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Several algorithms have been developed in the past that attempt to resolve categorial ambiguities in 
natural language text without recourse to syntactic or semantic level information. An innovative method 
(called "CLAWS") was recently developed by those working with the Lancaster -Oslo/Bergen Corpus 
of British English. This algorithm uses a systematic calculation based upon the probabilities of 
co-occurrence of particular tags. Its accuracy is high, but it is very slow, and it has been manually 
augmented in a number of ways. The effects upon accuracy of this manual augmentation are not 
individually known. 

The current paper presents an algorithm for disambiguation that is similar to CLAWS but that 
operates in linear rather than in exponential time and space, and which minimizes the unsystematic 
augments. Tests of the algorithm using the million words of the Brown Standard Corpus of English are 
reported; the overall accuracy is 96%. This algorithm can provide a fast and accurate front end to any 
parsing or natural language processing system for English. 

Every computer system that accepts natural language 
input must, if it is to derive adequate representations, 
decide upon the grammatical category of each input 
word. In English and many other languages, tokens are 
frequently ambiguous. They may represent lexical items 
of different categories, depending upon their syntactic 
and semantic context. 

Several algorithms have been developed that exam- 
ine a prose text and decide upon one of the several 
possible categories for a given word. Our focus will be 
on algorithms which specifically address this task of 
disambiguation, and particularly on a new algorithm 
called VOLSUNGA, which avoids syntactic-level anal- 
ysis, yields about 96% accuracy, and runs in far less 
time and space than previous attempts. The most recent 
previous algorithm runs in NP (Non-Polynomial) time, 
while VOLSUNGA runs in linear time. This is provably 
optimal; no improvements in the order of its execution 
time and space are possible. VOLSUNGA is also robust 
in cases of ungrammaticality. 

Improvements to this accuracy may be made, per- 
haps the most potentially significant being to include 
some higher-level information. With such additions, the 
accuracy of statistically-based algorithms will approach 

100%; and the few remaining cases may be largely those 
with which humans also find difficulty. 

In subsequent sections we examine several disambig- 
uation algorithms. Their techniques, accuracies, and 
efficiencies are analyzed. After presenting the research 
carried out to date, a discussion of VOLSUNGA's 
application to the Brown Corpus will follow. The Brown 
Corpus, described in Kucera and Francis (1967), is a 
collection of 500 carefully distributed samples of Eng- 
lish text, totalling just over one million words. It has 
been used as a standard sample in many studies of 
English. Generous advice, encouragement, and assis- 
tance from Henry Kucera and W. Nelson Francis in this 
research is gratefully acknowledged. 

1 PREWOUS DISAMBIGUATION ALGORITHMS 

The problem of lexical category ambiguity has been little 
examined in the literature of computational linguistics 
and artificial intelligence, though it pervades English to 
an astonishing degree. About 11.5% of types (vocabu- 
lary), and over 40% of tokens (running words) in English 
prose are categorically ambiguous (as measured via the 
Brown Corpus). The vocabulary breaks down as shown 
in Table 1 (derived from Francis and Kucera (1982)). 
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Number of words by degree of ambiguity: 
Unambiguous (1 tag) 35340 
Ambiguous (2-7 tags) 4100 
2 tags 3760 
3 tags 264 
4 tags 61 
5 tags 12 
6 tags 2 
7 tags 1 ("still") 

Table 1: Degrees of Ambiguity 

A search of the relevant literature has revealed only 
three previous efforts directed specifically to this prob- 
lem. The first published effort is that of Klein and 
Simmons (1963), a simple system using suffix lists and 
limited frame rules. The second approach to lexical 
category disambiguation is TAGGIT (Greene and Rubin 
(1971)), a system of several thousand context-frame 
rules. This algorithm was used to assign initial tags to 
the Brown Corpus. Third is the CLAWS system devel- 
oped to tag the Lancaster -Oslo/Bergen (or LOB) Cor- 
pus. This is a corpus of British written English, parallel 
to the Brown Corpus. Parsing systems always encoun- 
ter the problem of category ambiguity; but usually the 
focus of such systems is at other levels, making their 
responses less relevant for our purposes here. 

1.1 KLEIN AND SIMMONS 

Klein and Simmons (1963) describe a method directed 
primarily towards the task of initial categorial tagging 
rather than disambiguation. Its primary goal is avoiding 
"the labor of constructing a very large dictionary" 
(p. 335); a consideration of greater import then than 
n o w .  

The Klein and Simmons algorithm uses a palette of 
30 categories, and claims an accuracy of 90% in tagging. 
The algorithm first seeks each word in dictionaries of 
about 400 function words, and of about 1500 words 
which "are exceptions to the computational rules used" 
(p. 339). The program then checks for suffixes and 
special characters as clues. 

Last of all, context frame tests are applied. These 
work on scopes bounded by unambiguous words, as do 
later algorithms. However, Klein and Simmons impose 
an explicit limit of three ambiguous words in a row. For 
each such span of ambiguous words, the pair of unam- 
biguous categories bounding it is mapped into a list. The 
list includes all known sequences of tags occurring 
between the particular bounding tags; all such se- 
quences of the correct length become candidates. The 
program then matches the candidate sequences against 
the ambiguities remaining from earlier steps of the 
algorithm. When only one sequence is possible, disam- 
biguation is successful. 

The samples used for calibration and testing were 
limited. First, Klein and Simmons (1963) performed 
"hand analysis of a sample [size unspecified] of Golden 

Book Encyclopedia text" (p. 342). Later, "[w]hen it 
was run on several pages from that encyclopedia, it 
correctly and unambiguously tagged slightly over 90% 
of the words" (p. 344). Further tests were run on small 
samples from the Encyclopedia Americana and from 
Scientific American. 

Klein and Simmons (1963) assert that "[o]riginal 
fears that sequences of four or more unidentified parts 
of speech would occur with great frequency were not 
substantiated in fact" (p. 3). This felicity, however, is 
an artifact. First, the relatively small set of categories 
reduces ambiguity. Second, a larger sample would 
reveal both (a) low-frequency ambiguities and (b) many 
long spans, as discussed below. 

1.2 GREENE AND RUBIN (TAGGIT) 

Greene and Rubin (1971) developed TAGGIT for tag- 
ging the Brown Corpus. The palette of 86 tags that 
TAGGIT uses has, with some modifications, also been 
used in both CLAWS and VOLSUNGA. The rationale 
underlying the choice of tags is described on pages 3-21 
of Greene and Rubin (1971). Francis and Kucera (1982) 
report that this algorithm correctly tagged approxi- 
mately 77% of the million words in the Brown Corpus 
(the tagging was then completed by human post-edi- 
tors). Although this accuracy is substantially lower than 
that reported by Klein and Simmons, it should be 
remembered that Greene and Rubin were the first to 
attempt so large and varied a sample. 

TAGGIT divides the task of category assignment into 
initial (potentially ambiguous) tagging, and disambigua- 
tion. Tagging is carried out as follows: first, the program 
consults an exception dictionary of about 3,000 words. 
Among other items, this contains all known closed-class 
words. It then handles various special cases, such as 
words with initial "$" ,  contractions, special symbols, 
and capitalized words. The word's ending is then 
checked against a suffix list of about 450 strings. The 
lists were derived from lexicostatistics of the Brown 
Corpus. If TAGGIT has not assigned some tag(s) after 
these several steps, "the word is tagged NN, VB, or JJ 
[that is, as being three-ways ambiguous], in order t h a t  
the disambiguation routine may have something to work 
with" (Greene and Rubin (1971), p. 25). 

After tagging, TAGGIT applies a set of 3300 context 
frame rules. Each rule, when its context is satisfied, has 
the effect of deleting one or more candidates from the 
list of possible tags for one word. If the number of 
candidates is reduced to one, disambiguation is consid- 
ered successful subject to human post-editing. Each 
rule can include a scope of up to two unambiguous 
words on each side of the ambiguous word to which the 
rule is being applied. This constraint was determined as 
follows: 

In order to create the original inventory of Context 
Frame Tests, a 900-sentence subset of the Brown 
University Corpus was t agged . . ,  and its ambiguities 
were resolved manually; then a program was run 
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which produced and sorted all possible Context 
Frame Rules which would have been necessary to 
perform this disambiguation automatically. The rules 
generated were able to handle up to three consecu- 
tive ambiguous words preceded and followed by two 
non-ambiguous words [a constraint similar to Klein 
and Simmons']. However, upon examination of these 
rules, it was found that a sequence of two or three 
ambiguities rarely occurred more than once in a 
given context. Consequently, a decision was made to 
examine only one ambiguity at a time with up to two 
unambiguously tagged words on either side. The first 
rules created were the results of informed intuition 
(Greene and Rubin (1972), p. 32). 

1.3 CLAWS 

Marshall (1983, p. 139) describes the LOB Corpus 
tagging algorithm, later named CLAWS (Booth (1985)), 
as "similar to those employed in the TAGGIT 
program". The tag set used is very similar, but some- 
what larger, at about 130 tags. The dictionary used is 
derived from the tagged Brown Corpus, rather than 
from the untagged. It contains 7000 rather than 3000 
entries, and 700 rather than 450 suffixes. CLAWS treats 
plural, possessive, and hyphenated words as special 
cases for purposes of initial tagging. 

The LOB researchers began by using TAGGIT on 
parts of the LOB Corpus. They noticed that 

While less than 25% of TAGGIT's context frame 
rules are concerned with only the immediately pre- 
ceding or succeeding w o r d . . ,  these rules were ap- 
plied in about 80% of all attempts to apply rules. This 
relative overuse of minimally specified contexts in- 
dicated that exploitation of the relationship between 
successive tags, coupled with a mechanism that 
would be applied throughout a sequence of ambigu- 
ous words, would produce a more accurate and 
effective method of word disambiguation (Marshall 
(1983), p. 141). 
The main innovation of CLAWS is the use of a matrix 

of eolloeational probabilities, indicating the relative like- 
lihood of co-occurrence of all ordered pairs of tags. This 
matrix can be mechanically derived from any pre-tagged 
corpus. CLAWS used "[a] large proportion of the 
Brown Corpus", 200,000 words (Marshall (1983), pp. 
141, 150). 

The ambiguities contained within a span of ambigu- 
ous words define a precise number of complete sets of 
mappings from words to individual tags. Each such 
assignment of tags is called a path. Each path is com- 
posed of a number of tag collocations, and each such 
collocation has a probability which may be obtained 
from the collocation matrix. One may thus approximate 
each path's probability by the product of the probabil- 
ities of all its collocations. Each path corresponds to a 
unique assignment of tags to all words within a span. 
The paths constitute a span network, and the path of 

maximal probability may be taken to contain the "bes t"  
tags. 

Marshall (1983) states that CLAWS "calculates the 
most probable sequence of tags, and in the majority of 
cases the correct tag for each individual word corre- 
sponds to the associated tag in the most probable 
sequence of tags" (p. 142). But a more detailed exami- 
nation of the Pascal code for CLAWS revealed that 
CLAWS has a more complex definition of "most prob- 
able sequence" than one might expect. A probability 
called "SUMSUCCPROBS" is predicated of each 
word. SUMSUCCPROBS is calculated by looping 
through all tags for the words immediately preceding, 
at, and following a word; for each tag triple, an incre- 
ment is added, defined by: 

DownGrade(GetSucc(Tag2, Tag3), TagMark) * 
Get3SeqFactor(Tagl, Tag2, Tag3) 

GetSucc returns the collocational probability of a tag 
pair; Get3SeqFactor returns either 1, or a special value 
from the tag-triple list described below. DownGrade 
modifies the value of GetSucc in accordance with RTPs 
as described below. 

The CLAWS documentation describes SUMSUCC- 
PROBS as "the total value of all relationships between 
the tags associated with this word and the tags associ- 
ated with the next w o r d . . .  [found by] simulating all 
accesses to SUCCESSORS and ORDER2VALS which 
will be made . . . .  " The probability of each node of the 
span network (or rather, tree) is then calculated in the 
following way as a tree representing all paths through 
which the span network is built: 

PROB = DownGrade(GetSucc(lasttag, 
currenttag), TagMark) * 

Get3SeqFactor(. . .))  
PROB = PROB/(predecessor's 
SUMSUCCPROBS) * (predecessor's PROB) 

It appears that the goal is to make each tag's proba- 
bility be the summed probability of all paths passing 
through it. At the final word of a span, pointers are 
followed back up the chosen path, and tags are chosen 
en route. 

We will see below that a simpler definition of optimal 
path is possible; nevertheless, there are several advan- 
tages of this general approach over previous ones. 

First, spans of unlimited length can be handled 
(subject to machine resources). Although earlier re- 
searchers (Klein and Simmons, Greene and Rubin) have 
suggested that spans of length over 5 are rare enough to 
be of little concern, this is not the case. The number of 
spans of a given length is a function of that length and 
the corpus size; so long spans may be obtained merely 
by examining more text. The total numbers of spans in 
the Brown Corpus, for each length from 3 to 19, are: 
397111, 143447, 60224, 26515, 11409, 5128, 2161, 903, 
382, 161, 58, 29, 14, 6, 1, 0, I. Graphing the logarithms 
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of these quantities versus the span length for each, 
produces a near-perfect straight line. 

Second, a precise mathematical definition is possible 
for the fundamental idea of CLAWS. Whereas earlier 
efforts were based primarily on ad hoc or subjectively 
determined sets of rules and descriptions, and employed 
substantial exception dictionaries, this algorithm re- 
quires no human intervention for set-up; it is a system- 
atic process. 

Third, the algorithm is quantitative and analog, 
rather than artificially discrete. The various tests and 
frames employed by earlier algorithms enforced abso- 
lute constraints on particular tags or collocations of 
tags. Here relative probabilities are weighed, and a 
series of very likely assignments can make possible a 
particular, a priori unlikely assignment with which they 
are associated. 

In addition to collocational probabilities, CLAWS 
also takes into account one other empirical quantity: 

Tags associated with w o r d s . . ,  can be associated 
with a marker @ or %; @ indicates that the tag is 
infrequently the correct tag for the associated 
word(s) (less than 1 in 10 occasions), % indicates that 
it is highly improbable . . .  (less than I in 100 oc- 
casions) . . . .  The word disambiguation program cur- 
rently uses these markers top devalue transition 
matrix values when retrieving a value from the ma- 
trix, @ results in the value being halved, % in the 
value being divided by eight (Marshall (1983), p. 149). 
Thus, the independent probability of each possible 

tag for a given word influences the choice of an optimal 
path. Such probabilities will be referred to as Relative 
Tag Probabilities, or RTPs. 

Other features have been added to the basic algo- 
rithm. For example, a good deal of suffix analysis is 
used in initial tagging. Also, the program filters its 
output, considering itself to have failed if the optimal tag 
assignment for a span is not "more than 90% probable". 
In such cases it reorders tags rather than actually 
disambiguating. On long spans this criterion is effec- 
tively more stringent than on short spans. A more 
significant addition to the algorithm is that 

a number of tag triples associated with a scaling 
factor have been introduced which may either up- 
grade or downgrade values in the tree computed from 
the one-step matrix. For example, the triple [1] 'be' 
[2] adverb [3] past-tense-verb has been assigned a 
scaling factor which downgrades a sequence contain- 
ing this triple compared with a competing sequence 
of [1] 'be' [2] adverb [3]-past-participle/adjective, on 
the basis that after a form of 'be',  past participles and 
adjectives are more likely than a past tense verb 
(Marshall (1983), p. 146). 
A similar move was used near conjunctions, for 

which the words on either side, though separated, are 
more closely correlated to each other than either is to 
the conjunction itself (Marshall (1983), pp. 146-147). 
For example, a verb/noun ambiguity conjoined to a verb 

should probably be taken as a verb. Leech, Garside, 
and Atwell (1983, p. 23) describe " IDIOMTAG",  which 
is applied after initial tag assignment and before disam- 
biguation. It was 

developed as a means of dealing with idiosyncratic 
word sequences which would otherwise cause diffi- 
culty for the automatic tagging . . . .  for example, in 
order that is tagged as a single conjunction . . . .  The 
Idiom Tagging P rogram. . .  can look at any combi- 
nation of words and tags, with or without intervening 
words. It can delete tags, add tags, or change the 
probability of tags. Although this program might 
seem to be an ad hoc device, it is worth bearing in 
mind that any fully automatic language analysis sys- 
tem has to come to terms with problems of lexical 
idiosyncrasy. 
IDIOMTAG also accounts for the fact that the prob- 

ability of a verb being a past participle, and not simply 
past, is greater when the following word is " b y " ,  as 
opposed to other prepositions. Certain cases of this sort 
may be soluble by making the collocational matrix 
distinguish classes of ambiguities---this question is be- 
ing pursued. Approximately 1% of running text is 
tagged by IDIOMTAG (letter, G. N. Leech to Henry 
Kucera, June 7, 1985; letter, E. S. Atwell to Henry 
Kucera, June 20, 1985). 

Marshall notes the possibility of consulting a com- 
plete three-dimensional matrix of collocational proba- 
bilities. Such a matrix would map ordered triples of tags 
into the relative probability of occurrence of each such 
triple. Marshall points out that such a table would be too 
large for its probable usefulness. The author has pro- 
duced a table based upon more than 85% of the Brown 
Corpus; it occupies about 2 megabytes (uncompressed). 
Also, the mean number of examples per triple is very 
low, thus decreasing accuracy. 

CLAWS has been applied to the entire LOB Corpus 
with an accuracy of "between 96% and 97%" (Booth 
(1985), p. 29). Without the idiom list, the algorithm was 
94% accurate on a sample of 15,000 words (Marshall 
(1983)). Thus, the pre-processor tagging of 1% of all 
tokens resulted in a 3% change in accuracy; those 
particular assignments must therefore have had a sub- 
stantial effect upon their context, resulting in changes of 
two other words for every one explicitly tagged. 

But CLAWS is time- and storage-inefficient in the 
extreme, and in some cases a fallback algorithm is 
employed to prevent running out of memory, as was 
discovered by examining the Pascal program code. How 
often the fallback is employed is not known, nor is it 
known what effect its use has on overall accuracy. 

Since CLAWS calculates the probability of every 
path, it operates in time and space proportional to the 
product of all the degrees of ambiguity of the words in 
the span. Thus, the time is exponential (and hence 
Non-Polynomial) in the span length. For the longest 
span in the Brown Corpus, of length 18, the number of 
paths examined would be 1,492,992. 
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2 THE LINEAR-TIME ALGORITHM (VOLSUNGA) 

The algorithm described here depends on a similar 
empirically-derived transitional probability matrix to 
that of CLAWS, and has a similar definition of "optimal 
path". The tagset is larger than TAGGIT's, though 
smaller than CLAWS', containing 97 tags. The ultimate 
assignments of tags are much like those of CLAWS. 
However, it embodies several substantive changes. 
Those features that can be algorithmically defined have 
been used to the fullest extent. Other add-ons have been 
minimized. The major differences are outlined below. 

First, the optimal path is defined to be the one whose 
component collocations multiply out to the highest 
probability. The more complex definition applied by 
CLAWS, using the sum of all paths at each node of the 
network, is not used. 

Second, VOLSUNGA overcomes the Non-Polyno- 
mial complexity of CLAWS. Because of this change, it 
is never necessary to resort to a fallback algorithm, and 
the program is far smaller. Furthermore, testing the 
algorithm on extensive texts is not prohibitively costly. 

Third, VOLSUNGA implements Relative Tag Prob- 
abilities (RTPs) in a more quantitative manner, based 
upon counts from the Brown Corpus. Where CLAWS 
scales probabilities by 1/2 for RTP < 0.1 (i.e., where 
less than 10% of the tokens for an ambiguous word are 
in the category in question), and by 1/8 for p < 0.01, 
VOLSUNGA uses the RTP value itself as a factor in the 
equation which defines probability. 

Fourth, VOLSUNGA uses no tag triples and no 
idioms. Because of this, manually constructing special- 
case lists is not necessary. These methods are useful in 
certain cases, as the accuracy figures for CLAWS 
show; but the goal here was to measure the accuracy of 
a wholly algorithmic tagger on a standard corpus. 
Interestingly, if the introduction of idiom tagging were 
to make as much difference for VOLSUNGA as for 
CLAWS, we would have an accuracy of 99%. This 
would be an interesting extension. I believe that the 
reasons for VOLSUNGA's 96% accuracy without id- 
iom tagging are (a) the change in definition of "optimal 
path", and (b) the increased precision of RTPs. The 
difference in tag-set size may also be a factor; but most 
of the difficult cases are major class differences, such 
as noun versus verb, rather than the fine distinction 
which the CLAWS tag-set adds, such as several 
subtypes of proper noun. Ongoing research with VOL- 
SUNGA may shed more light on the interaction of these 
factors. 

Last, the current version of VOLSUNGA is designed 
for use with a complete dictionary (as is the case when 
working with a known corpus). Thus, unknown words 
are handled in a rudimentary fashion. This problem has 
been repeatedly solved via affix analysis, as mentioned 
above, and is not of substantial interest here. 

Computational Linguistics, Volume 14, Number 1, Winter 1988 

2.1 CHOICE OF THE OPTIMAL PATH 

Since the number of paths over a span is an exponential 
function of the span length, it may not be obvious how 
one can guarantee finding the best path, without exam- 
ining an exponential number of paths (namely all of 
them). The insight making fast discovery of the optimal 
path possible is the use of a Dynamic Programming 
solution (Dano (1975), Dreyfus and Law (1977)). 

The two key ideas of Dynamic Programming have 
been characterized as "first, the recognition that a given 
'whole problem' can be solved if the values of the best 
solutions of certain subproblems can be de te rmined . . . ;  
and secondly, the realization that if one starts at or near 
the end of the 'whole problem,' the subproblems are so 
simple as to have trivial solutions" (Dreyfus and Law 
(1977), p. 5). Dynamic Programming is closely related to 
the study of Graph Theory and of Network Optimiza- 
tion, and can lead to rapid solutions for otherwise 
intractable problems, given that those problems obey 
certain structural constraints. In this case, the con- 
straints are indeed obeyed, and a linear-time solution is 
available. 

Consider a span of length n = 5, with the words in the 
path denoted by v, w, x, y, z. Assume that v and z are 
the unambiguous bounding words, and that the other 
three words are each three ways ambiguous. Subscripts 
will index the various tags for each word: w~ will denote 
the first tag in the set of possible tags for word w. Every 
path must contain vl and zl, since v and z are unambig- 
uous. Now consider the partial spans beginning at v, 
and ending (respectively) at each of the four remaining 
words. The partial span network ending at w contains 
exactly three paths. One of these must be a portion of 
the optimal path for the entire span. So we save all 
three: one path to each tag under w. The probability of 
each path is the value found in the collocation matrix 
entry for its tag-pair, namely p(v,w i) for i ranging from 
one to three. 

Next, consider the three tags under word x. One of 
these tags must lie on the optimal path. Assume it is x~. 
Under this assumption, we have a complete span of 
length 3, for x is unambiguous. Only one of the paths to 
x I can be optimal. Therefore we can disambiguate v . . .  
w . . .  x~ under this assumption, namely, as MAX 
(p(v,wi)* p(wi,Xl) ) for all w i. 

Now, of course, the assumption that x~ is on the 
optimal path is unacceptable. However, the key to 
VOLSUNGA is to notice that by making three such 
independent assumptions, namely for x~, x 2, and x 3, we 
exhaust all possible optimal paths. Only a path which 
optimally leads to one of x's tags can be part of the 
optimal path. Thus, when examining the partial span 
network ending at word y, we need only consider three 
possibly optimal paths, namely those leading to xt, x2, 
and x 3, and how those three combine with the tags of y. 

At most one of those three paths can lie along the 
optimal path to each tag of y; so we have 32, or 9, 
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The AT 
man NN VB 
still NN VB RB 
saw NN VBD 
her PPO PP$ 

Table 2: Sample Ambiguities 

comparisons. But only three paths will survive, namely, 
the optimal path to each of the three tags under y. Each 
of those three is then considered as a potential path to z, 
and one is chosen. 

This reduces the algorithm from exponential com- 
plexity to linear. The number of paths retained at any 
stage is the same as the degree of ambiguity at that 
stage; and this value is bounded by a very small value 
established by independent facts about the English 
lexicon. No faster order of speed is po,;sible if each 
word is to be considered at all. 

2.2. PROCESSING A SAMPLE SPAN 

As an example, we will consider the process by which 
VOLSUNGA would tag "The man still saw her".  We 
will omit a few ambiguities, reducing the number of 
paths to 24 for ease of exposition. The tags for each 
word are shown in Table 2. The notation is fairly 
mnemonic, but it is worth clarifying that PPO indicates 
a n objective personal pronoun, and PP$ the possessive 
thereof, while VBD is a past-tense verb. 

Examples of the various collocational probabilities 
are illustrated in Table 3 (VOLSUNGA does not actu- 
ally consider any collocation truly impossible, so zeros 
are raised to a minimal non-zero value when loaded). 

The product of 1"2"3"2"2"I ambiguities gives 24 
paths through this span. In this case, a simple process of 
choosing the best successor for each word in order 
would produce the correct tagging (AT NN RB VBD 
PPO). But of course this is often not the case. 

Using VOLSUNGA's  method we would first stack 
" the" ,  with certainty for the tag AT (we will denote this 
by "p(the-AT) = CERTAIN)").  Next we stack "man" ,  
and look up the collocational probabilities of all tag 
pairs between the two words at the top of the stack. In 
this case they will be p(AT, NN) = 186, and p(AT, VB) 
= 1. We save the best (in this case only) path to each of 
man-NN and man-VB. It is sufficient to save a pointer 
to the tag of " t he "  which ends each of these paths, 

NN PPO PP$ RB VB VBD 
AT 186 0 0 8 1 8 9 
NN 40 1 3 40 9 66 186 
PPO 7 3 16 164 109 16 313 
PP$ 176 0 0 5 1 1 2 
RB 5 3 16 71 118 152 128 
VB 22 694 146 98 9 1 59 
VBD 11 584 143 160 2 1 91 

Table 3: Sample Collocational Probabilities 

making backward-linked lists (which, in this case, con- 
verge). 

Now we stack "still".  For each of its tags (NN, VB, 
and RB), we choose either the NN or the VB tag of 
"man"  as better, p(still-NN) is the best of: 

p(man-NN) *p(NN,NN) = 186 *40 = 744 
p(man-VB) *p(VB,NN) = 1 *22 = 22 

Thus, the best path to still-NN is AT NN NN. 
Similarly, we find that the best path to still-RB is AT 
NN RB, and the best path to still-VB is AT NN RB. 
This shows the (realistically) overwhelming effect of an 
article on disambiguating an immediately following 
noun/verb ambiguity. 

At this point, only the optimal path to each of the tags 
for "still" is saved. We then go on to match each of 
those paths with each of the tags for " saw" ,  discovering 
the optimal paths to saw-NN and to saw-VB. The next 
iteration reveals the optimal paths to her-PPO and 
her-PP$, and the final one picks the optimal path to the 
period, which this example treats as unambiguous. Now 
we have the best path between two certain tags 
(AT and .), and can merely pop the stack, following 
pointers to optimal predecessors to disambiguate the 
sequence. The period becomes the start of the next 
span. 

2.3 RELATIVE TAG PROBABILITIES 

Initial testing of the algorithm used only transitional 
probability information. RTPs had no effect upon 
choosing an optimal path. For example, in deciding 
whether to consider the word " t ime"  to be a noun or a 
verb, environments such as a preceding article or 
proper noun, or a following verb or pronoun, were the 
sole criteria. The fact that " t ime"  is almost always a 
noun (1901 instances in the Brown Corpus) rather than 
a verb (16 instances) was not considered. Accuracy 
averaged 92-93%, with a peak of 93.7%. 

There are clear examples for which the use of RTPs 
is important. One such case which arises in the Brown 
Corpus is "so  that".  " S o "  occurs 932 times as a 
qualifier (QL), 479 times as a subordinating conjunction 
(CS), and once as an interjection (UH). The standard 
tagging for "so that" is "CS CS",  but this is an 
extremely low-frequency collocation, lower than the 
alternative " U H  CS" (which is mainly limited to fic- 
tion). Barring strong contextual counter-evidence, " U H  
CS" is the preferred assignment if RTP information is 
not used. By weighing the RTPs for " s o " ,  however, the 
" U H "  assignment can be avoided. 

The LOB Corpus would (via idiom tagging) use "CS 
CS" in this case, employing a special "ditto tag" to 
indicate that two separate orthographic words consti- 
tute (at least for tagging purposes) a single syntactic 
word. Another example would be "so  as to" ,  tagged 
'TO TO TO".  Blackwell comments that "it  was difficult 
to know where to draw the line in defining what 
constituted an idiom, and some such decisions seemed 
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to have been influenced by semantic factors. Nonethe- 
less, IDIOMTAG had played a significant part in in- 
creasing the accuracy of the Tagging Suite [i.e., 
C L A W S ] . . . "  (Blackwell (1985), p. 7). It may be better 
to treat this class of "idioms" as lexical items which 
happen to contain blanks; but RTPs permit correct 
tagging in some of these cases. 

The main difficulty in using RTPs is determining how 
heavily to weigh them relative to collocational informa- 
tion. At first, VOLSUNGA multiplied raw relative 
frequencies into the path probability calculations; but 
the ratios were so high in some cases as to totally 
swamp collocational data. Thus, normalization is re- 
quired. The present solution is a simple one; all ratios 
over a fixed limit are truncated to that limit. Implement- 
ing RTPs increased accuracy by approximately 4%, to 
the range 95-97%, with a peak of 97.5% on one small 
sample. Thus, about half of the residual errors were 
eliminated. It is likely that tuning the normalization 
would improve this figure slightly more. 

2.4 LEARNABILITY 

VOLSUNGA was not designed with psychological re- 
ality as a goal, though it has some plausible character- 
istics. We will consider a few of these briefly. This 
section should not be interpreted as more than sugges- 
tive. 

First, consider dictionary learning; the program cur- 
rently assumes that a full dictionary is available. This 
assumption is nearly true for mature language users, but 
humans have little trouble even with novel lexical items, 
and generally speak of "context"  when asked to de- 
scribe how they figure out such words. As Ryder and 
Walker (1982) note, the use of structural analysis based 
on contextual clues allows speakers to compute syntac- 
tic structures even for a text such as Jabberwocky, 
where lexical information is clearly insufficient. The 
immediate syntactic context severely restricts the likely 
choices for the grammatical category of each neologism. 

VOLSUNGA can perform much the same task via a 
minor modification, even if a suffix analysis fails. The 
most obvious solution is simply to assign all tags to the 
unknown word and find the optimal path through the 
containing span as usual. Since the algorithm is fast, this 
is not prohibitive. Better, one can assign only those tags 
with a non-minimal probability of being adjacent to the 
possible tags of neighboring words. Precisely calculat- 
ing the mean number of tags remaining under this 
approach is left as a question for further research, but 
the number is certainly very low. About 3900 of the 9409 
theoretically possible tag pairs occur in the Brown 
Corpus. Also, all tags marking closed classes (about 
two-thirds of all tags) may be eliminated from consid- 
eration. 

Also, since VOLSUNGA operates from left to right, 
it can always decide upon an optimum partial result, and 
can predict a set of probable successors. For these 
reasons, it is largely robust against ungrammaticality. 

Shannon (1951) performed experiments of a similar sort, 
asking human subjects to predict the next character of a 
partially presented sentence. The accuracy of their 
predictions increased with the length of the sentence 
fragment presented. 

The fact that VOLSUNGA requires a great deal of 
persistent memory for its dictionary, yet very little 
temporary space for processing, is appropriate. By 
contrast, the space requirements of CLAWS would 
overtax the short-term memory of any language user. 

Another advantage of VOLSUNGA is that it requires 
little inherent linguistic knowledge. Probabilities may be 
acquired simply through counting instances of colloca- 
tion. The results will increase in accuracy as more input 
text is seen. Previous algorithms, on the other hand, 
have included extensive manually generated lists of 
rules or exceptions. 

An obvious difference between VOLSUNGA and 
humans is that VOLSUNGA makes no use whatsoever 
of semantic information. No account is taken of the high 
probability that in a text about carpentry, " saw"  is 
more likely a noun than in other types of text. There 
may also be genre and topic-dependent influences upon 
the frequencies of various syntactic, and hence catego- 
rial, structures. Before such factors can be incorporated 
into VOLSUNGA, however, more complete dictionar- 
ies, including semantic information of at least a rudi- 
mentary kind, must be available. 

3 ACCURACY ANALYSIS: 

3.1 CALIBRATION 

VOLSUNGA requires a tagged corpus upon which to 
base its tables of probabilities. The calculation of tran- 
sitional probabilities is described by Marshall (1983). 
The entire Brown Corpus (modified by the expansion of 
contracted forms) was analyzed in order to produce the 
tables used in VOLSUNGA. A complete dictionary was 
therefore available when running the program on that 
same corpus. 

Since the statistics comprising the dictionary and 
probability matrix used by the program were derived 
from the same corpus analyzed, the results may be 
considered optimal. On the other hand, the Corpus is 
comprehensive enough so that use of other input text is 
unlikely to introduce statistically significant changes in 
the program's performance. This is especially true 
because many of the unknown words would be (a) 
capitalized proper names, for which tag assignment is 
trivial modulo a small percentage at sentence bound- 
aries, or (b) regular formations from existing words, 
which are readily identified by suffixes. Greene and 
Rubin (1971) note that their suffix list "consists mainly 
of Romance endings which are the source of continuing 
additions to the language" (p. 41). 

A natural relationship exists between the size of a 
dictionary, and the percentage of words in an average 
text which it accounts for. A complete table showing the 
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#Types Freq Limit 

1 69,971 
2 36,411 
3 28,852 
4 26,149 
5 23,237 
11 9,489 
135 683 
236 383 
408 229 
693 145 
1,120 96 
1,791 62 
2,854 39 
4,584 22 
8,478 I0 
16,683 4 
50,406 1 

Table 

#Tokens 

69,971 
106,382 
135,234 
161,383 
184,620 
255,503 
508,350 
558,024 
608,933 
660,149 
710,137 
760,838 
812,448 
862,357 
918,046 
965,382 
1,014,232 

%Tokens 

6.9 
10.5 
13.3 
15.9 
18.2 
25.2 
50.1 
55.0 
60.0 
65.1 
70.0 
75.0 
80.1 
85.0 
90.5 
95.2 
100.0 

4: Number of Tokens by Frequency 

relationship appears in Kucera and Francis (1967) pp. 
300-307. A few representative entries are shown in 
Table 4. The " # T y p e s "  column indicates how many 
vocabulary items occur at least "Freq Limit" times in 
the Corpus. The "#Tokens"  column shows how many 
tokens are accounted for by those types, and the 
"%Tokens"  column converts this number to a percent- 
age. (See also pp. 358-362 in the same volume for 
several related graphs.) 

3.2 OVERALL ACCURACY 

Table 5 lists the accuracy for each genre from the 
Brown Corpus. The total token count differs from Table 
4 due to inclusion of non-lexical tokens, such as punc- 
tuation. The figure shown deducts from the error count 

Genre 

A: Press Reportage 
B: Press Editorial 
C: Press Reviews 
D: Religion 
E: Skills/Hobbies 
F: Popular Lore 
G: Belles Lettres 
H: Miscellaneous 
J: Learned 
K: General Fiction 
L: Mystery/Detective 
M: Science Fiction 
N: Adventure/Western 
P: Romance/Love Story 
R: Humor 
Informative Prose Total 
Imaginative Prose Total 
Overall Total 

Size 

99,165 
60716 
39.832 
38.631 
81.659 

108.617 
169.789 
69.508 

179.927 
67.083 
56.090 
13.956 
67.673 
68,337 
20,990 

847,844 
294,129 

1,141,973 

Table 5: VOLSUNGA Tagging Accuracy 

% Accuracy 

96.36 
96.09 
96.12 
96.01 
95.34 
95.99 
96.35 
96.66 
96.38 
95.72 
95.47 
95.40 
95.58 
95.54 
95.55 
96.20 
95.57 
96.04 

those particular instances in which the Corpus tag 
indicates by an affix that the word is part of a headline, 
title, etc. Since the syntax of such structures is often 
deviant, such errors are less significant. The difference 
this makes ranges from 0.09% (Genre L), up to 0.64% 
(Genre A), with an unweighted mean of 0.31%. Detailed 
breakdowns of the particular errors made for each genre 
exist in machine-readable form. 

4 CONCLUSION 

The high degree of lexical category ambiguity in lan- 
guages such as English poses problems for parsing. 
Specifically, until the categories of individual words 
have been established, it is difficult to construct a 
unique and accurate syntactic structure. Therefore, a 
method for locally disambiguating lexical items has 
been developed. 

Early efforts to solve this problem relied upon large 
libraries of manually chosen context frame rules. More 
recently, however, work on the LOB Corpus of British 
English led to a more systematic algorithm based upon 
combinatorial statistics. This algorithm operates en- 
tirely from left to right, and has no inherent limit upon 
the number of consecutive ambiguities which may be 
processed. Its authors report an accuracy of 96-97%. 

However, CLAWS falls prey to other problems. 
First, the probabilistic system has been augmented in 
several ways, such as by pre-tagging of categorially 
troublesome "idioms" (this feature contributes 3% 
towards the total accuracy). Second, it was not based 
upon the most complete statistics available. Third, and 
perhaps most significant, it requires non-polynomially 
large time and space. 

The algorithm developed here, called VOLSUNGA, 
addresses these problems. First, the various additions 
to CLAWS (i.e., beyond the use of two-place probabil- 
ities and RTPs) have been deleted. Second, the program 
has been calibrated by reference to 100% instead of 20% 
of the Brown Corpus, and has been applied to the entire 
Corpus for testing. This is a particularly important test 
because the Brown Corpus provides a long-established 
standard against which accuracy can be measured. 
Third, the algorithm has been completely redesigned so 
that it establishes the optimal tag assignments in linear 
time, as opposed to exponential. 

Tests on the one million words of the Brown Corpus 
show an overall accuracy of approximately 96%, de- 
spite the non-use of auxiliary algorithms. Suggestions 
have been given for several possible modifications 
which might yield even higher accuracies. 

The accuracy and speed of VOLSUNGA make it 
suitable for use in pre-processing natural language input 
to parsers and other language understanding systems. 
Its systematicity makes it suitable also for work in 
computational studies of language learning. 
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