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We investigate the weak expressive power of a notation using first-order logic, augmented with a facility 
for recursion, to give linguistic descriptions. The notation is precise and easy to read, using ordinary 
conventions of logic. Two versions of the notation are presented. One, called CLFP, speaks about strings 
and concatenation, and generates the class EXPTIME of languages accepted by Turing machines in time 
2 c" for some c > 0. The other, called ILFP, speaks about integer positions in strings, and generates the 
class PTIME of languages recognizable in polynomial time. An application is given, showing how to code 
Head Grammars in ILFP, showing why these grammars generate only polynomial time languages. 

1 FIRST-ORDER LOGIC AS A TOOL FOR SYNTACTIC 

DESCRIPTION 

In this paper we investigate the properties of a new 
notation for specifying syntax for natural languages. It 
is based on the simple idea that first-order logic, though 
inadequate as a semantics for natural language, is quite 
adequate to express relations between syntactic constit- 
uents. This is the insight behind definite clause gram- 
mars (DCGs) (Pereira and Warren 1980) and, in fact, our 
notation is in some ways a generalization of that nota- 
tion. However, we have tried to keep our formalism as 
much as possible like that of standard textbook first- 
order logic. There are actually two versions of our 
notation. The first works with strings of symbols and 
uses concatenation as a primitive operation. The second 
works with integers and takes the standard arithmetic 
operations as primitive. These integers can be regarded 
as indexing positions of morphemes in a sentence, but 
the sentence itself is not explicitly referenced. Both 
versions allow the recursive definition of predicates 
over strings and integers. This capacity for recursive 
definition is what gives our grammars their generative 
ability, and our notation has this feature in common 
with DCGs. However, we liberate DCGs from the Horn 
clause format, and we do not base the semantics of our 
notation on the semantics for Prolog or for logic pro- 
grams. We hope that making the logic more familiar and 
readable will encourage more people to use logic as a 
means for specifying desired syntactic relations be- 

tween sentential constituents in grammars. Anyone 
knowing the standard conventions of first-order logic 
should be able to read or to specify a grammar in our 
notation. 

We also provide a precise semantics for our two 
notations. This involves using the least-fixed-point op- 
erator from denotational semantics for programming 
languages to explain the recursive definition of predi- 
cates. It involves as well using restricted universal and 
existential quantification to restrict the class of defin- 
able predicates (sets of strings). We prove a complexity 
theoretic characterization for both grammar formal- 
isms: (1) the formalism using strings and concatenation 
defines exactly the class EXPTIME of formal languages 
recognizable by deterministic Turing machines within 
time T(n)  = 2 en for some positive c; and (2) the 
formalism using integers defines exactly the class 
PTIME of languages recognizable in time T(n)  = n k for 
some integer k. 

As an application of the second notation we sketch a 
natural way to write Head Grammars (Pollard 1984). 
Because these grammars can be expressed in this way, 
we immediately obtain the result that head languages 
can be recognized in polynomial time. We even obtain 
an estimate of the degree of the polynomial that is 
required, derived directly from the form of the gram- 
matical description. Unfortunately, the estimated de- 
gree is at least twice as large as is actually necessary if 
one uses the algorithm of Pollard (1984), or Vija- 
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yashanker and Joshi (1985). We conjecture that in fact, 
this factor of (2) can be removed. 

Our complexity theoretic characterizations are ver- 
sions of theorems already appearing in the literature. 
Shapiro (1984) characterizes the class of languages 
definable by logic programs with a linear space restric- 
tion as the class EXPTIME. The proof of our first 
theorem is very much like his. Our second theorem 
characterizing PTIME can be viewed as a specialization 
of the results of Chandra and Harel (1982), Immerman 
(1982), and Vardi (1982), who show that the class of sets 
of finite mathematical structures definable by formulas 
of first-order logic augmented with a least-fixed-point 
operator is just the class of sets of structures recogniz- 
able in polynomial time. We prove both of our results in 
the same way, and thus show how these apparently 
unconnected theorems are related. The proof uses the 
notion of alternating Turing machines, and thereby 
explains the significance of this idea for the science of 
formal linguistics. 

We should also note that our notation will not find 
immediate application in current linguistic theory, be- 
cause it does not allow structural descriptions to be 
described. We are in the process of extending and 
modifying the notation for this purpose. However, we 
think it is important to explicate the properties of the 
individual operations used in building strings and struc- 
tures. Our first attempt is therefore to understand how 
concatenation of strings can be expressed in a restricted 
logic. We can then consider other predicates or func- 
tions on both strings and treelike structures in the same 
uniform way. 

2 C L F P  GRAMMARS" GRAMMARS BASED ON 

CONCATENATION THEORY 

2.1 SYNTAX OF CLFP 

We present a standard version of the first-order theory 
of concatenation, augmented with the least-fixed-point 
operator. Before proceeding with the formal descrip- 
tion, we give an example to illustrate the scheme we 
have in mind. Consider the following context-free frag- 
ment, adapted directly from Johnson (1985). 

S --~ NP VP 

NP --~ Det Noun 

VP--> V NP 

Det--> NP[+Gen] [ the 

Here is the corresponding CLFP fragment: 

S(x) <:~ :4yz .NP[-Gen](y)  A VP(z) /k x = yz; 

NP[case](x)  <:~ :lyz.Det(y) /k Noun[case](z) 
/k x = yz; 

VP(x) ¢:~ 3yz .V(y)  /k N P [ - G e n ] ( z )  /k x = yz; 

Det(x) <:> NP[+Gen](x)  V x = the. 

In this formulation, x,y ,  and z range over strings of 
symbols (morphemes) and N P , V P ,  etc. are predicates 
over strings. The second clause is here an abbreviation 
for two clauses, where case can take two values, 
namely + Gen and -Gen.  At present we do not treat the 
problem of calculating complex feature structures, but 
there seems to be no reason that the notation cannot be 
suitably extended. 

This; example illustrates the most complex case of a 
CLFP formula. It is a recursion scheme, which assigns 
to predicate variables, S , N P ,  etc. certain formulas (the 
right-hand sides of the corresponding clauses in the 
definition). The whole scheme is understood as the 
simultaneous recursive definition of the predicate vari- 
ables in the left sides of the definition. To handle the 
fact that string variables occur on the left-hand side of 
each clause, we will understand each clause as a func- 
tion assigning both the formula on its right and the set of 
individual variables mentioned on the left to the given 
predicate symbol. 

We now proceed with the formal definition of CLFP. 
Let Ivar be a set {Xo,X i . . . .  } of individual variables 
ranging over strings. Let ~ be a finite set of terminal 
symbols. These are the constants of our theory. A is 
another constant denoting the null string. Terms are 
built from variables and constants using the binary 
operation of concatenation. We also require a set Pvar 
of predicate variables, listed as the set {PI,PE . . . .  }. 
Each predicate variable P is equipped with an arity 
ar(P), indicating the number of individual arguments 
that a relation assigned to this variable will have. (The 
example CLFP scheme given above employs only unary 
predicate variables S , N P , V P ,  and Det.)  The set of 
CLFP formulas is given by the following inductive 
clauses. 

1. If P ~ Pvar and (x I . . . . .  x n) is a sequence of Ivar 
with length n = ar(P) then P(x~ . . . . .  xn) is in CLFP; 

2. If t~ and t a are terms, then t I = t a is in CLFP; 
3. If x E Ivar and ~b is in CLFP then 3x~b and Vx~b are 

in CLFP; 
4. The usual Boolean combinations of CLFP formulas 

are in CLFP. 
5. This clause requires more definitions. Let f i  be a 

finite nonempty subset of Pvar with a distinguished 
element S ~ fit. Let (I) : f i  --) ~'(Ivar) x CLFP.  ((I)(R) 
is going to be the defining clause for the predicate R.) 
If (9(R) = (X,~b), then we define B ~ ( R )  = X ,  and 
C(I~(R) = (h- We require that IB~(R)I = at(R) and 
thus be a finite set of individual variables. Now we 
say that the whole map (I) is a recursion scheme iff 
each P E f i  occurs only positively in cI)(R) for any 
R E fi; that is, within the scope of an even number 
of negation signs. Finally, condition 5 states that if (I) 
is a recursion scheme, with distinguished variable S, 
then/zS~ (the least fixed point of ~) is in CLFP. 

Example 1. Consider the following scheme, which de- 
fines a regular language. 
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S(x)  ¢~ 3 y ( ( x  = ay  /~ (S(y))  V (x  = by  A T(y))) V x = a 

T(v) ¢~ 3 w ( v  = cw  A S(w)).  

In this example, fit = {S, T}, BOP(S) = {x}, and 

COP(S) = 3 y ( ( x  = a y  A (S(y) )  V (x  = b y / ~  T(y)))  
k~/X :-- a .  

Similarly, BOP(T) = {v}, and COP(T) is the second formula 
in the scheme. 

In the example, we have written our recursion 
scheme in a conventional style to emphasize its direct 
connection to the usual grammatical presentations. 
Thus the variable x is bound by the left-hand side of (1), 
so this clause has been written with S(x )  on the left to 
make this fact apparent. Also, the use of the <:¢, sign is 
conventional in writing out OP. In our example, the first 
clause is taken as defining the distinguished predicate S 
of our scheme. Finally, there are no occurrences of free 
predicate variables in this example, but there are in our 
first example (e.g., n o u n ) .  

The usual rules for calculating free individual varia- 
bles apply; if Fvar(qb) is the set of  free variables of ~b, 
then F l v a r ( P ( x l  . . . . .  xn)) = {xl . . . . .  x,,}. The quantifier 
and Boolean cases are handled as in standard text 
presentations. However,  if OP is a recursion scheme then 
Flvar(/zSOP) will be calculated as follows. For each R 
fit, find Fvar(COP(R)) .  Remove from this set any varia- 
bles in BOP(R). The union of  the resulting sets for each 
R E fit is defined to be the set Flvar(/zSOP).  

The rules for free predicate variables are a bit sim- 
pler. In the atomic formula P(x~ . . . . .  x , ) ,  P is a free 
predicate variable. In a recursion scheme OP with do- 
main fit, the set FPvar(/zSOP))  is the union of the sets 
FPvar( /zSOP(R)) ) ,  minus the set fit. 

A final remark on notation: we will use the notation 
~ t ~ , . . . ,  t,) to stand for the formula 

3 x l  . . . 3 x , ( ~ x l  . . . . .  xn)  A x l  = tl A . . . A x~ = t , )  

where the ti are terms, and the xl are individual variables 
not appearing in any ts. This will not affect our com- 
plexity results in any way. 

2.2 SEMANTICS FOR CLFP 

We borrow some notation from the Oxford school of 
denotational semantics to help us explain the meaning 
of our logic grammars. I f X  and Y are sets, then IX--> Y] 
is the set of  functions from X to Y. Let  A = [Ivar ~ ~*] 
be the set of assignments of values to individual varia- 
bles. We wish to define when a given assignment, say or, 
satisfies a given C L F P  formula ~b. This will depend on 
the meaning assigned to the free predicate variables in 
~b, so we need to consider such assignments. Let  P A  be 
the set of maps p from Pvar to the class of relations on 
I£* such that the arity of p(P) is ar(P) .  We are now ready 
to define for each formula ~b and predicate assignment p, 
the set At[[~b]]p C A of individual assignments satisfying ~b 
with respect to p. 

1. ~ e ( x , , . . . , x , ) n p  = (~ I (a(x,) . . . . .  a(x,,)) ~ p(e)}; 
2. A~t, = t21]O = ( a l  tl a = t2a}, where ta  is the 

evaluation of t with variables assigned values by a; 
3. ~t[[3x~b]lp = {a[ 3u E E* : a(x /u )  ~ ~tff~bl]p}, and 

similarly for universal quantification; 
4. kt[dpVqJ]] p = At[[4~]]pUAt[[~b]]p, and similarly for other 

Boolean connectives. 
5. a~/zs~p = {a I (ak)(~ e ~c~k(s)~p)} 

where, for each k, opk is a recursion scheme with the 
same domain fit as OP, and is defined as follows by 
induction on k. First, we stipulate that for each P e fit, 
the set BOPr(P) = BOP(P). Then we set 

COP°(P) = COP(P)[R * -  F A L S E  : R ~ fit]; 

COPk+t(P) = COP(P)[R ~ COPk(R) : R E fit] 

where the notation ~ R  ~ 0(R) : R E fit] denotes the 
simultaneous replacement of atomic subformulas 
R ( w l  . . . . .  wk) in q, (where R is a free occurrence) by the 
formula O(R)(wl . . . . .  wk),  in such a way that no free 
occurrences of other variables in 0(R) are captured by a 
quantifier or a/z-operator in ~b. (We may always change 
the bound variables of qJ first, to accomplish this.) 

This definition appears much more clumsy than it 
really is, and we continue our example to illustrate it. 
Refer to the example of a regular grammar in the 
previous section. In the clause for S we are required to 
substitute the formula FALSE for occurrences of both S 
and T. This gives, after simplification, 

COP°(S)(x) = (x  = a).  

Similarly, substitution of FALSE into the clause for T 
gives OP°(T)(v) = FALSE.  Now substitution of these 
new formulae for S and T into OP gives (after simplifica- 
tion): 

COPI(S)(x) = 3 y ( x  = a y  A x = a)  V x = a; 

COPI(T)(v) = 3 w ( v  = c w  A w = a).  

It is easy to see that continuing this process will 
simulate all possible derivations in the grammar, and 
also that it explains the meaning of the scheme OP in 
terms of the meaning of subformulas. 

Some remarks are in order to explain why we use the 
term "least-fixed-point",  and to explain why, in a 
recursion scheme, all occurrences of recursively called 
predicates are required to be positive. Let  OP : fit ---> 
CLFP be a recursion scheme. Define the map /~OP] : 
P A  --> P A  as follows. If  R E fit, then 

(u~ . . . . .  u,,> ~ ~qopIlo(R) ¢~ (3,~ ~ ,,~op(R)~p)(a(x~) 
= ui) 

where (xl . . . . .  x,) is the sequence of variables in 
BOP(R), listed in increasing order of subscripts. If  R 
fit, then ~OP]p(R) = p(R). Next, let 

~/~/zROP]]p = k->["Jl I~OP]](k)(P[R ~'- O : R ~ fit]) 
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where unions are coordinatewise,  F ~k) is the k-th iterate 
of F, and p[R <--- ~ : R ~ ~ ]  is p with the empty relation 
assigned to each predicate variable in fit. This formula is 
just  the familiar least-fixed-point formula Uk_>~ F(~)(-1-) 
from denotational semantics. Then we can check that 
~tzSgP]]p is in PA,  and is the least fixed point of the 
continuous map ~qb]~. It is then possible to prove that 

J C [ ~ S ~ p  = ( ~ S , ~ p ) ( S )  

where S is the distinguished predicate variable in fit. 
If  we had no conditions on negative formulas in 

recursion schemes,  then we could entertain schemes 
like 

S(x) ~ 7 S(x) 

which, although they would receive an interpretation in 
our first definition, would give a T which was not 
continuous,  or even monotonic.  We therefore exclude 
such cases for reasons of  smoothness.  

Next  we come to the definition of  the language or 
relation denoted by a formula. A k-ary relation P on E* 
is said to be definable in CLFP  iff there is a CLF P  
formula th with no free predicate variables such that 
(Ul  . . . . .  /'/k) E P <:~ 3 a  E kt[[th]]:(a(x0 . . . . .  a(xk)) = 
(ul . . . . .  Uk), where xl . . . . .  xk is the list of  free variables 
in ~b arranged in increasing order  of  subscript. (Notice 
that the parameter  p has been omitted since there are no 
free predicate variables in ~b.) 

So far, we have not restricted quantification in our 
formulas, and every  r.e. predicate is definable. We need 
to add one other  parameter  to the definition of  J(, which 
will limit the range of  quantification. This will be an 
integer n, which will be the length of  an input sentence 
to be recognized. The occurrences  of  the formula .~t[[~b]p 
will thus be changed everywhere  in the above clauses to 
At[~b]pn. The only change in the substance of the clauses 
is in the rule for existential and universal quantification. 

~t~3x~b]pn = {~ I 3 u  ~ :~* : [ul -< n A ,~(x/u) 

A predicate P is said to be boundedly definable iff for 
some 4~: 

(Ul . . . . .  uk) ~ P ¢:> 3 a  E kt~¢]]n : (a(x 0 . . . . .  a(xk)) 
= (ul . . . . .  u~) 

where n = max([uiD. (To abbreviate the right-hand 
condition, we write (ul . . . . .  uk) ~ ~b). Our first theorem 
can now be stated. 

Theorem 1. A language (unary predicate) is bound- 
edly definable in CLFP  iff it is in EXPTIME.  

We defer the proof  to the next section. 

3 E X P T I M E  AND C L F P  

3.1 ALTERNATION 

Before proving Theorem 1, we need to discuss the 
method of  proof  both for this result and for the Integer 
LFP  characterization of  PTIME in the next section. 

This material is repeated from the fundamental article of 
Chandra, Kozen,  and Stockmeyer  (1981). Their  paper 
should be consulted for the full details of  what we state 
here. 

An alternating Turing machine can be regarded as a 
Turing machine with unbounded parallelism. In a given 
state, and with given tape contents,  the machine can 
spawn a finite number of  successor configurations ac- 
cording to its transition rules. These configurations are 
thought of as separate processes,  each of which runs to 
completion in the same way. A completed process is 
one which is in a special accepting state with no 
successors. The results of the spawned processes are 
reported back to the parent,  which combines the results 
to pass on to its own parent,  and so forth. How the 
parent does this depends on the state of  the finite 
control. These states are classified as being either 
existential (OR), universal (AND), negating (NOT), or 
accepting. If the parent is in an existential state, it 
reports back the logical OR of the results of its off- 
spring. If it is in a universal state, it reports back the 
logical AND; if the state is negating, the parent reports 
the negation of its one offspring. An accepting state 
generates a logical 1 (TRUE) to be reported back. Thus a 
nondeterministic TM can be regarded as an alternating 
TM with purely existential states. 

An alternating TM is defined as a tuple in a standard 
way. It has a read-only input tape with a head capable of 
two-way motion. It also has a fixed number of work 
tapes. The input tape contains a string u E E*, while the 
work tapes can use a tape alphabet F. The transition 
relation 6 is defined as for ordinary nondeterministic 
TMs. The state set is partitioned as described above 
into universal, existential, negating, and accepting 
states. The relation 6 is constrained so that existential 
and universal states have at least one successor,  negat- 
ing states have exactly one successor,  and accepting 
states have no successors. A configuration is then just  a 
tuple describing the current state, positions of  the 
heads, and tape contents as is familiar. The initial 
configuration is the one with the machine in its initial 
state, all the work tapes empty,  and the input head at 
the left end of the input u. The successor relation I- 
between configurations is defined again as usual. 

To determine whether or not a configuration is ac- 
cepting, we proceed as follows. Imagine the configura- 
tions that succeed the given one arranged in a tree, with 
the given configuration at the root. At each node, the 
immediate descendants of  the configuration are the 
successors given by F. The tree is truncated at a level 
determined by the length of  the input tape (this trunca- 
tion is not part of  the general definition but will suffice 
for our results.) The leaf nodes of  this tree are labeled 
with (0) if the configuration at that node is not accept- 
ing, and with (1) if the configuration is accepting. The 
tree is then evaluated according to the description given 
above. The configuration at the root is accepting iff it is 
labeled (1) by this method. Thus an input is accepted by 
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the machine iff the initial configuration with that input is 
accepting. In our application, it will always suffice to 
cut off  the tree at level 2 on, where n is the length of the 
input string, and c is a positive constant depending only 
on the description of  the machine. 

We say that an alternating TM is S(n) space bounded 
iffin the above tree, for any initial configuration labeling 
the root, no auxiliary tape length ever exceeds S(n) 
where n is the length of  the input. We are concerned 
only with the functions S(n) = log n and S(n) = n in this 
paper. We let the class ASPACE(S(n) )  be the class of 
languages accepted by space-bounded ATMs in this 
way. We then have the following theorem (Chandra, 
Kozen,  S tockmeyer  1987): 

Lemma 1. If  S(n) >- log n, then 

ASPACE(S(n) )  = [,.J DTIME(2  cs¢m) 
c>0  

where DTIME(T(n))  is the class of  languages accepted 
deterministically by ordinary Turing machines within 
T(n) steps. 

Our problem in the rest of  this section is to show how 
linear space bounded ATMs and CLFP  grammars sim- 
ulate each other. To facilitate the construction of  the 
next section, it is convenient  to add one feature to the 
definition of  alternating Turing machines. Let  U be the 
name of  a k-ary relation on E*. We allow machines to 
have oracle states of  the form U?(i I . . . . .  ik), where the ij 
are tape numbers.  If  now the predicate U is interpreted 
by an actual relation on E*, then when M executes such 
an instruction, it will accept or reject according to 
whether  the strings on the specified tapes are in the 
relation U. We will need such states to simulate recur- 
sive invocations of  recursion schemes. It is not hard to 
modify the definition of  acceptance for ordinary ATMs 
to that for oracle ATMs. The language or relation 
accepted by the ATM will now of  course be relative to 
an assignment p of  relations to the predicate names U. 

The next subsections contain our constructions for 
the C LF P  characterizations. Then, in Section 4 we will 
treat Integer L F P  grammars and show how these gram- 
mars and logspace bounded ATMs simulate each other. 
As a consequence of  the above lemma, we will then 
have our main results. 

3.2 PROOF OF THEOREM 1 

Our first task is to show that if a language L is 
(boundedly) CLFP-definable,  then it can be recognized 
by a linear space bounded ATM. The idea is simple. 
Given an input string, our  machine will try to execute 
the logical description of the grammar. Its states will 
correspond to the logical structure of  the C LF P  for- 
mula. If  that formula is, for example, the logical AND of  
two subformulas, then the part of our machine for that 
formula will have an AND state. A recursion scheme 
will be executed with states corresponding to the pred- 
icate variables involved in the recursion, and so forth. 

To give an explicit construction of  an ATM corre- 

sponding to a formula 4, of  CLF P  we need to be precise 
about the number of  work tapes required. This will be 
the sum of the number of  free individual variables of  4,, 
and the number of "dec la ra t ions"  of  bound variables in 
4,. A "declara t ion"  is either the occurrence of a univer- 
sal or existential quantifier in 4,, or one of  the individual 
variables bound on the left side of  a (non-S) clause in a 
recursion scheme. If that clause defines the predicate R, 
then the number of variables declared at that point is 
ar(R) = [Bqb(R)l. We thus define the number /3(4,) of  
declarations of  bound variables in 4' by induction as 
follows: 

1. ]3(R(x I . . . . .  Xn)) = 0, 
2. 13(/1 = /2) = 0, 
3. /3(4,Vq,) = /3(4,A~) = /3(4,) + /3(qJ); 
4. /3(q4,) = /3(4,); 
5. /3(3x4,) =/3(Vx4,) = 1 +/3(4,);  
6. f l(tzS~) = ~(C~(S))  + En~\{s~(ar(R ) + [3(C~(R))). 

The number 7(4,) counts the maximum number of  tapes 
needed, and is defined to be/3(4,) + IFivar(4,) I + 1. 

We can now state the inductive lemma which allows 
the construction of  ATMs. 

Lemma 2. Let  4, be a CLF P  formula, with IFlvar(4,)l 
= k, and T:Flvar(4,) ~ {1 . . . . .  k}. Let  m = y(4,). 
Then we may construct an m-tape ATM M(4,,T) 
having the following properties: (i) M has oracle 
states P? for each free predicate variable of 4,, and (ii) 
For  any a:Flvar(4,) ---> Z*, and any environment p, 
we have the following. Let  n = max{[a(xi)[}. Then M 
with oracle states for the p(P), started with a(xO on 
tape T(x,) . . . . .  and a(xk) on tape T(xk), and the other 
tapes blank, will accept without ever writing more 
than n symbols on any tape, if and only if 
(a(x l) . . . . .  e~(xk)) E Jl4.[[4,]]pn. 

Proof: This lemma formalizes the intuitive idea, stated 
above, that to calculate the membership of  a string x in 
the language defined by a recursion scheme, it suffices 
to execute the scheme recursively. The full proof  would 
use the formal definition of the semantics of  ATMs, 
which themselves are given by least-fixed-point defini- 
tions. We have chosen not to give the full proof, 
because the amount of explanation would be over- 
whelming relative to the actual content  of the proof. 
Instead we give a reasonably complete account of  the 
inductive construction involved, and illustrate with the 
regular set example of the previous section. 

To start the induction over  formulas 4,, suppose that 
4, is R(x~ . . . . .  xk). Then we may take M to be a machine 
with k = 7(4,) tapes, with one oracle state P,  and the 
single instruction P?(T(x0 . . . . .  T(xk)). 

If 4, is t~ = tz, then we let M be a simple machine 
evaluating t~ and t z, using perhaps an extra tape for 
bookkeeping. It does a letter-by-letter comparison, so 
that it never  has to copy more than the maximum length 
of  any one tape. 

If  4, is ~0,  then M(4,) consists of  adding a negating 
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state before the initial state of  M(q,), and transferring 
control to that initial state. 

If  ~b is qq V ~02, we construct  MI and M2 by inductive 
hypothesis.  Then M(~b) is constructed by having disjoint 
instruction sets corresponding to each M;, prefixed by 
an OR state which transfers control to either of  the two 
formerly initial states. The free individual "variables of  
the disjunction are those occurring free in either dis- 
junct.  Let  T be an assignment of  tapes to the free 
variables of  the disjunction. Then we construct  MI with 
a T~ such that Tl(x) = T(x), and similarly for M 2, where 
x is a free individual variable. Otherwise, any tapes 
referenced in M~ are distinct from any tapes referenced 
in M2. In other  words, the machine M has shared 
storage for the free variables, and private storage for 
variables bound in either disjunct. The oracle states in 
the two pieces of  code are not made disjoint, however,  
because a predicate variable is free in the disjunction iff 
it is free in either disjunct. It is clear that the number of  
tapes of  the ~ V 1~2 is just  ~(I]/I V 1~2). For  the case of  
th = ~ l / k  ~b,, we make exactly the same construction, 
only using an AND state as the new initial state. 

If ~b is 3x~b, and T is a tape assignment for the free 
variables of  ~b, then we construct  M(~,) using the ex- 
tended tape assignment which assigns a new tape k + 1 
to the variable x, and otherwise is the same as T. Now 
M is constructed to go through an initial loop of exis- 
tential states, which fills tape k + l with a string no 
longer than the maximum length of  any string on tapes 
1 through k. It then transfers control to the initial state 
of M(~,). The same construction is used for the universal 
quantifier, using an initial loop of  universal states. 

Finally, we need to treat the case of  a recursion 
scheme/.~Sqb. Suppose that • has domain ~ ,  and let T 
be a tape assignment for/xSqb. For  each clause CO(Q), 
where Q E ~ ,  we construct  a machine M(Q) by induc- 
tive hypothesis.  The global free variables of  each M(Q) 
will have tapes assigned by T. However ,  we construct  
the M(Q) all in such a way that the local tape numbers 
do not overlap the tape numbers for any other  M(R). 
This procedure  will give tape numbers to all the varia- 
bles in the set Bdp(Q). Let  this set be {zl . . . . .  Zk} in 
increasing order.  Define TQ(Zi) to be the tape assigned to 
zi in M(Q). 

The machine M(lxSd~) will consist of the code for the 
M(Q), arranged as blocks; the initial state of  each such 
block will be labeled Q. In all the blocks, recursive 
oracle calls to Q? will be replaced by statements trans- 
ferring control to Q. Thus,  consider an oracle call 
Q?(il . . . . .  ik), in any block M(R). Replace this call by 
code which copies tape i z to tape TQ(ZO . . . . .  and tape 
i k to tape TQ(Zk). Insert code that empties all other  tapes 
local to M(Q), and insert a statement "go  to Q ."  

This completes the construction,  and we now illus- 
trate it with an example. Consider the recursion scheme 
introduced in the first section. 

S(x) ~',, 3y((x = ay A (S(y)) V (x = by A T(y))) V x = a 

T(v) ¢~ 3w(v = cw A S(w)). 

We construct  the machine M(S) as follows :l 
tape 1 : x  
tape 2 : y (initially blank) 
Initially : guess a value of  y, such that lyl -< Ixl, and 
store y on tape 2; go to (ql or q2 or q7); 

ql : go to (q3 and q4); 
q3 : check x = ay on tapes I and 2, and accept or 

reject as appropriate; 
q4 : S?(tape 2) 
q2 : go to (q5 and q6); 
q5 : check x = by on tapes 1 and 2, and accept  or 

reject as appropriate; 
q6 : T?(tape 2) 
q7 : check x = a and accept or reject. 

Similarly, we can construct  a machine M(T) for the T 
clause. Then the result of  pasting together the two 
constructions is shown in Figure 1. 

tape 1 : x 
tape 2 : y (initially blank) 
tape 3 : v (initially blank) 
tape 4 : w (initially blank) 

S : guess a value of  y, such that lyl ~ Ixl, on tape 
2; 
go to (ql or q2 or q7); 

q l : go to (q3 and q4); 
q3 : check x = ay on tapes 1 and 2 , and 

accept or reject as appropriate; 
q4 : copy tape 2 to tape I; 

Empty  tape 2; 
Go to S. 

q2 : go to (q5 and q6); 
q5 : check x = by on tapes 1 and 2 , and 

accept or reject as appropriate;  
q6 : copy tape 2 to tape 3; 

empty tape 4; 
go to T. 

q7 : check x = a and accept or reject. 

T : guess a w on tape 4 no longer than v on tape 
3; 
go to (q9 and ql0); 

q9 : Check v = cw on tapes 3 and 4, and 
return appropriately; 
q l0  : copy tape 4 (w) to tape 1; 

empty tape 2; 
go to S. 

Figure 1. ATM Program for the Recursion Scheme. 
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As we remarked, we cannot give a full proof of the 
correctness of our construction. However, the con- 
struction does correspond to the formal semantics of 
CLFP. In particular, the semantics of recursion corre- 
sponds to the iterated schemes O k. Iterating the scheme 
k times roughly corresponds to developing the compu- 
tation tree of the ATM to k levels, and replacing the 
oracle states at the leaves of the k-level tree with 
rejecting states corresponds to substituting FALSE into 
the kth iteration. 

With these remarks, the proof is complete. 
Lemma 3. Suppose L is accepted by a S(n) = 
n-bounded ATM. Then there is a CLFP formula ~b 
such that for all u E ~*, we have u E L ¢:> u ~ ~b. 

Proof: We may assume that M is an ATM with one work 
tape, if we allow M to print symbols in an auxiliary tape 
alphabet F. By a result in Chandra, Kozen, and Stock- 
meyer (1981) M has no negating states. We show how to 
construct a formula ~b, which has constants ranging over 
F, but which has the property stated in the conclusion of 
the lemma: for each string x over ~, M accepts x iffx 
~b. The formula ~b will be given as a recursion scheme 
/xS~. Each state q of M will become a binary predicate 
variable q(x,y)  in ~ .  The meaning of q(u, v), where u and 
v are specific strings in F*, is that M is in state q, 
scanning the first symbol of v, and that u and v are the 
portions of the work tape to the left and the right of the 
head, respectively. 

We give a perfectly general example to illustrate the 
construction of ~.  In this example, the tape alphabet 
F is {a,b}. Suppose that q is a universal state of M and 
that 8(q,a) = {(r,b,right) ,(s ,a, lef t)},  and 8(q,b) = 
{(p,b, lef t) , (q,a,right)}.  Then dp(q)(x,y) is the following 
formula: 

/ ~  Vwt[(x  = wtr A y = at ~ r(xb,t)  A s(w,o~at)) 
o~{a,b} 

A ( x  = wtr /~ y = bt  ~ p(w,trbt)  /~ q(xa,t))] 

The distinguished element of 2~ is qo, the start state of 
M. Notice that all predicate variables in R occur posi- 
tively in ~ ,  and that the search for w and t is limited to 
strings no longer than the length of the original input to 
M. If q is an accepting state of M, then we have a clause 
in ~ of the form q(x,y) <==> TRUE, where TRUE is some 
tautology. 

Technically speaking, the explicit substitutions 
r(xb,t)  are not allowed in our formulas, but these can be 
expressed by suitable sentences like (3z)(z  = xb  /~ 
r(z,t)), as remarked in the first section. The cases for 
q(x,y) when x and y are null must also be handled 
separately because M fails if it tries to leave the original 
region. 

Finally, we can obtain a formula over the constant 
alphabet E by a more complicated construction. If we 
encode F into E by a homomorphic mapping, then a 
machine N can be constructed to simulate M. N will 
have tape alphabet E, but will have a number n of work 
tapes bounded linearly by the constant involved in the 

encoding. We now make a formula corresponding to N, 
but the predicates will have to be 2n-ary, one pair of 
arguments for each tape of N. With these remarks, the 
proof of the lemma is complete. 

Theorem I follows immediately from the above lem- 
mas. 

4 I L F P :  GRAMMARS WITH INTEGER INDEXING 

4.1 SYNTAX OF ILFP 

Our characterization of the defining power of CLFP 
relied on the result E X P T I M E  = A S P A C E ( n ) .  We also 
know that P T I M E  = A S P A C E ( I o g  n). Is there a similar 
logical notation that gives a grammatical characteriza- 
tion of PTIME? This section is devoted to giving an 
affirmative answer to this question. As stated in the 
introduction, this result is already known (Immerman 
1982, Vardi 1982), but the result fits well with the CLFP 
theorem, and may in the linguistic domain have some 
real applications other than ours to Head Grammars. To 
explain the logic, it helps to consider acceptance by a 
logspace bounded ATM. In this case, the machine has a 
read-only input tape, which can be accessed by a 
two-way read head. Writing is strictly disallowed on the 
input tape, in contrast to the linear space bounded 
ATMs of the previous section. There is also a number k 
of work tapes on which computation occurs. Suppose 
that these work tapes use a binary alphabet. If their size 
always is less than or equal to I-log2 n-I, then they are 
always capable of representing the numbers from 0 
through n - 1. We thus think of the contents of the work 
tapes as indices of specific positions in the read-only 
input string, though in fact they may not serve this 
purpose in an arbitrary computation. Since the input is 
off-line, substrings of the input will not be quantified. 
Instead, we quantify over the integer subscripts, and the 
input simply becomes a global parameter appearing in 
the semantics. Instead of having equations between 
strings as atomic formulas, we will have equations 
between integer terms. In order to access the input, we 
will have, for each symbol a E E, an atomic predicate 
symbol a(i) of one argument, which will be true iff in the 
given input x, the symbol x(i) at position i is a. (We 
number the positions from 0 through n - 1). We allow 
individual constant symbols 0,1, and last, which will be 
interpreted as 0, 1, and n - 1, respectively, when the 
input has size n. As primitive arithmetic operations we 
allow addition and subtraction, and multiplication and 
integer division by 2. All of these operations are inter- 
preted modulo n when the input is given. 

We need not give the formal definition of ILFP 
formulas, as it is the same as for CLFP, except that 
individual variables come from a set {io,i ~ . . . .  }, terms 
are formed as above from arithmetic combinations of 
individual variables and constants, and the unary pred- 
icates a(/) are atomic formulas. 

Example 2. Consider the CFG 

S---> aSb [bSa[  SS [ab [ ba 
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This is represented in ILFP as follows: 

S(id) ¢~ a(i) A S(i + 1,j - 1) A bq) 

V b(i) A S(i + I j  - 1) A a(]) 

V 3k  < j  : S ( i , k ) /~  S(k + ld) 

V J = i + 1 A ((a(i) A bq)) V (b(i) A aq)) 

(Again, the explicit substitution of terms for variables is 
not officially allowed but can be introduced by defini- 
tion.) 

The meaning of  the above scheme should be clear. 
The predicate S(id) is intended to mean that node S 
dominates positions i through j in the input. Thus the 
assertion S(0,1ast), with no free variables, will be satis- 
fied by a string x iff x is generated by the given CFG. 
The relation of this descriptive formalism to the CKY 
algorithm for context-free recognition should also sug- 
gest itself. 

Our definition of the meaning function At[[4']] is like 
that in Section 2, except that the parameter n is replaced 
by a string x E X*. Thus 

1. At~p(i I . . . . .  ik)]px = {t~ [ (a(i 0 . . . .  a(ik) ) ~ /9(/9)}; 
2. At~a(i)]px = {a I x(a(i)) = a}; 
3..~t~t 1 = tz]pX = {a I tl°t = tEa}; 
4. At~3i4']px = {a [ (3m < Ixl)(~(i/m) ~ ~q4']px)}; 
5. Boolean combinations are as before; 
6. At~SdP]px = {a I (3k)(a E At[C~pk(S)]px)} 

The schemes qb k are defined for recursion schemes as 
above. 

If  4' is a formula of ILFP with no free individual or 
predicate variables then S[4']]px is either A, the set of all 
individual assignments, or 0, independent of p, but 
depending onx .  We say tha tx  ~ 4'iffS~4'~px is all of A. 
A language L _C X* is ILFP-definable iff for some 4' in 
ILFP,  L = {x I x D 4'}. Our objective is now 

Theorem 2. A language is ILFP-definable iff it is in 
P T I M E .  

The proof appears in the next subsection. 

4.2 PROOF OF THEOREM 2 

The idea of our proof is the same as that for Theorem 1, 
and only a sketch of the proof is necessary. We first 
restate Lemma 2 for ILFP,  using the same definition for 
/3 and % 

Lemma 4. Let  4' be an ILFP formula, with IFIvar(4')] 
= k, and T : Flvar(4') ---> {1 . . . . .  k}. Let m = 7(4'). 
Then we may construct an m-tape ATM M(4',T) 
having the following properties: (i) M has oracle 
states P? for each free predicate variable of 4', and (ii) 
For any x ~ E*, any a mapping Flvar(4') to natural 
numbers, and any environment p, we have the fol- 
lowing: M with oracle states for the p(P), started with 
x on the input tape, binary representations of the 
integers a(il) on tape T(il) . . . . .  and a(ik) on tape 
T(ik), and the other tapes blank, will accept without 
ever writing a va lue j  > I x [ on any tape, if and only 
if (ot(iO . . . . .  t~(ik)) E At[4']pX. 

Proof: The proof is almost identical to that of Lemma 2. 
To evaluate equations M may have to use an extra tape, 
because otherwise the given nonblank tapes would be 
overwritten by the arithmetic operations. If  4' is a(i) (the 
only case not covered in (2), then tape 1 is used as a 
counter to Mcate the input head at the position of the 
contents of tape 1. Since arithmetic is modulo Ixl, the 
machine never writes too great a value in these cases. 
The other cases are proved exactly as in (2), so this 
completes the proof. 

Lemma 5. If L ~ ASPACE(Iog  n), then L is ILFP- 
definable. 

Proof: We may assume that L is accepted by an ATM 
with p binary work tapes and one input tape. (If the tape 
alphabet is not binary, encode with a homomorphism 
and expand the number of tapes as necessary.) We may 
further assume that the machine M never writes a string 
longer than L..log2(n)__] - 1 on any work tape (remember 
one bit on each tape in finite control if necessary). Each 
work tape, or portion thereof, is thus guaranteed to 
represent a binary number strictly less than n in value, 
where n is the length of the input string. 

We now proceed as in the proof of Lemma 3, but 
coding the contents of the work tapes as binary num- 
bers. We need a number h, which tells the position of 
the input head. We also have two numbers l and r, 
which are the binary values of the tape contents to the 
left and right of the work tape head (here we describe 
the case of just one work tape). The number r will 
actually be the binary value of the reversal of the string 
to the right of the tape head, because this makes the 
operation of shifting the head a simple multiplication or 
division by 2. Since a string may have leading zeroes, 
we also need to keep two auxiliary numbers II and rr, 
which are the actual lengths of  the strings to the left and 
right of the head. For each state q of the ATM we thus 
have a predicate q(h,l,r, ll, rr) of five integer variables. 
The reader should have no difficulty in encoding the 
transition rules of M exactly as in Lemma 3. For  
example, a test as to whether the scanned symbol on the 
work tape is 0 or 1 becomes a test of the parity of r, and 
so on. Finally, it can be seen that the case of p work 
tapes requires 4p + l-ary predicates. This completes the 
proof of our lemma and thus the theorem. 

4.3 WHICH POLYNOMIAL? 

We can get a rough estimate of the degree of the 
polynomial time algorithm, which will recognize strings 
in the language defined by an ILFP grammar. We saw in 
the proof of Lemma 4 that if a scheme 4' has 7(4') = P, 
then an ATM with p + 1 binary work tapes can be 
constructed to recognize the associated language. The 
number of configurations of each tape is thus log n * 
2log n+l If  there are p + 2 tapes, this gives O(logp+ln * 
n p+IIP := O(n p+2) possible tape configurations. Multiply- 
ing by n for the position of the input head gives O(n p+3) 
possible ATM configurations. From an analysis of the 
proof of Lemma 1 in Chandra, Kozen, and Stockmeyer 
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(1981), we can see that the polynomial  in our determin- 
istic TM algorithm is bounded by the square of  the 
number  of  A T M  configurations. This leads to an 
O(n 2p+6) recognition algorithm. Since this bound would 
give an O(n ~2) algorithm for context-free language rec- 
ognition, we conjecture that the general est imate can be 
improved.  In particular,  We would like to remove  the 
factor  of  2 f rom 2p. 

5 APPLICATIONS TO HEAD GRAMMARS 

In this section we express  head grammars  (Pollard 1984) 
in ILFP ,  and thus show that head languages can be 
recognized in polynomial  time. Since the class of  head 
languages is the same as the class of  tree adjunct 
languages (Vijayashankar,  Joshi 1985), we get the same 
result for  this class. We will actually give only a 
simplified version of  head grammars  to make our I L F P  
formulas easy  to write. This version corresponds ex- 
actly to the Modified Head  Grammars  of  Vijayashankar  
and Joshi (1985), and differs only f rom the original 
version in that it does not t reat  the empty  string. (Roach 
(1988) has an extended discussion of  head languages.) 

We define a head g rammar  as a tuple G = (N,~,,P,S), 
where N and E are finite nonterminal  and terminal 
alphabets,  P is a finite set of  productions,  and S is the 
start  nonterminal.  The product ions are of  the form C 
Op(A,B), where  A,B ,  and C are nonterminals and Op is 
chosen f rom a fixed set of  head-wrapping operations. 
Productions can also have the form C ~ (x,y), where x 
and y are terminal strings. 

We view nonterminals  in N as deriving pairs of  
strings (u, v). In the original formulation,  this meant  that 
the head of  the string uv occurred at the end of  u. The 
wrapping operat ions come from the set {LLI ,LL2,LC ~, 
LC2}. We consider  L L  2 and L C  ! as examples.  We define 
LL2((w,x),(u,v)) = (wu, vx). Thus if A derives (w,x) and 
B derives (u, v), and C ~ LL2(A,B) is a production,  then 
C derives (wu,vx). Similarly, LCl((W,X),(u,v)) = 
(w,xuv), so in the corresponding case,  we would have C 
derives (w,xuv) if C ~ LCI(A,B)  were a production. A 
string t is in L(G) iff for some u and v, t = uv and S 
derives (u,v). 

Given a head grammar ,  we write an I L F P  recursion 
scheme as follows. For  each nonterminal C, we intro- 
duce a predicate  C(i j ,  k,l). We think of  these four 
integers as indexing the positions of  symbols  in a string, 
starting at the left with 0. Then C(i j ,  k,l) means that the 
nonterminal  symbol  C can derive the pair of  substrings 
of  the input string be tween  i and j ,  and between k and l 
inclusive. Thus,  if C ~ LL2(A,B) is a production,  our 
scheme would include a clause 

C(i j ,  k,l) ¢:~ (3pq)(A(i ,p,q + 1,l) A B(p + ld',k,q)) 

Similarly, if C --~ LCI(A,B)  were a production,  we 
would have 

C(i j ,  k,l) ¢~ (3pq)(A(i j ,  k,p) /~ B(p + 1,q,q + 1,/)) 

Finally, if C--* (a, bb )were  a terminating production,  we 
would have 

C(i j ,  k,l) ¢:~ a(i) /~ i = j / ~  k = i + 1 /~  b(k) 
A b ( k +  l) A l =  k +  1 

The g rammar  would be defined by the recursion scheme 
and the assertion 3 j S ( 0 j j  + 1 ,last), where  S is the start  
symbol  of  G. 

It  can be seen f rom this formulation that every  head 
g rammar  can be written as an I L F P  scheme with at most  
six total variables. Section 4 thus gives us an O(n 18) 
algorithm. However ,  the algorithm of  Vijayashanker  
and Joshi (1985) is at most  n 6. It would seem that a rule 
of  thumb for the order of  the polynomial  algorithm is to 
use the number  y(th) for the I L F P  scheme th, but we 
have no proof  for this conjecture.  
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NOTE 

1. Notice that the machines are presented in ATMGOL, a syntacti- 
cally ill-defined variant of ATM transition functions. Also, ATMs 
and ATNs are not to be confused. 
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