
LARGE LEXICONS FOR NATURAL LANGUAGE PROCESSING:

UTILISING THE GRAMMAR CODING SYSTEM OF L D O C E

Bran Boguraev
University of Cambridge Computer Laboratory

Corn Exchange Street
Cambridge, CB2 3QG, England

and

Ted Briscoe
Department of Linguistics, University of Lancaster

Bailrigg, Lancaster LA1 4YT, England

This article focusses on the derivation of large lexicons for natural language processing. We describe the
development of a dictionary support environment linking a restructured version of the Longman
Dictionary of Contemporary English to natural language processing systems. The process of restruc-
turing the information in the machine readable version of the dictionary is discussed. The Longman
grammar code system is used to construct 'theory neutral' lexical entries. We demonstrate how such
lexical entries can be put to practical use by linking up the system described here with the experimental
PATR-II grammar development environment. Finally, we offer an evaluation of the utility of the
grammar coding system for use by automatic natural language parsing systems.

1 INTRODUCTION

The grammar coding system employed by the Longman
Dictionary of Contemporary English (henceforth
LDOCE) is the most comprehensive description of
grammatical properties of words to be found in any
published dictionary available in machine readable
form. This paper describes the extraction of this, and
other, information from LDOCE and discusses the
utility of the coding system for automated natural
language processing.

Recent developments in linguistics, and especially on
grammatical theory - - for example, Generalised Phrase
Structure Grammar (GPSG) (Gazdar et al., 1985), Lex-
ical Functional Grammar (LFG) (Kaplan and Bresnan,
1982) - - and on natural language parsing frameworks
for example, Functional Unification Grammar (FUG)
(Kay, 1984a), PATR-II (Shieber, 1984) - - make it
feasible to consider the implementation of efficient
systems for the syntactic analysis of substantial frag-
ments of natural language. These developments also
emphasise that if natural language processing systems
are to be able to handle the grammatical and semantic
idiosyncracies of individual lexical items elegantly and

efficiently, then the lexicon must be a central compo-
nent of the parsing system. Real-time parsing imposes
stringent requirements on a dictionary support environ-
ment; at the very least it must allow frequent and rapid
access to the information in the dictionary via the
dictionary head words. The research described below is
taking place in the context of three collaborative
projects (Boguraev, 1987; Russell et al., 1986; Phillips
and Thompson, 1986) to develop a general-purpose,
wide coverage morphological and syntactic analyser for
English. One motivation for our interest in machine
readable dictionaries is to attempt to provide a substan-
tial lexicon with lexical entries containing grammatical
information compatible with the grammatical frame-
work employed by the analyser.

The idea of using the machine readable source of a
published dictionary has occurred to a wide range of
researchers, for spelling correction, lexical analysis,
thesaurus construction, and machine translation, to
name but a few applications. Most of the work on
automated dictionaries has concentrated on extracting
lexical or other information, essentially by batch pro-
cessing (eg. Amsler, 1981 ; Walker and Amsler, 1986), or

Copyright 1987 by the Association for Computational Linguistics. Permission to copy without fee all or part of this material is granted provided
that the copies are not made for direct commercial advantage and the CL reference and this copyright notice are included on the first page. To
copy otherwise, or to republish, requires a fee and/or specific permission.

0362-613X/87/030203-218503.00

Computational Linguistics, Volume 13, Numbers 3-4, July-December 1987 203

Bran Boguraev and Ted Briscoe Large Lexicons for Natural Language Processing

on developing dictionary servers for office automation
systems (Kay, 1984b). Few established parsing systems
have substantial lexicons and even those which employ
very comprehensive grammars (eg. Robinson, 1982;
Bobrow, 1978) consult relatively small lexicons, typi-
cally generated by hand. Two exceptions to this gener-
alisation are the Linguistic String Project (Sager, 1981)
and the IBM CRITIQUE (formerly EPISTLE) Project
(Heidorn et al., 1982; Byrd, 1983); the former employs
a dictionary of approximately 10,000 words, most of
which are specialist medical terms, the latter has well
over 100,000 entries, gathered from machine readable
sources. In addition, there are a number of projects
under way to develop substantial lexicons from machine
readable sources (see Boguraev, 1986 for details). How-
ever, as yet few results have been published concerning
the utility of electronic versions of published dictionar-
ies as sources for such lexicons. In this paper we
provide an evaluation of the LDOCE grammar code
system from this perspective.

We chose to employ LDOCE as the machine read-
able source to aid the development of a substantial
lexicon because this dictionary has several properties
which make it uniquely appropriate for use as the core
knowledge base of a natural language processing sys-
tem. Most prominent among these are the rich gram-
matical subcategorisations of the 60,000 entries, the
large amount of information concerning phrasal verbs,
noun compounds and idioms, the individual subject,
collocational and semantic codes for the entries and the
consistent use of a controlled 'core' vocabulary in
defining the words throughout the dictionary. (Michiels
(1982) contains further description and discussion of
LDOCE.) In this paper we focus on the exploitation of
the LDOCE grammar coding system; Alshawi et al.
(1985) and Alshawi (1987) describe further research in
Cambridge utilising different types of information avail-
able in LDOCE.

The information available in the dictionary is both
very rich and diverse, but also typically only semi-
formalised, as it is intended for human, rather than
machine, interpetation. As a consequence the programs
we are developing, both to restructure and to exploit
this information, need to undergo constant revision as
they are being used. The system we describe is not
intended for off-line use, where one might attempt to
derive, completely automatically, a lexicon for natural
language analysis. Rather than trying to batch process
the electronic source, lexicon development from the
LDOCE tape is more incremental and interactive. Our
system is designed as an integral part of a larger
grammar (and lexicon) development environment,
where new lexical entries are automatically generated
from the on-line version of the dictionary, checked for
correctness and consistency and only then added to the
'final' lexicon.

The problem of utilising LDOCE in natural language
processing falls into two areas. Firstly, we must provide

an environment in which the machine readable source is
linked to the development environment in an appropri-
ate fashion and secondly, we must restructure the
information in the dictionary, using the development
environment, in such a way that natural language pro-
cessing systems are able to utilise it effectively. As an
example, we demonstrate how the LDOCE grammar
codes can be put to practical use by linking up the
system with the experimental PATR-II parsing system.
Finally, we offer an evaluation of the utility of the
LDOCE grammar coding system from the perspective
of natural language processing.

2 TIlE ACCESS ENVIRONMENT

There is a well recognised problem with providing
computational support for machine readable dictionar-
ies, in particular where issues of access are concerned.
On the one hand, dictionaries exhibit far too much
structure for conventional techniques for managing
'flat' text to apply to them. On the other hand, the
equally large amounts of free text in dictionary entries,
as well as the implicitly marked relationships commonly
used to encode linguistic information, makes a dictio-
nary difficult to represent as a structured database of a
standard, eg. relational, type. In addition, in order to
link the machine readable version of LDOCE to our
development environment, and eventually to our natu-
ral language processing systems, we need to provide
fast access from Lisp to data held in secondary storage.
Lisp is not particularly well suited for interfacing to
complex, structured objects, and it was not our inten-
tion to embark on a major effort involving the develop-
ment of a formal model of a dictionary (of the style
described in, eg., Tompa 1986); on the other hand a
method of access was clearly required, which was
flexible enough to support a range of applications in-
tending to make use of the LDOCE tape.

The requirement for having the dictionary entries in a
form convenient for symbolic manipulation from within
Lisp was furthermore augmented by the constraint that
all the information present in the typesetting tape should
be carried over to the on-line version of LDOCE, since
it is impossible to say in advance which records and
fields of an entry would, or would not, be of potential
use to a natural language processing program. Finally,
the complexity of the data structures stored on disc
should not be constrained in any way by the method of
access, as we do not have a very clear idea what form
the restructured dictionary may eventually take.

Given that we were targeting all envisaged access
routes from LDOCE to systems implemented in Lisp,
and since the natural data structure for Lisp is the
s-expression, we adopted the approach of converting
the tape source into a set of list structures, one per
entry. Our task was made possible by the fact that while
far from being a database in the accepted sense of the
word, the LDOCE typesetting tape is the only truly
computerised dictionary of English (Michiels, 1983).

204 Computational Linguistics, Volume 13, Numbers 3-4, July-December 1987

Bran Boguraev and Ted Briscoe Large Lexicons for Natural Language Processing

The logical structure of a dictionary entry is reflected on
the tape as a sequence of typed records (see Figure 1),
each with additional internal segmentation, where rec-
ords and fields correspond to separate units in an entry,
such as headword, pronunciation, grammar code, word
senses, and so forth.

(Record-type homograph
(Seq-number E-code I-code))

(Record-type headword (Serial-no Main-entry))
(Record-type pronunciation (Phonetic))
(Record-type variant (Spelling Pronunciation))
(Record-type part-of-speech (Category Inflection))
(Record-type grammar-code (G-code Label))
(Record-type def-code

(Seq-number G-code Subj-code Box-codes))
(Record-type entry-text

(Phrase Label Definition Examples X-ref))
(Record-type def-word (Basic-word Morphology

Homograph Word-sense))
(Record-type cross-reference (Type Pointers))
(Record-type word-sense (Def-code Def-text))

(Record-type Usage (Text X-ref))

Figure 1

The "lispification" of the typesetting tape was car-
fled out in a series of batch jobs, via a program written
in a general text editing facility. The need to carry out
the conversion without any loss of information meant
that special attention had to be paid to the large number
of non-printing characters which appear on the tape.
Most of these signal changes in the typographic appear-
ance of the printed dictionary, where crucial informa-
tion about the structure of an entry is represented by
changes of typeface and font size. All control characters
were translated into atoms of the form *AB, where A
and B correspond to the hexadecimal digits of the
ASCII character code. Information was thus preserved,
and readily available to any program which needed to
parse the implicit structure of a dictionary entry or field,
and the lispified source was made suitable for transport-
ing between different software configurations and oper-
ating systems. Figure 2 illustrates part of an entry as it
appears in the published dictionary, on the typesetting
tape and after lispification.

Note that as a result of the lispification, brackets
have been inserted at suitable points, both to delimit
entries and indicate their internal structure; in addition
characters special to Lisp have been appropriately
escaped. Thus an individual dictionary entry can now
be made available to a client program by a single call to
a generic read function, once the Lisp reader has been
properly positioned and 'aligned' with the beginning of

rivet 2 u 1 [TI;X9] to cause to fasten with RIVETst:...

2828980t<R0154300<rivet
28289902<02< <
28290005<v<
28290107<0100<TI;Xg<NAZV< H XS
28290208<to cause to fasten with
28290318<{*CA}RIVET{*CB){'46}s{*44}{*8A}:

((r ivet)
(1 R0154300 ! < r ivet)
(2 2 T < ! <)
(5v !<)
(7 100 I < T1 !; X9 ! < NAZV f < H---XS)
(8 tO cause to fas ten w i t h

*CA RIVET *CB *46 s * 4 4 *8A :))

Figure 2

the s-expression encoding the required entry. In the
lispified entry in Figure 2 the numbers at the head of
each sublist indicate the type of information stored in
each field within the overall entry. For example, " 5 " is
the part of speech field, and " 8 " is the word sense
definition.

The 60,000 or so complete entries of the processed
dictionary require of the order of 20 MBytes to store.
The problem of access, from Lisp, to the dictionary
entry s-expressions held on secondary storage cannot
be resolved by ad hoc solutions, such as sequential
scanning of files on disc or extracting subsets of such
files which will fit in main memory, as these are not
adequate as an efficient interface to a parser. (Exactly
the same problem would occur if our natural language
systems were implemented in Prolog, since the Prolog
'database facility' refers to the knowledge base that
Prolog maintains in main memory.) In principle, given
that the dictionary is now in a Lisp-readable format, a
powerful virtual memory system might be able to man-
age access to the internal Lisp structures resulting from
reading the entire dictionary; we have, however,
adopted an alternative solution as outlined below.

We have mounted LDOCE on-line under two dif-
ferent hardware configurations. In both cases the same
lispified form of the dictionary has been converted into
a random access file, paired together with an indexing
file from which the disc addresses of dictionary entries
for words and compounds can be computed.

A series of systems in Cambridge are implemented in
Lisp running under Unix TM. They all make use of an
efficient dictionary access system which services re-
quests for s-expression entries made by client pro-
grams. A dictionary access process is fired off, which
dynamically constructs a search tree and navigates
through it from a given homograph directly to the offset
in the lispified file from where all the associated infor-
mation can be retrieved. As Alshawi (1987) points out,
given that no situations were envisaged where the
information from the tape would be altered once in-
stalled in secondary storage, this simple and conven-

Computational Linguistics, Volume 13, Numbers 3-4, July-December 1987 205

Bran Boguraev and Ted Briscoe Large Lexicons for Natural Language Processing

tional access strategy is perfectly adequate. The use of
such standard database indexing techniques makes it
possible for an active dictionary process to be very
undemanding with respect to main memory utilisation.
For reasons of efficiency and flexibility of customisa-
tion, namely the use of LDOCE by different client
programs and from different Lisp and/or Prolog sys-
tems, the dictionary access system is implemented in
the programming language C and makes use of the
inter-process communication facilities provided by the
Unix operating system. To the Lisp programmer, the
creation of a dictionary process and subsequent re-
quests for information from the dictionary appear sim-
ply as Lisp function calls.

Most of the recent work with the dictionary, and in
particular the decompacting and analysis of the gram-
mar codes has been carried out in Interlisp-D on Xerox
1100 series workstations. The same lispified form of the
dictionary was used. Originally it was installed on a
single workstation and only available locally. Instead of
a separate process building a search tree, the access
method relies on a precompiled, multilevel indexing
structure which allows direct hashing into the on-line
source. In addition, the powerful Interlisp-D virtual
memory allows the access system to be significantly
enhanced by caching most of the working subset of the
dictionary at any given turn in main memory. It turns
out that for a single user workstation, specially tuned
for Lisp and operations optimised at the microcode
level for random file access and s-expression I/O, this
strategy offers remarkably good results.

More recently, a dictionary server, of the kind de-
scribed by Kay (1984b), was implemented and installed
as a background process on a Xerox workstation net-
worked together with the rest of the equipment dedi-
cated to natural language processing applications (Bo-
guraev et al., 1987). Again, the same lispified form of the
machine readable source of LDOCE was used. From
the point of view of providing a centralised service to
more than one client, efficiently over a packet switching
network, disc space on the server processor was not an
issue. This made it possible to construct a larger, but
more comprehensive, index for the dictionary, which
now allows the recovery of a word in guaranteed time
(typically less than a second).

The main access route into LDOCE for most of our
current applications is via the homograph fields (see
Figure 1). Options exist in the access software to
specify which particular homograph (or homographs)
for a lexical item is required. The early process of
lispification was designed to bring together in a single
group all dictionary entries corresponding not only to
different homographs, but also to lexicalised com-
pounds for which the argument word appears as the
head of the compound. Thus, the primary index for
blow allows access to two different verb homographs
(eg. b l o w 3) , two different noun homographs (eg. blow2),
10 compounds (eg. blow offand blow-by-blow), or all 14

of the dictionary entries (not necessarily to be found in
subsequent positions in the dictionary) related to blow.
While no application currently makes use of this facil-
ity, the motivation for such an approach to dictionary
access comes from envisaging a parser which will
operate on the basis of the on-line LDOCE; and any
serious parser must be able to recognise compounds
before it segments its input into separate words.

From the master LDOCE file, we have computed
alternative indexing information, which allows access
into the dictionary via different routes. In addition to
headwords, dictionary search through the pronuncia-
tion field is available; Carter (1987) has merged infor-
mation from the pronunciation and hyphenation fields,
creating an enhanced phonological representation
which allows access to entries by broad phonetic class
and syllable structure (Huttenlocher and Zue, 1983). In
addition, a fully flexible access system allows the re-
trieval of dictionary entries on the basis of constraints
specifying any combination of phonetic, lexical, syntac-
tic, and semantic information (Boguraev et al., 1987).
Independently, random selection of dictionary entries is
also provided to allow the testing of software on an
unbiased sample.

3 THE FORMAT OF THE GRAMMAR CODES

The lispified LDOCE file retains the broad structure of
the typesetting tape and divides each entry into a
number of fields - - head word, pronunciation, grammar
codes, definitions, examples, and so forth. However,
each of these fields requires further decoding and re-
structuring to provide client programs with easy access
to the information they require (see Calzolari (1984) for
further discussion). For this purpose the formatting
codes on the typesetting tape are crucial since they
provide clues to the correct structure of this informa-
tion. For example, word senses are largely defined in
terms of the 2000 word core vocabulary, however, in
some cases other words (themselves defined elsewhere
in terms of this vocabulary) are used. These words
always appear in small capitals and can therefore be
recognised because they will be preceded by a font
change control character. In Figure 1 above the defini-
tion of rivet as verb includes the noun definition of
"RIVET 1'', as signalled by the font change and the
numerical superscript which indicates that it is the first
(i.e. noun entry) homograph; additional notation exists
for word senses within homographs. On the typesetting
tape, font control characters are indicated by hexadeci-
mal numbers within curly brackets. In addition, there is
a further complication because this sense is used in the
plural and the plural morpheme must be removed before
RIVET can be associated with a dictionary entry.
However, the restructuring program can achieve this
because such morphology is always italicised, so the
program knows that, in the context of non-core vocab-
ulary items, the italic font control character signals the

206 Computational Linguistics, Volume 13, Numbers 3-4, July-December 1987

Bran Boguraev and Ted Briscoe Large Lexicons for Natural Language Processing

((pair)
(1 P0008800 < pair)
(21 <<)
(3 peER)

(7 200 < C9 I, esp !. *46 of < CD-- < J---Y)
(8 *45 a *44 2 things that are alike or of the same

kind !, and are usu !. used together : *46 a pair of
shoes T I a beautiful pair of legs *44 *63 compare
*CA COUPLE *CB *8B *45 b *44 2 playing cards of
the same value but of different *CA SUIT *CB *46
s *8A *44 (3) : *46 a pair of kings)

(7 300 < GC < < --S-U---Y)
(8 *45 a *44 2 people closely connected : *46 a pair

of dancers *45 b *CA COUPLE *CB *8B *44 (2)
(esp [. in the phr !. *45 the happy pair *44) *45 c
*46 sl *44 2 people closely connected who cause
annoyance or displeasure : *46 You!'re a fine pair
coming as late as this [[........)

(Word-sense (Number 2)
((Su b-deft nition

(Item a) (Label NIL}
(Deft nition 2 things that are alike or of the

same kind t, and are usually used together)
((Example NIL (a pair of shoes))

(Example NIL (a beautifu/ pair of legs)))
(Cross-reference
compare-with

(Ldoce-entry (Lexical COUPLE)
(Morphology NIL)
(Homograph-number 2)
(Word-sense-number NIL)))

(Sub-definition
(Item b) (Label NIL)
(Definition 2 playing cards of the same value

but of different
(Ldoce-entry (SUIT)

(Morphology s)
(Homograph-number 1)
(Word-sense-number 3))

((Exam pie NIL (a pair of kings))))))
(Word-sense (Number 3)

((Sub-definition
(Item a) (Label NIL)
(Definition 2 people closely connected)
((Example NIL (a pair of dancers))))

(Sub-definition
(Item b) (Label NIL)
(Definition

(Ldoce-entry (Lexical COUPLE)
(Morphology NIL)
(Homograph-number 2)
(Word-sense-number 2))

(Gloss:
especially in the phrase the happy pair)))

(Sub-definition
(Item c) (Label slang)
(Definition 2 people closely connected who

cause annoyance or displeasure)
((Example NIL

(You / 're a fine pair coming as late as this/))))))

Figure 3

occurrence of a morphological variant of a LDOCE
head entry.

A suite of programs to unscramble and restructure all
the fields in LDOCE entries has been written which is
capable of decoding all the fields except those providing
cross-reference and usage information for complete
homographs. Figure 3 illustrates a simple lexical entry

before and after the application of these programs. The
development of the restructuring programs was a non-
trivial task because the organisation of information on
the typesetting tape presupposes its visual presentation,
and the ability of human users to apply common sense,
utilise basic morphological knowledge, ignore minor
notational inconsistencies, and so forth. To provide a
test-bed for these programs we have implemented an
interactive dictionary browser capable of displaying the
restructured information in a variety of ways and rep-
resenting it in perspicuous and expanded form.

In what follows we will discuss the format of the
grammar codes in some detail as they are the focus of
the current paper, however, the reader should bear in
mind that they represent only one comparatively con-
strained field of an LDOCE entry and therefore, a small
proportion of the overall restructuring task. Figure 4
illustrates the grammar code field for the third word
sense of the verb believe as it appears in the published
dictionary, on the typesetting tape and after re-
structuring.

b e l i e v e v ... B [TSa,b;V3;X(to be)l, (to be)7]

(7 300 !< TSa l , b !; V3 !; X (*46 t o be
*44) 1 ! , (*46 t o be *44) 7 !<)

s e n s e - n o 3 head: TSa
head: T5b
head: V3
head: X1 r i g h t o p t i o n a l (t o be)
head: X7 r i g h t o p t i o n a l (t o be)

Figure 4

LDOCE provides considerably more syntactic infor-
mation than a traditional dictionary. The Longman
lexicographers have developed a grammar coding sys-
tem capable of representing in compact form a non-
trivial amount of information, usually to be found only
in large descriptive grammars of English (such as Quirk
et al., 1985). A grammar code describes a particular
pattern of behaviour of a word. Patterns are descriptive,
and are used to convey a range of information: eg.
distinctions between count and mass nouns (dog vs.
desire), predicative, postpositive and attributive adjec-
tives (asleep vs. elect vs. jokular), noun complementa-
tion (fondness, fact) and, most importantly, verb com-
plementation and valency.

Grammar codes typically contain a capital letter,
followed by a number and, occasionally, a small letter,
for example [T5a] or [V3]. The capital letters encode
information "about the way a word works in a sentence

Computational Linguistics, Volume 13, Numbers 3-4, July-December 1987 207

Bran Boguraev and Ted Briscoe Large Lexicons for Natural Language Processing

or about the position it can fill" (Procter, 1978: xxviii);
the numbers "give information about the way the rest of
a phrase or clause is made up in relation to the word
described" (ibid.). For example, " T " denotes a transi-
tive verb with one object, while " 5 " specifies that what
follows the verb must be a sentential complement
introduced by that. (The small letters, eg. " a " in the
case above, provide further information typically re-
lated to the status of various complementisers, adverbs
and prepositions in compound verb constructions: eg.
" a " indicates that the word that can be left out between
a verb and the following clause.) As another example,
"V3" introduces a verb followed by one NP object and
a verb form (V) which must be an infinitive with to (3).

In addition, codes can be qualified with words or
phrases which provide further information concerning
the linguistic context in which the described item is
likely, and able, to occur; for example [Dl(to)] or [L(to
be)l]. Sets of codes, separated by semicolons, are
associated with individual word senses in the lexical
entry for a particular item, as Figure 5 illustrates. These
sets are elided and abbreviated in the code field associ-
ated with the word sense to save space. Partial codes
sharing an initial letter can be separated by commas, for
example [T1,5a]. Word qualifiers relating to a complete
sequence of codes can occur at the end of a code field,
delimited by a colon, for example [T1 ;I0: (DOWN)].
Codes which are relevant to all the word senses in an
entry often occur in a separate field after the head word
and occasionally codes are elided from this field down
into code fields associated with each word sense as, for
example, in Figure 6. Decompacting and restructuring
grammar code entries into a format more suitable for
further automated analysis can be done with knowledge
of the syntax of the grammar code system and the
significance of punctuation and font changes. However,
discovering the syntax of the system is difficult since no
explicit description is available from Longman and the
code is geared more towards visual presentation than
formal precision; for example, words which qualify
codes, such as " to be" in Figure 4, appear in italics and
therefore, will be preceded by the font control character
*45. But sometimes the thin space control character *64
also appears; the insertion of this code is based solely
on visual criteria, rather than the informational struc-
ture of the dictionary. Similarly, choice of font can be
varied for reasons of appearance and occasionally in-

fee l I ~ 1 [T1,6] to get the knowledge of by touching with the
fingers: ... 2 [Wv6;T1] to experience (the touch or move-
ment of something): ... $ [LT] to experience (a condition
of the mind or body); be consciously: ... 4 [L1] to seem to
oneself to be: ... 5 [T1,5;V3] to believe, esp. for the moment
6 [LT] to give (a sensation): ... 7 [Wv6;I0] to (be able to)
experience sensations: ... 8 [Wv6;T1] to suffer because of
(a state or event): ... 9 [L9 (after,]or)] to search with the
fingers rather than with the eyes: ...

Figure 5.

see off v oA. IT1] 1 [(at)] to go to the airport, station, etc.,
with (someone who is beginning a trip): saw h/s)'r/end oH
at the bus #tat/on 2 to remain unharmed until (something or
someone dangerous) has ceased to be active; WITHSTAND:
They maw off $ enemy attacks within $ daye

Figure 6

formation normally associated with one field of an entry
is shifted into another to create a more compact or
elegant printed entry.

In addition to the 'noise' generated by the fact that
we are working with a typesetting tape geared to visual
presentation, rather than a database, there are errors
and inconsistencies in the use of the grammar code
system. Examples of errors, illustrated in Figure 7,
include the code for the noun promise which contains a
misplaced comma, that for the verb scream, in which a
colon delimiter occurs before the end of the field, and
that for the verb like where a grammatical label occurs
inside a code field.

p , o , - i . e , ... X [C(of),C3.S;
s c r e a m v ... 3 [T1,5; (OUT); I0]
l i k e v ... 2 [T3 ,4 ; ne9.]

Figure 7

In addition, inconsistencies occur in the application
of the code system by different lexicographers. For
example, when codes containing " to be" are elided
they mostly occur as illustrated in Figure 4 above.
However, sometimes this is represented as [L(to
be)l,9]. Presumably this kind of inconsistency arose
because one member of the team of lexicographers
realised that this form of elision saved more space.

This type of error and inconsistency arises because
grammatical codes are constructed by hand and no
automatic checking procedure is attempted (see Mi-
chiels, 1982, for further comment). One approach to this
problem is that taken by the ASCOT project (Akkerman
et al., 1985; Akkerman, 1986). In this project, a new
lexicon is being manually derived from LDOCE. The
coding system for the new lexicon is a slightly modified
and simplified version of the LDOCE scheme, without
any loss of generalisation and expressive power. More
importantly, the assignment of codes for problematic or
erroneously labelled words is being corrected in an
attempt to make the resulting lexicon more appropriate
for automated analysis. In the medium term this ap-
proach, though time consuming, will be of some utility
for producing more reliable lexicons for natural lan-
guage processing.

208 Computat ional Linguistics, Vo lume 13, Numbers 3-4, Ju ly-December 1987

Bran Boguraev and Ted Briscoe Large Lexicons for Natural Language Processing

However, in the short term, the necessity to cope
with such errors provides much of the motivation for
our interactive approach to lexicon development, since
this allows the restructuring programs to be progres-
sively refined as these problems emerge. Any attempt at
batch processing without extensive initial testing of this
kind would inevitably result in an incomplete and pos-
sibly inaccurate lexicon.

4 THE CONTENT OF THE GRAMMAR CODES

Once the grammar codes have been restructured, it still
remains to be shown that the information they encode is
going to be of some utility for natural language process-
ing. The grammar code system used in LDOCE is based
quite closely on the descriptive grammatical framework
of Quirk et al. (1972, 1985). The codes are doubly
articulated; capital letters represent the grammatical
relations which hold between a verb and its arguments
and numbers represent subcategorisation frames which
a verb can appear in. Most of the subcategorisation
frames are specified by syntactic category, but some are
very ill-specified; for instance, 9 is defined as "needs a
descriptive word or phrase". In practice many adver-
bial and predicative complements will satisfy this code,
when attached to a verb; for example, put [xg] where
the code marks a locative adverbial prepositional phrase
vs. make under sense 14 (hereafter written make(14)) is
coded IX9] where it marks a predicative noun phrase or
prepositional phrase.

The criteria for assignment of capital letters to verbs
is not made explicit, but is influenced by the syntactic
and semantic relations which hold between the verb and
its arguments; for example, I5, L5 and T5 can all be
assigned to verbs which take a NP subject and a
sentential complement, but L5 will only be assigned if
there is a fairly close semantic link between the two
arguments and T5 will be used in preference to I5 if the
verb is felt to be semantically two place rather than one
place, such as know versus appear. On the other hand,
both believe and promise are assigned V3 which means
they take a NP object and infinitival complement, yet
there is a similar semantic distinction to be made
between the two verbs; so the criteria for the assign-
ment of the V code seem to be purely syntactic.
Michiels (1982) and Akkerman et al. (1985) provide a
more detailed analysis of the information encoded by
the LDOCE grammar codes and discuss their efficacy as
a system of linguistic description. Ingria (1984) compre-
hensively compares different approaches to comple-
mentation within grammatical theory providing a touch-
stone against which the LDOCE scheme can be
evaluated.

Most automated parsing systems employ grammars
which carefully distinguish syntactic and semantic in-
formation, therefore, if the information provided by the
Longman grammar code system is to be of use, we need
to be able to separate out this information and map it

into a representation scheme compatible with the type
of lexicon used by such parsing systems.

The program which transforms the LDOCE grammar
codes into lexical entries utilisable by a parser takes as
input the decompacted codes and produces a relatively
theory neutral representation of the lexical entry for a
particular word, in the sense that this representation
could be further transformed into a format suitable for
most current parsing systems. For example, if the input
were the third sense of believe, as in Figure 4, the
program would generate the (partial) entry shown in
Figure 8 below. The four parts correspond to different
syntactic realisations of the third sense of the verb
believe. Takes indicates the syntactic category of the
subject and complements required for a particular rea-
lisation. Type indicates aspects of logical semantics
discussed below.

((Takes NP SBar) (Type 2))

((Takes NP NP Inf) (Type 2 Ogaisin8))

(or ((Takes NP NP NP) (Type 2 Ogaisin8))
((Takes NP NP AuxInf) (Type 2 ORaising)))

(or ((Takes NP NP AP) (Type 20Raising))
((Takes NP NP AuxInf) (Type 20Raislng)))

Figure 8

At the time of writing, rules for producing adequate
entries to drive a parsing system have only been devel-
oped for verb codes. In what follows we will describe
the overall transformation strategy and the particular
rules we have developed for the verb codes. Extending
the system to handle nouns, adjectives and adverbs
would present no problems of principle. However, the
LDOCE coding of verbs is more comprehensive than
elsewhere, so verbs are the obvious place to start in an
evaluation of the usefulness of the coding system. No
attempt has been made to map any closed class entries
from LDOCE, as a 3,000 word lexicon containing most
closed class items has been developed independently by
one of the groups collaborating with us to develop the
general purpose morphological and syntactic analyser
(see the Introduction and Russell et al., 1986).

Initially the transformation of the LDOCE codes was
performed on a code-by-code basis, within a code field
associated with each individual word sense. This ap-
proach is adequate if all that is required is an indication
of the subcategorisation frames relevant to any partic-
ular sense. In the main, the code numbers determine a
unique subcategorisation. Thus the entries can be used
to select the appropriate VP rules from the grammar
(assuming a GPSG-style approach to subcategorisation)

Computational Linguistics, Volume 13, Numbers 3-4, July-December 1987 209

Bran Boguraev and Ted Briscoe Large Lexicons for Natural Language Processing

and the relevant word senses of a verb in a particular
grammatical context can be determined. However, if
the parsing system is intended to produce a representa-
tion of the predicate-argument structure for input sen-
tences, then this simple approach is inadequate because
the individual codes only give partial indications of the
semantic nature of the relevant sense of the verb.

The solution we have adopted is to derive a semantic
classification of the particular sense of the verb under
consideration on the basis of the complete set of codes
assigned to that sense. In any subcategorisation frame
which involves a predicate complement there will be a
non-transparent relationship between the superficial
syntactic form and the underlying logical relations in the
sentence. In these situations the parser can use the
semantic type of the verb to compute this relationship.
Expanding on a suggestion of Michiels (1982), we
classify verbs as Subject Equi, Object Equi, Subject
Raising or Object Raising for each sense which has a
predicate complement code associated with it. These
terms, which derive from Transformational Grammar,
are used as convenient labels for what we regard as a
semantic distinction; the actual output of the program is
a specification of the mapping from superficial syntactic
form to an underlying logical representation. For exam-
ple, labelling believe(3) (Type 20Raising) indicates that
this is a two place predicate and that, if believe(3)
occurs with a syntactic direct object, as in

(1) John believes the Earth to be round

it will function as the logical subject of the predicate
complement. Michiels proposed rules for doing this for
infinitive complement codes; however there seems to be
no principled reason not to extend this approach to
computing the underlying relations in other types of VP
as well as in cases of NP, AP and PP predication (see
Williams (1980), for further discussion).

The five rules which are applied to the grammar
codes associated with a verb sense are ordered in a way
which reflects the filtering of the verb sense through a
series of syntactic tests. Verb senses with an [it + 15]
code are classified as Subject Raising. Next, verb senses
which contain a [V] or [X] code and one of [D5], [D5a],
[D6] or [D6a] codes are classified as Object Equi. Then,
verb senses which contain a [V] or [X] code and a IT5]
or [T5a] code in the associated grammar code field, (but
none of the D codes mentioned above), are classified as
Object Raising. Verb senses with a [V] or IX(to be)]
code, (but no IT5] or [T5a] codes), are classified as
Object Equi. Finally, verb senses containing a [T2], [T3]
or IT4] code, or an [I2], [13] or [14] code are classified as
Subject Equi. Figure 9 gives examples of each type.

The Object Raising and Object Equi rules attempt to
exploit the variation in transformational potential be-
tween Raising and Equi verbs; thus, in the paradigm
case, Object Raising verbs take a sentential complement
and Object Equi verbs do not, as examples (2) and (3)
illustrate.

happen(S)

w a r n (l)

ass , l ine(I)

decline(S)

[WvS;/t+15]
(Type 1 SRaising)
[Wv4;IO;Tl:(of, against) ifa;D5a;V3]
(Type 30Equi)

[Wv4;T1,Sa,b;X(to be)l,7]
(Type 20Raising)
[T1,3;I0]
(Type 2 SEqui)

Figure 9

(2) John believes that the Earth is round.

(3) *John forces that the Earth is round.

Secondly, if a verb takes a direct object and a
sentential complement, it will be an Equi verb, as
examples in (4) and (5) illustrate.

(4) John persuaded Mary that the Earth is round.

(5) *John believed Mary that the Earth is round.

Clearly, there are other syntactic and semantic tests
for this distinction, (see eg. Perlmutter and Soames,
1979:472), but these are the only ones which are explicit
in the LDOCE coding system.

Once the semantic type for a verb sense has been
determined, the sequence of codes in the associated
code field is translated, as before, on a code-by-code
basis. However, when a predicate complement code is
encountered, the semantic type is used to determine the
type assignment, as illustrated in Figures 4 and 8 above.
Where no predicate complement is involved, the letter
code is usually sufficient to determine the logical prop-
erties of the verb involved. For example, T codes nearly
always translate into two-place predicates as Figure 10
illustrates.

In some cases important syntactic information is
conveyed by the word qualifiers associated with partic-
ular grammar codes and the translation system is there-
fore sensitive to these correlations. For example, the
Subject Raising rule above makes reference to the left

hate 2 e ... 1 [T1,3,4; V3,4] to have a great dislike of

(hate
((Sense 1)

((Takes NP NP) (Type 2))
((Takes NP Inf) (Type 2 SEqui))
((Takes NP Ing) (Type 2 SEqui))
((Takes NP NP Inf) (Type 30Equi))
((Takes NP NP Ing) (Type 30Equi))

Figure 10

210 Computational Linguistics, Volume 13, Numbers 3-4, July-December 1987

Bran Boguraev and Ted Briscoe Large Lexicons for Natural Language Processing

context qualifier " i t " . Another example where word
qualifiers can be utilised straightforwardly is with di-
transitive verbs such as give and donate. Give is coded
as [Dl(to)] which allows us to recover the information
that this verb permits dative movement and requires a
prepositional phrase headed by " to" :

(Takes NP NP ToPP) and (Takes NP NP NP).

On the other hand, donate is coded [T1 (to)], which
tells us that it does not undergo dative movement but
does require a prepositional phrase headed by " to" :

(Takes NP NP ToPP).

There are many more distinctions which are con-
veyed by the conjunction of grammar codes and word
qualifiers (see Michiels, 1982, for further details). How-
ever, exploiting this information to the full would be a
non-trivial task, because it would require accessing the
relevant knowledge about the words contained in the
qualifier fields from their LDOCE entries.

5 LEXICAL ENTRIES FOR PATR-II

The output of the transformation program can be used
to derive entries which are appropriate for particular
grammatical formalisms. To demonstrate that this is
possible we have implemented a system which con-
structs dictionary entries for the PATR-II system
(Shieber, 1984 and references therein). PATR-II was
chosen because it has been reimplemented in Cam-
bridge and was therefore, available; however, the task
would be nearly identical if we were constructing en-
tries for a system based on GPSG, FUG or LFG. We

word storm:
w J e n s e ~ <head t r a n s sense -no> = 1

V TakesNP Dyadic

worddag storm:
[ca t : v
head: [aux: f a l s e

t rans : [pred: storm
s e n s e - n o : 1

a r g l : <DGIS> - []
arg2: <DG16> = []]]

s y n c a t : [f i r s t : [ca t : NP
head: [t rans : <DG15>]]

r e s t : [f i r s t : [ca t : NP
head:

[t rans : <DC16>]]
r e s t : [f i r s t : lambda]]]]

Figure 11

intend to use the LDOCE source in the same way to
derive most of the lexicon for the general purpose,
morphological and syntactic parser we are developing.
The latter employs a grammatical formalism based on
GPSG; the comparatively theory neutral lexical entries
that we construct from LDOCE should translate
straightforwardly into this framework as well.

The PATR-II parsing system operates by unifying
directed graphs (DGs); the completed parse for a sen-
tence will be the result of successively unifying the DGs
associated with the words and constituents of the sen-
tence according to the rules of the grammar. The DG for
a lexical item is constructed from its lexical entry
whichcontains a set of templates for each syntactically
distinct variant. Templates are themselves abbrevia-
tions for unifications which define the DG. For example,
the basic entry and associated DG for the verb storm are
illustrated in Figure 11.

The template Dyadic defines the way in which the
syntactic arguments to the verb contribute to the logical
structure of the sentence, while the template TakesNP
defines what syntactic arguments storm requires; thus,
the information that storm is transitive and that it is
logically a two-place predicate is kept distinct. Conse-
quently, the system can represent the fact that some
verbs which take two syntactic arguments are neverthe-
less one-place predicates.

The modified version of PATR-II that we have im-
plemented contains only a small dictionary and con-
structs entries automatically from restructured LDOCE
entries for most verbs that it encounters. As well as
carrying over the grammar codes, the PATR-II lexicon
system has been modified to include word senses num-
bers, which are derived from LDOCE. Thus, the anal-
ysis of a sentence by the PATR-II system now repre-
sents its syntactic and logical structure and the
particular senses of the words (as defined in LDOCE)
which are relevant in the grammatical context. Figures
12 and 13 illustrate the dictionary entries for marry and
persuade constructed by the system from LDOCE.

In Figure 14 we show one of the two analyses
produced by PATR-II for a sentence containing these
two verbs. The other analysis is syntactically and
logically identical but incorporates sense two of marry.
Thus, the output from this version of PATR-II repre-
sents the information that further semantic analysis
need only consider sense two of persuade and sense one
and two of marry; this rules out one further sense of
each, as defined in LDOCE.

6 EVALUATION

The utility of the work reported above rests ultimately
on the accuracy of the lexical entries which can be
derived from the LDOCE tape. We have not attempted
a systematic analysis of the entries which would result
if the decompacting and grammar code transformation
programs were applied to the entire dictionary. In
Section 3 we outlined some of the errors in the grammar

Computational Linguistics, Volume 13, Numbers 3-4, July-December 1987 211

Bran Boguraev and Ted Briscoe Large Lexicons for Natural Language Processing

marry v 1 [T1; I0] to take (a person) in
marriage: He married late in lifs / n e v e r marrleK
t (fig.) She marr/ed money (= a rich man) 2
TI] (of a priest or official) to perform the
ceremony of marriage for (2 people): An o/d
It/end marr/ed them 3 IT1 (to)] to cause to take
in marriage: She want8 to marry her dAzw~er to
a Hch m a n

(marry
((Sense 1)
((Takes NP NP) (Type 2))

((Takes NP) (Type i)))

((Sense 2)

((Takes NP NP) (Type 2)))
((Sense 3)

((Takes NP NP PP) (Type 3))))

word marry:
w_sense =~

<head trane sense-no> = l

V TakesNP Dyadic

w_sense

<head trans sense-no> = i

V Takes IntraneNP Monadic

w_sense

<head trans sense-no> = 2

V TakesNP Dyadic

w_sense =~

<head trane sense-no> = 3

V TakesNPPP Triadic

Figure 12

codes which are problematic for the decompacting
stage. However, mistakes or omissions in the assign-
ment of grammar codes represent a more serious prob-
lem. While inconsistencies or errors in the application
of the grammar coding system in some cases can be
rectified by the gradual refinement of the decompacting
program, it is not possible to correct errors of omission
or assignment automatically. On the basis of unsyste-
matic evaluation, using the programs to dynamically
produce entries for the PATR-II parsing system, a
number of errors of this type have emerged.

For example, the LDOCE definitions and associated
code fields in Figure 15, demonstrate that upset(3) needs
it + D5 which would correspond to its use with a noun
phrase and a sentential complement; suppose(2) is miss-
ing optional " to be" for the X1 and X7 codes listed;
help(l) needs a T3 code since it does not always require
a direct object as well as an infinitive complement; and
detest needs a V4 code because it can take a direct
object as well as a gerund complement.

It is difficult to quantify the extent of this problem on
the the basis of enumeration of examples of this type.

Therefore, we have undertaken a limited test of both the
accuracy of the assignment of the LDOCE codes in the
source dictionary and the reliability of the more ambi-
tious (and potentially controversial) aspects of the
grammar code transformation rules. It is not clear, in
particular, that the rules for computing semantic types
for verbs are well enough motivated linguistically or
that the LDOCE lexicographers were sensitive enough
to the different transformational potential of the various
classes of verbs to make a rule such as our one for
Object Raising viable.

We tested the classification of verbs into semantic
types using a verb list of 139 pre-classified items drawn
from the lists published in Rosenbaum (1967) and Stock-
well et al. (1973). Figure 16 gives the number of verbs
classified under each category by these authors and the
number successfully classified into the same categories
by the system.

The overall error rate of the system was 14%; how-
ever, as the table illustrates, the rules discussed above
classify verbs into Subject Raising, Subject Equi and

persuade v I [TI (of); D5] to cause to feel
certain; CONVINCE: She waa not persuaded
o,f the truth o.f hi~ ~ e m e n t = [Tl(into, out o~;
V3] to cause to do something by reasoning,
arguing, begging, etc.: try t o persuade him t o
let .a go with him. l N o ~ . ~ wo.ld pers,zo~s him.

.

(p e r s u a d e
((S e n s e 1)

((Takes NP NP) (Type 2))
((Takes NP NP SBar)

(Type 3)))
((S e n s e 2)

((Takes NP NP) (Type 2))
((Takes NP NP Inf)

(T y p e 3 0bjectEqui))))

word p e r s u a d e :
w_sense =~

<head t r a n s s e n s e - n o > = I
V TakesNP Dyadic

w_sense =~
<head t r a n s s e n s e - n o > = I
V TakeeNPSBar Triadic

w_sense =~
<head t r a n e s e n s e - n o > = 2
V TakesNP Dyadic

w_sense

<head trans sense-no> = 2

V TakesNPInf

ObjectControl Triadic

Figure 13

212 Computational Linguistics, Volume 13, Numbers 3-4, July-December 1987

Bran Boguraev and Ted Briscoe Large Lexicons for Natural Language Processing

parse> uther might persuade gwen to marry cornwall

[cat: SENTENCE
head: [form: finite

agr: [per: p3 num: sg]
aux: true

trana: [pred: possible
sense-no: I

argl: [pred: persuade
sense-no: 2

argl: [ref: uther sense-no: I]
arg2: [ref: gwen sense-no: I]
arg3: [pred: marry

sense-no: 2
argl: [ref: gwen sense-no: i]
arg2: [ref: cornwall

s e n s e - n o : 1]]]]]]

Figure 14

Object Equi very successfully. The two Subject Raising
verbs which were not so classified by the system were
c o m e a b o u t and turn out . C o m e a b o u t is coded 15 in
LDOCE, but is not given any word qualifier; turn ou t is
not given any 15 code. These are clear examples of
omissions on the part of the Longman lexicographers,
rather than of failure of the rule. Similarly, t rus t is not
recognised as an Object Equi verb, because its dictio-
nary entry does not contain a V3 code; this must be an
omission, given the grammaticality of

(6) I t rus t h i m to do the j o b .

P r e f e r is misclassified as Object Raising, rather than
as Object Equi, because the relevant code field contains
a T5 code, as well as a V3 code. The T5 code is marked
as 'rare', and the occurrence of p r e f e r with a tensed
sentential complement, as opposed to with an infinitive,
is certainly marginal:

upse t ... $ [T1] to cause to worry, not to be calm,
etc.:

s u p p o s e ... 2 [TSa,b; V3 often pasta.; X1,7,9] to be-
lieve: I suppose that's true.] I supposed him to be a work-
man, but he was in/act a thief. [He was ~ommonly supposed
(to be) looti, h

he lp ... I [T1; I0; V3, (eep a r n ~ 2] to do part of the
work (for someone); be of use to (someone in doing
something); AID, ASSIST: Could ~lou help me up (the
a~,o)~ I T ~ a, '~ he~ps h~,. (to) ,~k, I Yo,,, o ~ u
helps a lot. I Can I help (, ~ yo,,, wo~k)~

detest ... [T1,4] to hate with very strong feeling: I
deter people who decelse and tell lies. I d n , . ~i
shootir~ and k~lin¢

(7) I p r e f e r tha t he c o m e on M o n d a y .

(8) ?I p r e f e r tha t he marr i e s Jul ie .

This example also highlights a deficiency in the
LDOCE coding system since p r e f e r occurs much more
naturally with a sentential complement if it collocates
with a modal such as "would" . This deficiency is
rectified in the verb classification system employed by
Jackendoff and Grimshaw (1985) in the Brandeis verb
catalogue.

The main source of error comes from the misclassi-
fication of Object Raising into Object Equi verbs. Ar-
guably, these errors also derive mostly from errors in
the dictionary, rather than a defect of the rule. 66% of
the Object Raising verbs were misclassified as Object
Equi verbs, because the cooccurrence of the T5 and V
(2, 3, or 4) codes in the same code fields, as predicted by
the Object Raising rule above, was not confirmed by
LDOCE. All the 14 verbs misclassified contain V codes
and 10 of these also contain T5 codes. However, the
Longman lexicographers typically define two different
word senses, one of which is marked (perhaps among
other codes) T5 and the other with a V code. Analysis of

Published Derived %
lists from

LDOCE

SEqui 31
OEqui 58
SRaising 7
ORaising 42

31
56
5
28

1oo%
97%
71%
67%

Figure 15 Figure 16

Computational Linguistics, Volume 13, Numbers 3-4, July-December 1987 213

Bran Boguraev and Ted Briscoe Large Lexicons for Natural Language Processing

a c k n o w l e d g e ... I [T1,4,5 (to) to agree
to the t r u t h of; recognise the fact or ex-
istence (of): I o , ¢ ~ i e ~ e the h ' ~ of uoar

theU wer~ de/rated I They ~zowlcdCcd ha~/~¢
been d~y~t0d 2 [T1 (o); X (to be) 1,7] to
reco~ise , accept, or admit (as): He w ~
acknowlod~d to be th~ b ~ Ida~r. J He w a s

aeknowlod~d am their hinter. [~ admowl-
~ d th~rn~d~ (to be) d~y~atat

hear ...e I [We6; T I ; V2,4; I0] to r ~
ceive and understand (sounds) by using
the ears: I mn~ hear very wall. J I heard him
aa/t 8o. [I can hear aomeone knock/nf 2 [Wv6;
Tl,Sa] to be told or informed: I heard
that he w~, dl ~ compare HEAR ABOUT,
H E A R F R O M , H E A R OF

Figure 17

these word senses suggests that this approach is justi-
fied in three cases, but unmotivated in five; for example,
hear (1),(2) (justified) vs. a c k n o w l e d g e (1),(2) (unjus-
tified) (see Figure 17). The other four cases we inter-
preted as unmotivated were show, suspec t , know, con-
f e s s and in the case of consider(2) , (Figure 18) there is a
clear omission of a T5 code, as demonstrated by the
grammaticality of

(9) I cons ider tha t it is a g rea t honour to be here .

Similarly, e x p e c t is not given a V3 code under sense
1 (Figure 19), however the grammaticality of

(10) I e x p e c t h im to p a s s the e x a m

with the relevant interpretation suggests that it should
be assigned a V3 code. Alternatively, sense 5, which is
assigned a V3 code, seems suspiciously similar to sense
1.

The four verbs which are misclassified as Object
Equi and which do not have T5 codes anywhere in their
entries are elect , love, r epre sen t and require . None of
these verbs take sentential complements and therefore
they appear to be counterexamples to our Object Rais-
ing rule. In addition, Moulin et al. (1985) note that our
Object Raising rule would assign m e a n to this category
incorrectly. M e a n is assigned both a V3 and a T5
category in the code field associated with sense 2 (i.e.
"intend"), however, when it is used in this sense it must
be treated as an Object Equi verb.

This small experiment demonstrates a number of
points. Firstly, it seems reasonable to conclude that the
assignment of individual codes to verbs is on the whole
relatively accurate in LDOCE. Of the 139 verbs tested,
we only found code omissions in 10 cases. Secondly
though, when we consider the interaction between the
assignments of codes and word sense classification,
LDOCE appears less reliable. This is the primary

source of error in the case of the Object Raising rule.
Thirdly, it seems clear that the Object Raising rule is
straining the limits of what can be reliably extracted
from the LDOCE coding system. Ideally, to distinguish
between raising and equi verbs, a number of syntactic
criteria should be employed (Perlmutter and Soames,
1979:460ff.). However, only two of these criteria are
explicit in the coding system.

On the basis of the results obtained, we explored the
possibility of modifying the Object Raising rule to take
account of the cooccurrence of T5 and T5a codes and V
or X codes within a homograph, rather than within a
word sense. An exhaustive search of the dictionary
produced 24 verbs coded in this fashion. Ten of these
were listed as Object Raising verbs in the published lists
used in the above experiment. Five more verbs were
classified as Equi in the published lists. Of the remaining
nine verbs which did not appear in the published lists,
three were clearly Object Raising, one was clearly Equi,
a further two were probably Object Raising, and the last
three were very difficult to classify. This demonstrates
that modifying the Object Raising rule in this fashion
would result in the misclassification of some Equi verbs.
In fact, the list is sufficiently small that this set of verbs
is probably best coded by hand.

As a final test, we ran the rules for determining the
semantic type of verbs over all the 7,965 verb entries in
LDOCE. There are 719 verb senses which are coded in
the dictionary as having the potential for predicate
complementation. Of these 5 were classified as Subject
Raising, 53 as Object Raising, 377 as Subject Equi, and
326 as Object Equi by our rules. 42 of the Equi verbs are
ambiguous between Subject and Object Equi under the
same sense; in the transformation program this ambigu-
ity is resolved by selecting the type appropriate for each
individual code. For example, a code which translates

cons ider ... 2 [WvS, X (to be) 1,7; V3] to regard as; think
of in a s t a t ed way: I ¢on~der ~ a 1o0/(= I regard you as a
fool). [Icou'dor/t a~honour t o b e ~ ~UoutodoU. [He
e.id ~ c o ~ me (to beJ ~o ~ to bB a ~ wor~. [T ~
5 ~ t l ~ I d a ~ are ~ l t V oo~dc~d a part o! Bootb~

e x p e c t ... l [T3 ,5a ,b] to think (that something will hap-
pen): 1 ~ (t~t) heql p~s the ezra/nut/on. I He ~ to/d
the ~ r d n a t i o ~ ["Wdl she oome wonf" " / ~ p ~ *o. • S
[V3] to believe, hope and think (that someone will do some-
thing): The o~¢er ezl~cfcd h~ ram to do thdr duty in the ¢om/ng
ba~/s

Figure 18 Figure 19

214 Computational Linguistics, Volume 13, Numbers 3-4, July-December 1987

Bran Boguraev and Ted Briscoe Large Lexicons for Natural Language Processing

as (Takes NP Inf) would select Subject Equi, while
(Takes NP NP Inf) would select Object Equi. These sets
of verbs together with the relevant LDOCE sense
number are listed in the appendix. An exhaustive anal-
ysis of the 54 verbs classified as Object Raising revealed
two further errors of inclusion in this set; order(6)
should be Object Equi and promise(l) should be Subject
Equi. The 42 verbs which the transformation program
treats as ambiguous Equi verbs appear to be somewhat
heterogeneous; some, such as want(1) and ask(2), are
cases of 'Super-Equi' control verbs where the control
relations are determined contextually, whilst others,
particularly the phrasal verbs, appear to be better
classified as Object Raising. Allow(l) and permit(l)
appear here incorrectly because they are coded [T4] to
capture examples such as

(11) They do not a l low/permi t smoking in their house.

In this example the subject of the progressive comple-
ment is not controlled by the matrix subject. Again,
since the list is small, this set of verbs should probably
be coded by hand.

7 CONCLUSION
Most applications for natural language processing sys-
tems will require vocabularies substantially larger than
those typically developed for theoretical or demonstra-
tion purposes and it is often not practical, and certainly
never desirable, to generate these by hand. The evalu-
ation of the LDOCE grammar coding system suggests
that it is sufficiently detailed and accurate (for verbs) to
make the on-line production of the syntactic component
of lexical entries both viable and labour saving. How-
ever, the success rate of the programs described above
in producing useful lexical entries for a parsing system
depends directly on the accuracy of the code assign-
ments in the source dictionary. Correcting the mistakes
and omissions in these assignments would be a non-
trivial exercise. This is part of the motivation for
adopting the interactive, rather than batch mode, ap-
proach to using the tape for lexicon development. We
envisage eventually using the system to generate lexical
entries in a semi-automatic fashion, allowing the user to
intervene and correct errors during the actual process of
constructing lexical entries, so that gradually a reliable
and relatively error-free large lexicon for automated
natural language processing systems containing detailed
grammatical information can be constructed from
LDOCE.

Clearly, there is much more work to be done with
LDOCE in the extension of the use of grammar codes
and the improvement of the word sense classification
system. Similarly, there is a considerable amount of
information in LDOCE which we have not exploited
systematically as yet; for example, the box codes,
which contain selection restrictions for verbs or the
subject codes, which classify word senses according to
the Merriam-Webster codes for subject matter (see

Walker and Amsler (1983) for a suggested use for these).
The large amount of semi-formalised information con-
cerning the interpretation of noun compounds and idi-
oms also represents a rich and potentially very useful
source of information for natural language processing
systems. In particular, we intend to investigate the
automatic generation of phrasal analysis rules from the
information on idiomatic word usage.

In the longer term, it is clear that neither the contents
nor form of any existing published dictionary meet all
the requirements of a natural language processing sys-
tem. A substantial component of the research reported
above has been devoted to restructuring LDOCE to
make it more suitable for automatic analysis. However,
even after this process much of the information in
LDOCE remains difficult to access, essentially because
it is aimed at a human reader, as opposed to a computer
system. This suggests that the automatic construction of
dictionaries from published sources intended for other
purposes will have a limited life unless lexicography is
heavily influenced by the requirements of automated
natural language analysis. In the longer term, therefore,
the automatic construction of dictionaries for natural
language processing systems may need to be based on
techniques for the automatic analysis of large corpora
(eg. Leech et al., 1983). However, in the short term, the
approach outlined in this paper will allow us to produce
a relatively sophisticated and useful dictionary rapidly.

8 ACKNOWLEDGEMENTS

We would like to thank the Longman Group Limited for
kindly allowing us access to the LDOCE typesetting
tape for research purposes. We also thank Steve Pul-
man, Graham Russell and Karen Sparck Jones for their
comments on the first draft, which substantially im-
proved this paper. Part of the research reported here
was funded by the UK Science and Engineering Re-
search Council (Grant No. GR/D/05554) under the Al-
vey Programme. This paper is a substantially revised
and updated version of an earlier presentation at the
Second Conference of the European Chapter of the
ACL.

REFERENCES

Akkerman, Erik; Masereeuw, Pieter; and Meijs, Willem. 1985 De-
signing a Computerised Lexicon for Linguistic Purposes. ASCOT
Report No. l, CIP-Gegevens Koninklijke Bibliotheek, Den Haag,
Netherlands.

Akkerman, Erik. 1986 A Critical Assessment of the LDOCE Coding
System. To appear in: Akkerman, E.; Masereew, P.; and Meijs,
W., Eds., ASCOT Report No 2, CIP-Gegevens Koninklijke Biblio-
theek, The Hague, Netherlands.

Alshawi, Hiyan; Boguraev, Branimir; and Briscoe, Ted. 1985
Towards a Lexicon Support Environment for Real Time Parsing.
In Proceedings of the Second Conference of the European Chap-
ter of the Association for Computational Linguistics, Geneva,
Switzerland: 171-178.

Alshawi, Hiyan. 1987 Processing Dictionary Definitions with Phrasal
Pattern Hierarchies. In this issue.

Boguraev, Branimir. 1986 (and forthcoming) Machine Readable Dic-
tionaries and Research in Computational Linguistics. In Proceed-
ings of a Workshop on Automating the Lexicon, Grosseto, Italy (to

Computational Linguistics, Volume 13, Numbers 3-4, July-December 1987 215

Bran Boguraev and Ted Briscoe Large Lexicons for Natural Language Processing

be published as Walker,D. and Zampolli,A., Eds., Automating the
Lexicon in a Multilingual Environment, Cambridge University
Press, Cambridge, UK).

Boguraev, Branimir. 1987 A Natural Language Toolkit: Reconciling
Theory with Practice. In Proceedings of a Workshop on Word
Order and Parsing in Unification Grammars, Friedenweiler, Ger-
many (to be published as Reyle,U. and Rohrer,C., Eds., "Word
Orders, Parsing, and Unification Grammars" D. Reidel, Dor-
drecht, Holland).

Boguraev, Branimir; Carter, David and Briscoe, Ted. 1987 A Multi-
Purpose Interface to an On-line Dictionary. In Proceedings of the
Third Conference of the European Chapter of the Association for
Computational Linguistics, Copenhagen, Denmark: 63-69.

Byrd, Roy. 1983 Word Formation in Natural Language Processing
Systems. In Proceedings of the Eighth International Joint Confer-
ence on Artificial Intelligence, Karlsrnhe, Germany: 704-706.

Calzolari, Nicoletta. 1984 Machine-Readable Dictionaries, Lexical
Data Bases and the Lexical System. In Proceedings of the lOth
International Congress on Computational Linguistics, Stanford,
California: 460-461.

Carter, David. 1987 An Information Theoretic Analysis of Phonetic
Dictionary Access, Computer Speech and Language, 2:1-11.

Gazdar, Gerald; Klein, Ewan; Pullum, Geoffrey; and Sag, Ivan. 1985
Generalized Phrase Structure Grammar. Blackwell, Oxford, UK.

Heidorn, George et al. 1982 The EPISTLE Text-Critiquing System.
IBM Systems Journal, 21(3): 305-326.

Huttenlocher, Daniel and Zue, Victor. 1983 Phonotactic and Lexical
Constraints in Speech Recognition, In Proceedings of the National
Conference on Artificial Intelligence, Washington, D.C.: 172-176.

Ingria, Robert. 1984 Complement Types in English. Report No. 5684,
Bolt Beranek and Newman Inc., Cambridge, Mass.

Jackendoff, Ray and Jane Grimshaw. 1985 A Key to the Brandeis
Verb Catalog. Unpublished mimeo, under NSF Grant IST-84-
20073, "Information Structure of a Natural Language Lexicon",
Program in Linguistics and Cognitive Science, Brandeis Univer-
sity, Waltham, Mass.

Kaplan, Ronald and Bresnan, Joan. 1982 Lexical-Functional Gram-
mar: A Formal System for Grammatical Representation. In:
J.Bresnan, Ed., The Mental Representation of Grammatical Re-
lations. The MIT Press, Cambridge, Mass: 173-281.

Kay, Martin. 1984a Functional Unification Grammar: A Formalism for
Machine Translation. In Proceedings of the lOth International Con-
gress on Computational Linguistics, Stanford, California: 75-79.

Kay, Martin. 1984b The Dictionary Server. In Proceedings of the lOth
International Congress on Computational Linguistics, Stanford,
California, 461-462.

Leech, Geoffrey; Garside, Roger; and Atwell, Erik. 1983 The Auto-
matic Grammatical Tagging of the LOB Corpus. Bulletin of the

1. Subject Raising verbs (total number 5)

International Computer Archive of Modern English, Norwegian
Computing Centre for the Humanities, Bergen, Norway.

Michiels, Archibal. 1982 Exploiting a Large Dictionary Data Base.
PhD Thesis, Universit6 de Liege, Liege, Belgium.

Michiels, Archibal. 1983 Automatic Analysis of Texts. In Informatics
7, Proceedings of a Conference of the ASLIB Informatics Group
and the Information Retrieval Group of the British Computer
Society, Cambridge, UK: 103-120.

Moulin, A.; Jansen, J; and Michiels, A. 1985 Computer Exploitation
of LDOCE's Grammatical Codes, paper presented at a Confer-
ence on Survey of English Language, Lund.

Perlmutter, D.M. and Soames, S. 1979 Syntactic Argumentation and
the Structure of English. University of California Press, Berkeley,
California.

Phillips, John and Thompson, Henry. 1986 A Parser for Generalised
Phrase Structure Grammars. To apper in Klein, E. and Haddock,
N., Eds., Edinburgh Working Papers in Cognitive Science, Uni-
versity of Edinburgh, Edinburgh, Scotland.

Procter, Paul. 1978 Longman Dictionary of Contemporary English.
Longman Group Limited, Harlow and London, England.

Quirk, Randolph; Greenbaum, Sidney; Leech, Geoffrey; and Svart-
vik, Jan. 1972 A Grammar of Contemporary English, Longman
Group Limited, Harlow and London, England.

Quirk, Randolph; Greenbaum, Sidney; Leech, Geoffrey; and Svart-
vik, Jan. 1985 A Comprehensive Grammar of English, Longman
Group Limited, Harlow and London, England.

Robinson, Jane. 1982 DIAGRAM: A Grammar for Dialogues. Com-
munications of the ACM, 25(1): 27-47.

Rosenbaum, P.S. 1967 The Grammar of English Predicate Comple-
ment Constructions. MIT Press, Cambridge, Mass.

Russell, Graham; Pulman, Steve; Ritchie, Graeme; and Black, Alan.
1986 A Dictionary and Morphological Analyser for English. In
Proceedings of the Eleventh International Congress on Computa-
tional Linguistics, Bonn, Germany: 277-279.

Sager, N. 1981 Natural Language Information Processing, Addison-
Wesley, Reading, Mass.

Shieber, S. 1984 The Design of a Computer Language for Linguistic
Information, In Proceedings of the lOth International Congress on
Computational Linguistics, Stanford, California: 362-366.

Stockwell, R.P.; Schachter, P.; and Partee, B.H. 1973 The Major
Syntactic Structures of English. Holt, Rinehart and Winston, New
York, New York.

Tompa, Frank. 1986 Database Design for a Dictionary of the Future.
Preliminary Report, Centre for the New Oxford English Dictio-
nary, University of Waterloo, Waterloo, Ontario.

Walker, D. and Amsler, A. 1986 The Use of Machine-Readable
Dictionaries in Sublanguage Analysis. In: R. Grishman and R.
Kittredge, Eds., Analysing Language in Restricted Domains,
Lawrence Erlbaum Associates, Hillsdale, New Jersey.

Williams, E.S., 1980 Predication. Linguistic Inquiry, 11(2): 203-238.

APPENDIX

appear (3) chance (1) happen (3) seem (2) transpire (2)

2. Object Raising verbs (total number 53)

adjudge (1) admit (3) allow (5) argue (3) assert (1)
assume (1) avow (1) believe (3) betray (3) certify (2)
declare (2) deem (1) deny (1) determine (1) discover (2)
engage (4) feel (5) find (8) foreordain (1) guess (1)
hold (9) judge (3) maintain (5) make out (5) mean (2)
mind (2) notice (1) observe (1) order (6) perceive (1)
predicate (1) prefer (1) preordain (1) presume (1) presume (2)
proclaim (1) pronounce (2) pronounce (3) prove (1) recognize (3)
remember (1) report (1) reveal (2) see (2) smell (2)
smell (3) suppose (1) suppose (2) tell (6) think (2)
understand (3) understand (4) warrant (2)

216 Computational Linguistics, Volume 13, Numbers 3-4, July-December 1987

Bran Boguraev and Ted Briscoe Large Lexicons for Natural Language Processing

3. Subject Equi verbs (t o t a l n u m b e r 3 3 5)

abide (1) account for (2) ache (2) acknowledge (1) adore (3)
advocate (1) affect (1) afford (2) agree (2) aim (2)
aim at (1) allude to (1) anticipate (1) appear (2) arrange (2)
aspire (1) assent (1) at tach to (3) at tempt (1) avoid (1)
awake (1) bear (5) bear (9) begin (1) beg (3)
begrudge (1) bid fair (1) blanch (2) blink at (1) blush (2)
bother (3) break off (1) burn (6) burst (3) burst out (1)
bust out (3) care (1) cease (1) chance (1) choose (2)
claim (4) c lamour (2) clog (1) close (3) cloud (3)
come (1) come (7) come before (1) come down to (1) come out against (1)
come into (1) come on (1) come to (1) commence (1) compare with (1)
compete (1) conceal (1) conceive of (1) concur (2) condescend (1)
conduce to (1) confess (1) confess (2) confide (1) connive (1)
consent (1) consider (1) consist in (1) conspire (1) conspire (2)
contemplate (2) continue (1) continue (3) contract (1) contr ive (1)
contrive (3) could (1) covenant (1) cut out (4) cry out against (1)
dare (1) dare (2) decide (2) decide on (1) declare against (1)
declare for (1) decline (3) defend (3) defy (3) deign (1)
delay (1) delight (2) delight in (1) demand (1) depose (2)
deride (1) descend to (1) deserve (1) detest (1) disclaim (1)
discontinue (1) discourage (2) disdain (2) dislike (1) do with (1,2)
dread (1) duck out of (1) elect (2) endeavour (1) endure (1)
enjoy (1) envisage (1) escape (3) essay (1) evade (2)
excuse (1) expect (1) exult (1) exult over (2) fail (1,3)
fall to (1) finish (1) fix (2) fix on (1) flick (2)
forbear (1) forbid (2) forget (1) forget about (1) forswear (I)
frown on (1) funk (1) get (3,11) get around to (1) get away with (1)
get down to (1) get out of (1) get round to (1) give up (1) go (5)
go about (2) go in for (2) go on (5) go with (3) go without (1)
grow (5) grow out of (2) grow out of (3) grudge (1) guarantee (2)
guard against (1) happen (2) hasten (2) hate (3) hesitate (1)
hinge on (1) hit on (1) hope (1) incline (4) include (1)
indulge in (1) inveigh against (1) involve (2) itch (3) j ib at (1)
justify (1) keep (11) keep from (2) keep on at (1) kick against (1)
knock off (2) know about (1) lament (1) lead to (1) learn (1)
leave (7) like (2) live by (1) loathe (1) long (1)
look forward to (1) make (18) make up for (1) manage (2) mean (5)
merit (1) militate magainst (1) miss (1,2,5) necessi tate (1) need (1)
neglect (1) neglect (2) negotiate (1) offer (3) omit (2)
operate (2) own to (1) pant (4) pay for (1) pertain to (1)
petition (2) pine (3) plan (1) play (3) play at (1)
play at (2) pledge (1) plot (5) plump for (1) pooh-pooh (1)
postpone (1) practise (4) practise (5) prate about (1) pray (1)
preclude (1) prepare (3) prepare for (1) presume (4) pretend (1)
pretend (2) pretend (4) proceed (1) profess (2) profit by (1)
prohibit (1) promise (3) propose (1) propose (2) provide for (2)
provide for (3) purport (1) purpose (1) put off (1) quit (1)
recall (1) reckon on (2) recollect (1) refuse (1) regret (1)
rejoice (1) relish (1) remember (2) repent (1) require (1)
resent (1) resist (1) resist (2) resolve (1) resolve (2)
resort to (1) result from (1) resume (1) revel in (1) revert to (1)
rise above (1) risk (2) rue (1) say (5) scheme (1)
scorn (1) scramble (2) scream (4) scruple (1) seek (3)
seem (1) see (7) see about (1) see to (1) send (4)
send away (2) send off (3) serve (5) set about (1) set out (2)
shirk (1) should (1) shrink from (1) shudder (1) shun (1)
sicken of (1) smile (2) stand (8) stand (12) stand for (2)
start (1) stem from (1) stick (8) stoop (3) stoop to (1)
stop (1) strive (1) subscribe to (1) suggest (2) swear (1)
swear by (1) swear off (1) swear to (1) take to (2) take up (1)
tend (2) think of (1) think of (5) threaten (2) train (3)
tremble (3) trouble (3) try (1) try (2) try (3)
undertake (2) unite (2) use (1) venture (2) venture (4)
volunteer (1) volunteer (2) vote (1) vouchsafe (1) vow (1)
wait (1) want (3) want (4) warrant (1) watch (3)
witness to (1) wriggle out of (1) write (4) write back (1) yearn (1)

Computational Linguistics, Volume 13, Numbers 3-4, July-December 1987 217

Bran Boguraev and Ted Briscoe Large Lexicons for Natural Language Processing

4. Object Equi verbs (total number 284)

acknowledge (2) adjure (1) advise (1) aid (1) allow (2)
allure (1) appoint (1) arrange for (1) ask (4) assign (4)
assist (1) attribute to (1) authorize (1) badger (1) bargain for (1)
beckon (1) behove (1) beseech (1) bestir (1) bid (2)
bill (2) bludgeon into (1) bluff into (1) bribe (I) bring (2)
bring (5) bring in (3) bully (1) buzz (3) cable (1)
call on (2) catch (3) cause (1) caution (1) challenge (1)
challenge (4) challenge (5) charge (5) charge with (1) charge with (2)
come down on (1) command (1) commission (1) compel (1) condemn (3)
condemn (4) condition (3) confess (3) conjure (1) connive at (1)
consider (2) constrain (1) cop (1) counsel (1) couple with (1)
cozen into (1) credit with (1) dare (5) debar from (1) decide (4)
dedicate to (1) defy (2) delegate (2) depend on (1) depute (1)
deputize (2) design (2) designate (2) detail (1) direct (3)
doom (1) dragoon into (1) draw on (3) drive (8) egg on (1)
embolden (1) employ (1) employ (2) employ in (1) empower (1)
enable (1) enable (2) encourage (1) end in (1) engage (1)
enggae in (1) entice (1) entitle (2) entreat (1) equip (2)
esteem (2) excite (2) exhort (1) expect (5) fancy (1)
fancy (3) figure on (1) find (1) find (6) fit (5)
forbid (1) force (I) frighten into (1) frighten out of (2) get (4)
get (8) give (17) give over to (1) goad into (1) groom (4)
habituate to (1) hail as (1) harden to (1) hark at (1) hear (1)
help (1) help (2) hunger (1) impel (1) implore (I)
importune (1) impute to (l) incite (1) incline (3) induce (1)
influence (1) inhibit from (1) inspire (1) instigate (2) instruct (2)
instruct (3) intend (2) introduce to (1) inure to (1) inveigle into (1)
invite (2) invite (3) itch for (1) join with in (1) keep (10)
keep from (1) know (4) lead (2) lead on (1) legislate against (1)
legislate for (1) let (1) let (2) let (3) let (4)
let off (1) long for (I) look at (1) look to (2) lower (3)
make (3) make (5) make (6) make (7) mean (4)
motion (2) motion to (1) motivate (1) move (11) name (3)
nominate (2,4) notify (1) obligate (1) oblige (1) order (1)
organize (1) overhear (I) persuade (2) pester (1) petition (1)
phone (1) pick (1) pick on (1) plead with (1) pledge (2)
plume upon (1) pray (3) preclude from (1) predestinate (1) predestine (1)
predetermine (1,3) predispose (1) preen on (1) prepare (1) prepare (5)
prepare for (3) press (9) pressure (I) pressurize (1) prevail upon (1)
prevent (1) prevent from (1) pride on (1) profess (3) program (1)
programme (1) promise (1) prompt (i) prove (3) provoke (2)
provoke into (1) push (3) push on (2) put down as (1) put down to (1)
put off (1) put up to (1) reckon (1) reckon on (1) reduce to (4)
reeducate (1) regard as (1) rely on (2) remember as (1) remind (1)
represent (1.2) represent as (1) request (1) require (2) result in (1)
schedule (1) school (1) seduce (2) select (1) send (1)
send (2) send (3) set (4) set (8) shape (1)
show (1) show (9) signal (2) sign (2) slate (2)
spur (2) spy (3) steel (I) stop (2) suffer (4)
summons (1) summon (I) supplicate (I) suppose (3) suspect (2)
take (18) talk into (1) talk out of (1) tax with (1) teach (1)
telegraph (1) telephone (1) telex (I) tell (2) tell (3)
tell (5) tell off (2) tempt (1) tempt (2) thank (2)
timetable (1) time (1) tip (1) tip off (2) train (2)
trouble (2) unfit for (1) urge (2) want (2) warn (1)
watch (1) watch (5) watch for (1) wean from (1) worry at (1)
yearn for (1)

5. Equi verbs (total number 42)

allow (1) allow for (1) approve of (1) ask (2) bank on (1)
beg (2) calculate on (1) chance (2) choose (1) compensate for (1)
countenance (1) count on (1) culminate in (1) desire (1) enjoin (1)
hate (1) hate (2) hear about (1) hear of (1) help (4)
imagine (1) intend (1) like (1) like (3) love (2)
nag (1) need (1) pay (1) permit (1) prepare (4)
qualify (1) race (3) recommend (2) rely on (1) save (4)
see (6) sign (3) sign up (1) start (3) ' visualize (1)
want (1) wish (5)

218 Computational Linguistics, Volume 13, Numbers 3-4, July-December 1987

