EXECUTE-UNIX-
COMMAND, and a unix-goals link to PRINT-FILE-
EFFECT. Also, PRINT-FILE-EFFECT requires a des-
tination to be complete. This leads to the attempt to fill
in the print-dest relation by asking the last question.

Again, a concretion is attempted. Here the concre-

Computational Linguistics, Volume 14, Number 4, December 1988 79

Robert Wilensky, David N. Chin, Marc Luria, ~[ames Martin, James Mayfield, and Dekai Wu The Berkeley UNIX Consultant Project

_/ ~ - W

o L~J ~'~/ ~ " (~ ~1~

/

i

Z

O

<

i

° ~

80 Computational Linguistics, Volume 14, Number 4, December 1988

Robert Wilensky, David N. Chin, Marc Luria, James Martin, James Mayfield, and Dekai Wu The Berkeley UNIX Consultant Project

tion is successful; we are able to classify the concept
being built as an EXECUTE-FILE-COMMAND fact,
rather than just an EXECUTE-UNIX-COMMAND
fact. At this point, UCTeacher searches for any new
relations that have been inherited because of the con-
cretion and adds them to the list of relations to learn. It
also recomputes the MAS that it is using, based on any
additions from the concretion.

The next relation that gets examined is command
format. Note that UCTeacher does not query the expert
for the argument format. This is because meta-knowl-
edge about the format of UNIX file commands specifies
that the default format for such commands is a function
of the files involved; in this case, the default is SIM-
PLE-FILE-FORMAT.

Believing its knowledge acquisition process to be
complete, UCTeacher now generates a statement re-
flecting what it has just learned. This gives the expert
the opportunity to correct any incorrect inferences
made by the system. For example, if this command did
not take the usual argument format, the user would have
an opportunity to correct it.

The final phase of UCTeacher's processing is to
make the changes permanent. Each absolute and rela-
tion that has been instantiated is converted to a linear
tuple form and printed to a file containing UC's knowl-
edge base. In the current version of UC, the linguistic
knowledge used by the parser and generator are kept in
two, separate, non-KODIAK forms. This poses a prob-
lem for UCTeacher, which requires a rich knowledge
representation system to function properly. As a tem-
porary solution, templates are attached to concepts that
have linguistic counterparts (such as command names);
these templates are instantiated and written out to the
appropriate files during the final phase of processing.
This will be necessary until all linguistic knowledge is
represented in KODIAK.

10.4 EXTENDING METAPHORIC WORD SENSE

Much of the vocabulary with which users talk about
computer systems is taken from other domains. For
example, consider utterances:

You can get into the editor by typing emacs to the
shell.
How can I exit lisp?
To leave the mail system, type 'exit'.
You can kill a process by typing AC.
My editor just died; how can I save the buffers?
Run your file through spell to fix the spelling.

These examples illustrate two facts: first, the ordinary
language we use to talk about computation is rife with
metaphor. Second, the metaphors are systematic, as is
argued at length in Lakoff and Johnson (1980). For
example, underlying the utterances "kill a process" and
"a process died" is the understanding that a process
can be thought of as a living thing, and the termination
of the process as that thing's death. Similarly, an

interactive process is thought of as a kind of region or
container, which one may enter, exit, leave, get into,
etc.

In addition, the metaphoric use of these terms is not
confined to the computer domain. For example, not
only can one kill a process, but also, a light, a six-pack
of beer, a conversation, and a car engine, although each
of these has a different interpretation. Thus, if we view
these usages extensions of non-metaphoric terms, the
kinds of metaphoric extensions we have for the com-
puter domain are related to those outside this domain.
For example, "kill a process" means terminating that
process, while "kill an engine" means terminating the
process in which the engine is engaged.

We have attempted to use this fact to aid in knowl-
edge acquisition. The strategy is as follows: First,
represent the central senses of a word, and some of the
common metaphoric extensions of that term. Then,
when such a term is encountered in a particular appli-
cation, such as UC, in a context in which it cannot be
understood, an attempt is made to compute a meta-
phoric extension. This is done by finding the closest
metaphoric extension from another domain. This sense
of the term is then modified to produce a sense appli-
cable to the current context.

In its current incarnation, UCTeacher can perform
the following functions: Given that UC has the requisite
knowledge to directly understand the utterances con-
taining the construction "enter lisp", UCTeacher can
compute the likely intended meaning of utterances
involving "exit lisp" and "enter mail"; given that UC
knows about "kill a conversation", it can generalize to
"kill a process"; from "kill a process", it can general-
ize to "process died"; from "open a file" to "close a
file", and finally, outside the UNIX domain, from "give
a cold" to "have a cold", "get a cold", "give the flu",
and "give an idea".

To perform these functions, UCTeacher needs above
all a representation for metaphoric structures. The basis
of such a representation is given in KODIAK by a
device called a view. A view allows a kind of structure
mapping between two concepts. Views are described in
Wilensky (1986), but have been significantly extended
by Martin (1986a, 1986b, 1987, 1988). A detailed de-
scription of this representation, and of UCTeacher's
algorithm for extending word senses, is beyond the
scope of this paper, but may be found in above refer-
ences.

11 PROBLEMS

As the preceding sections describe, there are many
technical problems yet to be resolved for each compo-
nent of UC. However, several problems appear to be
more pervasive.

One general problem is the integration of the compo-
nents of the system. Control flows unidirectionally
through UC. However, there are several cases in which

Computational Linguistics, Volume 14, Number 4, December 1988 81

Robert Wilensky, David N. Chin, Marc Luria, James Martin, James Mayfield, and Dekai Wu The Berkeley UNIX Consultant Project

this control structure is unsatisfactory. One such prob-
lem is the relation of language analy,ds and inference.
We believe it is cognitively correct that these compo-
nents function concurrently to prodttce an interpreta-
tion of an utterance, whereas in UC they function
serially.

For example, consider again the process of under-
standing the sentence we have been using in our ex-
tended example: "Do you know how to print a file on
the Imagen?" This utterance is syntactically ambiguous
in the attachment of the prepositional phrase "on the
Imagen". Syntactically, this may modify " y o u " or "a
file" as well as "print" . UC does not deal with this
ambiguity, because one of ALANA's patterns for
"print" specifically looks for " o n " followed by a
device. However, a more elaborate analyzer would
probably not include specific information that relates
this preposition to the verb, but rather would try to
relate them on more general principles. In such a
system, the ambiguity would be a more difficult prob-
lem.

Our current approach is to build such a system and
use a marker passing algorithm (Norvig 1987) to help
suggest which syntactic combination to try. For exam-
ple, our knowledge about printing is such that a path
between printing and a device designed for printing
should be easy to find. In contrast, there would be a less
obvious connection between Imagen and file, or Imagen
and the referent of "you" . This "conceptual closeness"
would suggest trying to relate printing and the Imagen
with a grammatical pattern, so the correct interpretation
would be arrived at without other interpretations being
tested.

Properly done, such a marker passing scheme would
effect concretion as well. For example, to arrive at the
connection between printing and the Imagen, it is
probable that one needs to access the node for computer
printing. Thus it seems that concretion should not be a
separate inference process, but one of several kinds of
inferences that are performed by a marker passing
mechanism. We are currently attempting to reform the
analyzer and the inference mechanism in the direction
described.

It seems that the sort of unidirectional architecture
we have employed has drawbacks elsewhere in the
system. There are situations in which it seems that one
component should be allowed to fail, and the failure be
propagated back to another component. For example,
consider processing the following query:

How can I edit Joe's file?

Initially, the goal analyzer may interpret this request
literally. Then the planner may fail, because the file may
be protected from just such an action. It seems reason-
able, however, for a consultant to suggest copying the
file and editing the copy. For this to happen, control
must be returned to the goal analyzer, which needs to
hypothesize yet another goal underlying the goal it may

have suggested initially. We are attempting to design a
control structure that accommodates this flow of con-
trol.

The concretion mechanism and the goal analyzer also
appea~r to interact in important ways. For example,
consider the following example:

What does Is -v do?

Above, we showed the UC can respond appropriately to
this question by uttering, "There is no -v option to the
Is command." However, the question is problematic
because another response to it might be, " I t lists the
contents of the current directory." This response is
possible because, although there is no '-v' option to the
'ls' command, it is a characteristic of this command that
it ignores options it does not recognize. 3

To produce the desired response, the system must
recognize that the intent of the question is something
like '"Fell me the conventional function of the command
Is -v", and not "Tell me what actually happens when
we type Is -v". One way to phrase this is that "conven-
tional function" and "effects occurring from" are two
kinds of "doing". There are certainly other kinds as
well. For example, the same form may refer to the steps
of a process.

Therefore, it would appear to be the job of the
concretion mechanism to select the appropriate inter-
pretation. However, it seems that the concretion mech-
anism cannot choose this interpretation without some
knowledge of typical user goals. For example, if a user
is debugging a program, it would probably be appropri-
ate to interpret the question as referring to the steps
incurred in the process rather than to the process's
purpose. But reasoning about the user's goals is the job
of the goal analyzer, which normally is not invoked until
the concretion mechanism has completed its task.

The problem is avoided in the current implementa-
tion by not allowing for the other, less obvious inter-
pretations at all. However, the example illustrates the
need to have more communication between the concre-
tion mechanism and the goal analyzer. Put more
strongly, the example suggests that these distinctions
between language analyzer, concretion mechanism, and
goal analyzer are somewhat artificial. At this stage of
our work, it is difficult to determine whether we simply
want modules that interact more or a more radical
control structure that integrates all these functions.

There are several other more specific deficiencies of
which we are aware. As we discussed previously,
patterns were built into ALANA on an as-needed basis.
We are attempting to produce a more accurate language
specification as we develop the inference component.
Also, a mechanism for doing ellipsis, which ran in a
previous version of UC, has yet to be integrated into
this one.

Undoubtedly, there are many deficiencies that we
have not yet discovered. For example, we recently
discovered that asking the same question twice resulted

82 Computational Linguistics, Volume 14, Number 4, December 1988

Robert Wilensky, David N. Chin, Marc Luria, James Martin, James Mayfleld, and Dekai Wu The Berkeley UNIX Consultant Project

in no a n s w e r at all be ing genera ted for the second
reques t . The p rob l em tu rned out to be that the user
model , af ter a ques t ion is answered , upda tes its model
of the use r to show that the user now knows this
in format ion . The second t ime a round , this knowledge
a l lowed the express ion m e c h a n i s m to p rune away the
ent i re answer , as it infer red the user a l ready knew it.
Our approach to f ixing this p rob lem is to add ano the r
d e m o n that will de tec t asking for the same thing twice.
T h e n plans for r e spond ing appropr ia te ly with this situ-
a t ion could be b rought to bear .

One impor t an t def ic iency of our cu r ren t sys tem is
that it still d o e s n ' t par t ic ipa te in real conversa t ions . It is
our i n t en t ion that U C func t ion as a consu l t an t and not
as a f ront end to a da ta base of facts abou t U N I X . But
our cu r ren t sys t em per forms little more than this. Much
of the m a c h i n e r y is in place, in U C E g o and P A G A N in
par t icular , to a c c o m m o d a t e some conve r sa t iona l situa-
t ions. We expec t m u c h of our fur ther d e v e l o p m e n t to be
in this d i rec t ion .

F ina l ly , a l though we have found that our cur ren t
r ep resen ta t ion is advan tageous , there are m a n y repre-
sen ta t iona l i ssues that r ema in unreso lved . In par t icular ,
it is difficult to express cer ta in aspects of quant i f ica t ion
in K O D I A K . In UC, one of ten wan t s to represen t facts
like "a l l files have n a m e s " or " m o s t di rector ies are no t
e m p t y . " We are cu r ren t ly work ing on ex tend ing KO-
D I A K to be able to r ep resen t such not ions in a cogni-
t ively p laus ib le way.

ACKNOWLEDGMENTS

This research was sponsored in part by the Defense Advanced
Research Projects Agency (DoD), ARPA order No. 4871, monitored
by Space and Naval Warfare Systems Command Command under
contract N00039-84-C-0089, by the Office of Naval Research under
contract N00014-80-C-0732, and by the National Science Foundation
under grant MCS79-06543.

In addition to the authors of this paper, several other people have
made significant contributions to the UC project and to this report.
Richard Alterman played a major role in the overall design, organi-
zation, and execution of this project. He also made many specific
contributions to its individual components, especially UCGen and
UCEgo, and was involved in many of the technical discussions upon
which this work was based. Peter Norvig wrote the original KODIAK
interpreter and contributed significantly to the development of this
representation language. Eric Karlson built the graphic interface
program used to enter and edit KODIAK diagrams. James Mayfield
took charge of coordinating and integrating the components of this
report into a single document. Charles Cox and Anthony Albert
contributed to previous versions of this document. Other members of
our group who contributed to this effort include Yigal Arens, Michael
Braverman, Margaret Butler, Paul Jacobs, Dan Jurafsky, Lisa Rau,
and Nigel Ward.

NOTES

The current address of Dr. James Mayfield is Computer Science
Division, University of Maryland Baltimore County, 5401
Wilkens Avenue, Baltimore MD 21228; of Dr. David Chin,
Department of Information Computer Science, University of
Hawaii at Manoa, 2565 The Mall, Honolulu, HI 96822; of Dr.
Marc Luria, Computer Science Division, Technion, Haifa, Israel.

2. UNIX is trademark of Bell Laboratories.
3. This "feature" has recently been changed to produce an error

message on some versions of UNIX.

REFERENCES

Allen, James F.; Frisch, Alan M.; and Litman, Diane J. 1982 ARGOT:
The Rochester Dialogue System. In Proceedings of the National
Conference on Artificial Intelligence, Pittsburgh, PA.

Allen, James F., and Perrauit, C. Raymond 1980 Analyzing Intention
in Utterances. Artificial Intelligence 15: 143-178.

Austin, John L. 1962 How To Do Things With Words. Harvard
University Press, Cambridge, MA.

Brachman, Ronaid and Schmolze, J. 1985 An Overview of the
KL-ONE Knowledge Representation System. In Cognitive Sci-
ence 9: 171-216.

Brown, John S. and Burton, Richard R. 1976 A Tutoring and Student
Modeling Paradigm for Gaming Environments. In the Symposium
on Computer Science and Education, Anaheim, CA: 236-246.

Carberry, Sandra 1983 Tracking User Goals in an Information-
Seeking Environment. In Proceedings of the National Conference
on Artificial Intelligence, Washington, D.C.

Chin, David N. 1986 User Modeling in UC, the UNIX Consultant. In
Proceedings of the CHI-86 Conference, Boston, MA.

Chin, David N. 1988 Intelligent Agents and a Basis for Interactive
Consultation Systems. Berkeley Computer Science Technical Re-
port UCB/CSD 88/396.

Cohen, Philip R. and Levesque, Hector J. 1987 Persistence, Intention,
and Commitment. SRI International Technical Report 415.

Cox, Charles A. 1986 ALANA: Augmentable LANguage Analyzer,
Report No. UCB/CSD 86/283. Computer Science Division, Uni-
versity of California, Berkeley.

Davis, Randall 1976 Applications of Meta Level Knowledge to the
Construction, Maintenance and Use of Large Knowledge Bases,
Stanford CS Report, STAN-CS-76-552. Stanford, CA.

Deering, Michael; Faletti, Joseph; and Wilensky, Robert 1982 Using
the PEARL AI Package, Memorandum No. UCB/ERL M82/19.
Computer Science Division, University of California, Berkeley.

Ernst, G. and Newell, Allen 1969 GPS: A Case Study in Generality
and Problem Solving. Academic Press, New York, NY.

Fikes, Richard E., and Nilsson, Niis J. 1971 STRIPS: A New
Approach to the Application of Theorem Proving to Problem
Solving. Artificial Intelligence 2(3--4): 189-208.

Grice, H. Paul 1975 Logic and conversation. In Cole, P. and Morgan,
J.L., (eds.) Studies in Syntax III: 41-58, Seminar Press.

Grosz, Barbara and Sidner, Candace L. 1985 The Structures of
Discourse Structure Report No. CSLI-85-39. Center for the Study
of Language and Information.

Haas, N. and Hendrix, Gary 1980 An Approach to Acquiring and
Applying Knowledge. In Proceedings of the National Conference
on Artificial Intelligence, Stanford, CA: 235-239.

Jacobs, Paul S. 1984 PHRED: A Generator for Natural Language
Interfaces, Report No. UCB/CSD 84/189. Computer Science Di-
vision, University of California, Berkeley.

Jacobs, Paul S. 1985 A Knowledge-Based Approach to Language
Production. Ph.D. thesis, University of California, Berkeley.

Kaplan, S. Jerrold 1983 Cooperative Responses from a Portable
Natural Language Database Query System. In Brady, Michael and
Berwick, Robert C. (eds.) Computational Models of Discourse.
MIT Press, Cambridge, MA.

Lakoff, George and Johnson, Mark 1980 Metaphors We Live By.
University of Chicago Press, Chicago, IL.

Litman, Diane J. and Allen, James F. 1984 A Plan Recognition Model
for Clarification Subdialogues. In Proceedings of the lOth Inter-
national Conference on Computational Linguistics, Palo Alto,
CA.

Computational Linguistics, Volume 14, Number 4, December 1988 83

Robert Wilensky, David N. Chin, Marc Luria, ,]ames Martin, James Mayfield, and Dekai Wu The Berkeley UNIX Consultant Project

Luria, Marc 1982 Dividing Up the Question Answering Process. In the
Proceedings of the National Conference on Artificial Intelligence,
Pittsburgh, PA: 71-74.

Luria, Marc 1985 Commonsense Planning in a Consultant System. In
Proceedings of the 1985 IEEE International Conference on Sys-
tems, Man, and Cybernetics, Tucson, AZ: 602-606.

Luria, Marc 1987 Goal Conflict Concerns. Proceedings of the lOth
International Joint Conference on Artificial Intelligence, Milan,
Italy.

Luria, Marc 1988 Knowledge Intensive Planning, Berkeley Computer
Science Technical Report No. UCB/CSD88/433.

Martin, James 1986a Views from a Kill. In Proceedings of the Eighth
National Conference of the Cognitive Science Society, Amherst,
MA: 728-733.

Martin, James 1986b Representing and Acquiring Knowledge about
Metaphors. In Proceedings of the Third Wo.,kshop on Theoretical
Issues in Conceptual Information Processing, Philadelphia, PA:
49-54.

Martin, James 1987 Understanding New Metaphors. In Proceedings
of the lOth International Joint Conference on Artificial Intelli-
gence. Morgan Kaufmann, Milan, Italy.

Martin, James 1988 Knowledge Acquisition: Understanding New
Metaphors, Berkeley Technical Report (forthcoming).

Mays, E. 1980 Failures in Natural Language Systems: Applications to
Database Query Systems. In Proceedings of 1980 National Con-
ference on Artificial Intelligence, Stanford, CA.

McCoy, K.F. 1983 Correcting Misconceptions: What to Say When the
User is Mistaken. In Proceedings of the CH1'83 Conference,
Boston, MA: 197-201.

Morik, K. and Rollinger, C-R. 1985 The Real Estate Agent--Modeling
the User by Uncertain Reasoning. In A1 Magazine 6(2): 44-52.

Newell, Allen, and Simon, Herbert A. 1972 Human Problem Solving.
Prentice-Hall, Englewood Cliffs, NJ.

Norvig, Peter 1983 Frame Activated Inferences in a Story Under-
standing Program. In Proceedings of the 8th International Joint
Conference on Artificial Intelligence, Karlsruhe, West Germany:
624--626.

Norvig, Peter 1987 A Unified Theory of Inference for Text Under-
standing, UC Berkeley Computer Science Report No. UCB/CSD/
87/339.

Rich, Elaine 1979 User Modeling via Stereotypes. In Cognitive
Science 3: 329-354.

Rissland, Edwina L. 1983 Examples in Legal Reasoning: Legal
Hypotheticals. In Proceedings of the 8th International Joint
Conference on Artificial Intelligence, Karlsruhe, West Germany:
90-93.

Rissland, Edwina L.: Valcarce, E.M., and Ashley, Kevin D. 1984
Explaining and Arguing with Examples. In Proceedings of the
National Conference on Artificial Inteh'igence, Austin, TX:
288-294.

Rosch, Eleanor 1978 Principles of Categorization. In Rosch, Eleanor
and Lloyd,, B.B. Cognition and Categorization, Lawrence Erl-
baum, Hillsdale, NJ.

Sacerdoti, Earl 1974 Planning in a Hierarchy of Abstraction Spaces.
In Artificial Intelligence 5:115-135.

Schank, Roger C. 1975 Conceptual Information Processing. North
Holland, Amsterdam, Holland.

Schmolze, J.G. and Lipkis, T.A. 1983 Classification in the KL-ONE
Knowledge Representation System. In Proceedings of 8th Inter-
national Joint Conference on Aritificial Intelligence. Karlsruhe,
West Germany.

Schubert, Lenhart K. 1976 Extending the Expressive Power of
Semantic Networks. Artificial lntengence 7: 163-195.

Searle, John R. 1969 Speech Acts: An Essay in the Philosophy of
Language. Cambridge University Press, Cambridge, England.

Searle, John R. 1979 Literal Meaning. In Searle, John R. (ed.)
Expression and Meaning. Cambridge University Press, Cam-
bridge, England.

Shapiro, Stuart 1979 The SNePS Semantic Network Processing
System. In Findler, N. (ed.) Associative Networks. Academic
Press, New York, NY.

Sidner, Candace L. 1985 Plan Parsing for Intended Response Recog-
nition in Discourse. Computational Intelligence 1: 1-10.

Teitelman, Warren, et al. 1978 The lnterlisp Reference Manual.
Xerox PARC.

van Melle, W. 1980 A Domain Independent System That Aids in
Constructing Knowledge-Based Consultation Programs. Heuris-
tic Programming Project Report No. HPP-80-22, Computer Sci-
ence Department, Stanford University, Stanford, CA.

Webber, Bonnie L. and Mays, E. 1983 Varieties of User Misconcep-
tions: Detection and Correction. In Proceedings of the 8th Inter-
nathgnal Joint Conference on Artificial Intelligence, Karlsruhe,
West Germany: 650-652.

Wilensky, Robert 1983 Planning and Understanding: A Computa-
tional Approach to Human Reasoning. Addison-Wesley, Reading,
MA.

Wilensky, Robert 1986 Some Problems and Proposals for Knowledge
Representation. Report No. UCB/CSD 86/294. Computer Science
Division, University of California, Berkeley.

Wilensky, Robert 1987 Primal Content and Actual Content: An
Antidote to Literal Meaning. Report No. UCB/CSD 87/365. Com-
puter Science Division, University of California, Berkeley.

Wilensky, Robert and Arens, Yigal 1980 A Knowledge-based Ap-
proach to Natural Language Processing. Electronic Research
Laboratory Memorandum No. UCB/ERL/M80/34. University of
California. Berkeley.

Wilensky, Robert; Arens, Yigal; and Chin, David 1984 Talking to
Unix in English: An Overview of UC. Communications of the
Association for Computing Machinery 27(6).

84 Computational Linguistics, Volume 14, Number 4, December 1988

