
A COMMON PARSING SCHEME FOR LEFT- AND

RIGHT=BRANCHING LANGUAGES

Paul T. Sato
Department of C o m p u t e r Science

North Central Col lege
Napervi l le , Il l inois 60566

This paper presents some results of an attempt to develop a common parsing scheme that works
systematically and realistically for typologically varied natural languages. The scheme is bottom-up, and
the parser scans the input text from left to right. However, unlike the standard LR(k) parser or Tomita's
extended LR(1) parser, the one presented in this paper is not a pushdown automaton based on
shift-reduce transition that uses a parsing table. Instead, it uses integrated data bases containing
information about phrase patterns and parse tree nodes, retrieval of which is triggered by features
contained in individual entries of the lexicon. Using this information, the parser assembles a parse tree
by attaching input words (and sometimes also partially assembled parse trees and tree fragments popped
from the stack) to empty nodes of the specified tree frame, until the entire parse tree is completed. This
scheme, which works effectively and realistically for both left-branching languages and right-branching
languages, is deterministic in that it does not use backtracking or parallel processing. In this system,
unlike in ATN or in LR(k), the grammatical sentences of a language are not determined by a set of
rewriting rules, but by a set of patterns in conjunction with procedures and the meta rules that govern
the system's operation.

This paper presents some results of an attempt to
develop a common parsing scheme that works system-
atically and realistically for typologically varied natural
languages. When this project was started in 1982, the
algorithm based on augmented transition networks
(ATNs) codified by Woods (1970, 1973) was not only
the most commonly used approach to parsing natural
languages in computer systems, but it was also the
achievement of computational linguistics which was
most influential to other branches of linguistics. For
example, researchers of psycholinguistics like Kaplan
(1972) and Wanner and Maratsos (1978) used ATN-
based parsers as simulation models of human language
processing. Bresnan (1978) used an ATN model, among
others, to test whether her version of transformational
grammar was "real is t ic" . Fodor ' s theory of "super-
s t ra tegy" Fodor (1979) was also strongly influenced by
the standard ATN algorithm. Indeed, as Berwick and
Weinberg (1982) contend, parsing efficiency or compu-
tational complexity by itself may not provide reliable
criteria for the evaluation of grammatical theories. It is
evident, however , that computers can be used as an

effective means of simulation in linguistics, as they have
proved to be in other branches of science.

Nevertheless, as a simulation model of the human
faculty of language processing, the standard ATN
mechanism has an intrinsic drawback: unless some ad
hoc, unrealistic, and efficiency-robbing operations are
added, or unless one comes up with a radically different
grammatical f ramework, it cannot be used to parse
left-branching languages like Japanese in which the
beginning of embedded clauses is not regularly marked.

One may try to cope with this problem by developing
a separate parsing algorithm for left-branching lan-
guages, leaving the ATN formalism to specialize in
right-branching languages like English. However , this
solution contradicts our intuition that the core of the
human faculty of language processing is universal.
Another possible alternative, an ATN-type parser
which processes left-branching language's sentences
backward from right to left, is also unrealistic. I f
computational linguistics is to provide a simulation
model for theoretical linguistics and psycholinguistics,
it must develop an alternative parsing scheme which can

Copyright 1988 by the Association for Computational Linguistics. Permission to copy without fee all or part of this material is granted provided
that the copies are not made for direct commercial advantage and the CL reference and this copyright notice are included on the first page. To
copy otherwise, or to republish, requires a fee and/or specific permission.

0362-613X/88/010020-30503.00

20 Computational Linguistics, Volume 14, Number I, Winter 1988

Paul T. Sato A Common Parsing Scheme for Left- and Right-Branching Languages

effectively and realistically process both left-branching
and right-branching languages. Even for purely practi-
cal purposes, such a scheme is desirable because it will
facilitate the development of machine translation sys-
tems which can handle languages with different typo-
logical characteristics.

Some limitations of ATN-based parsers for handling
left-branching languages are illustrated in section 1. The
rest of this paper describes and illustrates my alterna-
tive parsing scheme called Pattern Oriented Parser
(POP), which can be used for both left-branching and
right-branching languages. (POP is a descendant of its
early prototype called Pattern-Stack Parser, which was
introduced in Sato (1983a.)) A general outline of POP is
given in section 2, and its operation is illustrated in
section 3, using both English and Japanese examples.
Some characteristics of POP are highlighted in section
4, after which brief concluding remarks are made in
section 5.

The present version of POP is a syntactic analyzer,
and it does not take semantics into consideration.
However, the system could be readily augmented with
procedures that build up semantic interpretations along
with syntactic analysis. One such model was presented
in Sato (1983b).

1 LIMITATIONS OF ATN-BASED PARSERS

1.1 CASE ASSIGNMENT

One of the greatest obstacles faced when attempting to
develop an ATN-based parser for a language like Japa-
nese is the unpredictability caused by the relatively free
word order and by the left-branching subordinate
clauses which have no beginning-of-clause marker.

Indeed, Japanese word order is not completely free.
For example, modifiers always precede the modified,
and the verb complex (a verbal root plus one or more
ordered suffixes marking tense, aspect, modality, voice,
negativity, politeness level, question, etc.) is always
placed at the end of the sentence. Moreover, almost all
nouns and noun phrases occurring in Japanese sen-
tences have one or more suffixes marking case
relationships. 1

However, Japanese postnominal suffixes, by them-
selves, do not always provide all the necessary infor-
mation for case assignment. For example, the direct
object of a nonstative verb complex is marked by -o,
while the direct object of a stative verb complex is
usually marked by -ga, which also marks the subject.

Compare the two sentences in (1).

(1) a. Mary-wa John-ga nagusame-ta. 'As for Mary,
John consoled her.' (-wa = TOPIC, nagusame-
'console' <-STATIVE>),- ta = PAST)

b. Mary-wa John-ga wakar-ta. 'As for Mary, she
understood John.' (wakar- 'understand'
< + STATIVE>)

An ATN-based parser cannot positively identify the
functions of the two noun phrases of these sentences
until it processes the verb complex at the end of the
sentence.

Examples like (2) also illustrate how little can be
deduced from postnominal suffixes before the sentence-
final verb complex is processed.

(2) a. Mary-ga hon-o kaw-ta. 'Mary bought a book.'
(kaw- 'buy')

b. John-ga Mary-ni hon-o kaw-sase-ta. 'John made
Mary buy a book.' (-sase- = CAUSE)

c. Mary-ga John-ni hon-o kaw-sase-rare-ta. 'Mary
was made by John to buy a book.' (-rare- =
PASSIVE)

The agent of the embedded sentence is marked by -ni in
(2b), but by -ga in (2c).

The relatively free word order of Japanese further
complicates the situation, as in the six sentences listed
in (3) which are all grammatical and all mean "Mary was
made by John to buy a book", but each with different
noun phrases given prominence.

(3) a. Mary-ga John-ni hon-o kaw-sase-rare-ta. = (2c)
b. Mary-ga hon-o John-ni kaw-sase-rare-ta.
c. John-ni Mary-ga hon-o kaw-sase-rare-ta.
d. John-ni hon-o Mary-ga kaw-sase-rare-ta.
e. Hon-o Mary-ga John-ni kaw-sase-rare-ta.
f. Hon-o John-ni Mary-ga kaw-sase-rare-ta.

1.2 EMBEDDED SENTENCES

Embedded sentences in languages like Japanese pose
more serious problems because they do not normally
carry any sign to mark their beginning. As a result, the
beginning of a deeply embedded sentence can look
exactly like the beginning of a simple top-level sen-
tence, as illustrated in (4).

(4) a. Mary-ga sotugyoo-si-ta. 'Mary was graduated
(from school).' (sotugyoo-si- 'be graduated')

b. Mary-ga sotugyoo-si-ta kookoo-ga zensyoo-si-ta.
'The high school from which Mary was graduated
was burnt down.' (kookoo 'high school', zensyoo-
si- 'be burnt down')

c. Mary-ga sotugyoo-si-ta kookoo-ga zensyoo-si-ta
to iw-ru. 'It is reported that the high school from
which Mary was graduated was burnt down.'
(to = END-OF-QUOTE, iw- 'say', -ru = NON-
PAST)

d. Mary-ga sotugyoo-si-ta kookoo-ga zensyoo-si-ta
to iw-ru sirase-o uke-ta. '(I/we/you/he/she/they)
received news (which says) that the high school
from which Mary was graduated was burnt
down.' (sirase 'news', uke- 'receive')

e. Mary-ga sotugyoo-si-ta kookoo-ga zensyoo-si-ta
to iw-ru sirase-o uke-ta Cindy-ga nak-te i-ru.
'Cindy, who received news that the high school
from which Mary was graduated was burnt down,
is crying.' (nak-te i- 'be crying, be weeping')

Computational Linguistics, Volume 14, Number 1, Winter 1988 21

Paul T. Sato A Common Parsing Scheme for Left- and Right-Branching Languages

In order to process sentences listed in (4), the NP
network of an ATN-based parser must be expanded by
prefixing to it another state with two arcs leaving from
it: a PUSH SENTENCE arc that processes a relative
clause, and a JUMP arc that processes noun phrases
that do not include a relative clause.

However, as (4) illustrates, there is no systematic
way to determine which of the two arcs leaving the first
state of this expanded NP network should be taken
when the parser encounters the first word of the input.
The parser cannot predict the correct path until it has
completed processing the entire sentence or the entire
relative clause and has seen what followed it. Because
there is theoretically no limit to the number of levels of
relative clause embedding, the number of combinations
of possible arcs to be traversed is theoretically infinite.

2 OVERVIEW OF PATTERN ORIENTED PARSER (POP)

This section presents a quick overview of Pattern
Oriented Parser (POP), which I have developed in order
to cope with the kind of difficulties mentioned in the
previous section.

POP is a left-to-right, bottom-up parser consisting of
three data bases, a push-down STACK, a buffer, a
register, and a set of LISP programs collectively called
here the PROCESSOR that builds the parse tree of the
input sentence. The relationship of these components is
shown schematically in (5).

(5) Components of POP

(Data bases) (Buffer, stack, and register)

LEXICON. , , I N P U T BUFFER

S N P ~ R O C E S S O R ~ S T A C K

P H P " L N P REGISTER

The SNP (Sentence Pattern data base) contains a set
of parse tree frames, each of which is associated with
one class of verbs or verbal derivational suffixes and
includes information about the syntactic subcategoriza-
tion of the members of that class and information about
the thematic roles of their arguments. For example, the
SNP entry for a class of English verbs which includes
buy and sell looks like (6).

(6) (s (* v)
(AGNT (* NP < + H U M A N >)
(PTNT (* NP < - H U M A N >))

The PHP (Phrase Pattern data base) contains infor-
mation about the internal structure of noun phrases and
adverbial phrases and the procedures for building the
parse trees of such phrases. For example, (7) is an
English translation of the PHP entry for a Japanese
noun phrase which contains a relative clause. 2

(7) If the CWS is an NP and the TOS is an S, then
construct the following noun phrase and push it to
the STACK:

(NP (HEAD CWS)
(M O D (rep_emn TOS CWS)))

- CWS is the word or phrase on which the PROCES-
SOR is currently working.

- TOS is the word or phrase at the top of the
STACK.

- (rep_emn TOS X) means "pop the TOS and attach
X to its first matching empty node".

- Each non-empty NP node is given a new index
number when it is constructed.

Details of how (7) works will be illustrated in section 3.
The push-down STACK of POP stores partially as-

sembled parse trees and tree fragments, while LNP or
the "Last NP" REGISTER temporarily stores a copy
of the noun phrase most recently attached to a node in
the sentence tree. LNP is necessary to process a noun
phrase with a modifier that follows the head noun (e.g.,
English noun phrases which contain relative clauses).
The present version of POP for Japanese does not use
an LNP; however, it will prove useful when we try to
process parenthetical phrases. The INPUT BUFFER
stores the input sentence.

The three data bases of POP are stored on disk and
can be updated independently of each other and of the
PROCESSOR, while the buffer, the stack and the
register are created by the PROCESSOR each time it is
invoked.

The major program modules (functions) that consti-
tute the PROCESSOR and their hierarchical calling
paths are presented in (8), where the parameters are
enclosed in parentheses.

(8) Major Functions of the PROCESSOR

PARSE-SENTENCE (SENTENCE)
I

PARSE-WORD (WORD)
I I

ASSEMBLE-NP (CWS) ASSEMBLE-SENTENCE (CWS SNA)

CHECK-PHP (CWS) - called in different modules.

where CWS = the word or the phrase which the PROC-
ESSOR is currently working on

SNA = address of a sentence pattern stored in
the SNP

The PROCESSOR is activated when its top-level
function, PARSE-SENTENCE, is called with the input
sentence as its parameter. PARSE-SENTENCE then
creates the STACK, the INPUT BUFFER and the
LNP-REGISTER in the memory, puts the input sen-
tence into the INPUT BUFFER, and calls PARSE-
WORD. PARSE-WORD searches the LEXICON for an
entry which matches the first word in the INPUT
BUFFER and, when it is found, calls either ASSEM-
BLE-NP or ASSEMBLE-SENTENCE, depending on
the word type of the entry it finds in the LEXICON,
assembles a sub-tree, and pushes the result to the
STACK. After that, PARSE-WORD removes the first
word from the INPUT BUFFER and repeats the same

22 Computational Linguistics, Volume 14, Number 1, Winter 1988

Paul T. Sato A Common Parsing Scheme for Left- and Right-Branching Languages

process with the next word. In the course of assembling
sub-trees, ASSEMBLE-NP uses the PHP, and AS-
SEMBLE-SENTENCE uses the SNP and the PHP as
their data bases. This process continues until the IN-
PUT BUFFER contains only the end-of-sentence mark
(EOS), when PARSE-WORD returns control to
PARSE-SENTENCE, which pops the assembled sen-
tence from the STACK and sends it to the output
device, removes the stack, the buffer and the register
from memory, and exits successfully.

As shown in section 3, POP assembles a parse tree
primarily by attaching terminal elements (copies of
lexical entries) or tree fragments popped from the
STACK to the first matching empty node of the matrix
tree. All empty nodes of tree frames have an asterisk as
their first element, followed by various specifications
for matching requirements: (* ga (NP <+HUMAN>))
is an empty node for an NP which has a feature
specification < + H U M A N > and is flagged with ga. To
find the first matching empty node, the PROCESSOR
conducts a depth-first search for "*" followed by other
conditions, and when the first matching empty node is
found, it attaches the specified element to that node
using the LISP function UNION, thus preventing over-
lapping elements from being duplicated in the resultant
branch. After the attachment is completed, the asterisk
is removed from the node.

The use of the LNP REGISTER will be illustrated in
subsection 3.3.

3 OPERATION OF POP

This section illustrates the operation of POP more in
detail. Subsection 3.1 is a quick walk-through of the
overall operation using a simple yes~no-question in
English as an example, while subsection 3.2 illustrates
how POP handles the inherent problems of left-
branching languages discussed in section 1, using the
Japanese examples presented in that section. Then we
turn our attention to English again in subsection 3.3 and
illustrate POP's handling of English wh-questions and
relative clauses.

3.1 SIMPLE ENGLISH EXAMPLE

Our first example is (9).

(9) Did John buy a good book in Boston?

When PARSE-SENTENCE calls PARSE-WORD
and the latter finds did in the LEXICON, it makes a
copy of the matching lexical entry, (V < +PAST>), and
pushes it to the STACK. The next word that PARSE-
WORD finds in the INPUT BUFFER is John. There-
fore, PARSE-WORD searches the LEXICON and gets
a copy of the entry that matches this word, ("John"),
which is a noun. 3

Whenever PARSE-WORD encounters a noun, it
calls ASSEMBLE-NP with a copy of the lexical entry
as its argument. ASSEMBLE-NP assembles a new

Computational Linguistics, Volume 14, Number 1, Winter 1988

noun phrase (NP1 "John") , and then it calls CHECK-
PHP with the newly assembled NP1 as its argument.
CHECK-PHP then examines the PHP data base, and
returns NIL to ASSEMBLE-NP because it finds no
pattern that matches the string {<V, +PAST> NP}
(i.e., the TOS followed by the CWS). Because CHECK-
PHP failed to find any matching entry of the PHP,
ASSEMBLE-NP pushes NP1 to STACK without con-
ducting any further assembling operation, and returns
control to PARSE-WORD. The contents of the STACK
at this time are shown in (10).

(10) ((NP1 "John")
(<V, +PAST>))

PARSE-WORD then removes John from the INPUT
BUFFER, picks up buy there, searches the LEXICON,
and gets a copy of a matching entry. This is a verb. The
lexical entry of every verb or verbal derivational suffix
contains an SNA (the SNP address of the sentence
pattern associated with it). Therefore, ASSEMBLE-
SENTENCE retrieves a copy of the sentence pattern
from the address matching the verb's SNA and attaches
the verb's remaining lexical entry to its first empty V
node (i.e., the first node whose CAR is " * " and the
second member is "V") . It then removes the "*" from
that node. As mentioned in section 2, the SNP entry for
the class of verbs like buy and sell is (6). Therefore, by
attaching (V < " b u y " >) to the V node of its copy,
ASSEMBLE-SENTENCE constructs (11).

(11) (S (V < " b u y " >)
(AGNT (* NP < + H U M A N >)
(PTNT (* NP < - H U M A N >)))

After (I1) is assembled, ASSEMBLE-SENTENCE
pops the TOS, attaches it to the first empty node
matching its specifications and removes the asterisk at
the beginning of that node. The result is (12).

(12) (S (V < " b u y " >)
(AGNT (NP1 "John")
(PTNT (* NP < - H U M A N >)))

ASSEMBLE-SENTENCE pops TOS again. This
time, it is (<V, +PAST>). ASSEMBLE-SENTENCE
then examines the PHP and finds two entries (13) and
(14) whose conditions match the current state.

(13) If the element popped is a V and if it contains no
feature other than tense, number, and/or person,
attach it to the V node of the S tree which
ASSEMBLE-SENTENCE is currently building.

(14) If there is a tense feature in the element that is
popped immediately after the AGNT node (or the
OBJ node if the tree has no AGNT node) is
filled, attach feature < Q > (i.e., "question") to
the main verb of the matrix S.

ASSEMBLE-SENTENCE executes (13) and (14). The
result is (15).

23

Paul T. Sato A Common Parsing Scheme for Left- and Right-Branching Languages

(15) (S (V < " b u y " , +PAST, Q>)
(AGNT (NP1 "John")
(PTNT (* NP < - H U M A N >)))

The STACK is now empty. Therefore, ASSEMBLE-
SENTENCE pushes (15) to the STACK and returns
control to PARSE-WORD.

PARSE-WORD removes buy from the INPUT
BUFFER, encounters the indefinite article a, gets a
copy of the matching lexical entry (DET <-DEF>) from
the LEXICON, and pushes it to the STACK. The next
word that PARSE-WORD sees is good. So a copy of its
matching lexical entry (ADJ "good") is pushed to the
STACK and good is removed from the INPUT
BUFFER.

PARSE-WORD then finds .book in the INPUT
BUFFER. Because it is a noun, PARSE-WORD calls
ASSEMBLE-NP, which assembles a single-word NP
and routinely calls CHECK-PHP. This time, CHECK-
PHP finds (16) in the PHP.

(16) If the CWS is an NP and if the TOS is an ADJ,
assemble:

(NP (HEAD CWS)
(MOD (pop TOS)))

At this time, the TOS is (ADJ "good"). Therefore,
ASSEMBLE-NP pops it and assembles a new noun
phrase in accordance with (16) and calls CHECK-PHP
again. The new TOS is (DET < - D E F >) . CHECK-PHP
finds (17) in the PHP which matches this situation.

(17) If the CWS is an NP and if the TOS is a DET,
assemble:

(NP (HEAD CWS)
(pop TOS))

ASSEMBLE-NP executes (17). The result is (18).

(18) (NP4 (HEAD (NP3 (HEAD (NP2 "book"))
(MOD(ADJ "good")))

(DET < - D E F >))

Because (18) is an NP, ASSEMBLE-NP calls CHECK-
PHP again. This time, the TOS is (15), which is an S
tree. CHECK-PHP finds a matching entry in the PHP
again, which is (19).

(19) If CWS = NP and TOS = S, pop the TOS and
attach the CWS to its first matching empty node.

What is involved here is the assembly of an S, which is
outside the domain of ASSEMBLE-NP's responsibility.
Therefore, before popping the S from the STACK,
ASSEMBLE-NP returns the symbol " A S " to PARSE-
WORD. PARSE-WORD then calls ASSEMBLE-SEN-
TENCE substituting (18) for the parameter CWS and
"TOS" for the parameter SNA. ASSEMBLE-SEN-
TENCE then builds (20) in the manner explained ear-
lier. The STACK is now empty, and there is no match-

24

ing PHP entry. Therefore, ASSEMBLE-SENTENCE
pushes the newly assembled tree (20) to the STACK.

(20) (S (v <"buy", +PAST, Q>)
(AGNT (NP1 "John")
(PTNT (NP4 (HEAD (NP3 (HEAD (NP2 "book")

(MOD (ADJ "good"))))
(DET <-DEF>))))

The next thing PARSE-WORD sees in the INPUT
BUFFER is EOS (end-of-sentence symbol). Therefore,
it returns control to PARSE-SENTENCE, which pops
(20) from the STACK, and sends it to the output device.
Nothing is left in the STACK now. Therefore, PARSE-
SENTENCE removes the stack, the buffer and the
register from memory and exits successfully.

3.2 JAPANESE EXAMPLES

This section illustrates how POP handles the problems
of Japanese sentences discussed in section 1.

3.2.1 CASE MARKING IN SIMPLE SENTENCES

The first example in section 1 was (la), which is
repeated here in (21).

(21) Mary-wa John-ga nagusame-ta. 'As for Mary,
John consoled her.'
(-wa = TOPIC, nagusame- 'console'
<-STATIVE>),- ta = PAST)

POP processes Japanese sentences in basically the
same way as it processes English sentences. Therefore,
when PARSE-SENTENCE calls PARSE-WORD and
PARSE-WORD sees the first word, Mary-wa, PARSE-
WORD retrieves from the LEXICON a copy of the
entry which matches the stem of this word, and calls
ASSEMBLE-NP because Mary is a noun. ASSEM-
BLE-NP assembles (NP1 "Mary") , and places its suffix
-wa in front of the newly assembled NP as its flag. Then
CHECK-PHP is called, but it returns NIL because the
STACK is still empty. Therefore, ASSEMBLE-NP
pushes (wa (NP1 "Mary")) to the STACK. The second
word, John-ga, is processed in the same way, and (ga
(NP2 "John")) is also pushed to the STACK.

PARSE-WORD then encounters nagusame-ta and
identifies it as the verb "console" with a past tense
suffix. Therefore, PARSE-WORD retrieves a copy of
its SNP using the SNA included in the lexical entry, and
attaches the lexical entry of nagusame-ta to its empty V
node. The result is (22).

(22) (S (V <"console" , +PAST>)
(PTNT (* o (NP <+HUMAN>)))
(AGNT (* ga (NP <+HUMAN>))))

ASSEMBLE-SENTENCE then pops the TOS (ga (NP2
"John")) and attaches it to the first matching empty
node, namely, the AGNT node. The case flag ga, which
is no longer necessary, is removed.

The next TOS is (wa (NPI "Mary")) . As mentioned
in section 1, wa is a suffix that marks the sentence topic.
However, there is no sentence pattern stored in the

Computational Linguistics, Volume 14, Number 1, Winter 1988

Paul T. Sato A Common Parsing Scheme for Left- and Right-Branching Languages

SNP which includes a topic (TPIC) node. Instead, it is
created by the following instructions (23) retrieved from
the PHP.

(23) If the TOS has the flag wa:

a. Create a TPIC node which is directly dominated
by the topmost S node and attach a "copy"
(i.e., the category symbol and its index) of the
TOS to this node.

b. Attach the TOS to the first matching empty
node.

As is evident from (la, lb), the topic marker wa absorbs
both ga and o: i.e., the topicalized NP without any other
case flag can match both an NP node which is flagged
with o and an NP node which is flagged with ga.
Therefore, following (23b), (NP1 "Mary") is attached
to the first (and the only) empty node (PTNT) after (23a)
is executed. The result is (24), which is the correct parse
tree of (21).

(24) (S (V <"conso le" , +PAST>)
(PTNT (NP1 "Mary"))
(AGNT (NP2 "John"))
(TPIC (NP1)))

'As for MarYi, John consoled MarYi.'

Example (lb) is processed in the same way, produc-
ing the correct parse tree (25b), although both the PTNT
node and the AGNT node of the SNP pattern associated
with the stative verb wakar- 'understand' are flagged by
ga, as shown in (25a).

(25) a. SNP pattern associated with wakar-
"understand"
(S (* V)

(PTNT (* ga (NP))
(AGNT (* ga (NP < + H U M A N >)))

b. Parse tree of (2-1b) Mary-wa John-ga wakar-ta.
'As for Mary, she understood John.'
(S (V <"unders tand", +PAST>)

(PTNT (NP2 "John"))
(AGNT (NP1 "Mary"))
(TPIC (NP1)))

3.2.2 VERBAL DERIVATIONAL SUFFIX AND CASE MARKING

The next set of examples is (2), repeated here as (26).

(26) a. Mary-ga hon-o kaw-ta. 'Mary bought a book.'
(kaw- 'buy')

b. John-ga Mary-ni hon-o kaw-sase-ta. 'John made
Mary buy a book.' (-sase- = CAUSE)

c. Mary-ga John-ni hon-o kaw-sase-rare-ta. 'Mary
was made by John to buy a book.' (-rare- =
PASSIVE)

The SNP pattern associated with kaw- 'buy' is (27).

(27) (S (* V)
(PTNT (* o (NP)))
(AGNT (* ga (NP <+HUMAN>))))

Computational Linguistics, Volume 14, Number 1, Winter 1988

Therefore, the parsing of (26a) to get (28) is straightfor-
ward.

(28) (S (V < " b u y " , +PAST>)
(PTNT (NP2 "book"))
(AGNT (NP1 "Mary")))

The parsing of (26b) is a little more complex because
it involves causative suffix -sase-, to which is associated
another SNP pattern (29) (simplified here for the sake of
legibility).

(29) (S (V <CAUSE>)
(PTNT (* or (ni (NP = AGNT of SR))

(o (NP = OBJ or PTNT of Sk))))
(AGNT (* ga (NP < + H U M A N >)))
(ACTN (* Sk)))

where ACTN = action, Sk = embedded S.

When the PROCESSOR processing (26b) encounters
the verb kaw-sase-ta 'made to buy' , it first retrieves (27)
and attaches "buy" to its empty V node to construct the
tree frame (30).

(30) (S (V < " b u y " >)
(PTNT (* o (NP)))
(AGNT (* ga (NP <+HUMAN>))))

This tree is then incorporated into (29) to obtain the
complex tree frame (31). (There is a meta-rule that
removes the case flag of a node in the embedded
sentence if the node is co-indexed with a node in the
matrix sentence.)

(31) (S (V <CAUSE>)
(PTNT (* ni (NP i < + H U M A N >)))
(AGNT (* ga (NP < + H U M A N >)))
(ACTN (S (V < " b u y " >)

(PTNT (* o (NP)))
(AGNT (* NP i <+HUMAN>)))))

By the time the PROCESSOR encounters the verb
complex kaw-sase-ta 'caused to buy' and constructs the
complex tree frame (31), all three noun phrases of the
sentence have already been processed and stored in the
STACK, as shown in (32).

(32) ((o (NP3 "book"))
(ni (NP2 "Mary"))
(ga (NP1 "John")))

Therefore, when the tree frame (31) is completed,
ASSEMBLE-SENTENCE begins to pop elements from
the STACK and to attach them to empty nodes of the
tree. First, (o (NP3 "book")) is popped. The PTNT
node of the embedded sentence is the only empty node
that matches it, so the popped NP is attached there.
Next, (ni (NP2 "Mary")) is popped, which is attached
to the PTNT node of the matrix sentence and its copy is
attached to the co-indexed AGNT node of the embed-
ded sentence. Finally, (ga (NP1 "John")) is popped and

25

Paul T. Sato A Common Parsing Scheme for Left- and Right-Branching Languages

attached to the AGNT node of the matrix sentence. The
result is (33), which is the correct parse tree of (26b).

(33) (S (V <CAUSE, +PAST>)
(PTNT (NP2 "Mary"))
(AGNT (NP1 "John"))
(ACTN (S (V < " b u y " >)

(PTNT (NP3 "book"))
(AGNT (NP2)))))

'John made Mary buy a book.'

Example (26c) is a passive of (26b) with passive suffix
-rare-, with which is associated an SNP pattern (34)
(simplified here for the sake of legibility).

(34) (S (V <PASSIVE>)
(PTNT (ga (NP = OBJ or PTNT of Sk)))
(AGNT (ni (NP = AGNT of Sk)))
(ACTN (Sk)))

Therefore, before beginning to pop elements from the
STACK, ASSEMBLE-SENTENCE constructs the
complex tree frame (35) by incorporating (31) into (34).

(35) (S (V <PASSIVE, +PAST>)
(PTNT (ga (NP i <+HUMAN>)))
(AGNT (ni (NPj)))
(ACTN (S (V <CAUSE>)

(PTNT (NP i < +HUMAN>))
(AGNT (NPj < + H U M A N >))
(ACTN (S (V < " b u y " >)

(PTNT (o (NP)))
(AGNT (NP i
<+HUMAN>)))))))

At this stage, the contents of the STACK are the same
as (32). So when they are popped and attached to the
matching nodes according to the principle explained
above, we obtain the correct parse tree (36).

(36) (S (V <PASSIVE, +PAST>)
(PTNT (NP1 "Mary"))
(AGNT (NP2 "John"))
(ACTN (S (V <CAUSE>)

(PTNT (NP1))
(AGNT (NP2))
(ACTN (S (V < " b u y " >)

(PTNT (NP3 "book"))
(AGNT (NP1)))))))

'Mary was made by John to buy a book.'

3.2.3 RELATIVE CLAUSES

As mentioned in section 2, Japanese noun phrases
containing a relative clause are processed by the PHP
entry presented in (7), repeated here in (37).

(37) If the CWS is an NP and the TOS is an S, then
construct the following noun phrase and push it
to the STACK:

(NP (HEAD CWS)
(MOD (rep_emn TOS CWS)))

To illustrate how (37) works, we will trace the noun
phrase (38), which is included in all sentences cited in
(4b) through (4e).

(38) Mary-ga sotugyoo-si-ta kookoo-ga 'The high
school from which Mary was graduated'
(sotugyoo-si- 'be graduated', -ta = PAST, kookoo
'high school', -ga = case suffix)

The SNP pattern associated with sotugyoo-si- is (39).

(39)
(S (* V)

(AGNT (* ga (NP <+HUMAN>)))
(ABL (* o (NP <PLACE, DEF = "school">))))

where ABL = ablative and DEF = default.

Therefore, when the first two words of (38) are proc-
essed, (40) is assembled and pushed to the STACK.

(4O)
(S (V < " b e graduated", +PAST>)

(AGNT (NP1 "Mary"))
(ABL (* o (NP <PLACE, DEF = "school">))))

If the next item in the INPUT BUFFER were EOS (as
in (4a)), the system pops (40) and, finding that the
STACK is now empty, attaches the default value
"school" to the empty ABL node, and sends the result
to the output device. However, what follows the verb in
(38) is a noun. Therefore, ASSEMBLE-NP assembles
(ga (NP2 "high school")) and calls CHECK-PHP,
which finds (37) because the CWS is the noun phrase
just assembled and the TOS is (40).

In accordance with (37), (40) is popped from the
STACK, and a new noun phrase (41) is assembled and
pushed to the STACK.

(41) (ga (NP3 (HEAD (NP2 "high school"))
(MOD (S (V < " b e graduated", +PAST>)

(AGNT (NP1 "Mary"))
(ABE (NP2))))))

There is no backtracking involved here and, by
repeating the same process, POP can process nested
relative clauses like those cited in (4) from left to right,
without facing any combinatorial explosion.

3.3 WH-QUESTION AND RELATIVE CLAUSE IN ENGLISH

The ATN strategy for parsing wh-questions and relative
clauses in English attracted special attention of many
linguists, including Bresnan (1978) and Fodor (1979),
because it seemed to support the trace theory and the
theory of wh-movement transformation. Therefore, we
will conclude the illustration of POP by explaining how
it handles them.

3.3.1 WH-QUESTIONS

No special mechanism is necessary for processing En-
glish wh-questions like (42) by POP.

(42) a. Who praised John?

26 Computational Linguistics, Volume 14, Number 1, Winter 1988

Paul T. Sato A Common Parsing Scheme for Left- and Right-Branching Languages

b. Who did John praise?

The SNP pattern associated with the verb praise is (43).

(43) (S (* V)
(AGNT (* NP <+HUMAN>))
(PTNT (* NP <+HUMAN>)))

First, we will trace the parse of (42a). The first word,
who, is processed and the result, (NP1 <+HUMAN,
WH, Q>), is pushed to the STACK before the PROC-
ESSOR encounters praised and retrieves a copy of (43)
from the SNP. Then "praised" is attached to the empty
V node of the tree frame, and the TOS is popped and
attached to the first matching empty node. Since that
NP has the features <WH, Q>, and because the
STACK is now empty, thefeature < Q > is moved from
NP1 node to the V node. The result is (44).

(44) (S (V <"pra ise" , +PAST, Q>)
(AGNT (NP1 < + H U M A N , WH>)
(PTNT (* NP <+HUMAN>)))

Then, John is processed in the normal way, and it is
attached to the first (and the only) matching node
(PTNT), following the ordinary procedure illustrated in
section 3.1. The result is the correct parse tree (45).

(45) (S (V <"pra ise" , +PAST, Q>)
(AGNT (NP1 < + H U M A N , WH>)
(PTNT (NP2 "John")))

At first sight, parsing (42b) by POP may seem difficult
because the object is placed before the subject in this
sentence. However, POP processes the sentence using
auxiliary did as a clue, just as humans do. In the same
way as POP handled the first word of (42a), it processes
who in (42b) by assembling (NP1 <+HUMAN, WH,
Q>) and pushing it to the STACK. And in the same way
as it handled did in (9), POP assembles (V <+PAST>)
and pushes it on top of NPI, after which it processes
John and pushes (NP2 "John") to the STACK.

The system then encounters praise and retrieves (43)
from the SNP, pops (NP2 "John") from the STACK,
and attaches it to the first matching empty node, which
is the AGNT node. Next, (V <+PAST>) is popped,
and it is attached to the V node in accordance with (13).
Because (V <+PAST>) is an element that is popped
immediately after AGNT node is filled and because it
contains a tense feature, the feature < Q > is added to
this node in accordance with (14). The result is (46).

(46) (S (V <"pra ise" , +PAST, Q>)
(AGNT (NP2 "John"))
(PTNT (* NP <+HUMAN>)))

The TOS is now (NP1 < + H U M A N , WH, Q>), which
is popped and attached to the remaining matching node,
and its feature < Q > is moved to the V node. 4 The result
is the correct parse tree (47).

(47) (S (V <"pra ise" , +PAST, Q>)
(AGNT (NP2 "John"))
(PTNT (NP1 < + H U M A N , WH>)))

3.3.2 RELATIVE CLAUSE

As an example of English sentences which include
relative clauses, we will examine (18).

(48) Joan loves the brilliant linguist who the students
respect.

The first two words are processed and the partial tree
(49) is constructed in the usual way, and it is pushed to
the STACK.

(49) (S (V <" love" , -PA ST >)
(AGNT (NPI "Joan"))
(PTNT (* NP <+HUMAN>)))

The next three words (the, brilliant, linguist) are
processed in the ordinary way, and following the PHP
instructions cited in (16) and (17), they are assembled
into noun phrase (50) and attached to the empty PTNT
node of (4-41). The result is (51), and NP4 is the content
of the LNP REGISTER:

(50) (NP4 (HEAD (NP3 (HEAD (NP2 "linguist"))
(MOD (ADJ "brilliant"))

(DET <DEF>))))

(51) (S (V <"love", -PAST>)
(AGNT (NP1 "Joan"))
(PTNT (NP4 (HEAD (NP3 (HEAD (NP2 "linguist"))

(MOD (ADJ "brilliant"))
(DET <DEF>)))))

The next word (who) is read in. Its lexical entry includes
the feature <WH>, and the TOS is (51). Therefore,
CHECK-PHP finds (52) which matches these condi-
tions.

(52) If the CWS has a feature < W H > and if the TOS
is an S, then

(mark TOS)
and (setq CWS (list (copyi MARKED)

'<REL>))

where - (mark TOS) marks the constituent of the
TOS that is equal to the content of the
LNP REGISTER

- MARKED represents the constituent of
the TOS thus marked

- (copyi X) returns the category index of
X.

When (52) is applied, the CWS becomes (53), which is
pushed to the STACK.

(53) (NP4 <REL>)

The next two words, the and students, are processed,
and the result (54) is pushed to the STACK in accor-
dance with (17).

Computational Linguistics, Volume 14, Number 1, Winter 1988 27

Paul T. Sato A Common Parsing Scheme for Left- and Right-Branching Languages

(54) (NP6 (HEAD (NP5 "students"))
(DET < +DEF>))

The verb respect is encountered, the matching sentence
pattern is retrieved, and the verb is attached to its V
node. The result is (55).

(55) (S (V <" respec t " , - P A S T >)
(AGNT (* NP < + H U M A N >))
(PTNT (* NP)))

The TOS is popped and attached to the first matching
empty node. The result is (56).

(56) (S (V <" respec t " , - P A S T >)
(AGNT (NP6 (HEAD (NP5 "students"))

(DET < +DEF>)))
(PTNT (* NP)))

The next TOS = (53) is popped and attached to the
empty node of (56), hence (57).

(57) (S (V <" respec t " , - P A S T >)
(AGNT (NP6 (HEAD (NP5 "students"))

(DET < +DEF>)))
(PTNT (NP4 <REL>)))

CHECK-PHP is called again, which finds matching
entry (58).

(58) If the CWS contains < R E L > and the TOS
contains a marked NP, pop the TOS and replace
its marked NP with:

(NP (HEAD MARKED)
(MOD CWS))

Then remove the mark from MARKED and
remove feature < R E L > from the CWS.

Before (58) is applied, the CWS is (57) and the TOS is
(51) of which NP4 is marked in accordance with (52).
Following (58), therefore, the daughter of the PTNT
node of (51) is replaced by (59).

(59)
(NP7 (HEAD (NP4 (HEAD (NP3 (HEAD (NP2 "linguist"))

(MOD (ADJ "brilliant"))
(DET <DEF>)))

(MOD (S (V <"respect", -PAST>)
(AGNT (NP6 (HEAD (NP5 "students"))

(DET < +DEF>)))
(PTNT (NP4)))))

The result of this replacement is (60), and it is pushed to
the STACK.

(60)
(S (V <"love", -PAST>)

(AGNT (NPI "Joan"))
(PTNT (NP7 (HEAD (NP4 (HEAD (NP3 (HEAD (NP2 "linguist"))

(MOD (ADJ "brilliant"))
(DET <DEF>)))

(MOD (S (V <"respect", -PAST>)
(AGNT (NP6 (HEAD (NP5 "students"))

(DET <+DEF>)))
(PTNT (NP4)))))))

The next element found in the INPUT BUFFER is
EOS (end-of-sentence). So the PROCESSOR pops (60)
and sends it to the output device.

4 HIGHLIGHTS OF SOME CHARACTERISTICS OF P O P

4.1 VERBAL DERIVATIONAL SUFFIXES AND CASE
ASSIGNMENT

As illustrated in (2), the same postnominal suffixes mark
different relations in Japanese, depending on the verbal
derivational suffixes used in the verb complex. Tradi-
tional generative grammarians (like Kuno (1973)) tried
to explain this by means of a series of transformational
rules such as agentive ni attachment, equi-NP deletion,
Aux deletion, verb raising, subject marking, object
marking, and ga/ni conversion, which were applied
cyclically. This transformational approach is still widely
practiced by researchers of Japanese linguistics. How-
ever, as demonstrated by Sato (1983b), this is unsuitable
for application to parsing because many of the transfor-
mational rules involved here are non-reversible.

A relatively recent approach to this problem is to use
a set of rules like (61) which Kuroda (1976) calls
Canonical Surface Structure Filters and Miyagawa
(1980) calls Case Redundancy Rules.

(61) a. [NP ---] = = > [NP-ga ---]
b. [NP NP ---] = = > [NP-ga NP-o ---]
c. [NP NP NP ---] = = > [NP-ga NP-ni NP-o ---]

These rules are invoked after applying all transforma-
tional rules (Kuroda 1976) or all word formation rules
(Miyagawa 1980), and they attach suffixes to noun
phrases as specified in their output, without regard to
the functions of the phrases to which they are attached.
The selection of case suffixes and the order of their
appearance in the surface structure are determined
solely by the number of unmarked noun phrases in the
sentence. This approach would work well if Japanese
speakers always followed the "canonical word order".
However, the so-called canonical word order is not
always followed.

Contrary to the theories of Kuroda and Miyagawa
which treat Japanese case suffixes as if they were
useless appendages which have no syntactic role, POP
uses them as integral parts of the input data and, as a
result, it does not have to require the input sentences to
conform to the "canonical word order". As illustrated
in subsection 3.2.2, POP first constructs an expanded
sentence tree frame using the SNP patterns that match
the SNA's of the derivational suffixes. After this ex-
panded frame is completed, arguments are popped from
the STACK and attached to appropriate nodes in the
usual manner. Note that the flag specifications on the
tree frame are automatically adjusted in course of its
expansion, so no further adjustment resorting to the
"canonical word order" or scrambling is necessary.

28 Computational Linguistics, Volume 14, Number I, Winter 1988

Paul T. Sato A Common Parsing Scheme for Left- and Right-Branching Languages

4.2 EMBEDDED SENTENCES

As illustrated in subsection 3.2.3, POP handles Japa-
nese complex sentences with relative clauses without
facing combinatorial explosion. Especially noteworthy
is the similarity in the PHP instructions to assemble
noun phrases with relative clause in Japanese (37) and in
English (58), which are paraphrased in (62).

(62) PHP entries for assembling NP with a relative
clause
a. For Japanese = (37):

1. Pop the TOS (which is a sentence with an
empty NP node).

2. Attach a copy of the CWS (which is an NP)
to the first matching empty node of the
popped sentence tree.

3. Assemble a new NP tree with the CWS as
its HEAD and the sentence tree assembled
in step 2 as its MOD(ifier).

b. For English = (58):
1. Pop the TOS (which is a sentence with a

marked NP).
2. Assemble a new NP tree with the marked

NP of the sentence popped in step I as its
HEAD and the CWS (which is a sentence
tree containing an NP node co-indexed with
the marked NP according to (52)) as its
MOD.

The only major difference between the two is that in
Japanese (62a) the relative clause is in the STACK when
the head NP is encountered, while in English (62b) the
head NP is a branch of an S tree in the STACK when the
relative pronoun is encountered. This difference is a
natural consequence of the difference in word order
between the two languages (i.e., left-branching vs.
right-branching).

An important fact is that POP for Japanese does not
have to know in advance whether the sentence fragment
that it is processing is a matrix sentence like (4a) or an
embedded sentence like (4b) through (4e).

4.3 COMPARISON WITH MARCUS'S PARSIFAL

The reader may have wondered if there is any direct
relationship between POP and Marcus's PARSIFAL
Marcus (1980): both are bottom-up parsers, where at-
tachment can be made freely to any matching node in
the ACTIVE NODE STACK (Marcus) or the CWS
(POP). Therefore, a brief comparison of these two
systems may be in order.

When I heard about Marcus's work for the first time,
the development of POP was already well under way: its
basic algorithm was already completed and coding had
already started. Therefore, the similarity between PAR-
SIFAL and POP, if any, is only accidental. Moreover,
the basic philosophies of these two systems are differ-
ent. Marcus's goal was to build a "strictly determinis-
tic" parser for natural language; mine was to build a

parser that can handle not only right-branching sen-
tences but also left-branching sentences naturally and
without facing a combinatorial explosion. POP does not
have any back-tracking or parallel parsing mechanism,
but the lack of such mechanism was a consequence of
the parser's algorithm and not an intended goal.

In fact, the only significant similarity between PAR-
SIFAL and POP is between the former's pattern/action
rules and the latter's PHP entries. The latter can be
rewritten using the format of the former. However, the
similarity ends here. PARSIFAL's rules are partially
ordered by a priority scheme; POP's PHP entries are
not ordered nor do they have priority over any other
entries in the PHP. In PARSIFAL, a grammar rule
activates a packet by attaching it to the constituent at
the bottom of the ACTIVE NODE STACK, and the
packet of rules remains attached to the node even after
the node is pushed up. 6 Such rules remain dormant until
the node to which they are attached comes at the
bottom of the ACTIVE NODE STACK again. On the
other hand, POP's PHP pattern does not remain with
any node after a phrase tree (or an S tree) is assembled
and pushed to the STACK. A copy of PHP pattern is
retrieved from the data base each time it becomes
necessary. This strategy saves the memory space in the
STACK, although it requires a longer processing time.

POP lacks one of PARSIFAL's most significant
characteristics: the distinction between the ACTIVE
NODE STACK and the BUFFER. POP also distin-
guishes the place where trees are actually constructed
(which I informally call here the "work space") and the
place where the results are stored (i.e., the STACK).
However, the similarity again ends here. POP's "work
space" is neither a stack nor a buffer, but a machine-
dependent temporary memory space where the program
(ASSEMBLE-NP, ASSEMBLE-SENTENCE, etc.) re-
trieves and manipulates partial trees popped from the
STACK or lexical entries copied from the LEXICON.
Unlike PARSIFAL's ACTIVE NODE STACK, POP's
"work space" cannot store any partially completed tree
which is not "active". Such inactive partial trees are
stored in the STACK.

PARSIFAL's BUFFER is primarily a facility for
"look-ahead". Therefore, it contains unprocessed input
words as well as phrase trees with no empty node. It
contains no phrase tree which has empty nodes, be-
cause such trees are stored in the ACTIVE NODE
STACK. In contrast, the primary purpose of POP's
STACK is to store tree fragments and tree frames. It is
not a "look-ahead" facility and therefore does not
contain any unprocessed input word. When POP's
PROCESSOR looks at an input word, it must process it
immediately.

POP can process sentences like (4) without back-
tracking or any look-ahead mechanism, while such
sentences would remain "garden path sentences" for
Marcus's parser even with its limited look-ahead mech-
anism.

Computational Linguistics, Volume 14, Number 1, Winter 1988 29

Paul T. Sato A Common Parsing Scheme for Left- and Right-Branching Languages

5 CONCLUSION

POP as p re sen t ed in this paper is still in its evolv ing
stage, and it needs fu r the r r e f inement . Fo r example , we
could inc lude in the c o m m o n POP core such me ta rules
as " a t t a c h fea ture < A N I M A T E > to A G N T n o d e " . As
suggested in sec t ion 1, we could also augmen t POP with

p rocedures to bu i ld seman t i c in te rpre ta t ions a long with
syntac t ic ana lys is . Such r e f inemen t s and i m p r o v e m e n t s
will con t inue .

H o w e v e r , the bas ic l inguis t ic theory unde r ly ing my
scheme may not have to unde rgo a radical change in the
process . Acco rd ing to the theory unde r ly ing this work ,
it is no t a set of pa t t e rns or rewr i t ing rules that singly
de t e rmines the g rammat i ca l s en t ences of a language.
Rather , it is the pa t t e rns (SNP) in c o n j u n c t i o n with
p rocedures (PHP) and P O P ' s me ta rules that do so. In

tother words , this sy s t em poin ts the way to a slightly
/' d i f ferent v iew of g r a m m a r c o m p e t e n c e than a bas ica l ly

C h o m s k i a n one, in which one p rov ides a c o m p e t e n c e
g r a m m a r that incorpora te s p rocess ing while leaving
aside detai ls of pe r fo rmance .

REFERENCES

Berwick, Robert C. and Weinberg, Amy S. 1982 Parsing Efficiency,
Computational Complexity, and the Evaluation of Grammatical
Theories. Linguistic Inquiry 13(2): 165-191.

Bresnan, Joan W. 1978 A Realistic Transformational Grammar. In
Halle, Morris; Bresnan, Joan W.; and Miller, G. A., Eds.,
Linguistic Theory and Psychological Reality. MIT Press, Cam-
bridge, Massachusetts: 1-59.

Fillmore, Charles J. 1968 The Case for Case. In Bach, E. and Harms,
R.T., Eds., Universals in Linguistic Theory. Holt, Rinehart and
Winston, New York.

Fodor, Janet D. 1979 Superstrategy. In Cooper, William E. and
Walker, Edward C.T., Eds., Sentence Processing: Psycholinguis-
tic Studies Presented to Merrill Garrett. Lawrence Erlbaum,
Hillsdale, New Jersey: 249-279.

Kaplan, Ronald M. 1972 Augme.nted Transition Networks as Psycho-
logical Models of Sentence Comprehension. Artificial Intelligence
3:77-100.

Kuno, Susumu. 1973 The Structure of the Japanese Language. MIT
Press, Cambridge, Massachusetts.

Kuroda, S-Y. 1976 A lecture given to graduate students and faculty
members of the Linguistics Department of the University of
Massachusetts at Amherst.

Marcus, Mitchell P. 1980 A Theory of Syntactic Recognition for
Natural Language. MIT Press, Cambridge, Massachusetts.

Miyagawa, Shigeru. 1980 Complex Verbs and the Lexicon. Coyote
Papers, Vol. 1. University of Arizona, Tucson, Arizona. (Orig-
inally a Ph.D. dissertation, University of Arizona.)

Sato, Paul T. 1982 The Status of "Particles" and Its Typological
Implications. Papers in Japanese Linguistics 8:191-205.

Sato, Paul T. 1983a On-line Parsing Strategies for English and
Japanese. A panel presentation at AAS Symposium on Japanese
Language on the Computer, in San Francisco, California.

Sato, Paul T. 1983b Lexicalist vs. Tarnsformationalist Hypothesis on
Parsing Japanese Phrases with Complex Verbs. Presented at the
Linguistic Conference on East Asian Languages: Verb Phrases, in
Los Angeles, California. (Reprinted in Kim, Nam-Kil and Tiee,
Henry H., Eds. 1985 Studies in East Asian Linguistics. Depart-
ment of East Asian Languages and Cultures, University of South-
ern California, Los Angeles, California: 155-165.)

Tomita, Masaru. 1986 Efficient Parsing for Natural Language: A Fast
Algorithm for Practical Systems. Kluwer Academic Publishers,
Boston, Massachusetts.

Wanner, E. and Maratsos, M. 1978 An ATN Approach to Compre-
hension. In Halle, Morris; Bresnan, Joan W.; and Miller, G.A.,
Eds., Linguistic Theory and Psychological Reality. MIT Press,
Cambridge, Massachusetts: 119-161.

Woods, William A. 1970 Transition Network Grammar for Natural
Language Analysis. Communications of the ACM 13:591-606.

Woods, William A. 1973 An Experimental Parsing System for Tran-
sition Networks. In Rustin, R., Ed., Natural Language Process-
ing. Algorithmics Press, New York: I 11-154.

NOTES

1. These postnominal suffixes are usually called "particles", but see
Sato (1982).

2. For the sake of readability, I present all PHP entries cited in this
paper in their English translation.

3. "John" is an abbreviation of a bundle of features, <N,
+PROPER, +HUMAN, +MALE, -PLURAL >. For con-
venience' sake, such feature bundles are often rendered in this
paper by an English word enclosed in quotation marks.

4. In fact, this <Q> attachment does not add another <Q> to the V
node because there is already a <Q> there. Note that POP's
attachment function uses UNION.

5. As mentioned in section 2, POP always keeps a copy of the most
recently assembled NP in LNP REGISTER, or the "last (assem-
bled) NP register", although I have not indicated this each time it
occurred.

6. Marcus (1980) uses the phrase "associate with" instead of
"attach to" here. PARSIFAL's ACTIVE NODE STACK grows
downward.

30 Computational Linguistics, Volume 14, Number 1, Winter 1988

