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UC (UNIX Consultant) is an intelligent, natural language interface that allows naive users to learn about 
the UNIX 2 operating system. UC was undertaken because the task was thought to be both a fertile 
domain for artificial intelligence (AI) research and a useful application of AI work in planning, 
reasoning, natural language processing, and knowledge representation. 

The current implementation of UC comprises the following components: a language analyzer, called 
ALANA, produces a representation of the content contained in an utterance; an inference component, 
called a concretion mechanism, that further refines this content; a goal analyzer, PAGAN, that 
hypothesizes the plans and goals under which the user is operating; an agent, called UCEgo, that decides 
on UC's goals and proposes plans for them; a domain planner, called KIP, that computes a plan to 
address the user's request; an expression mechanism, UCExpress, that determines the content to be 
communicated to the user, and a language production mechanism, UCGen, that expresses UC's 
response in English. 

UC also contains a component, called KNOME, that builds a model of the user's knowledge state with 
respect to UNIX. Another mechanism, UCTeacher, allows a user to add knowledge of both English 
vocabulary and facts about UNIX to UC's knowledge base. This is done by interacting with the user in 
natural language. 

All these aspects of UC make use of knowledge represented in a knowledge representation system 
called KODIAK. KODIAK is a relation-oriented system that is intended to have wide representational 
range and a clear semantics, while maintaining a cognitive appeal. All of UC's knowledge, ranging from 
its most general concepts to the content of a particular utterance, is represented in KODIAK. 

1 INTRODUCTION TO THE UNIX CONSULTANT (UC) 
PROJECT 

Several years ago, we began a project called UC (UNIX 
Consultant). UC was to function as an intelligent, 
natural language interface that would allow naive users 
to learn about the UNIX operating system by interact- 
ing with the consultant in ordinary English. We some- 
times refer to UC as "an intelligent 'help' facility" to 
emphasize our intention to construct a consultation 
system, rather than a natural language front end to an 
operating system. Whereas front ends generally take the 
place of other interfaces, UC was intended to help the 
user learn how to use an existing one. 

We had two major motivations for choosing this task. 
These can be summarized by saying that we believed 
the task to be both interesting and doable. It seemed to 
us that much natural language work indeed, much of 
AI research--has fallen into two largely non-inter- 
secting categories: On the one hand, there are quite 
interesting and ambitious projects that have been more 
the fertile source of exciting speculations than of useful 
technology. In contrast, there are projects whose scope 
is severely limited, either to some intrinsically bounded, 
real-world task or to a laboratory microworld. These 
projects result in much excitement by the production of 
a working system or successful technology. But such 
projects have rarely produced much in the way of 

Copyright 1988 by the Association for Computational Linguistics. Permission to copy without fee all or part of this material is granted provided 
that the copies are not made for direct commercial advantage and the CL reference and this copyright notice are included on the first page. To 
copy otherwise, or to republish, requires a fee and/or specific permission. 

0362-613X/88/010035-84503.00 

Computational Linguistics, Volume 14, Number 4, December 1988 35 



Robert Wilensky, David N. Chin,  Marc  Luria ,  ,lames Martin, James Mayfield, and Dekai Wu The Berkeley UNIX Consultant Project 

progress on fundamental issues that comprise the cen- 
tral goals of AI researchers. 

Our hope was that the consultation task would re- 
quire us to address fundamental problems in natural 
language processing, planning and problem solving, and 
knowledge representation, all of which are of interest to 
us. We believe this to be the case because (1) the 
domain of an operating system is quite large and com- 
plex, (2) users' conceptions of computer systems are 
often based on other domains, particularly space and 
containment, and (3) the structure of a consultation 
session requires the consultant to understand the user's 
language, hypothesize the user's intentions, reason 
about the user's problem, access knowledge about the 
topic in question, and formulate a reasonable response. 
In sum, virtually all the problems of language process- 
ing and reasoning arise in some fashion. 

While the task is interesting, it is nevertheless lim- 
ited. Arbitrary knowledge of the world is generally not 
required, as it may be in other natural language tasks, 
such as text processing. Even knowledge about the 
domain might be limited in ways that do not compro- 
mise the overall integrity of the system. In particular, 
the task is intrinsically "fail-soft". Since the system is a 
help facility, it need not be capable of handling every 
task put to it to serve a useful function. This is probably 
less true of systems that are intended to be interfaces. In 
their case, failure to correctly process a request by the 
user leaves the user with little recourse. However, a 
consultant may be quite useful even if it cannot help all 
the time. 

Similarly, there are strategies that might be employed 
in a consultant task that further reduce the degree of 
coverage required by the system. For example, if asked 
a very specific question, it is not unreasonable that a 
consultant respond by telling the user where to look for 
the information. Thus the degree of expertise of the 
consultation system may be circumscribed. 

In other words, we felt that the operating system 
domain was an appropriate replacement for the "blocks 
world". Building a consultant for the domain is a real 
task one would like to have accomplished. The domain 
would limit the breadth, but not the depth, of AI 
research required. 

1.1 UC- -S C IE NC E  OR ENGINEERING? 

Our approach to AI has had a distinctly cognitive bent. 
While a lengthy exposition might be needed to define 
this precisely, let it suffice here to say that we are 
interested in modeling human beings at least to a first 
approximation. Thus, as far as we could, we have 
attempted to build a system that modeled how we 
believe a human consultant actually functions. 

In some cases, this goal meant that we would make 
some problems harder for ourselves than one might if 
one's goals were strictly technological. For example, 
since many word senses are unlikely to be used when 
talking to a consultant, a purely engineering approach 

might play down the problem of ambiguity. However, it 
is our goal to address such problems in a general 
fashion. 

At the same time, there were many pragmatic con- 
cessions that were made in implementing UC. Some of 
these were: forced on us by the nature of university 
research. For example, a process might be divided into 
two components for the sake of implementation, al- 
though the particular division may not be motivated 
otherwise. These components might even exercise two 
different approaches to similar subproblems, depending 
on the biases of their authors. Sometimes, for the sake 
of efficiency, we chose to implement only part of what 
we believed to be a larger process. Also for efficiency's 
sake, and to prevent truly difficult but infrequent prob- 
lems from scuttling the entire effort, we implemented 
some solutions that we did not believe in completely. 
For example, UC's control structure is overly simplistic 
in ways that we understand but have not corrected. We 
will make note of other such situations in the text 
below. In general, when this was the case, the solution 
used takes the form of checking for certain frequently 
occurring cases in order to preclude having to solve a 
general problem. 

Since our goals were not strictly technological, we 
did not feel that it was necessary or appropriate in order 
for our system to be considered a success to produce a 
product that could actually be used in a real-world 
setting. However, we did feel that we should show that 
one could develop such a system along the lines that our 
research suggested. This would be accomplished by 
developing an extendible prototype. 

1.2 UC OLD AND NEW 

We initially built a prototype version of UC consisting 
largely of off-the-shelf components (Wilensky, Arens, 
and Chin 1984). While this system seemed to suggest 
that our goal was feasible, it was deficient in many 
ways. There were whole components that needed to be 
included but were not. For example, the initial system 
made few inferences and was not capable of planning its 
own actions. In addition, each individual component 
was in need of much refinement. 

Probably the most important deficiency was in the 
area of knowledge representation. The initial prototype 
of UC was implemented in PEARL (Deering, Faletti, 
and Wilensky 1981). PEARL is an AI language and 
database management package that supports framelike 
structures similar to those employed by other represen- 
tation languages, with perhaps some more attention 
given to efficient retrieval. However, we found that our 
underlying representational system was inadequate. 
Unfortunately, the problems with our system were not 
unique to it, but were shared by most other efforts to 
represent and organize knowledge. 

Much of the focus of our recent work has been to 
address and rectify these problems of knowledge repre- 
sentation. Our critiques of existing knowledge represen- 
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tation schemes, along with our new prescription for 
these deficiencies, can be found in Wilensky (1986). 
That report  contains a description of  KODIAK, the 
knowledge representation system that our work has led 
us to, and upon which our current implementation of the 
UNIX Consultant is based. 

Since one 's  knowledge representation is generally 
fundamental to the structure of  most of  the modules of  
one 's  systems, developing a new one means redesigning 
each component  around a new representational system. 
This report  is a description of  a new prototype of UC so 
designed. 

1.3 REASONABLE AGENTS VERSUS INTELLIGENT 
INTERFACES 

Our goal in building UC is to simulate a human consult- 
ant. As a result, the system has a structure that is more 
complex than other  so-called intelligent interfaces. In- 
deed, we feel that looking at such a system as an 
interface is misleading. Instead, we prefer the metaphor 
of  a reasonable agent. Unlike an interface, which is a 
conduit through which information flows, an agent is a 
participant in a situation. In particular, an agent has 
explicit goals of  its own, and a reasonable agent must be 
able to make obvious inferences and display judgment 
in making decisions. Typically, a consultant con- 
structed along the lines of  a reasonable agent will make 
a user 's  goals its own in trying to help that user. 
However ,  a reasonable agent is not always compelled to 
do so. Human consultants will not obligingly give out 
information to which a user is not entitled or which they 
suspect will be put to ill use. Similarly, a good consul- 
tant might deflect a user 's  request because the consul- 
tant feels that the user does not have an adequate grasp 
of  the domain, has a particular misconception, or is 
lacking some particular fact. In addition, a good con- 
sultant might do something more than simply answer a 
question. He might take the opportunity to show the 
user how to do a more general task of  which the user 's  
particular request is merely a special case. In all these 
situations, an action other  than simply responding to a 
request is warranted. 

A reasonable agent is ideally suited to handle such a 
broad class of  situations. It does so by deciding what its 
goals should be in the given situation, and then planning 
for them. For  example, when UC is asked how to crash 
the system, it forms two goals, one of  helping the user 
to know what he or she wants, and one of  protecting the 
integrity of the system. It then realizes that these two 
goals are in conflict, and eventually decides the conflict 
in favor of  the latter goal. 

Of  course, it is possible to achieve by other means 
various parts of  the functionality here attributed to the 
model of  a reasonable agent. For  example, one can 
simply build one component  that tries to detect miscon- 
ceptions, another  that checks for requests having to do 
with crashing the system, yet another  to capitalize on 
opportunities to educate the user, etc. However ,  the 

reasonable agent f ramework provides a single, flexible 
control structure in which to accomplish all these tasks, 
and, in particular, deal with interactions between them. 
That is its engineering motivation. Our primary reason 
for adopting it is that it is our theory about how humans 
function in consulting situations. 

1.4 OVERVIEW 

The structure of  this report  is as follows. First, we 
present an outline of the structure of  the current version 
of  our consultation system. We follow this with a brief 
description of  KODIAK. The next sections constitute 
the bulk of this report  and are essentially a detailed 
description of  a trace of a rather simple sentence 
through UC's components.  In doing so, the mechanisms 
of  those components  that are primarily responsible for 
UC's agentlike qualities are described. Finally, we 
conclude with some discussion of the deficiencies of our 
current design. 

1.4.1 OUTLINE OF UC'S STRUCTURE 

UC is comprised of  a number of  components ,  which are 
invoked in a more or less serial fashion. 

1. LANGUAGE ANALYSIS (ALANA) 

Language analysis is that component  of  the understand- 
ing process that computes a representation of  the con- 
tent of an utterance. ALANA,  written by Charles Cox, 
produces a KODIAK representation of  the content of  
an utterance. This representation generally contains 
only what can be determined from the words and 
linguistic structures present in the utterance. 

In our theoretical framework,  we call such an analy- 
sis of an utterance its primal content. The concept of 
primal content is related to what is usually described as 
the literal meaning or sentence meaning of an utterance. 
However ,  unlike literal meaning, the primal content  of 
an utterance involves certain idiomatic interpretations 
(i.e., it is not necessarily composed from words and 
general grammatical constructions). Also, the primal 
content of an utterance may be rather abstract,  perhaps 
so much so that it may not be a suitable candidate for a 
meaning. For  example, the literal meaning of " T h e  cat 
is on the mat"  is generally taken to be a conventional 
situation in which a cat is resting upon a mat. However ,  
the primal content of  this sentence would be more 
abstract, where the contribution of " o n "  is identical to 
that in the primal content of " T h e  light fixture is on the 
ceiling" or "Th e  notice is on the bulletin board ."  
Presumably, this conveys some sort of  support relation. 
Note that such an abstract content  appears never  to be 
in itself the meaning of  such an utterance (cf. Searle 
1979). 

In contrast to primal content is the actual content of  
an utterance. The actual content is context  dependent,  
generally requires some amount  of  inference based on 
world knowledge, and is a suitable candidate for the 
meaning of an utterance. For  example, the actual con- 
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tent of "The cat is on the mat," without a further 
context specified, is what the literal meaning of this 
sentence is generally taken to be. Computing this con- 
tent from the primal content requires pragmatic knowl- 
edge about the kind of support relation a cat and a mat 
are likely to be in, and requires makinlg an inference that 
cannot be justified by the meanings of the terms and the 
grammatical constructions,present in l:he utterance. The 
primal/actual content distinction is elaborated on in 
Wilensky (1987). 

2. INFERENCE (CONCRETION MECHANISM) 

The particular kind of inference needed to go from a 
primal content to an actual content sometimes involves 
a process known as concretion (Wilensky 1983). Con- 
cretion is the process of inferring a more specific 
interpretation of an utterance than is justified by lan- 
guage alone. Concretion may involve finding a more 
specific default interpretation or some other interpreta- 
tion based on the context. For example, in the example 
"The cat is on the mat" above, the actual content 
computed is the default support relation between a cat 
and a mat. In some compelling context, a quite different 
actual content may be computed from the same primal 
content. 

(There are other possible relations between primal 
and actual content besides the latter being a more 
specific interpretation of the former. For example, a 
conventionalized metaphor might have a primal content 
that more closely resembles its literal interpretation but 
an actual content resembling its metaphoric interpreta- 
tion. Thus one analysis of a sentence like "John gave 
Mary a kiss" will have as its primal content an instance 
of giving, but as its actual content an instance of kissing. 
We will not pursue further the details of the primal/ 
actual content distinction here. This is largely because, 
in UC, the need for concretion is widespread, and our 
handling of other kinds of primal/actual content compu- 
tations is more haphazard.) 

In UC, concretion is needed primarily because we 
need to organize knowledge about more specific inter- 
pretations of utterances than can be arrived at through 
linguistic knowledge alone. For example, if UC is asked 
the question "How can I delete a file?", ALANA can 
represent that this is a question about how to delete a 
file. But it would not have any reason to assume that 
deleting a file is a specific kind of deleting. Determining 
that this is so is likely to be important for several 
reasons. For example, knowledge about how to delete a 
file will be found associated with the concept of "file 
deletion", say, but not with the concept of deletion in 
general. Thus UC must infer that "deleting a file" refers 
to the specific kind of deletion having to do with 
computer storage in order to perform subsequent tasks 
like finding plans for accomplishing the user's request. 

In UC, concretion is the function of a special mech- 
anism designed specifically for that purpose by Dekai 
Wu. The output of the concretion mechanism is another 

KODIAK representation, generally one containing 
more :specific concepts than that produced by ALANA. 
Having a specific concretion mechanism is a pragmatic 
concession. We feel it is unlikely that such a specific 
mechanism is theoretically warranted. A more justifi- 
able position is that a general inference mechanism 
should be exploited here, concretion being only one of 
the kinds of inference such a mechanism accomplishes. 
A unified text-inference mechanism that accomplishes 
concretion as well as other forms of inference has been 
built (Norvig 1987). It is our belief that some mechanism 
akin to Norvig's should be used in UC in place of a 
specialized concretion engine, but no attempt has yet 
been made to do so. 

3. GOAL ANALYSIS (PAGAN) 

Having computed an actual content for an utterance, 
UC then tries to hypothesize the plans and goals under 
which the user is operating. This level of analysis is 
performed by PAGAN, written by James Mayfield. 
PAGAN performs a sort of speech act analysis of the 
utterance. The result of this analysis is a KODIAK 
representation of the network of plans and goals the 
user is using with respect to UC. 

Goal analysis is important in many ways for UC. As 
is generally well known, an analysis of this sort is 
necessary to interpret indirect speech acts, such as "Do 
you know how to delete a file?", or "Could you tell me 
how to delete a file?". Furthermore, goal analysis helps 
to provide better answers to questions such as "Does 
Is -r recursively list subdirectories?". An accurate re- 
sponse to the literal question might simply be, " N o . "  
But a better response is, "No,  it reverses the order of 
the sort of directory listing; Is -R recursively lists 
subdirectories." To produce such a response, one 
needs to realize that the goal underlying the asking of 
this question is either to find out what 'Is -r' does, or to 
find out how to recursively list subdirectories. It is the 
job of the goal analyzer to recognize that such goals are 
likely to be behind such a question. 

4. AGENT (UCEGO) 

Having hypothesized what the user wants of it, we 
would expect a system like UC to do what the user 
requested. But, as mentioned above, this is not always 
appropriate. UC should not aid and abet a user trying to 
perform malicious mischief; it might need to correct an 
errant user or it might decide to supply unasked-for 
information to one diagnosed as not knowing an impor- 
tant fact. 

In order to deal with such situations UC is con- 
structed as an agent. This agent reacts to users' requests 
by forming goals and acting on them. The central 
mechanism of UC is called UCEgo, and has been 
developed by David Chin. 

In a typical transaction, UCEgo will simply adopt the 
goal of having the user know what the user wants to 
know. However, as the example above illustrates, 

38 Computational Linguistics, Volume 14, Number 4, December 1988 



Robert Wilensky, David N. Chin, Marc Luria, James Martin, James Mayfield, and Dekai Wu The Berkeley UNIX Consultant Project 

UCEgo may adopt other goals as well, such as protect- 
ing the integrity of the system. It may also have to 
detect conflicts between these goals. Sometimes, 
UCEgo, attempting to be educational, may adopt a 
somewhat different goal from the user's. Thus, if the 
user asks UC to actually perform some request, such as 
telling the user who is on the system, UC will decide to 
tell the user how to perform such a function, rather than 
do what the user requested. 

UCEgo implements much of the agentlike character 
of UC. While interfaces are generally thought of as 
passive conduits through which information flows, UC 
is an agent that listens to the user and is generally 
helpful. But it has its own agenda, and the requests of 
the user are merely a source of input to it. 

5. USER MODELING (KNOME) 

Several of UC's components may need information 
about the user to make an effective choice. For exam- 
ple, an expert user certainly knows how to delete a file. 
Thus such a user uttering "Do you know how to delete 
a file?" is unlikely to be asking for this information-- 
more likely this user is testing the consultant's knowl- 
edge. 

Assessing the knowledge state of the user is the 
function of a user modeling program called KNOME, 
developed by David Chin. It is exploited by several 
components, including the "expression mechanism" 
described below. 

6. DOMAIN PLANNER (KIP) 

Typically, UCEgo tries to help the user. This usually 
requires determining a fact that the user would like to 
know. This task is accomplished by KIP. KIP is a 
"domain planner" developed by Marc Luria. While 
UCEgo infers its own goals, and plans to act on them, 
KIP is given a task by UCEgo of determining how to 
accomplish what the user wants to accomplish. KIP 
tries to determine how to accomplish this task, using 
knowledge about UNIX and knowledge about the user's 
likely goals. KIP returns a plan, represented in KO- 
DIAK. For example, UCEgo may give KIP the task of 
determining how to move a file to another machine, if 
this is something the user wants to know. Here, KIP 
would come up with the plan of copying the file to the 
target machine and then deleting the original. 

Since UCEgo is also a planner, UC in effect has two 
planners within it. Again, this is probably not theoreti- 
cally justifiable, although the two planners have ended 
up focusing on rather different aspects of planning. It 
remains to be seen whether a single mechanism might 
accommodate both functions. 

7. EXPRESSION MECHANISM (UCEXPRESS) 

Having gotten KIP to compute a plan for the user's 
request, UCEgo now tries to communicate this plan to 
the user. To do so, it must determine which aspects of 
the plan are worthy of communication and how best to 

communicate them. For example, if it is likely that the 
user knows how to use commands in general, it might be 
sufficient just to specify the name of the command. In 
contrast, it might be helpful to illustrate a general 
command with a specific example. 

UCExpress is an expression mechanism written by 
David Chin. It edits out those parts of the conceptual 
answer returned by KIP that, for various reasons, 
appear unnecessary to communicate. UCExpress may 
also choose to illustrate an answer in several formats. 
For example, it might illustrate a general answer by 
generating a specific example, or it might explain one 
command in terms of another, simpler, command. 

The result of UCExpress is an annotated KODIAK 
network, where the annotation specifies which part of 
the network is to be generated. 

8. LANGUAGE PRODUCTION (UCGEN) 

Once UC has decided what to communicate, it has to 
put it into words. This is done by a generation program 
called UCGen. UCGen is a simple generator, pro- 
grammed by Anthony Albert and Marc Luria. It takes 
the marked KODIAK network produced by UCExpress 
and, using knowledge of English, produces sentences to 
complete the transaction with the user. 

9. LEARNING MECHANISM (UCTEACHER) 

Since it is intended that UC be an extensible system, a 
mechanism has been developed to add new knowledge 
to the system by talking to it in natural language. This 
mechanism, called UCTeacher, is the work of James 
Martin. UCTeacher has capabilities to extend both 
UC's knowledge base of UNIX facts as well as its 
knowledge of English vocabulary. 

Note that several UC components deal with goals 
and plans, but in rather different ways. To minimize 
confusion, we emphasize the different tasks that these 
programs perform: PAGAN hypothesizes goals of the 
user with respect to UC; UCEgo reacts to the user by 
forming goals of its own and then trying to accomplish 
them; and KIP is given the goal of solving some 
underlying UNIX problem. Thus PAGAN is a goal 
analyzer, i.e., a program that attempts to determine 
someone else's goals, while UCEgo and KIP are plan- 
ners, i.e., programs that determine and produce plans 
for their own goals. 

UCEgo and KIP exist as two separate programs 
primarily for pragmatic reasons. It may be possible that 
a single planner could accomplish the tasks of both 
UCEgo and KIP. Such an integration will have to await 
a revision of our system. 

1.5 UC EXAMPLES 

The first set of examples illustrates the scope of the 
current UC prototype. They are intended to show the 
kind of requests the system can handle, as well as its 
scope. The second set demonstrates some more com- 
plex capabilities. 
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Each sentence below preceded by the prompt ' # '  is 
supplied by the user. The rest of the text is a computer- 
generated response. Note that the system handles a 
variety of request forms, some direct and some indirect. 
Also, the responses to general questions will cause an 
example to be generated. Finally, the reader may notice 
that the vocabulary used to respond to a request is often 
different from that used in the request itself. For exam- 
ple, a question about file protection is answered in 
terms of file permission; a question about changing a 
directory is answered in terms of connecting to a 
directory. This is because the representations used to 
encode the system's knowledge are kept in a canonical 
form, so that different expressions of the same meaning 
are mapped to the same internal representation. Upon 
generating a response, the system use,.; only this internal 
representation, which, coupled with its generating bi- 
ases, causes an expression of an answer that is largely 
independent of the vocabulary that appeared in the 
request. 

1.5.1 SIMPLE EXAMPLES 

% UC 
Welcome to UC (Unix Consultant) version 3.23 
To a UC ' # '  prompt, please type in your questions 
about the Unix file system in English. 
To leave, just type a 'AD' or '(exit)'. 

Hi. 
How can I help you? 

# Can you tell me how to move a file? 
Use mv. 
For example, to move the file named foo to the file 
named fool, type 'mv foo fool'. 

# Do you know how to delete a file named dekai? 
Type 'rm dekai'. 

# Do you know how to delete a file? 
Use rm. 
For example, to delete the file named foo, type 'rm 
foo'. 

# How can I delete the file charlie? 
Type 'rm charlie'. 

# How can I delete the file named tony? 
Type 'rm tony'. 

# How can I get rid of the file named boob? 
Type 'rm boob'. 

# I want to delete a file named peter. 
Type 'rm peter'. 

# I want to delete a file. 
Use rm. 
For example, to delete the file named foo, type 'rm 
foo'. 

# I want to delete the file dave. 
Type 'rm dave'. 

# How can I add read permission to a file? 

Use chmod. 
For example, to add individual read permission to the 
file named foo, type 'chmod u+r  foo'. 

# Elow can I add the owner execute permission to a 
file'! 
Use', chmod. 
For example, to add individual execute permission to 
the file named foo, type 'chmod u+x foo'. 

# How can I change the group execute permission of 
a file? 
Use chmod. 
For example, to remove group execute permission 
from the file named foo, type 'chmod g-x foo'. 

# How can I change the user read permission of a 
file? 
Use chmod. 
For example, to remove individual read permission 
from the file named foo, type 'chmod u-r foo'. 

# How can I remove the group write permission from 
the file named bimbo? 
Type 'chmod g-w bimbo'. 

# ltow do I change the protection of a file? 
Use chmod. 
For example, to remove individual read permission 
from the file named foo, type 'chmod u-r foo'. 

# How can I compact a file? 
Use compact. 
For example, to compact the file named foo, type 
'compact foo'. 

# How can I create a directory? 
Use mkdir. 
For example, to create the directory named foo, type 
'mkdir foo'. 

# How can I find a file? 
Use whereis. 
For example, to find the file named foo, type 'where 
is foo'. 

# How can I find out how much disk space I am 
using? 
Type 'du'. 

# How can I find out who is using the system? 
Type 'finger'. 

# How can I find out wilensky's phone number? 
Type 'finger wilensky'. 

# How can I list a directory? 
Use Is. 
For example, to list the directory named foo, type 'Is 
foo'. 

# How can I logout? 
Type 'logout'. 

# Tell me how to leave. 
Type 'logout'. 
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# How can I move a file to the file named blah? 
Use mv. 
For  example,  to move the file named foo to the file 
named blah, type 'mv foo blah'. 

# How can I move the file junk? 
Use mv. 
For  example, to move the file named junk to the file 
named foo, type 'mv junk foo' .  

# How do I move a file? 
Use mv. 
For  example,  to move the file named foo to the file 
named fool, type 'mv foo fool ' .  

# How do I change my directory? 
Use cd. 
For  example,  to connect  to the directory named foo, 
type 'cd foo' .  

# How do I copy a file? 
Use cp. 
For  example,  to copy the file named foo to the file 
named fool, type 'cp foo fool' .  

# How do I copy the file foo to the file blah? 
Type 'cp foo blah'. 

# How do I create a directory? 
Use mkdir. 
For  example, to create the directory named foo, type 
'mkdir foo ' .  

# How do I print a file named info? 
Type 'lpr info'. 

# I want to print a file. 
Use lpr. 
For  example,  to print the file named foo, type 'lpr 
foo ' .  

# I want to change my working directory. 
Use cd. 
For  example,  to connect  to the directory named foo, 
type 'cd foo' .  

# I want to copy the file named rick. 
Use cp. 
For  example, to copy the file named rick to the file 
named foo, type cp 'rick foo' .  

# I want to delete a directory. 
Use rmdir. 
For  example,  to delete the directory named foo, type 
'rmdir foo ' .  

# I want to remove a directory. 
Use rmdir. 
For  example, to delete the directory named foo, type 
'rmdir foo ' .  

# What 's  the best way to delete a directory? 
Use rmdir. 
For  example,  to delete the directory named foo, type 
' rmdir foo ' .  

# I want to display a file. 
Use more. 
For  example, to display the file named foo, type 
'more foo' .  

# I want to edit a file. 
Use vi. 
For  example, to edit the file named foo, type 'vi foo' .  

# I want to find out Joe 's  address. 
Type 'finger joe ' .  

# I want to remove a directory named junk. 
Type 'rmdir junk' .  

# What 's  the command to compact  a file? 
Use compact.  
For  example, to compact  the file named foo, type 
'compact  foo' .  

# What is a directory? 
A directory is a file that is used to contain files. 

# What is a file? 
A directory is a container that is used to contain text,  
code or files. 

# What is a r m ?  
Rm is a command that is used to delete files. 

# What is a search path? 
A search path is a list of directories that is used by 
the csh to search for programs to execute.  

1.5.2 MORE COMPLEX EXAMPLES 

% UC 
Welcome to UC (Unix Consultant) version 3.23 
To a UC ' # '  prompt, please type in your  questions 
about the Unix file system in English. 
To leave, just type a 'AD' or '(exit) ' .  
Hi. 
How can I help you? 

# Is rn used to rename files? 

No, rn is used to read news. 
To rename a file to another file, use mv. 
For  example, to rename the file named foo to the file 
named fool, type 'mv foo fool' .  

In this example, UC hypothesized that the user asked 
the question in order to get an answer to some under- 
lying question. In particular, PAGAN hypothesized 
possible goals of wanting to know how to rename a file 
and wanting to know what rn does. Since the answer to 
the direct question is negative, UCEgo realizes that the 
underlying goals are not addressed by this answer, and, 
therefore, attempts to answer them. This results in the 
extended answer. 

# How can I crash the system? 
I 'm sorry, I cannot tell you. 

In this example, UC detected a conflict between its goal 
of  helping the user and that of  preserving the integrity of 
the system. It resolved this conflict in favor of the latter 
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goals. However ,  since it could not accommodate  the 
user 's  request,  it attempts to be polite by apologizing to 
the user. 

# What does Is -v do? 
Ls does not have a -v option. 

Here,  the user asks about a nonexistent command 
option. Actually, the UNIX 'Is' command ignores op- 
tions that it does not recognize, so the consultant could 
have answered truthfully by saying that 'Is -v' causes 
one 's  directory to be listed. It did not, because PAGAN 
interpreted the request  as a question about the function 
associated with the command.  UCEgo reasons that, 
since (1) it doesn ' t  know about such an option, and (2) 
it knows all the options to all simple commands,  and (3) 
Is is a simple command,  the user must have a miscon- 
ception. It then generates the goals of  correcting the 
misconception,  which results in the answer shown. 
Note that UC uses an open-world hypothesis together 
with metaknowledge to determine whether it knows 
some facts about UNIX. 

In the next example,  two different sessions with two 
different users are represented.  

% UC 
Welcome to UC (Unix Consultant) version 3.23 
To a UC ' # '  prompt,  please type in your  questions 
about the Unix file system in English. 
To leave, just  type a 'AD' or '(exit) ' .  

Hi. 
How can I help you? 

# How can I delete a file? 
Use rm. 
For  example,  to delete the file named foo, type ' rm 
foo' .  

# What does rwho do? 
Rwho is used to list all users on the network, the 
users '  tty, the users '  login time, and the users'  idle 
time. 

% UC 
Welcome to UC (Unix Consul tant )vers ion  3.23 
To a UC ' # '  prompt,  please type in your  questions 
about the Unix file system in English. 
To leave, just  type a 'AD' or '(exit) ' .  

Hi.  
How I can I help you? 

# How can I find out the inode of  a file? 
Use Is -i. 

# What does rwho do? 
Rwho is like who, except  rwho lists all users on the 
network. 

Because he asked such a simple question, the first user 
was diagnosed by K N O M E  as being a novice user. This 
resulted in the answer to his first question being illus- 
trated by an example, and the extended format of  his 
answer to the second. In contrast ,  the second user 

asked about a relatively technical aspect of UNIX. Thus 
this user is likely to be a relatively sophisticated user. 
As a result, the answer to that user 's  first question was 
not illustrated with an example. For  the same reason, 
UC presumes that the second user knows about the 
'who'  command, and takes advantage of  this knowledge 
in generating the response. 

Note this example also illustrates UC's  ability to 
generate different types of  responses.  This example was 
able to use a simile format, because the command to be 
generated was thought to be sufficiently close to one 
UC believes the user to already know. Formating is 
discussed in section 8. 

The next example illustrates some aspects of  UC's  
ability to generate plans. 

# How do I print Jim's file on the lineprinter? 
Use lpr. This plan will not work if you don ' t  have 
read permission on Jim's file. 

In this example, KIP,  UC's  domain planner, suspects 
that the plan it is suggesting might fail. This is because 
the plan involves printing someone else 's  file, and KIP 
knows that the lack of appropriate permission in such 
cases is a likely source of  plan failure. However ,  since 
it does not know a more certain plan, it delivers the 
suspect one, but warns the user of the possible problem. 

A fact about a possible problem with a plan is called 
a concern. Concerns are explicitly represented in UC's  
knowledge base. At this stage, UC's  knowledge of 
concerns is fragmentary. Thus questions above that 
have the same structure as this one may not cause any 
warnings to be generating simply because the requisite 
knowledge is lacking. Concerns are discussed further in 
Section 7.2.3 below. 

# Who is on the system? 
I 'm sorry, I don ' t  know. Use users to find out who is 
on the system. 

Here,  UC fails to answer the user 's  question, because it 
does not have any way of  running UNIX commands 
itself. Its failure causes it to apologize. UC then forms 
the goal of the user knowing how to determine the 
requested information. It addresses this goal, which 
leads to the second part of the response. 

2 K O D I A K  

The knowledge used by UC is represented in KODIAK,  
as are the various stages of  the processing of  an utter- 
ance. KODIAK (Keystone to Overall Design for Inte- 
gration and Application of Knowledge) is an implemen- 
tation of CRT (Cognitive Representat ion Theory) ,  an 
approach to knowledge representation that bears simi- 
larities to numerous other  systems, but especially those 
of  Schank (1975), Schubert  (1976), Shapiro (1979), and 
Brachman and Schmolze (1985). K O D I A K  differs from 
these systems in significant ways; however,  here we 
shall try to trivialize rather than accentuate these dif- 
ferences so that the reader can relate our  representa- 
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tions to more familiar ones. The reader should consult 
Wilensky (1986) for a more detailed account and justi- 
fication of this representation system. 

KODIAK is a relation-oriented rather than object- 
oriented system. In an object-oriented system, one 
thinks of objects as having slots, and the representa- 
tional weight is carried by such structured objects. In a 
relation-oriented system, objects are thought of as 
atomic elements, and knowledge is captured by the 
relations in which these objects participate. 

For example, suppose we want to represent a con- 
cept like "state change", i.e., an event in which some 
state is thought of as changing into another state. 
Among other things, we would like to capture the fact 
that any state change has an initial state and a final 
state. In KODIAK, we would represent this by first 
creating objects corresponding to the concepts STATE- 
CHANGE and STATE. Then we would indicate that a 
relation, say, INITIAL-STATE, holds between each 
instance of a state change and some instance of a state. 
Similarly, another relation, say, FINAL-STATE, holds 
between each state change and some state. 

This description sounds equivalent to saying that 
INITIAL-STATE and FINAL-STATE are slots of 
STATE-CHANGE. For the purposes of this paper, we 
will not strenuously resist this interpretation. However, 
the underlying philosophy (and actual representation) 
is different. In particular, rather than accounting for 
the relatedness of STATE-CHANGE and INITIAL- 
STATE and FINAL-STATE by creating a primitive 
notion of slot and asserting that the latter two items are 
slots in the former, this relatedness is simply attributed 
to the fact that every STATE-CHANGE participates in 
an INITIAL-STATE relation and a FINAL-STATE 
relation. On the other hand, we think of these relations 
as being less closely related to STATE because not 
every state participates in these relations. 

In our terminology, we refer to objects like STATE 
and STATE-CHANGE as absolutes, and the relations 
in which they participate, such as INITIAL-STATE and 
FINAL-STATE, as aspectuals. The motivation for hav- 
ing a more fine grain representation than objects with 
slots is described in Wilensky (1986). However, here we 
shall use a more conventional notation for the sake of 
exposition. For example, we will write the above facts 
about state changes using the following notation: 

[ STATE-CHANGE l 

/ \  
Ot Ot 

This diagram should be interpreted as follows: the 
individual instances of the concept STATE-CHANGE 
always participate in two relations, one called INI- 
TIAL-STATE and one called FINAL-STATE. That is, 
if we ever encountered an individual of the concept 
STATE-CHANGE, it will be in an INITIAL-STATE 
and a FINAL STATE relation to something. The circles 
themselves represent the idea of being in a given 
relation to something. Thus they correspond most 
closely to the roles of other systems. 

Of course, there is much more to say about state 
changes. For example, we have not yet expressed the 
fact that the other argument to both INITIAL-STATE 
and FINAL-STATE must always be a state. Also, the 
state that is in a INITIAL-STATE relation to a state 
change always occurs before the state that is in the 
FINAL-STATE relation. STATE-CHANGE itself is a 
type of event. We will now describe how such facts are 
represented. 

We represent individuals of a concept, and subtypes 
of a concept, using KL-ONE-Iike structured inheritance 
technique. For example, to represent an instance of a 
state change, we would create the following structure: 

I STATE-CHANGE I 

/ \ 
o/ O/ 

STATE-CHANGEI I 
/ 

initial-state 
\ 
final-state 

The instantiate (I) link states that STATE-CHANGE 1 is 
an individual STATE-CHANGE. Initial-statel should 
be interpreted as the assertion that the initial state 
relation holds between STATE-CHANGEI and some 
(as yet unspecified) value; the surrounding circle repre- 
sents the idea of being in the initial state relation to 
STATE-CHANGE1. We sometimes say that initial- 
state l plays the role of the initial-state relation with 
respect to STATE-CHANGE1. 

Note that role-play is a relation between a relation 
and its use, not a relation between a role and its filler. 
Indeed, the values to which initial-state and final-state 
connect STATE-CHANGE1 have not yet been de- 
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picted. To include these values in our representation, 
we use the value  (V) link. Thus we would typically find 
instances like the above elaborated to include the 
following: 

state and final-state must be an instance of  a STATE,  
we would ,draw a constrain (C) link from the circles 
labeled initial-state and final-state to a box labeled 
STATE,  as in the following diagram: 

I STATE-CHANGEI I 

/ \ 
initial state final state 

\ 

( 

v v 

C 

o~ 

C 

STATE-CHANGE ] 

That  is, the initial-state relation holds between STATE- 
CHANGE1 and something called STATE1,  and the 
final-state relation holds between STATE-CHANGE1 
and something called STATE2.  In other terminology, 
the object at the end of  the value link represents the 
filler, and the object at the source, the slot. Presumably, 
we would also include what other  information we knew 
about STATEI  and STATE2,  namely, what categories 
they are instances of, etc. 

We can abbreviate this notation if we have no need 
for the showing the slots of  an individual, but merely 
their fillers. We do this by drawing a labeled link 
directly to the target of  the value link. For  example, we 
could simplify the above two diagrams by drawing a link 
labeled initial-state between STATE-CHANGE1 and 
STATE1,  and one labeled final-state between STATE- 
CHANGE1 and STATE2.  Thus it is sometimes conve- 
nient to draw the following. 

I STATE-CHANGE1 [ 

/ \ 
initial-state final-state 

These links would be interpreted as saying that any 
object in a Value relation with a use of  initial state or 
final state must be of  type STATE.  

Subtypes are represented using a Dominate (D) link 
instead of  an Instantiate (I) link. The aspectuals are 
created for the subtype that play the role of  the aspect- 
uals of the parent. These are typically differentiated 
from those of the parent concept  by being subject to a 
further constraint. For  example,  we can begin to define 
dying as a kind of  state change as follows: 

,s Z 
\ 

I STATE-CHANGE ] 

/ \ 

I 
/ \ 

initial-stale 

patient 

final-stale 

Usually, the aspectuals of  a concept  are constrained so 
that their other  argument must be of  a certain type. For  
example, to indicate that the other argument to initial- 

We have represented D E A T H - E V E N T  as being a kind 
of S T A T E - C H A N G E  in which the initial state is con- 
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st.,. o cate objec, s / \ 
• I °EA " EWN I state 

strained to be a state of something being alive, and the 
final state to be that of something being dead. 

In this diagram, we have not bothered to show the 
constraints on the aspectuals of STATE-CHANGE. In 
general, we will only show those parts of previous 
concepts that are pertinent to the knowledge being 
represented. Also, we introduced a new aspectual, dier, 
which specializes patient. Patient is inherited from some 
quite abstract absolute, which ultimately dominates 
STATE-CHANGE, and which has the meaning "event 
that affects an object".  Also, since patient is an aspect- 
ual of some concept dominating STATE-CHANGE, we 
should have specialized it at STATE-CHANGE, say, to 
state-change-object. However, when such specialized 
versions of relations are not substantially differentiated 
from their ancestors, we will use the ancestor's name 
instead. The KODIAK interpreter understands the oc- 
currence of an inherited relation as being the most 
specific inheritable specialization of that relation, so 
using the more abstract name has the same semantics of 
using the more specialized one. 

One item missing from this diagram is the fact that 
the fellow who dies is the same fellow as the one who 

was alive and then was dead. This fact can be captured 
with the aid of the Equate (=) link. This is similar to 
KL-ONE's role chains. For example, we can improve 
our representation for dying by creating a state of being 
alive and a state of being dead, and then using Equate links 
to state the relationships between their components. 

In the diagram above, we state that the dier of 
DEATH-EVENT is the same as the is-alive-object of 
some IS-ALIVE state, and also the same as the is-dead- 
object of some is-dead state. 

The Equate links belong to a particular absolute. For 
example, in the diagram above, the Equate links ema- 
nating from dier belong to DEATH-EVENT. The sig- 
nificance of this fact is that it is true of dying that there 
must be an associated event of being alive, but it is not 
true of being alive that there must be a death event. We 
represent this aspect of Equates by the direction of the 
arrows in the diagram. 

Having defined DEATH-EVENT, it is easy to rep- 
resent a concept like killing, assuming an analysis in 
which killing is a kind of causing in which the thing 
caused is a kind of death event. 

Here we define KILL as being a subtype of CAUS- 
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[CAUSAL-EVENT ] 

0a,}o3\  
~ / ~ ~ ' ~  patient c a u s ~  

AL-EVENT. CAUSAL-EVENT is a concept shown as 
participating in an effect and a cause relation. KILL is 
also shown as participating in a kill-effect and a kill- 
cause relation. Because effect and cause are written on 
the links to these relations, we know that kill-effect is 
just a specialized version of the effect relation, and that 
kill-cause is a specialized version of cause. To differen- 
tiate KILL from CAUSAL-EVENT, we need to cap- 
ture the fact that the effect of a kill is a death event. The 
additional semantics of kill-effect (and thereby, of 
KILL) come from the constrain link on kill-effect. This 
says that the effect of a KILL is a DEATH-EVENT. 
Finally, we use an Equate link to state that the person 
killed is the same one as the one who died. 

Of course, many parts of the meaning of these simple 
concepts have been omitted from these diagrams. For 
example, we have not stated any information about 
time, such as the fact that the initial state precedes the 
final state. In general, the diagrams presented in this 
paper have been simplified to present the crucial knowl- 
edge needed without being even more complex than 
they already are. 

KODIAK has additional features that are not de- 
scribed herein. The reader is referred to Wilensky 
(1986) for a more complete description. A summary of 
all the KODIAK features used in this report is found in 
the legend in Figure I. 

Note that the legend contains one additional abbre- 
viation, namely, that drawing a link bearing the name of 
a relation between two categories is interpreted as 
stating that the individuals of the domain category 
participate in that relation with some member of the 
range category. 

2.1 UNIX KNOWLEDGE IN UC 

The KODIAK knowledge representations used in UC 
include several rather general notions, such as state 
change, goal, and action, plus many specific facts about 
UNIX. The complete collection is too lengthy to include 
here. (UC is currently constructed from approximately 
200 KODIAK diagrams, consisting of about 1,000 ab- 
solutes and 2,000 relations. While a scope of a diagram 
is to some degree arbitrary, diagrams roughly corre- 
spond to definitions of meaningful entities, like the 
definition a particular command.) Some more important 
concepts used in modeling the domain will be explained 
in the individual sections of this report. 

To facilitate understanding the KODIAK diagrams 
that follow, consider the representation that the UC's 
knowledge base contains about the UNIX rm com- 
mand. This is used to delete a file named by its 
argument. The following diagram shows how knowl- 
edge about deletion is represented in UC. 

The central node in this diagram is DELETE-EF- 
FECT. DELETE-EFFECT is shown as being a kind of 
STATE-CHANGE that causes a something to go from 
existence to nonexistence. (The notions of existence 
and negation do play a special role in KODIAK, but 
also exist as ordinary states, as is the case here. From 
the point of view of this example, these are just like any 
other states.) 

DELETE-EFFECT specifies the minimal deletion 
event. For example, it says nothing about the cause of 
such an event, or who the actor of it may be. In UC in 
particular and in CRT in general, such state changes are 
the bases from which we build more elaborate concepts. 
For example, the action of deleting something is repre- 
sented as an action that causes something to be deleted. 
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REPRESENTATION 
CONCEPT 

O 
CONCEPTn , n an integer 

[ CATEGORY ]-a---~ © 

[ CATEGORY1 -D--> [ CATEGORY2 

[INSTANCE ]-I--, CATEGORY 

O-C-~ [ CATEGORY 1 
O-V---> OBJECT 

O- =--> O 

CATEGORY -rel-->O 

CATEGORY1 trel---> CATEGORY2 

NODES 

MEANING 
an absolute 
a relation 

CONCEPTn is an instance of CONCEPT] 
I 

LINKS 

O is an aspectual, i .e. ,  a relation in which [ CATEGORY ] participates 

[CATEGORY2]dominates CATEGORYI ]. 

INSTANCE is an instance of [ CATEGORY ]. 

The argument to O is constrained to be of type [CATEGORY . 

The value of the argument to O is ~ .  

The first aspectual is constrained to have the same 
value as the second. 

O is an aspectual of CATEGORY, and O specializes 
rel, an aspectual of some concept 
dominating CATEGORY. 

Each member of CATEGORYI participates 
in re! with some member of CATEGORY2. 

Figure 1. KODIAK Legend 

I TRANSITIVE-ACTION I 

t / \  o 

state-obj C [ 

~. ~at,eot I ° ~ ~ ' 1  I ~'~'~-~''~~'Io~l 
/ t / 

state-oN C / 

/ del-object 

I NoT-E×ISTS ~ c  
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] EXECUTE-UNIX-COMMAND I 

~D I UNIX'COMMAND I 

I 
[ EXECUTE-UN IX-RM-COMMAND ] / / ~ r  

~ / /  FDELETE.FILE.EFFECT 

execute command ~ ~ | . . . .  C" I 
plan goals aei-ooje~ / name 

/ " , ,  
[ RM-FORM.AT ] / / 

nam~ aN~rrg = C /  

~ ~ I  ~ 

This is encoded by showing DELETE-EFFECT to be 
the effect of DELETE-ACTION. 

Using names like DELETE-EFFECT may be some- 
what misleading. In particular, DELETE-EFFECT 
is not required to be the effect of anything--while 
DELETE-ACTION is defined as having DELETE- 
EFFECT as its result, this statement imposes a require- 
ment on DELETE-ACTION, not on DELETE-EF- 
FECT. We call such concepts effects rather than 
events, say, to emphasize that we me, an to include only 
the most essential elements of the concept, i.e., just a 
specialized state change. 

DELETE-FILE-EFFECT is a specialized version of 
DELETE-EFFECT in which the object deleted is con- 
strained to be a file. DELETE-ACTION is correspond- 
ingly specialized to DELETE-FILE-ACTION. It is also 
shown as being a kind of TRANSITIVE-ACTION. This 
is a very general category denoting any action that acts 
upon an object. 

This sort of structure, in which there exists parallel 
effect and action hierarchies, with the effect hierarchy 
carrying most of the semantic weight, is typical of the 
representation that appear in UC. 

The figure above connects this general knowledge 
about deletion with knowledge about UNIX. 

Here we state how to achieve a DELETE-FILE- 
EFFECT. This accomplished by the node labeled 
PLANFOR2, which points to EXECUTE-UNIX-RM- 
COMMAND and to DELETE-FILE-EFFECT. A 

PLANFOR indicates that something is conceptualized 
as a plan for a particular goal (PLANFORs are dis- 
cussed below). In other words, this notation represents 
the particular fact that the 'rm' command (i.e., the 
command whose name is " rm")  is used to achieve the 
effect of deleting a file. Again, this structure is typical of 
that seen in UC--most  of the information about a 
command is represented as information about the use of 
that command; the intended function of the use of a 
command is represented by a planfor between a node 
representing the use of the command and some effect. 

The rest of the diagram specifies the format of the 
command. In particular, the Equate link specifies that, 
to delete a particular file, its name must be the same as 
that of the argument supplied to 'rm.'  

A TOUR THROUGH UC 

The following sections describe the components of UC 
in more detail. To aid in understanding how these 
components contribute to the processing of an individ- 
ual utterance, we show how each section processes the 
example sentence "Do you know how to print a file on 
the imagen [a kind of laser printer used at our site]?" In 
most cases, a module is capable of doing a great deal 
more than is required for this example, and such capa- 
bilities are attested to. However, the example is useful 
for illustrating the kind of processing that is performed 
for a typical request. 

In order to produce a paper of reasonable length, we 
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ACTION [ 

HYPOTHETICAL / ~D  

asked-for ]~ ~ " ~  / 
, I / ~ N I  x / [PRINT-ACTION I 

I QUESTION II I / ~ " ~  fl' 

w~'hat_is / I /I' "N,,,, N , /I  / RINTACTI°N°i \ 
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Figure 2. ALANA's output for "Do you know how to print a file on the Imagen?" 

reduced considerably the description of some of UC's 
modules. We have focused on those processes that 
contribute to UC's agentlike nature, while some more 
conventional modules, such as the conceptual analyzer, 
are mentioned only in passing. References are given to 
descriptions of these neglected components, which 
have all appeared elsewhere in print, should the reader 
find the account herein dissatisfying. 

3 THE ANALYZER 

A conceptual analyzer maps a string of words into a 
meaning representation. ALANA (Augmentable LAN- 
guage Analyzer), the conceptual analyzer for UC, takes 
as input a sentence typed by a user, and builds a 
conceptual representation using the KODIAK knowl- 
edge representation language. ALANA constructs the 
primal content of the input utterance. The primal con- 
tent is the interpretation that can be computed from 
grammatical and lexical knowledge; it is generally 
rather abstract. ALANA's results are further inter- 
preted and refined by other parts of the system, such as 
the concretion mechanism, to produce an actual con- 
tent, and the goal analyzer, to produce a representation 
of the intentions underlying the utterance. 

ALANA is a descendent of PHRAN (Wilensky and 
Arens 1980), the front end natural language component 
for the original UC (Wilensky, Arens, and Chin 1984). 
Like PHRAN, ALANA reads the user's input and 
forms a concept that the other UC components can use 
for their tasks. Also like PHRAN, the ALANA uses as 
its primitive knowledge unit the pattern-concept pair, 
which relates a natural language structure to a concep- 

tual structure. UC has a total of 476 patterns and knows 
284 words. 

ALANA differs from PHRAN in its generality. 
ALANA generalizes on the idea of pattern concept pair 
analysis, while making it easier than it was with 
PHRAN for a knowledge adder to add new patterns to 
the system. Since a more detailed description of 
ALANA can be found in Cox (1986), we will not 
elaborate on it here. Instead, we merely show in Figure 
2 the output produced by ALANA upon reading the 
sentence "Do you know how to print a file on the 
imagen?". 

This diagram may be interpreted as follows: The 
entire request is summarized as ASKll ,  i.e., some 
asking event. What is asked for is verification of some 
item, QUESTIONll ,  whose content is KNOW3, i.e., 
an instance of knowing. The knower of the item is UC, 
and the fact is ACTION6. ACTION6 is interpreted as 
something that is the cause of a printing action PRINT- 
ACTION0, which is itself an action whose effect 
(PRINT-EFFECT0) is to cause a file (FILE6) to be 
printed on an imagen printer (IMAGEN0). 

Some of the nodes in this diagram point to a node 
labeled HYPOTHETICAL. This is a tentative conven- 
tion used to indicate that the knowing and printing 
event, etc., are not real events, but merely hypothetical 
ones. 

4 THE CONCRETION MECHANISM 

4.1 INTRODUCTION 

A concretion inference is a kind of inference in which a 
more specific interpretation of an utterance is made 
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than can be sustained on a strictly logical basis (Norvig 
1983, Wilensky 1983). Examination of contextual clues 
provides the means to determine which of many possi- 
ble interpretations are likely candidates. An example of 
a simple type of concretion inference occurs in under- 
standing that " to use a pencil" means to write with a 
pencil, whereas " to use a dictionary" means to look up 
a word. 

Concretion differs classification such as that of 
KL-ONE (Schmolze and Lipkis 1983, Brachman and 
Schmolze 1985) in that a concretion inference may be 
incorrect. Ordinarily, " to use a pencil" implies writing; 
however, in a particular context, it may refer to prop- 
ping a door open with a pencil. Nevertheless, in the 
absence of compelling evidence to the contrary, the 
natural interpretation is writing. Thus concretion may 
be thought of as defeasible classification. 

A process that performs concretion is called a con-  
cre t ion  m e c h a n i s m .  A concretion mechanism attempts 
to find clues in a set of general concepts to generate 
concepts that are more specific. Writing, for instance, is 
a specific type of using, in which the tool being used 
may be a pencil. The use of such a mechanism permits 
a straightforward approach to manipulating hierarchical 
knowledge structures. The initial interpretation of an 
utterance may include concepts too general for the 
utterance to be considered understood. Such general 
concepts embody the common features of their descen- 
dent concepts, but for some reason insufficiently spec- 
ify the meaning of the utterance. Thus the concretion 
mechanism is responsible for making an appropriate 
interpretation of a concept by selecting one of its 
subconcepts, found lower in the hierarchy. 

In deciding when concretion operations should be 
performed, it is critical to consider how specific a 
concept's representation must be to be understood. 
Different levels of categorization are considered ade- 
quate from situation to situation. For instance, it is 
perfectly acceptable in most circumstances to leave the 
interpretation of"ea t ing"  as "eating some food". How- 
ever, in a context involving picnics, a more specific 
interpretation is likely to be made, namely, that the 
eating involved paper plates, that people sat on the 
ground or at a picnic table, that the food was of a certain 
type, and so forth. In general, in cases where a more 
specific category than usual is requisite, often some 
feature of the prototype of the supercategory is vio- 
lated, resulting in a higher probability of selecting a 
subcategory where this feature is accommodated. 

It is important that the mechanism be able to recog- 
nize from a wide variety of clues when there is sufficient 
evidence to concrete, as well as when an ambiguity 
needs to be resolved. A uniform method of representing 
the rules by which a concretion may be made is re- 
quired. Naturally, wrong inferences can occasionally be 
made, and some means must therefore be provided to 
find and correct them when contradictory facts are 
learned. 

4.2 CONCRETION IN UC 

As mentioned previously, our theoretical posture is that 
concretion is but one of a number of inference processes 
that can be accomplished by a single mechanism. How- 
ever, in UC, for reasons of efficiency, and for pragmatic 
advantages, a separate concretion mechanism was im- 
plemented (by Dekai Wu). This mechanism currently 
does rather straightforward classification. 

The mechanism concretes by using information 
about inheritance and value constraints, as well as by 
considering relation information between concepts. A 
concept represented as an instance of a category is 
passed to the concretion mechanism. Its eligibility for 
membership in a more specific subcategory is deter- 
mined by its ability to meet the constraints imposed on 
the subcategory by its associated relations and aspec- 
tual constraints. If all applicable conditions are met, the 
concept becomes an instance of the subcategory. At the 
same time, the relations in which the concept partici- 
pates may be concreted to reflect the more specific 
relations of the new category of which it is inferred to be 
a member. 

4.3 EXAMPLE 

Consider the example "Do you know how to print a file 
on the Imagen?". The subpart "print a file on the 
Imagen" is parsed into the representation shown in 
Figure 3. Parts of the representation of printing are 
shown in Figure 4. 

Besides the printing of the contents of a computer 
file, PRINT-EFFECT is in principle applicable to other 
types of printing, such as printing a newspaper or a 
book. The concretion mechanism checks each of the 
more specific concepts dominated by PRINT-EFFECT, 
searching for one whose constraints can be satisfied by 
the input. It finds PRINT-FILE-EFFECT, whose only 
additional constraint is that its print-object must be a 

I ACTION [ 

D 

t i PRINT ACTION I 

/ IIMaO N1 
I PRINT'ACTION0 ] i ~ 

print-file / 
/ I IMAGEN0 I 

I print-effect [ '~, 
I PRINT-EFFECT [ \ [ / 

\ [ print-dest 
/ / 

1PRIN -EFFEC 01 

Figure 3. Representation of "print a file on the Imagen" 
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Figure 4. Some Knowledge About Printing 

file. Since PRINT-EFFECT0 is in print-object relation 
with the object FILE6, which is indeed an instance of 
file, the process can descend to this node. The concre- 
tion process will continue until it can concretize no 
further. 

Of course, it is perfectly plausible just to preclude 
from UC on engineering grounds interpretations of 
words that do not occur in the UNIX domain. As we 
suggested earlier, it is our preference not to do so, since 
we wish to address, rather than finesse, fundamental 
language issues. However, doing so would not really 
eliminate the need for concretion. Even if we do not 
include concepts of non-computer printing in our 
knowledge base, we would still have many different 
kinds of printing, e.g., printing ASCII files versus 
binary files or printing on the lineprinter versus the laser 
printer. A query about each of these kinds of printing 

requires a different response, although the term 
"printing" applies to all of these. A system like UC 
needs to concrete the concept of printing in general to 
the particular kinds of printing that it knows about, in 
order t o  find the knowledge needed to answer the 
question. Thus eliminating interpretations that lie out- 
side the domain simplifies the problem somewhat, but it 
does not change its essential nature. 

In general, when concretion occurs, some node is 
reclassified as being an instance of a more specific 
category, and, in addition, the relations predicated 
about that node are also reclassified. For example, here 
we concretize PRINT-EFFECT0 to an instance of 
PRINT-FILE-EFFECT. At the same time, we should 
concrete the relation print-object predicated about it to 
a use of the more specific relation print-file-object. 
Similarly, print-dest is concreted to print file-dest. 
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Figure 5. Result of Concretizing "print file on the Imagen" 
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Continuing in this fashion, the mechanism can move 
from PRINT-EFFECT to LASER-PRINT-EFFECT, 
and finally to IMAGEN-PRINT-EFFECT, since the 
print-dest of the input is IMAGEN0, which is an in- 
stance of IMAGEN. At the same time, the relation 
print-dest is concreted to imagen-dest. In parallel with 
this concretion, the node PRINT-ACTION0 gets con- 
cretized to an instance of IMAGEN-PRINT-ACTION. 
The final result is shown in Figure 5. 

5 THE GOAL ANALYZER 

Once an utterance has been converted to a KODIAK 
representation by ALANA, and has been further re- 
fined by the concretion mechanism, this internal repre- 
sentation is passed to PAGAN (Plan and Goal ANa- 
lyzer). PAGAN's task is to determine what goals the 
speaker is addressing in making the utterance. For 
example, when given a representation of the utterance 

1. Do you know how to print a file on the Imagen? 

asked by a naive user, PAGAN should infer that the 
user was using the utterance to address the goal of 
knowing how to print a file on the Imagen. Note that 
PAGAN is not responsible for detecting goals that are 
held by the speaker, but that are not conveyed by the 
speaker's utterances. This problem is addressed by the 
ego mechanism and by the planner. 

To successfully do goal analysis, at least two ques- 
tions must be answered. The first concerns the utter- 
ance in isolation. 

Q1. What kind of act does this utterance constitute? 

This question has traditionally fallen under the rubric of 
speech-act theory (Austin 1962, Searle 1969). For ex- 
ample, (1) potentially has both a direct and indirect 
interpretation, which PAGAN must choose between. 

The second question a goal analysis mechanism must 
answer examines the role of the utterance in conversa- 
tion. 

Q2. How does this utterance relate to other utter- 
ances? 

By virtue of being an action, an utterance always occurs 
within a context. This context includes such diverse 
factors as the identities of the speaker and of the 
audience, the social relationship between them, the 
physical locale, the task the conversation is supple- 
menting if any, and so on. One feature of this context 
that is salient to goal analysis is the presence of con- 
ventional, multi-utterance sequences. Consider the ex- 
change: 

2. Do you have write permission on the parent 
directory? 
3. Yes. 

The ability to understand the full meaning of (3) is 
contingent on the realization that it relates directly and 
conventionally to (2). Thus PAGAN will require knowl- 
edge of such sequences to correctly determine the goal 
underlying utterances such as (3). 
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5.1 KNOWLEDGE REPRESENTATION FOR PAGAN 

A planfor is a relation between a goal and a sequence of 
steps (called a plan) that constitutes a possible method 
of achieving that goal. All PAGAN's knowledge of 
conversation is stored as planfors. 

Planfors provide a means to address the questions 
posed above. First, indirect speech acts can be ex- 
pressed as planfors. For example, the generic indirect 
speech act underlying (3) can be expressed as: 

PLANFOR1 
GOAL: Speaker ask hearer how to perform task 
PLAN: Speaker ask hearer whether hearer 

knows how to perform task 

Second, planfors provide a means to express conven- 
tionalized relationships between utterances. Utterance 
1 and its answer can be represented as: 

PLANFOR2 
GOAL: Speaker know how to perform task 
PLAN: Speaker ask hearer how to perform task 

Hearer tell speaker how to perform task 

(In general, steps of a plan that are to be executed by 
someone other than the planner are interpreted as the 
planner waiting for that event to happen.) 

Representing both speech act knowledge and conver- 
sational knowledge with planfors has two advantages. 
First, it allows a single mechanism to handle the proc- 
essing of both phenomena. The goal analysis mecha- 
nism described below does just this. Second, it allows 
the two forms of knowledge to be combined into a single 
structure. For example, the two preceding planfors can 
be combined to express both the indirect speech act and 
the question and answer sequence. 

PLANFOR3 
GOAL: Speaker know how to perform task 
PLAN: Speaker ask hearer whether hearer 

knows how to perform task 
Hearer tell speaker how to perform task 

The KODIAK representation of a planfor is shown in 
Figure 6. Figure 7 depicts PLANFOR3 in its KODIAK 
form. (It is called PLANFOR34 in the knowledge base). 

IPLAN ORI 

I STAT -OR-EV NT1 // 
a , C /  

Figure 6. Definition of a Planfor 

It is a planfor whose goal is to know a fact which is itself 
a plan for some goal. (The names of the aspectuals not 
used to make a predication have been omitted from the 
diagram.) The plan of PLANFOR34 is for the person 
who wants to know this action to ask someone whether 
that person knows the action sought, and then, to have 
that same person tell the asker what was desired. 

Note that planfors do not represent fundamental 
knowledge of causality. There is usually a causal rela- 
tionship between a plan and a goal that are connected by 
a planfor. However, the planfor itself does not represent 
the causality. What a planfor does represent is a notion 
of typicality. It indicates that its plan is one that is 
typically or conventionally used to achieve its goal. For 
example, the UNIX 'rm' command may cause a file to 
be deleted. It may also cause the disk arm to be moved. 
It would be a mistake though to say that 'rm' should be 
connected to the goal of moving the disk arm by a 
planfor relation; 'rm' is not typically used to move the 
disk arm. On the other hand, 'rm' should be connected 
to the goal of deleting a file by a planfor relation, since 
this goal is what 'rm' is typically used for. 

Traditional approaches to dialog understanding have 
focused on the process of plan inference. Under this 
approach, utterances are viewed as steps of plans. Such 
plans may themselves be parts of higher-level plans, and 
so on. Allen and Perrault (1980) developed a system that 
exemplifies this approach. Their system handled direct 
and indirect speech acts by plan analysis. Carberry 
(1983) extended this paradigm to deal more thoroughly 
with domain plans. Litman and Allen (1984) used the 
notion of metaplans (Wilensky 1983) to facilitate the 
comprehension of subdialogs. Grosz and Sidner (1985) 
pointed out the need for attentional knowledge in un- 
derstanding discourse. One problem that has persisted 
in the literature is an inadequate representation of the 
relationship between goals and plans. Planfors provide 
such a representation. 

Planfors allow a goal analysis mechanism to combine 
certain inferences that should be kept together. First, 
inferences about plans may be made at the same time as 
those about goals. This is in contrast with systems such 
as Wilensky's PAM system (1983) that use separate 
representations for inferring plans and goals. Second, 
inferences about plan recognition and inferences about 
intended response recognition may be combined by 
including the intended response in the plan and associ- 
ating this entire plan with a single goal. This is in 
contrast with systems such as Sidner's (1985) that first 
do plan recognition and then worry about what response 
was intended. The ability to do both kinds of inference 
simultaneously conforms to the intuition that no extra 
processing is required to determine, for example, that 
an answer is required once the realization is made that 
a question has been asked. Finally, planfors allow 
inferences about linguistic goals and about domain goals 
to be handled by a single inference engine. The separa- 
tion of goal analysis into linguistic goal reasoning and 
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Figure 7. A plan for knowing is to ask if the hearer knows. 

task goal reasoning (cf. Alien, Frisch, and Litman 1982) 
is unnecessary, since the only difference between the 
two is the type of action that may comprise plan steps. 

5.2 GOAL ANALYSIS 

When knowledge of goals and plans is represented with 
planfors, goal analysis is the task of matching the 
representations produced by the language analyzer 
against the steps of plans stored in memory. The goal 
held by a speaker in making an utterance is then the goal 
that is associated with the matched plan via the planfor 
relation. 

In the absence of any previous conversational con- 
text, an utterance to be analyzed is compared with the 
first plan step of each planfor that PAGAN knows 
about. When a match is found, the corresponding goal is 
taken to be the goal the speaker had in mind in making 
the utterance. 

Several phenomena complicate this view of goal 
analysis. First, a speaker may intend a single utterance 
to be a part of more than one plan. For example, (1) is 

a plan for the goal of knowing how to print a file. 
Achieving this goal may in turn be part of a plan for 
actmdly printing a file. To handle such situations, 
PAGAN must apply the matching process recursively 
on each inferred goal. This matching process is repeated 
until no further higher-level goals can be inferred. 

Second, preceding conversational events may set up 
expectations in relation to which an utterance is de- 
signed to be understood. For example, (3) cannot be 
readily interpreted when viewed in isolation. However, 
if it is used in response to a question such as (2), its 
interpretation is clear. Two additions must be made to 
the matching algorithm to handle this and similar cases. 
First, before matching the utterance to plans in the 
planfor knowledge base, the utterance must be matched 
against the next step of any active planfor (i.e., any 
planfor already inferred but not yet completed). In this 
example, the representation of (3) would be matched 
against the second step of the question and answer plan 
started by (2) to determine if it is a response to the 
question. Second, when a match with a new planfor is 
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found, PAGAN may also need to infer that the speaker 
has adopted the matched planfor. Suppose UC says (2) 
to the user. Here, UC is initiating a plan for the goal of 
knowing whether the user holds the indicated permis- 
sion. But, at the moment, this goal is held only by UC; 
it is reasonable that the user might not address the goal 
at all. For example, the user might reply 

4. Does it matter? 
instead of answering the question. If the user's response 
can be construed as an answer to the question, we say 
that the user has adopted the planfor, and we may then 
expect any additional steps in the plan to be pursued by 
the user. 

Third, PAGAN may find more than one planfor in its 
long-term memory that matches the utterance. This is 
called planfor ambiguity. Planfor ambiguity is handled 
in one of two ways. If an alternative matches an 
expectation, as described in the previous paragraph, 
then that alternative is chosen as the correct interpre- 
tation. If no expectation is matched, PAGAN tries to 
reject an alternative as implausible. A planfor is implau- 
sible if PAGAN believes that the user believes that its 
goal already holds, if its goal does not appear to lead to 
some appreciable benefit for the user, or if PAGAN 
believes that the user believes that one of its plan steps 
could not be achieved. 

5.3 PROCESSING OVERVIEW 

1. This utterance wasn't expected. 
2. This utterance wasn't an adopted plan. 
3. Matching ASK0 pattern against ASK11. 
4. Could not match KNOW23 pattern to ACTION6 

because of category KNOW. 
5. Match failed--try the next one. 
6. Matching ASK34 pattern against ASK11. 
7. Match found. 
8. Matching ASK39 pattern against ASKI 1. 
9. Match found. 

10. Attempting to resolve ambiguity in the interpreta- 
tion of ASK11. 

I 1. The alternatives are: KNOW34 KNOW39. 
12. Trying to determine whether KNOW34 was ex- 

pected. 
13. KNOW34 was not expected. 
14. Trying to determine whether KNOW39 was ex- 

pected. 
15. KNOW39 was not expected. 
16. The goal KNOW39 is implausible, since the speaker 

probably believes that it already holds. 
17. ASKll  is explained by the goal KNOW34. 
18. Creating new HAS-GOAL node: HAS-GOAL-ga0. 
19. Returning goal KNOW-ga0. 

Figure 8. Trace of PAGAN's Processing of "Do you know 
how to print a file on the Imagen?" 

At PAGAN's core is a matching program that matches 
two KODIAK structures against one another. Two 
structures are said to match if they are isomorphic (i.e., 
they have the same link structure) and each pair of 
corresponding nodes matches. For two nodes to match, 
one must be equal to or an ancestor of the other. For 
example, Imagen would match Imagen or laser printer, 
and laser printer would match Imagen, but Imagen 
would not match Laserwriter. 

PAGAN first tries to determine whether the utter- 
ance was expected. This is done by matching the 
representation of the utterance against those plan steps 
that have been inferred but not yet witnessed. Such 
expectations are stored in a separate structure to speed 
the matching process. Failing this, PAGAN attempts to 
match the representation of the utterance to the first 
steps of planfors stored in memory. If a single such 
match is found, this planfor is copied, forming a new 
planfor with the observed utterance as its first step. If 
more than one planfor is found to match, the resultant 
ambiguity is resolved either by matching its goal to an 
expected action or by consulting the user model to 
determine whether that goal and plan are plausible given 
what is known about the user. 

5.4 EXAMPLE 

This section traces the processing performed by PA- 
GAN to handle Utterance 1. The input to PAGAN is the 
structure built by the analyzer from this utterance and 

refined by the concretion mechanism. A trace of PA- 
GAN as it processes this structure is shown in Figure 8. 
The first step performed by PAGAN is to determine 
whether the utterance is the continuation of a conver- 
sational plan already in effect. For this to be the case, 
there would need to be some previous dialog to provide 
the necessary context. This dialog would take one of 
two forms. It might be a plan that UC believed the user 
to be pursuing before the current utterance was encoun- 
tered. Alternatively, it could be a plan introduced by 
UC that the user has adopted, that UC believes the user 
to be pursuing only after witnessing the current utter- 
ance. Since there is no previous context in the example 
we are tracing, neither of these possibilities is found to 
hold (1-2). 

Next, PAGAN tries to match the utterance against 
the first steps of plans in its planfor knowledge base. 
The first possibility is compared with the Input Struc- 
ture 3, but one pair of corresponding nodes is found not 
to match (4-5). The second possibility, one that does 
match the utterance, is then compared with the Input 
Structures 6-7. This planfor corresponds to the indirect 
interpretation of the utterance. This is the planfor that is 
shown in Figure 7. A third possibility, corresponding to 
the direct interpretation of the utterance, also matches 
the Input Structures 8-9. An attempt to resolve this 
ambiguity is now made (10-11). Since neither goal 
matches an expected goal (12-15), the planfors are 
examined for plausibility. The direct interpretation is 
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discarded, because the user model indicates that it is 
likely that the user knows that UC knows how to print 
a file on the Imagen (16). (The contribution of the user 
model is described in Section 6.) Thus the planfor 
representing the indirect interpretation is selected (17). 

Once the utterance has been matched to the first step 
of this planfor, an instance of a PLANFOR is created 
with the goals determined from the input. In addition, 
an instance of the HAS-GOAL-STATE is built (18). The 
planner of this state is the user, and the goal is the goal 
of the PLANFOR. This HAS-GOAL represents the 
goal that UC believes the user had in mind in making the 
utterance, and is returned by PAGAN as its result (19). 
It is shown in Figure 9. 

In this figure, note that PAGAN has created a node 
labeled ACTION7, whose actor is the user. This repre- 
sents the inference made by the goal analyzer that, if a 
user wants to know an action to achieve some goal, then 
the user intends to be the actor of that action. 

6 ThE EGO MECHANISM 

6.1 UCEGO 

UCEgo is the component of UC that determines UC's 
own goals and attempts to achieve those goals. The 
input to UCEgo are the user's statements as interpreted 
by UC's conceptual analyzer and concretion mecha- 
nism, and the user's goals and plans as inferred by UC's 
goal analyzer. UCEgo draws on the UNIX planner 
component of UC to produce plans for doing things in 
UNIX. It passes the results to UC's expression mech- 
anism, which prepares the conceptual information for 
generation into natural language. 

The processing in UCEgo can be divided into two 
main phases: goal detection and plan selection. In goal 

detection (Wilensky 1983), UCEgo considers the cur- 
rent situation and detects appropriate goals for UC. The 
plan selection phase of UCEgo takes UC's goals and 
tries to produce a plan for satisfying them. The process 
of executing the plan normally results in a collection of 
concepts that are to be communicated to the user. 
UCEgo also includes an explicit user model, which 
encodes the user's knowledge state for use in goal 
detection and answer expression. Each of these sub- 
components is described in greater detail below. A more 
substantial description of these subcomponents is de- 
scribed in Chin (1988). 

6.1.1 THEMES AND GOALS 

In UCEgo, goal detection is implemented by if-detected 
demons,  if-detected demons are similar to the implica- 
tion rules found in many semantic network type sys- 
tems. If-detected demons contain two subparts, a de- 
tection net and an addition net. Both of these are 
networks of KODIAK concepts. Whenever the detec- 
tion net of an if-detected demon matches what is in 
UC' s memory, the addition net of the if-detected demon 
is copied into UC's memory. The detection and addition 
nets may share concepts, that is, share nodes in their 
networks. Here, the concepts that match the detection 
net are used in place of the corresponding concepts in 
the addition net. Thus all the links in the addition net are 
preserved in making the copy, but some of the absolutes 
are from the result of the match. As described below, 
the matching process, which is somewhat different from 
that used by the goal analyzer, allows certain nodes to 
match instances of the concepts they specify. There- 
fore, these nodes function like the typed variables found 
in other systems. 

When used in goal detection, the detection net of an 
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Figure 10. If-detected Demon for Adopting the User's Goal 
of Knowing. 

if-detected demon represents the situation in which the 
goal should be detected, and the addition net of the 
if-detected demon contains the goal. Figure 10 shows an 
if-detected demon used in goal detection. This if-de- 
tected demon encodes the information that if UC has 
the goal (UC-HAS-GOAL3 in the diagram) of helping 
(HELP1) someone (PERSON4), and that person has the 
goal (HAS-GOAL0) of knowing something, then a plan 
for helping that person is for UC to satisfy (SATISFY1) 
the person's need to know. 

Figure 10 shows an if-detected demon with an inter- 
secting detection and addition net. In these diagrams, 
the detection net is designated by unlabeled arrows 
coming into the doubled circle labeled "if-detected". 
The net includes all those concepts plus all children of 
those concepts. The addition net is composed of those 
concepts pointed to by the if-detected double circle plus 
all their children. In the figure, the detection net con- 
sists of UC-HAS-GOAL3, HAS-GOAL0, and their 
child nodes. The addition net consists of PLANFOR3 
plus all its child nodes. (UC-HAS-GOAL is a subtype of 
HAS-GOAL in which the planner is constrained to be 
UC, thus obviating the need to specify UC as the 
planner in each demon.) Thus, when PAGAN has 
inferred that the user wants to know something, and UC 
has the goal of helping the user (a recurrent goal that 
arises from UCEgo's computer-consultant-role theme), 
UCEgo will detect the goal of satisfying the user's goal 
of knowing. 

The use of demons in UCEgo is intended to represent 
its procedural knowledge of what to do in particular 

situations. For example, while a planfor structure used 
in both UCEgo and PAGAN might encode that some 
plan is appropriate for some goal, a demon is needed to 
cause UC to intend to use that plan in a situation in 
which that goal is present. Thus demons represent the 
actions to be taken in a given situation, although both 
the situations and actions are described in declarative 
KODIAK format. 

To capture generalizations effectively, the number of 
demons should be kept to the minimum and as much as 
possible should be represented as declarative KODIAK 
knowledge. For example, it is possible to have one 
demon for each situation in which a particular goal 
suggests adopting a particular plan; then we might be 
able to dispense with representing knowledge in plan- 
fors. However, doing so would not capture the gener- 
alization common to all these situations, namely, that 
expressed by the demon in Figure 10. 

While we have attempted to keep the number of 
demons small, this version of UC certainly does not go 
as far as we would like in this direction. There are about 
70 demons in the current version. We expect that a 
careful examination of them could result in reducing this 
number somewhat making the program more declara- 
tively based. 

UCEgo needs a complex control structure, because it 
has more varied tasks to perform than most of the other 
parts of UC. Indeed, to accommodate its needs, UCEgo 
uses a slightly different matching algorithm than some 
of the other components. In particular, the question 
marks in the diagrams are significant to the demon 
interpreter during both matching and copying. In match- 
ing, the question mark in a node means that the inter- 
preter should look not just for exact matches, but also 
for any concepts that are members of the same catego- 
ries as the node or specializations of those categories. 
For example, PERSON4? will be matched by any 
instances of either PERSON or specializations of PER- 
SON such as USER. In copying the addition net, the 
interpretation of the question marks is to use the 
matched concept if the node is also a part of the 
detection net, or to create a new concept that is an 
instance of the same categories as the node. Nodes 
without question marks are used directly without copy- 
ing. 

These rules of interpretation extend only to using 
demons, and are purely a part of UCEgo's implement. 
That is, assertions made using these rules, when entered 
in the KODIAK knowledge base, have the same syntax 
and semantics as elsewhere in UC. 

6.1.2 EXTENDED GOAL DETECTION 

Besides situations where UCEgo simply adopts the 
user's goal of knowing, UCEgo also handles situations 
where it does not adopt the user's goal, such as when 
the user asks, "How do I crash the system?" or "How 
can I delete UC?" 

The cases where UCEgo does not tell the user the 
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answer include examples of goal conflict where 
UCEgo's goal of wanting the user to know something 
conflicts with another of UCEgo's goals. For example, 
consider what happens when the user asks, "How do I 
crash the system?" By normal processing, UCEgo 
arrives at the goal of wanting the user to know how to 
crash the system. However,  crashing the system con- 
flicts with UCEgo's recurrent goal of preserving the 
system, which arose from UCEgo's life theme of stay- 
ing alive (Schank & Abelson 1977). This theme is 
operationalized by yet another if-detected demon, 
which looks for the user wanting to crash the system, 
and results in UC having the goal of preventing the user 
from doing so. (This is one of only a few such states 
pertaining to the staying-alive theme that UCEgo has 
knowledge about.) Of course, it is the job of PAGAN to 
determine that the user wants to crash the system from 
the user asking how to crash the system. 

Figure 11 shows the if-detected demon that detects 
goal competition between UCEgo's goal of preserving 
something (SOMETHING1 in the diagram) and some- 
one's goal (PERSON1 in the diagram) of altering it. In 
this example, UC-HAS-GOAL1 would be matched by 
UCEgo's recurrent goal of preserving the system, 
which arises from UCEgo's life theme of staying alive. 
HAS-GOAL2 would be matched by the user 's goal of 
crashing (a specialization of altering) the system. As a 
result, UCEgo adopts the subgoal of preventing the user 
from crashing the system. 

I C"ASOOALi?I IPLANFORI  I"ASOOAL2?I 

/pl!n I I 
IPR S .vEl?l IPR V NTI?I \ 

preserver preventer ~ 
prevent-state l PERSONI? I 

preserved 

alter-object 
/ 

Figure 11. If-detected Demon for Detecting Preserve/Alter- 
Type Goal Conflicts. 

Next, the goal of preventing the user from crashing the 
system, with the information (inferred by UC's 
KNOME, cf. section 6.2) that the user does not know 
how to crash the system and the information that the 
user wants to know how (inferred by PAGAN), causes 
a new goal for UCEgo, namely, preventing the user 
from knowing how to crash the system. Figure 12 shows 
the if-detected demon responsible. This demon detects 
situations where UCEgo has a goal of preventing some- 
thing from happening and where the person who desires 
this does not know how to do it and wants to know how. 
Here, UCEgo adopts the goal of preventing the person 
from knowing. 

After detecting the subgoal of preventing the user 
from knowing how to crash the system, UCEgo will 
detect a goal conflict when it tries to adopt the usual 
goal of having the user know, in order to help the user. 
Figure 13 shows the if-detected demon that detects 
goal-conflict situations where UCEgo both has a partic- 
ular goal and has the goal of preventing that goal. In 
such cases, UCEgo adopts the recta-goal (Wilensky 
1983) of resolving the goal conflict. The general mech- 
anism of dealing with such recta-goals is described in 
the next section. The eventual result of this mechanism 
here is that the goal of preventing the user from knowing 
is maintained and the other conflicting goal is aban- 
doned. 

6.1.3 PLAN SELECTION 

After UCEgo has detected the appropriate goals, it then 
tries to satisfy these goals. This is done in the plan 
selection phase of UCEgo. Plan selection in UCEgo is 
implemented using planfors, as described in Section 5, 
on PAGAN. In UCEgo, planfors are indexed using 
if-detected demons. The if-detected demons serve to 
suggest application of a particular planfor whenever an 
appropriate situation arises. Such situations always 
include the goal of the planfor, and may include other 
factors relevant to the planfor. For example, Figure 14 
shows an if-detected demon that suggests the plan of 
telling the user the answer whenever it detects a situa- 
tion where UC wants the user to know the answer to a 
query and there is an answer for that query. 

Besides encoding the situations when UCEgo should 
be reminded of particular planfors, the if-detected de- 
mons also provide a unification service. For plan selec- 
tion, unification serves to specialize the general plans 
stored in the planfors to fit the activating situations. For 
example, consider the demon shown in Figure 14. After 
the detection net of the demon is matched, UCEgo will 
create a new planfor with a plan of telling the user the 
particular proposition that matched SOMETHING2, 
which is the answer for the user's query. 

After finding a plan, adopts the intention of executing 
that plan. An intention to execute a plan means that 
UCEgo has scheduled the plan for execution. UC's 
notion of intention is similar to that of Cohen and 
Levesque (1987), although UC is not concerned with 
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Figure 12. If-detected Demon for Preventing Someone from Knowing How to do Something. 

issues of its own beliefs, since performing actions 
accidentally or unknowingly is not a real possibility for 
the system. Figure 15 shows the basic knowledge used 
by UCEgo to adopt a plan for execution. 

This if-detected demon states that whenever UC has 
some goal and UC knows that there is a plan for that 
goal, then UC adopts the intention of performing the 
plan. 

If UC had to choose between a number of plans for a 
goal, this demon would have to be replaced by some- 
thing more complex. The idea behind our scheme is 
that, with a rich enough description of situations for 
which plans are appropriate, a planner will not typically 
consider many plans at any given junction. So far, 
UCEgo has been able to function by simply intending to 
perform the first plan it finds, and with no ability for 

I UC- I 

~ g!al conflict-goal ~ 

goal ~ ~ goal 

' S Ip= v .NTi?l- pre,ent-state A =O=ET"'=O'?I 

Figure 13. If-detected Demon for Detecting Goal Conflicts. 
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Figure 14. If-detected Demon for Suggesting the Plan of Telling the User. 

correction. If a more complex planning structure is 
eventually needed, we would realize it by having a more 
sophisticated mechanism for forming intentions. For 
example, the presence of multiple recalled plans could 
be represented as a situation in which a meta-goal of 
choosing between them is to be detected. 

After UCEgo has finished forming intentions to per- 
form some actions, it attempts to execute them. UCEgo 
has some procedural knowledge about which intention 
to tend to first. For example, it will try to execute 
meta-plans before non-meta-plans, and subgoals before 
their parent goals. If there remain unfulfilled conditions 

I u c . x s  INTENT L~C HASOO ALl ~1 
\  PLANFOR,   / 

i.to.t,o. / \ ~oa, 
\ pan goa / 

/ \ 
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Figure 15. Principal If-detected Demon Used to Adopt a 
Plan. 

of a plan, its execution will not be attempted. Other- 
wise, the selection among intentions is random. 

Having selected a plan, UCEgo proceeds to execute 
the plan. UCEgo's demon interpreter calls the proper 
subcomponent to perform the action. An example of 
this is when UCEgo calls UCExpress to perform a 
TELL action. 

In the case of executing a meta-plan for a meta-goal, 
the procedure called by the interpreter typically alters 
the plan structure itself. For example, in the previous 
section, UCEgo had inferred the meta-goal of resolving 
a conflict between two goals, one of helping the user 
and one of protecting itself. In plan selection, a demon 
would propose a meta-plan called ABANDON-GOAL 
to use to address this meta-goal. This meta-plan would 
cause a procedure to be invoked that resolves the 
conflict by abandoning the less valuable goal. To deter- 
mine which goal is less important, ABANDON-GOAL 
first searches the data base for an explicit HAS-PRE- 
CEDENCE relation between the two goals. If such a 
fact cannot be found, ABANDON-GOAL examines the 
parent goals of the goals in question for such a fact. If 
that fails, the ultimate sources of the goals, usually 
some themes, are examined. All of UC's themes are in 
an explicit precedence relation. Thus most conflicts can 
be resolved by appeal to the priority of themes. In the 
example from the previous section, UC's staying alive 
theme is found to have a higher precedence than its 
consultant theme, thus causing the latter goal to be 
abandoned and the former retained. 
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6.2 KNOME---UC'S USER MODEL 

K N O M E  is a program that maintains UC's model of  the 
user. This model represents UC's  understanding of the 
user 's  knowledge of  UNIX. No attempt is made to 
determine other user attributes, such as personality 
traits (Rich 1979), user preferences (Morik and Rollin- 
ger 1985), or user performance (Brown and Burton 
1976). This knowledge state is exploited by the goal- 
detection phase of UCEgo ' s  processing and by KIP and 
UCExpress .  

K N O M E  separates users into four categories or 
stereotypes,  corresponding to different levels of  exper- 
tise: novice, beginnner, intermediate, and expert. Each 
category encodes information about the knowledge 
state of users that belong to that category. Conflicting 
information about an individual user 's  knowledge state 
can be encoded explicitly, and will override inheritance 
from the user 's  s tereotype category. Thus the user 
categories are prototypes that are used as reference 
points for inference (Rosch 1978). 

Besides separating users according to expertise,  
K N O M E  also categorizes commands,  command for- 
mats, terminology, and other  relevant knowledge. 
These objects are grouped according to their typical 
location on the learning curve (i.e., when the average 
user would learn the information). The categories in- 
clude s imple ,  mundane ,  and complex. A further cate- 
gory, esoteric, exists for those concepts that do not 
consistently lie on any one area of the learning curve. 
These concepts are usually related to special purpose 
requirements,  and only users that require that special 
purpose will learn those concepts.  Thus esoteric con- 
cepts may be known by novices and beginners as well as 
by intermediate or expert  users, although advanced 
users are still more likely to know more esoteric items 
simply because they have been using UNIX longer. 

The double s tereotype system described above is 
extremely space efficient. The core of  K N O M E ' s  gen- 
eral knowledge of  users is summarized in the five 
statements shown in Figure 16 (although the informa- 
tion is stored as assertions in KODIAK).  

6.2.1 INFERRING THE USER'S LEVEL 

During a session, K N O M E  builds a profile of the user 
and infers the user 's  level of  expertise. This proceeds in 
a two-step process.  First, K N O M E  infers particular 
facts about what the user does or does not know from 
the dialog, i.e., from what the user actually said and 
from the output of  the goal analyzer. Next,  these facts 
are combined to infer the user 's  level of  expertise. 

Inferring particular facts about what the user does or 
does not know is implemented using if-detected demons 
as a rule-based system. An example of  such a rule is: 

the user wants to know ?x --* the user does not 
know ?x 

Expert users know all simple or mundane facts and most 
complex facts. 

Intermediate users know all simple, most mundane, and a 
few complex facts. 

Beginner users know most simple facts and a few mundane 
facts. 

Novice users know at most a few simple facts (e.g., the 
login command). 

Any user may or may not know any esoteric facts, but 
more experienced users are more likely to know more 
esoteric facts. 

Figure 16. Summary of KNOME's General Model of Users 

This rule is implemented using the if-detected demon 
shown in Figure 17. 

K N O M E  currently distinguishes seven classes of  
inference rules. These are summarized as follows: 

Claim--inferences based on what the user claims to 
know; 
Goal-- inferences based on what the user wants; 
Usage-- inferences based on the user 's  usage; 
Background-- inferences based on the user 's  back- 
ground; 
Query-reply-- inferences  based on user 's  replies to 
questions; 
No-clar ify-- inferences based on the user 's  not ask- 
ing for clarification 

Claims cover  such items as the statement by a user that 
he or she knows some fact. Examples of  goal inference 
are that, if a user asks how to do something, then it is 
reasonable to assume that the user does not know how 
to do that thing, and is also unfamiliar with the com- 
mand that does it. Usage inferences include such no- 
tions as that the user can be assumed to know the 
commands the user has used. Background inferences 
mean that, should UC know the user 's  background and 
have a stereotype for that background, UC should 
assume that the user knows what is indicated by that 
background. Query-reply refers to the possibility that 
UC asks the user for information about the user 's  
knowledge state. Finally, no-clarify inferences are as- 
sumptions that the user knows the items to which UC's 
terminology refers if the user does not ask for clarifica- 
tion of them. 

Based on its understanding about what the user does 
or does not know, K N O ME can infer the user 's  level of  
expertise. An example of  such an inference rule is: 

the user does not know a S IMPLE fact ~ it is 
L I K E L Y  that the user is a NOVICE,  it is UN- 
L I K E L Y  that the user is a B E G I N N E R ,  and it is 
F A L S E  that the user is an I N T E R M E D I A T E  or an 
EXPERT 

Such evidence is combined to arrive at a likelihood that 
the user have a given level of  expertise.  Such ranking is 
updated continually as the interaction with a given user 
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Figure 17. If-detected Demon Used for Inferring that the User Does Not Know Something. 

progresses. At any given point, the most highly ranked 
level is the one the user is assumed to be at. For more 
details on this and other issues addressed in UC's 
KNOME (e.g., dealing with the inherent uncertainty of 
information encoded in the model, representing individ- 
ual users, etc.), see Chin (1986, 1988). 

6.2.2 SOME APPLICATIONS OF KNOME IN UC 
The user model is exploited in many places in UC. For 
example, to decide whether some goal involving the 
state of the user's knowledge is plausible, PAGAN will 
check to see if the user already knows the fact in 
question. If the user does, PAGAN will not attribute the 
goal to the user. Thus, if the user asks a question with 
both a possible direct and indirect interpretation, like 
"Do you know how to print a file on the imagen?" and 
the KNOME concludes that the user knows how to 
print a file on the imagen, it will reject the indirect 
interpretation. 

KNOME is also used extensively by UCExpress, 
UC's expression mechanism. For example, generating a 
response to simple question once the answer is known is 
a function of the knowledge state of the user. In 
particular, UCExpress will illustrate a response with an 
example only if it believes the user is a novice. Also, 
UCExpress will use its simile format, i.e., using one 
command to illustrate another command, only when it 
believes the user knows the first command. Of course, 
establishing such a belief is the job of KNOME. UCEx- 
press is described further in Section 8. 

6.2.2.1 DETECTING MISCONCEPTIONS 

One of the more interesting uses of KNOME in UCEgo 
is to detect user misconceptions. A misconception 
occurs when the user believes something that UC 
believes is false. An example of a user misconception 

occurs when the user asks, "What does Is -v do?" 
Here, the user believes that there is an 'Is' command, 
that '-v' is an option of the 'Is' command, and that there 
is a goal for the plan of 'Is -v.' Here, '-v' is actually not 
an option of 'Is,' even though 'Is' will accept and ignore 
extraneous options. 

KNOME is responsible for detecting what the user 
believes, comparing this with UC's knowledge, and 
then either deducing that the user knows the fact if what 
the user believes coincides with UC's knowledge, that 
the user has a misconception if the user's belief contra- 
dicts UC's knowledge, or that the user may know 
something that UC is unfamiliar with. The last possibil- 
ity, namely, that UC does not know everything about 
UNIX, means that the system cannot use a simple 
closed-world hypothesis (which implies that if a fact 
cannot be deduced from the data base, then it must be 
false) such as is used in other misconception detection 
systems (e.g., Mays 1980, Kaplan 1983, Webber and 
Mays 1983, and McCoy 1983). The other possibility is 
an open-world hypothesis, where if a fact cannot be 
deduced from the data base, then the system has no 
information about it. Using a pure open-world hypoth- 
esis, a system would have to encode complete informa- 
tion about what cannot be the case, in order to detect 
misconceptions. This is inefficient at best and at worst 
not possible. 

What KNOME does instead is to augment an open- 
world hypothesis with meta-knowledge. Here, the term 
meta-knowledge is used to denote knowledge that 
KNOME has about what UC itself does or does not 
know. For example, KNOME contains the information 
that UC knows all the command options of all simple 
commands. Hence, if a particular option is not repre- 
sented in UC's knowledge base as a possible option for 
a particular simple command, then that is not a legal 
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option for that command. Using such meta-knowledge, 
KNOME is able to infer that '-v' is not an option of 'Is,' 
hence, that the user has a misconception. This fact is 
passed on to UCEgo, which adopts the goal of correct- 
ing the user's misconception. 

6.3  EXAMPLE 

To see how UCEgo works in more detail, consider again 
the example "Do you know how to print a file on the 

Imagen?". Recall that thus far in the processing, UC 
has parsed and understood the question, and the goal 
analyzer has asserted that the user has the goal of 
knowing a plan for printing a file on the imagen. At this 
point, UCEgo's processing begins. 

The first part of the annotated trace below shows the 
goal detection phase of UCEgo. The explanatory com- 
ments that have been added to the trace are printed in 
italics. 

UCEgo detects the following concepts: 
(UC HAS GOAL 19 (goal = (HELP2(helpee =* USER*)(helper= UC)))) 
(HAS GOAL-ga0(planner=* USER*) 

(goal=(KNOW-ga0(knower=*USER*) 
(fact = (ACTION7(actor =*USER*)))))) 

and asserts the following concept into the data base: 
(PLANFOR29(goals = (HELP2(helpee = * USER*)(helper = UC))) 

(plan = (SATISFY2(need = (KNOW-ga0 &)) 
(actor= UC)))) 

US HAS GOAL19 represents UC's goal of helping the user (HELP2). 
HAS GOAL-gaO, which is also shown in Figure 9, is the user's goal of  knowing (KNOW-gaO) how to print a file 

on the Imagen. 
PLANFOR29 represents the fact that a plan for helping the user (HELP2) is for UC to satisfy KNOW-gaO, which 

is the user knowing how to print a file on the Imagen. 

UCEgo detects the following concepts: 
(UC HAS GOAL19(goal=(HELP2(helpee=*USER*)(helper=UC)))) 
(PLANFOR29(goals = (HELP2(helpee = *USER*)(helper= UC))) 

(plan = (SATISFY2(need = (KNOW-ga0 &)) 
(actor= UC)))) 

and asserts the following concept into the data base: 
(UC HAS INTENTION6(intention=(SATISFY2(need=(KNOW-ga0 &)) 

(actor= UC)))) 
UC HAS INTENTION6 represents UC's intention to satisfy KNOW-gaO. 

UCEgo detects the following concepts: 
(UC HAS INTENTION6(intention=(SATISFY2)(need=(KNOW-ga0 &)) 

(actor= UC)))) 
and asserts the following concept into the data base: 
(UC HAS GOAL20(goal=(KNOW-ga0(knower=*USER*) 

(fact = (ACTION7(actor= *USER*)))))) 
UC HAS GOAL20 represents UC's goal of  the user knowing how to print a file on the Imagen. 

Annotated Trace of UCEgo's Goal Detection Process. 

The user's goal (HAS-GOAL-ga0 in the trace) combines 
with UC's goal of helping the user (UC-HAS-GOAL19, 
present in UC's initial state) to activate the detection 
net of the if-detected demon shown in Figure 10. On 
activation, the if-detected demon adds a copy of its 
addition net to UC's memory. Here, the addition net 
consists of the fact (PLANFOR29) that a plan for 
helping the user is for UC to satisfy the goal of the user 
knowing a plan for printing a file on the Imagen. Next, 
this planfor combines with UC's goal of helping the user 
(UC-HAS-GOAL19) to make UCEgo adopt the inten- 
tion (UC-HAS-INTENTION6) of satisfying the goal of 

"the user knowing a plan /'or printing a file on the 
Imagen". This intention arises as a result of UCEgo's 
if-detected demon for plan selection, which is shown in 
Figure 15. Finally, UCEgo adopts the user's goal as its 
own. This subgoal (UC-HAS-GOAL20) is the result of 
UCEgo's goal detection process. 

After UCEgo has detected the goal of "the user 
knowing a plan for printing a file on the Imagen", the 
plan selection phase of UCEgo attempts to select a plan 
to satisfy this goal. The following annotated trace shows 
this part of the processing (additional explanations are 
in italics). 
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UCEgo detects the following concepts: 
(PLANFOR-gal(goals = PRINT-EFFECT0) 

(plan= (ACTION7(actor =*USER*)))) 
(UC HAS GOAL20 

(goal=(KNOW-ga0(knower=*USER*) 
(fact=(ACTION7(actor=*USER*)))))) 

and asserts the following concept into the data base: 
(UNIX-planner 1 (user goals = PRINT-EFFECT0)) 

UC HAS GOAL20 is UC' s goal of  knowing (KNOW-gaO) ACTION7, which represents the plan part of  the planfor 
(PLANFOR-gal) for printing a file on the Imagen (PRINT-EFFECTO). 

UNIX-plannerl represents a call to KIP. 

The planner is passed: 
PRINT-EFFECT0 

The planner produces: 
(PLANFOR70(goals = PRINT-EFFECT0) 

(plan = 
(EXECUTE UNIX IPR COMMANDO 

(ipr-file=FILE6) 
(ipr-execute-cornmand ="lpr -Pip") 
(ipr-format = (IPR-FORMAT0 

(ipr-format-arg = NAME6)))))) 
PLANFOR70 says that a plan Jbr achieving the goal of  PRINT-EFFECTO is to use EXECUTE UNIX IPR 

COMMANDO, which entails using the command lpr -Pip on the name of  the file to be printed. 

UCEgo detects the following concepts: 
(ANSWER-FOR1 

(answer= 
(PLANFOR70(goals = PRINT-EFFECT0) 

(plan = 
(EXECUTE UNIX IPR COMMANDO 

(ipr-file = FILE6) 
(ipr-execute-comrnand= lpr-Pip) 
(ipr-format = (IPR-FORMAT0 

(ipr-format-arg = NAME6)))))) 
(query=(ACTION7(actor=*USER*)))) 

UC HAS GOAL20 (goal=(KNOW-ga0 &))) 
and asserts the following concept into the data base: 
(PLANFOR30(goals = (KNOW-ga0 &)) 

(plan= (TELL4(listener= *USER*) 
(speaker=UC) 
(proposition = (PLANFOR70 &))))) 

ANSWER FOR1 says that an answer to the query of "how to print a file on the Imagen" (ACTION7) is 
PLANFOR70. 

PLANFOR30 says that a plan for achieving the goal of the user knowing how to print a file on the Imagen 
(KNOW-gaO) is for UC to tell (TELL4) the user PLANF'OR70. 

UCEgo detects the following concepts: 
(UC HAS GOAL20(goaI=(KNOW-ga0 &))) 
(PLANFOR30(goals = (KNOW-ga0 &)) 

(plan=(TELL4 &))) 
and asserts the following concept into the data base: 
(UC HAS INTENTION7(intention=(TELL4 &))) 

UC HAS INTENTION7 represents UC' s intention of telling the user (TELL4). 

UCEgo detects the following concepts: 
UC HAS INTENTION7(intention=(TELL4 &))) 
and asserts the following concept into the data base: (Trace cont.) 
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(Trace cont.) 
(UCexpressl 

(gen-prop = 
(TELL4(Iistener=*USER*) 

(speaker=UC) 
(proposition = 

(PLANFOR70(goals = PRINT-EFFECT0) 
(plan = 

(EXECUTE UNIX IPR COMMANDO 
(ipr-file=FILE6) 
(ipr-execute-command = "lpr -Pip") 
(ipr-format = (IPR-FORMAT0 
(ipr-format-arg = NAME6)))))))))) 

UCexpress l  represents a call to UCExpress to execute TELL4. 

Annotated Trace of UCEgo's Plan Selection Process. 

The first step of the plan is to call KIP, the planner 
component of UC. Figure 18 shows the if-detected 
demon that calls KIP. KIP is called whenever UC has 
the goal of knowing a plan for something in the trace, 
UC-HAS-GOAL20 and PLANFOR-gal combine to 
cause a call to KIP (UNIX plannerl in the trace). KIP, 
as is described in the next section, comes back with an 
answer (PLANFOR70), which is an answer (ANSWER- 
FOR1) to the user's question. Then the if-detected 
demon shown in Figure 14 detects the plan of telling the 
user the answer (PLANFOR30 in the trace). This plan, 
with UC's goal (UC-HAS-GOAL20) of the user know- 
ing the answer leads to UC's intention to tell the user 
the answer (UC-HAS-INTENTION7) via the if-de- 
tected demon shown in Figure 15. Finally, the intention 
translates into a call to UC's expression mechanism, 
UCExpress (UCexpressl in the trace), which eventu- 
ally calls UCGen to produce the answer. KIP, UCEx- 
press, and UCGen are described in the following sec- 
tions. 

/O   oan er 
goa, I P' ANF°R' I 

L Now,? L 

Figure 18. If-detected Demon for Calling the UC Planner, 
KIP. 

7 THE PLANNER 

7.1 INTRODUCTION 

This section describes KIP (Luria 1985), a knowledge- 
based, commonsense planner (Wilensky 1983). KIP 
includes: 

• a knowledge base of facts about the domain 
• a planning component that uses this knowledge to: 

• find potential plans for problem situations 
• notice potential problems with these plans 
• use metaplanning knowledge (knowledge about 

plans) to determine which plans to suggest. 

KIP uses the same knowledge base as the rest of UC. In 
principle, it could be used to do the planning required by 
UCEgo. As mentioned previously, this was not at- 
tempted mostly for pragmatic reasons. In addition, the 
planning done by UCEgo is much more straightforward 
and does not require recourse to the same magnitude of 
knowledge as does KIP. Thus it seems reasonable to 
use a much simpler planner for communicative func- 
tions. 

7.2  PLANNING PROCESS IN K I P  

The basic structure of KIP is similar to that of UCEgo. 
However, KIP is a more elaborate planner. It must be 
able to plan for unanticipated goals of the user, and 
must be concerned with adverse consequences of the 
plans it proposes. In general, KIP has to iterate through 
the planning process a number of times to arrive at an 
adequate plan. 

The following are the steps of the iterative process 
that KIP uses. 
1. Goal detection---decide what goals to work on 

• Start with the goals input from UCEgo 
• Detect new goals that might arise from use of pro- 

posed plans 
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Figure 19. Hierarchy of Ethernet and File Transfer Commands 

2. Plan selection--select a possible plan 

• Try to find a stored plan that is related to the user's 
goals 

• Propose a new plan if necessary based on knowledge 
in the system 

3. Projection--test whether plan would be executed 
successfully 

• Check for conditions that are likely not to be met 
• Notice bad side effects 
• Detect goals needed to address discovered problems 

4. Plan evaluation---decide whether plan is acceptable 

• Reject plan if impossible 
• Accept if unproblematic 
• Create warning if possible but problematic 

The iterative structure described here is implemented 
by a series of meta-plans (Wilensky 1983). The under- 
lying meta-plan is to find a particular plan that the user 
can use; these steps are parts of that process. 

7.2.1 GOAL DETECTION 

KIP begins with the user's domain goals, passed to it by 
UCEgo. As it proceeds with the planning process, other 
goals may be detected. These fall into the following 
categories: a condition that KIP believes is unmet and 
whose omission would cause the plan to fail becomes a 
new goal (i.e., a subgoal of a current goal). Another kind 
of goal arises when some current plan being considered 
impinges upon an interest of the user. An interest is 
some situation, real or hypothetical, toward which the 
user has a positive stance. In UNIX, examples of 
interests are having access to files and maintaining a low 
system load average. 

In UC, interests generally give rise to goals of 
defending against a threat to that interest. Since such a 
threat is generally the inadvertent consequence of some 
plan under consideration, there is often a goal conflict 
between a user goal and the goal resulting from the 
threatened interest. As in UCEgo, such conflicts are 
handled by detecting a meta-goal of resolving that 

conflict. For example, if a proposed plan involves 
deleting a file, this goal might conflict with the goal of 
having access to that file. The meta-goal of resolving 
this conflict is therefore detected. 

7.2.2 PLAN SELECTION 

Plan selection is the process of determining a potential 
plan to satisfy the user's goals. This potential plan is 
then examined during the rest of the planning process. If 
the plan is judged adequate, it is returned to UCEgo; 
otherwise, this plan is modified or another plan is 
selected. 

One simple method for performing plan selection is 
to choose a stored plan that is indexed in the knowledge 
base as addressing the goal to be achieved. This is done 
by using the same matching procedure used by PAGAN 
to examine knowledge structures relating plans to goals, 
using the same representational format used by PA- 
GAN. Such knowledge structures are used to represent 
only the conventional functions associated with com- 
mands, e.g., that 'rm' is a plan to delete a file, or that 
'lpr -Px' prints on the printer x. 

7.2.2.1 NEW PLANS 

When KIP has no stored plan for a particular goal, it 
employs a kind of means-ends analysis strategy (Newell 
and Simon 1972). KIP assumes that the best way to 
reduce the difference between the user's goal and the 
present state is by determining the goal most similar to 
the current goal, and trying to fulfill that goal. KIP finds 
a similar goal by using its taxonomy of goals to locate a 
goal that is dominated by the same parents as the user's 
goal. This algorithm for finding a plan is called the Goal 
Similarity Matching Algor i thm ( G S M A ) .  

For example, there is no command in UNIX for 
moving a file to another machine. This goal is repre- 
sented as achieving the conditions of having a file of the 
given name and contents on the target machine, and not 
having such a file on the source machine. In this case, 
KIP searches for a plan of a goal most similar to the goal 
of moving a file to another machine. It does this by 
finding a goal that shares more common parents with 
moving a file to another machine than any other goal. 
Since moving a file to another machine is dominated by 
Ethernet (machine-machine links) goals and file transfer 
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Figure 20. Representation of Plan to Delete a File by Using the 'rm' Command 

goals, KIP searches for plans of goals that are domi- 
nated by these two goals. Figure 19 shows that one 
command, 'rcp', falls in this category. This command is 
used to copy a file from one machine to another. 

KIP selects the plan of using the 'rcp' command as a 
potential plan to move a file to another machine. When 
this plan is tested in a subsequent phase of the planning 
process, it will be found not to satisfy all the goals of the 
user, since the goal of not having such a file on the 
source machine is left unaddressed. Plans for these 
remaining goals will be selected by subsequent itera- 
tions of the planning algorithm. 

7.2.2.2 PLAN SPECIFICATION 

Once a plan has been selected, KIP makes a copy of the 
plan with specific values filled in. For example, the user 
asks: 

How do I delete the file named junk from my 
directory? 

The general plan for this planning situation is to use the 
rm command. This is stored in the knowledge base as 
shown in Figure 20. 

During plan specification, KIP creates a new in- 
stance of the EXECUTE-UNIX-COMMAND and fills 
in the appropriate specific values of its arguments by 
looking at the general plan. This specific plan, shown in 

Figure 21, specifies that the value of the del-object (the 
file to be deleted) is FILE1 (whose filename is junk) and 
the value of the argument to the 'rm' command is the 
string "junk".  In other words, this represents that the 
'rm' command with the argument " junk"  is a plan for 
deleting a file whose name is junk. It is this specific plan 
that is tested during the rest of the planning process. 

7.2.3 PROJECTION 

It is next necessary to test whether the plan as devel- 
oped so far would actually execute successfully. Poten- 
tial problems in the plan include both conditions that 
must be satisfied and goal conflicts that must be re- 
solved because of the effects of the plan. 

While detailed descriptions of all UNIX commands 
are in the knowledge base, KIP does not actually check 
to see that all the conditions of success are met or that 
no goal conflict is possible. First, there are too many 
conditions to check, even in very simple situations. 
Second, UC usually does not have the information to 
determine the answer. For example, in order to print a 
file, the printer must be in working order, there must be 
a continual supply of electricity, the user must have an 
account, etc. Rather than checking all such conditions, 
it would be desirable to check only those that seem to 
constitute a reasonable cause for concern. 
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Figure 21. Representation of Specific Plan to Delete a File named junk by Using the RM Command with Argument "junk". 

This is done in KIP by storing a knowledge structure 
called a concern. A concern represents an aspect of a 
plan that should be considered a potential cause of plan 
failure. These encode some user's experience. For 
example, presumably, the printer's being in working 
order is not a frequent obstacle to printing a file, but 
having read permission might be if the file to be printed 
belongs to someone else. 

There are two basic kinds of concerns in KIP, 
condition concerns and goal conflict concerns. Condi- 
tion concerns specify those conditions of a plan that are 
likely to be unmet, while goal conflict concerns specify 
the consequences of a plan that are likely to threaten a 
user's interest. KIP examines only those aspects high- 
lighted by a concern in determining whether to accept a 
plan. In general, concerns that are judged insignificant 
are ignored, those judged highly significant lead to plan 
failure, and moderate concerns are passed on to be 
expressed as warnings to the user. For example, in the 
following transaction, a moderate condition concern is 
found. 

# How do I print out Jim's file named testl? 
Type 'lpr testl ' .  This plan will not work if you don't 
have read permission on Jim's file. 

Since not having read permission on someone else's file 
is stored as a moderate cause for concern, the planner 
accepts the plan, but passes along the concern to the 
expression mechanism. Doing so leads to the warning 
statement following the suggestion to use the particular 
plan. 

Note that in the example above, the concern is 
retrieved only because the user made a request that 
involves access to someone else's files. It is typical of 
concerns that some are appropriate only when a default 

condition is violated. KIP believes that the default for 
using UNIX is to access one's own files, so it retrieves 
concerns about access only when this situation does not 
pertain. 

KIP makes considerable use of default knowledge in 
processing concerns. Also, concerns may be attached to 
plans at any point in the hierarchy, so that they will be 
accessed only for the specific conditions in which they 
might apply. For example, KIP knows that the Apple 
printer has a small paper tray and often runs out of 
paper. Thus, without additional knowledge of the state 
of the printer, UC will produce the following interac- 
tion: 

# How do I print a file on the apple printer? 
Use 'lpr -Pap'. 
But first, fill the printer with paper. 

In contrast, if we explicitly assert to the user model that 
the printer is full of paper, we get the following re- 
sponse: 

# How do I print a file on the apple printer? 
Use 'lpr -Pap'. 

A goal conflict concern is illustrated by the following 
example: 

# How can I free up disk space? 
Use rm. However, any file that is removed cannot be 
recovered. 

In this example, the only plan KIP can come up with to 
free up disk space is to delete files. However, a goal 
conflict concern informs the planner that this plan is 
likely to conflict with the user's of preserving access to 
his or her files. KIP therefore generates a warning to 
accompany this plan. 
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Another example of the use of concerns occurs in the 
following interaction: 

# How do I find out the files in the directory named 
/usr/local on my sun? 
Type 'ls/usr/local r more'. 
However, you should first change the current direc- 
tory to the directory named/usr/local, by typing cd 
/usr/local. 

Here, KIP detects two concerns. One pertains to a bug 
in the SUN implementation of the UNIX 'Is' command, 
in which asking for a listing of a directory mounted on a 
different disk than one's current directory occasionally 
causes no output to result. This bug has been made into 
a concern about using the 'Is' command in such a 
situation. The concern causes the planner to issue a 
warning to change one's current directory. The second 
concern is that listing large directories may cause output 
to scroll off the screen. Since the directory in question 
is typically large, PAGAN alters its plan to pipe the 
output through the 'more' filter. This example also 
makes use of default knowledge in that KIP assumes 
that the user might not be connected to the same place 
as/usr/local, and that this directory is large. 

KIP has a rather elaborate taxonomy of concerns and 
a method of processing them. In addition to classifying 
concerns by whether they are appropriate to violated 
defaults or not, or to conditions or goal conflicts, 
whether the effect of a command is intended by the user 
is important for generating a concern. For example, it is 
probably inappropriate to generate a warning about not 
being able to recover files if the user asked to delete a 
file, for example. The details of KIP and how it handles 
concerns are described in Luria (1987, 1988). 

7.3 EXAMPLE AND TRACE OUTPUT OF KIP 

The example being considered throughout this paper 
does not require much work by KIP. This is because 
UC's knowledge base contains a plan for the goal of 
printing a file on the imagen. Also, there are no con- 
cerns associated with this particular plan. (Had the 
input referred to printing the file of another user, or 

printing on another printer, KIP would have retrieved 
concerns about not being about to access another 
person's files, or about the peculiarities of the type of 
printer, respectively.) Thus the planner simply ends up 
retrieving the stored plan, making an instance of it, and 
passing it on. The input to the planner from UCEgo is 
PRINT-EFFECT0, which we show in Figure 22 along 
with its most pertinent connections. Following that is an 
annotated trace of KIP's processing for this example. 

Planner is passed: 
(PRINT-EFFECT0 

(print file-object -- FILE6) 
(imagen-dest -- IMAGEN0)) 

The planner was passed a single goal. 

Looking for stored plan for PRINT-EFFECT0 
Looking for specific stored-plan for this individual 
goal 
Looking for plan for PRINT-EFFECT0 
No stored plan for PRINT-EFFECT0 was found 
Try all the parents to see if they have a plan 
Looking for plan for IPRINT-EFFECT 
EXECUTE-UNIX-IPR-COMMAND is a plan for 
IPRINT-EFFECT 
No condition concerns 
No goal conflict concerns 
Making a new instance of EXECUTE-UNIX-IPR- 
COMMAND 

The planner checks to see if it has achieved the exact 
same goal before. When it fails, as is the case here, it 
looks up the hierarchy. In this example, it looks first at 
the category IPRINT-EFFECT, of which PRINT- 
EFFECT0 is represented as being an instance. KIP 
finds in the knowledge base PLANFOR7 (not shown in 
the trace) that connects IPRINT-EFFECT with EXE- 
CUTE-UNIX-IPR-COMMAND. This knowledge is 
shown in Figure 23. 

There are no concerns retrieved within this particular 
plan, so KIP will simply produce an instance of it and 
return it to UCEgo. 

Note that KIP's retrieval of a plan for this goal is 
simplified by the concretion mechanism's having clas- 
sifted the input as an instance of Imagen printing. 
Originally, ALANA represented the meaning of the 
input as an instance of printing. However, there are no 
plans associated with printing per se, but only with 
printing's more specific subcategories. Thus the planner 
would have to search for an appropriate plan had the 
concretion mechanism not done its job. In actuality, the 
planner starts at the most specific category that the 
input could be classified as, and works up the hierarchy. 
Therefore, the planner is guaranteed to find the most 
specific plan applicable to the situation. 

Making a new instance of IPR-FORMAT 
Making a new instance of NAME 
Making NAME6 an instance of HYPOTHETICAL 
Filling in aspectual ipr format-arg with value NAME6 
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Figure 23. Representation of plan for printing a file on the imagen 

FILE6 
Filling in aspectual name with value NAME6 

Making a new instance of EXECUTE-UNIX-IPR- 
COMMAND 
Filling in aspectual ipr-file with value FILE6 
Filling in aspectual ipr-execute-command with value 
"lpr -Pip" 
Filling in aspectual ipr-format with value IPR- 
FORMAT0 

Making a new instance of PLANFOR7 
Filling in the goals with PRINT-EFFECT0 
Filling in the plan with EXECUTE-UNIX-IPR- 
COMMANDO 

A copy of the plan has been made. Note that KIP has 
made NAME6 a hypothetical object, because it is the 
name of FILE6, which is itself hypothetical. 

Planner returns: 
(PLANFOR70 

(goals = PRINT-EFFECT0) 
(plan = (EXECUTE-UNIX-IPR-COMMAND0 

(ipr-file = FILE6) 
(ipr-execute-command 

= "Ipr  -Pip") 

(ipr-format = (IPR-FORMAT0 
(ipr-format-arg 

= NAME6)))))) 
No pertinent concerns are found, and there is nothing 
more to do, so the plan found is returned. The planner's 
output is shown in Figure 24. 

8 THE EXPRESSION MECHANISM 

8.1 INTRODUCTION 

After UC has determined the correct conceptual re- 
sponse to the user, this response must be expressed to 
the user in a clear, concise manner. Consider the 
following example: 

User: What is a directory? AI: 

A 
directory 

is a 
file. A2: A directory is a file that is used to 

contain files. 
A3: A directory is a file. Only empty directories 

can be deleted. Directories cannot be edited. 
Directories contain files. Directories form a 
treelike structure. Directories always contain 
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Figure 24. Output from KIP for Example "Do you know how to print a file on the Imagen?" 

themselves and their parents. A directory 
can be listed by using the 'Is' command. 

The different replies are all correct, but contain differing 
amounts of information. The first answer does not give 
enough information to distinguish between files and 
directories. The second answer provides just enough 
information in a concise form and is the best answer in 
such a situation. The third answer is too verbose and 
overwhelms the user with irrelevant information. An 
answer like A3 would be more appropriate in cases 
where the user had requested, "Tell me all you know 
about directories." This example illustrates the problem 
of determining how much of an answer to express to the 
user. This is similar to Luria's work (1982) on answering 
why-questions in a story-understanding system. He 
pointed out that answering why-questions requires two 
mechanisms, one to find the causal chain that repre- 
sents the answer and another expression mechanism to 
determine how much of the causal chain to tell the user. 

Another problem in answer expression is deciding 
what format to use in presenting the answer. This 
problem corresponds to Grice's Maxim of Manner 
(Grice 1975). Consider the following scenario: 

User: 

AI: 

How can I move a file to another machine? 

To move a file to another machine, type 
'rcp' followed by one or more spaces or 
tabs followed by the name of the file to be 
moved followed by one or more spaces or 
tabs followed by the name of the machine 
followed by a colon followed by the new 
name of the file on the other machine fol- 

lowed by a carriage return followed by 'rm' 
followed by one or more spaces or tabs fol- 
lowed by the name of the file. 

A2: Use 'rcp' to copy the file to another ma- 
chine and then use 'rm' to delete it. For ex- 
ample, to move the file foo to the file foo2 
on machine dali, type 'rcp foo dali:foo2.' 

The first answer is correct and general, but it is so 
verbose that it is undecipherable. On the other hand, the 
second answer is succinct and gives the user informa- 
tion in an easily readable form, but is considerably less 
general. The second answer is somewhat inaccurate, 
since it applies only to copying a file named foo to a file 
named foo2. It is up to the reader to apply analogous 
reasoning for other cases. Despite this lack of general- 
ity, the second answer form is superior to the first. Note 
that for a program to format the answer in the second 
form requires additional computation to transform the 
general solution into an example. A natural language 
system needs to incorporate knowledge about when and 
how to use special presentation formats like examples 
to more clearly convey information to the user. 

The concerns of how much information to present to 
the user and of what format to use correspond respec- 
tively to Grice's Maxims of Quantity and Quality (Grice 
1975). Such considerations can be considered part of 
language generation; however, there are enough differ- 
ences in both the necessary knowledge and the process- 
ing to separate such strategic concerns from the tactical 
problems of generation such as agreement and word 
selection. Such strategic problems are the domain of an 
expression mechanism. 
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8.2 APPROACH 

UC's expression mechanism, UCExpress, uses a two- 
step process: pruning and formatting. In the pruning 
stage, UCExpress marks those concepts it does not 
wish to communicate to the user. In the formatting 
stage, the concepts are transformed by a planning 
process into more easily understood formats. The result 
is a set of concepts that are ready for generation into 
natural language. 

The guiding principle of the pruning process is to 
avoid telling the user anything that the user already 
knows. Currently, UC models two classes of such 
information. The first is semantic information about the 
user's knowledge of UNIX-related facts. Such knowl- 
edge is modeled by KNOME (cf. Section 6.2). The 
second class of information is episodic: knowledge from 
a model of the conversational context. The current 
conversational context is tracked by keeping an ordered 
list of the concepts that were communicated in the 
current session. Any concept that is already present in 
the conversational context or that KNOME deduces 
that the user already knows is marked and not commu- 
nicated to the user. 

For example, suppose a user asked UC the following 
question: 

How can I compact a file? 

The conceptual answer passed to UCExpress is a rather 
complex network. If it were directly paraphrased into 
English, the result might be something like the follow- 
ing: 

A plan for compacting a file is to use the 'compact' 
command with the format being 'compact' followed 
by the name of the file. 

However, UCExpress prunes the concepts correspond- 
ing to compacting a file, since they are already in the 
conversational context. If UC believes that the user is at 
least a beginner, then the format of the 'compact' 
command would be pruned as well, siince KNOME will 
deduce that the user knows this fact from its belief that 
such users know the format of simple commands. In this 
case, UC will eventually generate the following reply: 

Use compact. 

On the other hand, if the user were a novice, then UC 
could not assume that the user already knew this format 
and would have provided a more elaborate answer. 
However, rather than generate the answer as an ab- 
stract but more detailed description, UCExpress would 
favor the example format, as described below, and 
produce the following reply: 

Use compact. For example, to compact the file foo, 
type 'compact foo'. 

Indeed, for the examples in this paper, we have gener- 
ally caused UC to believe that the user is a novice, in 
order to illustrate the formatting mechanism. 

After pruning, UCExpress enters the formatting 
phase, where it tries to apply different expository for- 
mats to express the concepts in a clearer manner. 
Currently, there are three format types: example, defi- 
nition, and simile. 

Definition format is used to explain terminology. 
Generally, the need to do so is a result of the user asking 
a direct question, such as "What is a directory?". The 
heuristic procedure used to satisfy such requests is to 
find a category dominating the one in the query, and 
then find information that distinguishes the subcategory 
from it. The following are examples of definition format. 

# What is a directory? 
A directory is a file that is used to contain files. 

# What is a file? 
A directory is a container that is used to contain text, 
code or files. 

# What is a rm?  
Rm is a command that is used to delete files. 

# What is a search path? 
A search path is a list of directories that is used by 
the csh to search for programs to execute. 

A directory represented as a kind of file. Moreover, it is 
distinguished from other kinds of files in that it contains 
files. Similarly, a file is represented as a kind of con- 
tainer that is distinguished from other containers in that 
it contains some sort of information. The portion of the 
network pertaining to these concepts is used to generate 
the first two responses above. 

Simile format expresses information in terms of other 
information the user is believed to know. This format is 
invoked when UCExpress attempts to explain a com- 
mand that has a sibling or a parent that the user is 
believed to know, and which is thought to be similar 
enough to the command to be expressed. The judgment 
of similarity is made by counting the number of con- 
cepts at which the two networks differ. If this is below 
some arbitrary threshold, the simile format is adopted. 
An example of the use of the simile format is the 
following: 

# What does ruptime do? 
Ruptime is like uptime, except ruptime is for all 
machines on the network. 

The most common expository format is the example 
format. Examples were shown by Rissland to be impor- 
tant for conveying information (Rissland 1983, Rissland 
et al. 1984). In UC, examples are used to illustrate plans 
such as those involving the format of UNIX commands. 
Unlike Rissland's examples, which are prestored and 
fetched, UC's example format requires additional com- 
putation to transform the general plan into an example. 
This is accomplished by stepping through a plan and 
transforming general categories into specific ones. 
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Figure 25. The Input to UCExpress for Example "Do you know how to print a file on the Imagen?" 

First, if a category dominates other categories, one of 
those is chosen (at random); then, where the represen- 
tation can be interpreted as stating that an individual is 
needed, an individual is created to replace general 
categories. Where an individual name is required, it is 
chosen from a list at random, taking care to avoid 
conflicts with existing names. 

Consider the following UC dialog: 

# How can I change the read permission of a file? 
Use chmod. 
For example, to remove group read permission from 
the file named foo, type 'chmod g-r foo'. 

In the conceptual answer, the last argument of chmod 
was a pointer to "the name of the file whose protection 
is to be changed." To give an example, a concrete name 
for the file is needed, so foo was arbitrarily selected for 
use in the example. Since the user did not explicitly 
mention the type of permission (user, group, or other), 
this was specified to be group permission in the exam- 
ple. Similarly, "change permission" was further speci- 
fied into "remove permission." Since these items are 
not yet known to the user, they will cause expressions 

like "the file named foo" to be produced when the 
example is generated. 

8.3 EXAMPLE 

To see how UCExpress works in more detail, consider 
the example "Do you know how to print a file on the 
Imagen?". After UCEgo, in conjunction with KIP, has 
determined the proper answer, it calls UCExpress to 
express it to the user. The input to UCExpress is shown 
in Figure 25. This input conceptual network is UCEgo's 
plan to tell the user the plan that KIP produced (Figure 
26, Section 7.3). If the plan were to be directly gen- 
erated into English, the result might be something like: 

A plan for printing a file on the Imagen printer is to 
use the lpr command with the Imagen printer option. 
The format of the command is lpr -Pip and followed 
by the name of the file to be printed on the Imagen 
printer. 

Instead, UCExpress prunes the output, and, since the 
user is suspected of being a novice, generates an 
example to illustrate the plan. The following trace 
illustrates the processing of UCExpress. 
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Express: now expressing the PLANFOR, 
(PLANFOR70(goals = PRINT-EFFECT0) 

(plan = 
(EXECUTE-UNIX-IPR-COMMAND0 

(ipr-file = FILE6) 
(ipr-execute-command = ' 'lpr -Pip") 
(ipr-format = (IPR-FORMAT0 (ipr-format-arg= NAME6)))))) 

Express: not expressing PRINT-EFFECT0, since it is already in the context. 
Express: creating an examp!e for the incomplete plan, IPR-FORMAT0 
Express: choosing a name, foo, for an example file. 
Express: created the example(s): 
((TELL5(teller= UC) 

(listener= *USER*) 
(proposition= 

(EXAMPLE0 
(exampler = 

(PLANFOR3 l(goals= PRINT-EFFECT4) 
(plan = 

(TYPE-ACTION0 
(actor= *USER*) 
(type-string= 

(CONCAT-STR0 
(stringl =" lpr  -Pip") 
(string2="foo"))))))) 

(exemplified = PLANFOR70))))) 

Trace of UCExpress. 

The first phase of UCExpress is pruning, during which 
those concepts that the user already knows are marked 
so that the generator will not generate them. In this 
case, PRINT-EFFECT0, the goal of PLANFOR70, is 
pruned, as it is in the current context. 

In traversing the input conceptual network, UCEx- 
press runs into the command format IPR-FORMAT0. 
Since this node is presumably not known to the user, 
UCExpress would normally not prune it. However, 
UCExpress specifically checks command formats to see 
if they are as specific as possible, and since FILE6 does 
not have a name, UCExpress schedules the creation of 
an example to explain the format, and prunes the 
original node. The rest of the network is passed without 
any pruning. 

In creating an example, UCExpress must specify all 
the parameters in the command format. Thus the name 
of the file, which was not specified by the user, is made 
explicit in the example. Here, the name " foo"  was 
chosen arbitrarily from a list. The complete example is 
then turned into the proposition part of a TELL 
(TELL5 in the trace). 

Figure 26 shows the conceptual network after prun- 
ing and the addition of an example. Note that the 
exemplified of an example is automatically pruned, as it 
is always expressed by the expressing the generic 
response. The pruned and augmented conceptual net- 
work is next passed to the generator, described in the 

next section, which produces the following English 
output: 

Use lpr -Pip. For example, to print the file named foo 
on the Imagen printer, type 'lpr -Pip foo'. 

If the user had been judged to be at least a beginner in 
experience, then the command format also would have 
been pruned. This is because KNOME believes that 
users at the beginner level and up can be assumed to 
know that part of the command format. In such a case, 
the entire output would consist of the pruned version of 
TELL4, and the generated entire response would be: 

Use lpr -Pip. 

9 THE GENERATOR 

9.1 INTRODUCTION 

After UCExpress formats an answer, the generator, 
UCGen, converts the conceptual response into text. 
The current version of UCGen has been customized to 
work with the types of responses that the system 
typically produces. It has been built to take advantage 
of the limited structure of these responses. 

9.2 DESIGN 

To convert a KODIAK representation of a concept into 
text, UCGen must associate some linguistic information 
with the concept. This is done by attaching to a concept 
a pattern that represents some linguistic form. For 
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Figure 26. The Output of UCExpress for the Example "Do you know how to print a file on the Imagen?" 

example, a concept often expressed is PLANFOR. This 
concept relates a plan for achieving a goal with the goal 
itself. A pattern for PLANFOR is: 

'To (gen goals) comma (gen plan)'. 

This pattern might be used to generate the sentence: 

To delete a file, use rm. 

This is somewhat akin to the pattern concept pair 
construct in PHRED (Jacobs 1984) or to KING's REF 
links (Jacobs 1985), although the KODIAK representa- 
tion accommodates different methods for fetching pat- 
terns. 

Patterns mix words and punctuation with function 
calls. In the above example, 'gen' is a function that will 
be called with argument 'goals' and later with argument 
'plan'. In general, the arguments to functions that are 
found in generator patterns are the aspectuals associ- 
ated with the concept to which the pattern is attached. 

In this example, the aspectuals of PLANFOR, 'goals' 
and 'plan', are arguments to gen. 

The pattern given above for PLANFOR is the most 
general one for that concept. That is, it is the pattern 
used when both the goals and the plan are to be 
expressed. As described in the previous section on 
UCExpress, it is not always necessary to express both 
of these parts. For example, two answers to "How do I 
delete a file?" are: 

I. To delete a file, use rm. 
2. Use rm. 

The expression mechanism puts a flag on each aspectual 
that it does not want expressed. Consequently, associ- 
ated with each concept may be zero or more patterns, 
one for each combination of aspectuals that are to be 
expressed. Planfor is associated with the general pattern 
shown above, as is the pattern '(gen plan)', which is 
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applicable to the case where only tlhe plan is to be 
expressed. 

When a concept to be output is given to the genera- 
tor, those KODIAK concepts that either dominate or 
are categories for the concept are searched for one that 
has an attached generator pattern. If no pattern is 
found, and the concept is an aspectual, then the value 
for the aspectual is sent to the generator. The first 
pattern found is applied to the concept to be expressed 
to produce an English sentence. Words in the pattern 
are output as is. Punctuation and function calls must go 
through further processing. For example, in the pattern 
'To (gen goals) comma (gen plan)', the word 'To' is 
output directly, whereas the (gen . . . )  function calls 
must be evaluated, and the 'comma' will be converted 
to a ','. 

This generator is easy to understand and extend, and 
is well integrated with the rest of UC; it shares the 
KODIAK representation and concepts used by the rest 
of the system. Some weaknesses are that the overall 
structure is top down; i.e., only those concepts that are 
expected to exist are expressed. In general, a generator 
should be able to handle arbitrary permutations of 
conceptual relationships. Also, this generator uses little 
linguistic knowledge. With more complicated utter- 
ances, the simple pattern strategies employed so far 
would become inadequate. 

9.3 EXAMPLE 

This section describes how the output is delivered by 
UC in response to the question, 'Do you know how to 
print a file on the Imagen?' . A trace produced while 
generating this output is given in Figure 27. A diagram 
of some of the relevant knowledge structures is given in 
Figure 28. 

The expression mechanism of UCEgo first passes 
TELL4 to the generator. Only the proposition part 
of the TELL will be expressed, so its value, 
PLANFOR70, is passed to the generator's main rou- 
tine, 'gen'. PLANFOR70 is dominated by PLANFOR, 
so the pattern for PLANFOR is retrieved. Since the 
goals aspectual of PLANFOR70 is marked to be omitted 
from the response by the expression mechanism, only 
the plan will be expressed. The pattern found is '(gen 
plan)'. The value of the plan aspectual, EXECUTE- 
UNIX-IPR-COMMAND0, is sent to gen. The pattern 
for this concept is found under execute file-command 
and is 'use (gen execute command)'. The value of 
execute-command aspectual of EXECUTE-UNIX-IPR- 
COMMANDO is 'lpr -Pip'. The first response is there- 
fore: 

Use lpr -Pip. 

Next, the generator is passed TELL5. Once again, only 
the proposition is to be expressed, so EXAMPLE0 is to 
be generated. The pattern, found under EXAMPLE, is 
'for example comma (gen exampler)'. This sets up a 

Pattern for PLANFOR70 is: ((gen plan)) 
Value for plan is: UNIX IPR COMMANDO 
Pattern for UNIX IPR COMMANDO is: (use execute 
command)) 
Phrase derived from (execute command) is: (lpr -Pip) 
Phrase: derived from (gen plan) is: (use lpr -Pip) 

Use lpr -Pip. 

Pattern for foo 
Phrase derived 
Phrase derived 
Phrase derived 
foo rquote) 

Pattern for EXAMPLE0 is: (for example comma (gen 
exampler)) 
Value for exampler is: PLANFOR31 
Pattern for PLANFOR31 is: (to (gen goals) comma (gen 
plan)) 
Value for goals is: PRINT EFFECT1 
Pattern for PRINT EFFECT1 is: 
(print (las-pr-file-obj) on the (las-pr-dest-obj)) 
Value for las-pr-file-obj is: FILE0 
Pattern for FILE0 is: (file named (gen name)) 
Value for name is: foo 
Phrase derived from (file named (gen name)) is: (file 
named foo) 
Phrase derived from (las-pr-file-obj) is: (the file named 
foo) 
Value for las-pr-dest-obj is: IMAGEN0 
Pattern for IMAGEN0 is: (imagen) 
Phrase derived from (las-pr-dest-obj) is: (the imagen) 
Phrase derived from (gen goals) is: 
(print the file named foo on the imagen) 
Value for plan is: TYPE-ACTION0 
Pattern for TYPE-ACTION0 is: (type lquote (gen type 
string) rquote) 
Value for type-string is: CONCAT-STR0 
Pattern for CONCAT-STR0 is: ((gen step) (gen next)) 
Value for step is: lpr -Pip 
Pattern for lpr -Pip is: (lpr -Pip) 
Phrase derived from (gen step) is: (lpr -Pip) 
Value for next is: foo 

is: (foo) 
from (gen next) is: (foo) 
from (gen type-string) is: (lpr -Pip foo) 
from (gen plan) is: (type lquote lpr -Pip 

Phrase derived from (gen exampler) is: 
(to print the file named foo on the Imagen comma type 
lquote lpr -Pip foo rquote) 
For example, to print the file named foo on the Imagen, 
type lpr -Pip foo. 

Figure 27. UCGen Trace for the Example Question. 

recursive call to gen with the value of the exampler 
relation as argument. This value is PLANFOR31. 

Once again, a PLANFOR is to be generated. This 
time, however, both the plan and goals will be ex- 
pressed. The pattern is 'to (gen goals) comma (gen 
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plan)'. The value of the goals aspectual is PRINT- 
EFFECT1. The pattern is found under LAS-PR- 
EFFECT; and is 'print (las-pr-file-obj) on the (las-pr- 
dest-obj)'. 

The las-pr-file-obj specification causes the generator 
to find an object in this relation to PRINT-EFFECT1, in 
this case, FILE0. One of the patterns for FILE is 'file 
named (gen name)'. This pattern is applicable if the 
object in question has a name. Here, FILE0 has the 
name 'foo'. When UCGen is generating the name of an 
object, it uses a heuristic to decide which, if any article 
to precede the object description with. In general, 
UCGen will use definite articles if it can. 

The other part of the output from the goals aspectual 
is from the second half of the pattern: 'on the (las-pr- 
dest-obj)'. Here the value found is IMAGEN0. The 
pattern for IMAGEN0 is just 'imagen'. Again, the 
generator will supplement this description with a defi- 
nite article. 

The value of the 'plan' aspectual for PLANFOR31 is 
TYPE-ACTION0. The pattern for this concept is from 
TYPE-ACTION and is 'type lquote (gen type-string) 
rquote'. The value for the type string aspectual of 
TYPE-ACTION0 is CONCAT-STR0. The pattern is 
from sequence and is '(gen step) (gen next)'. Here, the 
step is 'lpr -Pip' (i.e., the stringl of CONCAT-STR0), 
and the next is the name of the file, 'foo' (the string2 of 
CONCAT-STR0). Thus the output for this call to the 
generator is: 

For example, to print the file named foo on the 
imagen, type lpr -Pip foo. 

10 KNOWLEDGE ACQUISITION 

10.1 INTRODUCTION 

UC is knowledge dependent. It is the task of the 
knowledge-acquisition system to facilitate the construc- 
tion and subsequent extension of the, knowledge base. 
The traditional approach to knowledge acquisition has 
been to provide the system implementers with special 
purpose software tools such as text editors, form sys- 
tems, and graphic network editors (van Melle 1981). 

These approaches require that the person adding the 
knowledge have detailed knowledge of the knowledge 
representation language being used and of the overall 
design of the system. The typical situation, however, is 
that the people with the domain knowledge do not have 
the knowledge necessary to add information to a com- 
plex knowledge base. The system builders must there- 
fore extract the information from the experts and then 
program it in themselves. This is a tedious, error prone 
process that is only viable as long as the system builder 
is in contact with the program. If the system is in use in 
a real environment, the knowledge base is essentially 
frozen. 

10.2 THE UC APPROACH 

Our solution to this problem is to provide a mechanism 
to allow the., interactive transfer of knowledge from the 
domain expert to the knowledge base using natural 
language. This is similar to the approach taken in the 
Nano-KLAUS system (Haas and Hendrix 1980). UC- 
Teacher (Martin 1985) is the system being built to 
provide this facility for UC. The UNIX expert can 
engage UCTeacher in a mixed initiative dialogue to add 
more information to UC's knowledge base. 

UCTeacher provides both the acquisition of UNIX 
domain knowledge, and the acquisition of linguistic 
knowledge. In particular, UCTeacher has a mechanism 
that allows it to guess the metaphoric use of a term in 
UNIX, based on its knowledge of the metaphoric use of 
this term outside of UNIX. In this report, we focus 
largely on domain knowledge acquisition. The mecha- 
nism of metaphor extension is beyond the scope of this 
report, and is described only briefly. 

10.3 ACQUIRING DOMAIN KNOWLEDGE 

In the following examples of UCTeacher, the knowl- 
edge base of UC is set up so as not to contain knowledge 
of the commands to be illustrated. Also, the prompt 
'UCT>'  is used to distinguish an interaction with UC- 
Teacher from one with UC proper. 

1. 
% UCTEACHER 
UCT> There is a new command. 
What is its name? 
UCT> sort 
What is it used for? 
UCT> It is used to sort files. 
You mean that typing 'sort filename' will sort the file 
filename. 
UCT> Yes. 

2. 
UCT> Use the rm command to delete files. 
You mean that typing 'rm filename' will delete the 
file named filename. 
UCT> Yes. 

3. 
UCT> Use compact to compress a file. 
You mean that typing 'compact filename' will com- 
press the file named filename. 
UCT> Yes. 

UCTeacher uses ALANA and the concretion mecha- 
nism to produce a representation of the initial utterance 
by the expert. In a typical interaction, the initial utter- 
ance will provide very sketchy information. The main 
job of UCTeacher is realize what information is needed, 
determine what it is, and use it to flesh out the repre- 
sentation. When it believes it has enough information, 
UCTeacher will paraphrase its understanding to the 
user for conformation. The user then has the opportu- 
nity to confirm or correct UCTeacher's understanding. 

UCTeacher has three main sources of knowledge: 
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the user's utterance, the contents of UC's knowledge 
base, and a store of meta-knowledge associated with 
concepts in the knowledge base. This use of knowledge 
plus meta-knowledge makes the knowledge acquisition 
process a knowledge-based task (Davis 1976). 

UCTeacher uses these three sources of knowledge to 
acquire all the necessary information from the expert in 
as natural a dialog as possible. In Example 1, we see the 
system generating appropriate questions to acquire in- 
formation that the expert has not initially provided. This 
ability frees the expert from having to know all the 
relevant information that must be provided. The system 
will prompt for all the necessary items. Examples 2 and 
3 show the system making full use of the expert's 
utterance to avoid asking redundant questions. 

10.3.1 A DETAILED EXAMPLE 

If UC is given a request it cannot service, it generally 
asks the user to rephrase it. Consider the following 
sequence of interactions: 

4. 
# How can I print a file? 
I'm sorry, I didn't understand what you said. Could 
you please rephrase that? 

At this point, UC does not know how to print a file. 
Now, an expert can enter UCTeacher and provide the 
necessary information, as shown in the following inter- 
actions: 

% UCTEACHER 
UCT> There is a new command. 
What is its name? 
UCT> lpr 
What is it used for? 
UCT> It is used to print files. 
Where does the output go? 
UCT> the lineprinter 
You mean that typing 'lpr filename' will print the file 
filename on the lineprinter. 
UCT> Yes. 

The system can now give a correct response to the 
user's query. 

# How can I print a file? 
Use lpr. 
For example, to print the file named foo, type 'lpr 
foo'. 

Here, ALANA represents the content of the initial 
utterance as an instance of the quite general concept 
EXECUTE-UNIX-COMMAND. UCTeacher then col- 
lects from UC's knowledge base all the pertinent rela- 
tions that EXECUTE-UNIX-COMMAND participates 
in. These include the format aspectual of EXECUTE- 
UNIX-COMMAND, the plan aspectual of a PLANFOR 
that EXECUTE-UNIX-COMMAND constrains, and 
the name relation that of UNIX-COMMAND, which 
constrains the command aspectual of EXECUTE- 

UNIX-COMMAND. Figure 29 illustrates the knowl- 
edge in which these concepts are embedded. 

The relations needed to complete an EXECUTE- 
UNIX-COMMAND do not appear to conform to any 
obvious pattern. For example, the fact that a command 
has a name is several links away and the fact that the 
command should have a purpose are represented by its 
participation in a PLANFOR. The difficulty of deter- 
mining the appropriate relations and concepts needed to 
specialize or instantiate a concept in the network has led 
to the development of the notion of a minimal aspectual 
set (MAS). The MAS constitutes the minimal set of 
concepts that must be present for a concept to be 
considered complete by UCTeacher. UCTeacher uses 
the MAS for the concept being acquired to limit its 
search through the knowledge base. A relation not 
directly connected to the main concept being acquired is 
only followed if it connects to a concept that is present 
in the MAS. 

For example, the MAS of EXECUTE-UNIX- 
COMMAND includes the command name aspectual of 
UNIX-COMMAND, the unix goals aspectual of UNIX- 
PLANFOR, and the command-format aspectual of EX- 
ECUTE-UNIX-COMMAND. From this description, 
UCTeacher can construct all the necessary components 
to specialize EXECUTE-UNIX-COMMAND. 

The system's first question in this example is an 
attempt to find a value for the relation command name. 
A piece of meta-knowledge used here, namely, that the 
only way to fill in the value of a name relation is to ask 
the user, as it cannot be inferred from anything else 
about the command. In the case where asking the user 
is the method, a pattern that is appropriate is included 
as part of the meta-knowledge of that concept. Here, 
the pattern gives rise to the question, and the answer is 
connected to the representation. Note that this requires 
the creation of a number of links and nodes, including 
an execute command link to an instance of UNIX- 
COMMAND and a command-name link to the actual 
name. 

Whenever UCTeacher adds a new fact to the repre- 
sentation it is creating, it calls the concretion mecha- 
nism to see if it can classify the node to something more 
specific. If so, it may be able to use the more specific 
category to determine what else it needs to learn. In this 
case, the concretion mechanism is called, but it cannot 
concretize any further. 

The second question from UCTeacher is an attempt 
to instantiate the unix-goals relation of the UNIX- 
PLANFOR. Again, the user is queried, and the re- 
sponse represented as a PRINT-FILE-EFFECT. A 
specialization of UNIX-PLANFOR is constructed, and 
a unix-plan link is made to EXECUTE-UNIX- 
COMMAND, and a unix-goals link to PRINT-FILE- 
EFFECT. Also, PRINT-FILE-EFFECT requires a des- 
tination to be complete. This leads to the attempt to fill 
in the print-dest relation by asking the last question. 

Again, a concretion is attempted. Here the concre- 
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tion is successful; we are able to classify the concept 
being built as an EXECUTE-FILE-COMMAND fact, 
rather than just an EXECUTE-UNIX-COMMAND 
fact. At this point, UCTeacher searches for any new 
relations that have been inherited because of the con- 
cretion and adds them to the list of relations to learn. It 
also recomputes the MAS that it is using, based on any 
additions from the concretion. 

The next relation that gets examined is command 
format. Note that UCTeacher does not query the expert 
for the argument format. This is because meta-knowl- 
edge about the format of UNIX file commands specifies 
that the default format for such commands is a function 
of the files involved; in this case, the default is SIM- 
PLE-FILE-FORMAT. 

Believing its knowledge acquisition process to be 
complete, UCTeacher now generates a statement re- 
flecting what it has just learned. This gives the expert 
the opportunity to correct any incorrect inferences 
made by the system. For example, if this command did 
not take the usual argument format, the user would have 
an opportunity to correct it. 

The final phase of UCTeacher's processing is to 
make the changes permanent. Each absolute and rela- 
tion that has been instantiated is converted to a linear 
tuple form and printed to a file containing UC's knowl- 
edge base. In the current version of UC, the linguistic 
knowledge used by the parser and generator are kept in 
two, separate, non-KODIAK forms. This poses a prob- 
lem for UCTeacher, which requires a rich knowledge 
representation system to function properly. As a tem- 
porary solution, templates are attached to concepts that 
have linguistic counterparts (such as command names); 
these templates are instantiated and written out to the 
appropriate files during the final phase of processing. 
This will be necessary until all linguistic knowledge is 
represented in KODIAK. 

10.4 EXTENDING METAPHORIC WORD SENSE 

Much of the vocabulary with which users talk about 
computer systems is taken from other domains. For 
example, consider utterances: 

You can get into the editor by typing emacs to the 
shell. 
How can I exit lisp? 
To leave the mail system, type 'exit'. 
You can kill a process by typing AC. 
My editor just died; how can I save the buffers? 
Run your file through spell to fix the spelling. 

These examples illustrate two facts: first, the ordinary 
language we use to talk about computation is rife with 
metaphor. Second, the metaphors are systematic, as is 
argued at length in Lakoff and Johnson (1980). For 
example, underlying the utterances "kill a process" and 
"a  process died" is the understanding that a process 
can be thought of as a living thing, and the termination 
of the process as that thing's death. Similarly, an 

interactive process is thought of as a kind of region or 
container, which one may enter, exit, leave, get into, 
etc. 

In addition, the metaphoric use of these terms is not 
confined to the computer domain. For example, not 
only can one kill a process, but also, a light, a six-pack 
of beer, a conversation, and a car engine, although each 
of these has a different interpretation. Thus, if we view 
these usages extensions of non-metaphoric terms, the 
kinds of metaphoric extensions we have for the com- 
puter domain are related to those outside this domain. 
For example, "kill a process" means terminating that 
process, while "kill an engine" means terminating the 
process in which the engine is engaged. 

We have attempted to use this fact to aid in knowl- 
edge acquisition. The strategy is as follows: First, 
represent the central senses of a word, and some of the 
common metaphoric extensions of that term. Then, 
when such a term is encountered in a particular appli- 
cation, such as UC, in a context in which it cannot be 
understood, an attempt is made to compute a meta- 
phoric extension. This is done by finding the closest 
metaphoric extension from another domain. This sense 
of the term is then modified to produce a sense appli- 
cable to the current context. 

In its current incarnation, UCTeacher can perform 
the following functions: Given that UC has the requisite 
knowledge to directly understand the utterances con- 
taining the construction "enter lisp", UCTeacher can 
compute the likely intended meaning of utterances 
involving "exit lisp" and "enter mail"; given that UC 
knows about "kill a conversation", it can generalize to 
"kill a process"; from "kill a process", it can general- 
ize to "process died"; from "open a file" to "close a 
file", and finally, outside the UNIX domain, from "give 
a cold" to "have a cold", "get a cold", "give the flu", 
and "give an idea". 

To perform these functions, UCTeacher needs above 
all a representation for metaphoric structures. The basis 
of such a representation is given in KODIAK by a 
device called a view. A view allows a kind of structure 
mapping between two concepts. Views are described in 
Wilensky (1986), but have been significantly extended 
by Martin (1986a, 1986b, 1987, 1988). A detailed de- 
scription of this representation, and of UCTeacher's 
algorithm for extending word senses, is beyond the 
scope of this paper, but may be found in above refer- 
ences. 

11 PROBLEMS 

As the preceding sections describe, there are many 
technical problems yet to be resolved for each compo- 
nent of UC. However, several problems appear to be 
more pervasive. 

One general problem is the integration of the compo- 
nents of the system. Control flows unidirectionally 
through UC. However, there are several cases in which 
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this control structure is unsatisfactory. One such prob- 
lem is the relation of language analy,ds and inference. 
We believe it is cognitively correct that these compo- 
nents function concurrently to prodttce an interpreta- 
tion of an utterance, whereas in UC they function 
serially. 

For example, consider again the process of under- 
standing the sentence we have been using in our ex- 
tended example: "Do you know how to print a file on 
the Imagen?" This utterance is syntactically ambiguous 
in the attachment of the prepositional phrase "on the 
Imagen". Syntactically, this may modify " y o u "  or "a  
file" as well as "print" .  UC does not deal with this 
ambiguity, because one of ALANA's patterns for 
"print" specifically looks for " o n "  followed by a 
device. However, a more elaborate analyzer would 
probably not include specific information that relates 
this preposition to the verb, but rather would try to 
relate them on more general principles. In such a 
system, the ambiguity would be a more difficult prob- 
lem. 

Our current approach is to build such a system and 
use a marker passing algorithm (Norvig 1987) to help 
suggest which syntactic combination to try. For exam- 
ple, our knowledge about printing is such that a path 
between printing and a device designed for printing 
should be easy to find. In contrast, there would be a less 
obvious connection between Imagen and file, or Imagen 
and the referent of "you" .  This "conceptual closeness" 
would suggest trying to relate printing and the Imagen 
with a grammatical pattern, so the correct interpretation 
would be arrived at without other interpretations being 
tested. 

Properly done, such a marker passing scheme would 
effect concretion as well. For example, to arrive at the 
connection between printing and the Imagen, it is 
probable that one needs to access the node for computer 
printing. Thus it seems that concretion should not be a 
separate inference process, but one of several kinds of 
inferences that are performed by a marker passing 
mechanism. We are currently attempting to reform the 
analyzer and the inference mechanism in the direction 
described. 

It seems that the sort of unidirectional architecture 
we have employed has drawbacks elsewhere in the 
system. There are situations in which it seems that one 
component should be allowed to fail, and the failure be 
propagated back to another component. For example, 
consider processing the following query: 

How can I edit Joe's file? 

Initially, the goal analyzer may interpret this request 
literally. Then the planner may fail, because the file may 
be protected from just such an action. It seems reason- 
able, however, for a consultant to suggest copying the 
file and editing the copy. For this to happen, control 
must be returned to the goal analyzer, which needs to 
hypothesize yet another goal underlying the goal it may 

have suggested initially. We are attempting to design a 
control structure that accommodates this flow of con- 
trol. 

The concretion mechanism and the goal analyzer also 
appea~r to interact in important ways. For example, 
consider the following example: 

What does Is -v do? 

Above, we showed the UC can respond appropriately to 
this question by uttering, "There is no -v option to the 
Is command." However, the question is problematic 
because another response to it might be, " I t  lists the 
contents of the current directory." This response is 
possible because, although there is no '-v' option to the 
'ls' command, it is a characteristic of this command that 
it ignores options it does not recognize. 3 

To produce the desired response, the system must 
recognize that the intent of the question is something 
like '"Fell me the conventional function of the command 
Is -v", and not "Tell me what actually happens when 
we type Is -v". One way to phrase this is that "conven- 
tional function" and "effects occurring from" are two 
kinds of "doing".  There are certainly other kinds as 
well. For example, the same form may refer to the steps 
of a process. 

Therefore, it would appear to be the job of the 
concretion mechanism to select the appropriate inter- 
pretation. However, it seems that the concretion mech- 
anism cannot choose this interpretation without some 
knowledge of typical user goals. For example, if a user 
is debugging a program, it would probably be appropri- 
ate to interpret the question as referring to the steps 
incurred in the process rather than to the process's 
purpose. But reasoning about the user's goals is the job 
of the goal analyzer, which normally is not invoked until 
the concretion mechanism has completed its task. 

The problem is avoided in the current implementa- 
tion by not allowing for the other, less obvious inter- 
pretations at all. However, the example illustrates the 
need to have more communication between the concre- 
tion mechanism and the goal analyzer. Put more 
strongly, the example suggests that these distinctions 
between language analyzer, concretion mechanism, and 
goal analyzer are somewhat artificial. At this stage of 
our work, it is difficult to determine whether we simply 
want modules that interact more or a more radical 
control structure that integrates all these functions. 

There are several other more specific deficiencies of 
which we are aware. As we discussed previously, 
patterns were built into ALANA on an as-needed basis. 
We are attempting to produce a more accurate language 
specification as we develop the inference component. 
Also, a mechanism for doing ellipsis, which ran in a 
previous version of UC, has yet to be integrated into 
this one. 

Undoubtedly, there are many deficiencies that we 
have not yet discovered. For example, we recently 
discovered that asking the same question twice resulted 
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in no  a n s w e r  at all be ing genera ted  for the second  
reques t .  The  p rob l em tu rned  out  to be that  the user  
model ,  af ter  a ques t ion  is answered ,  upda tes  its model  
of  the use r  to show that  the user  now knows  this 
in format ion .  The  second  t ime a round ,  this knowledge  
a l lowed the express ion  m e c h a n i s m  to p rune  away the 
ent i re  answer ,  as it infer red  the user  a l ready knew it. 
Our  approach  to f ixing this p rob lem is to add ano the r  
d e m o n  that  will de tec t  asking  for the same thing twice.  
T h e n  plans  for r e spond ing  appropr ia te ly  with this situ- 
a t ion could  be b rought  to bear .  

One  impor t an t  def ic iency  of  our  cu r ren t  sys tem is 
that  it still d o e s n ' t  par t ic ipa te  in real conversa t ions .  It  is 
our  i n t en t ion  that  U C  func t ion  as a consu l t an t  and  not  
as a f ront  end  to a da ta  base  of  facts abou t  U N I X .  But  
our  cu r ren t  sys t em per forms  little more  than  this. Much  
of  the m a c h i n e r y  is in place,  in U C E g o  and  P A G A N  in 
par t icular ,  to a c c o m m o d a t e  some conve r sa t iona l  situa- 
t ions.  We  expec t  m u c h  of  our  fur ther  d e v e l o p m e n t  to be 
in this d i rec t ion .  

F ina l ly ,  a l though we have  found  that  our  cur ren t  
r ep resen ta t ion  is advan tageous ,  there are m a n y  repre-  
sen ta t iona l  i ssues  that  r ema in  unreso lved .  In  par t icular ,  
it is difficult  to express  cer ta in  aspects  of  quant i f ica t ion  
in K O D I A K .  In  UC,  one  of ten  wan t s  to represen t  facts 
like "a l l  files have  n a m e s "  or " m o s t  di rector ies  are no t  
e m p t y . "  We are cu r ren t ly  work ing  on  ex tend ing  KO-  
D I A K  to be able  to r ep resen t  such not ions  in a cogni-  
t ively p laus ib le  way.  
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