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Selectional constraints specify, for a particular domain, the combinations of semantic classes accepta-  
ble in subject-verb-object relationships and other syntactic structures. These constraints are important 
in blocking incorrect analyses in natural language processing systems. However, these constraints are 
domain-specific and hence must be developed anew when a system is ported to a new domain. A 
discovery procedure for selectional constraints is therefore essential in enhancing the portability of 
such systems. 

This paper describes a semi-automated procedure for collecting the co-occurrence patterns f rom a 
sample of texts in a domain, and then using these patterns as the basis for selectional constraints in 
analyzing further texts. We discuss some of the difficulties in automating the collection process, and 
describe two experiments that measure the completeness of these patterns and their effectiveness 
compared with manually-prepared patterns. We then describe and evaluate a procedure for selectional 
constraint relaxation, intended to compensate for gaps in the set of patterns. Finally, we suggest how 
these procedures could be combined with a system that queries a domain expert, in order to produce a 
more efficient discovery procedure. 

1 INTRODUCTION: 

T H E  NEED FOR DISCOVERY PROCEDURES 

In order to analyze natural language texts reliably, a 
computer system requires a great deal of information 
about the syntax of the language, about the structure of 
the discourse, and about the subject matter  with which 
the text deals. Because of the need for detailed know- 
ledge of the subject matter,  natural language systems at 
present are limited to handling texts within very limited 

domains of discourse. Once such a system has been 
developed, the question of portability naturally arises: 
can the system be readily moved to a new domain? 

Portability involves two separate issues. The first 
issue is whether a large portion of the natural language 
system is domain-independent,  so that this "core"  can be 
used in the new application without modification. The 
second issue is whether the domain-dependent  informa- 
tion required by the system can be gathered in a method-  
ical and efficient fashion. Our paper  addresses the latter 
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issue. Specifically, we report on some experiments aimed 
at developing a semi-automated procedure for discover- 
ing selectional patterns (the local semantic constraints of 
language in a particular domain) from the analysis of a 
sample of text in that domain. 

2 SUBLANGUAGE AND SELECTION 

2.1 SUBLANGUAGE 

A sublanguage is a specialized form of natural language 
used to describe a limited subject matter,  generally 
employed by a group of specialists dealing with this 
subject. Examples of sublanguages that have been 
studied are weather reports (Chevalier et al. 1978), 
aircraft maintenance manuals (Lehrberger 1983), 
medical reports (Hirschman and Sager 1983), and equip- 
ment failure reports (Marsh, Hamburger,  and Grishman 
1984). A sublanguage will generally be much more 
constrained than the "standard language", but it may 
also include extensions to the standard language, such as 
sentence fragments found in telegraphic-style message 
text. 

Zellig Harris, one of the first linguists to study 
language use in restricted domains, defined sublanguages 
in terms of one particular constraint: the constraint on 
what words can co-occur within a particular syntactic 
pattern, such as a subject-verb-object structure (Harris 
1968). Just as speakers of the standard language distin- 
guish between grammatical and ungrammatical 
sentences, speakers of the sublanguage will distinguish 
between acceptable and unacceptable (meaningless) 
sentences, even though the unacceptable sentences may 
be grammatical sentences of the standard language. For 
example, in the sublanguage of medical records, a speak- 
er would accept the sentence The X-ray revealed a tumor. 
but not The tumor revealed an X-ray. 

Harris hypothesized that, for any particular sublan- 
guage, we can define sublanguage word classes - sets of 
words that are acceptable in the same contexts (Harris 
1968). For example, in the context m revealed a tumor, 
we might find words such as X-ray, f i lm,  and scan. Such 
classes, even though defined on purely distributional 
grounds, correspond closely to the natural semantic class- 
es that might be identified by an expert in the domain. 
Thus, we might label the group of words X-ray, f i lm,  and 
scan as a TEST class, and similarly (for medical reports) 
identify classes such as FINDING and MEDICATION. 
See section 3.2 below for discussion of an experiment 
verifying Harris 's hypothesis. The sublanguage co-occur- 
rence constraints, when stated between word classes, are 
commonly called selectional constraints. 

2.2 IMPLEMENTING SELECTIONAL CONSTRAINTS 

It is generally recognized that these selectional 
constraints play an important role in distinguishing 
between correct and incorrect sentence analyses. Conse- 
quently, most natural language systems incorporate some 
form of selectional constraints. We describe here, brief- 

ly, how these constraints are implemented in the Linguis- 
tic String Parser; more detailed descriptions are given in 
Grishman, Hirschman, and Friedman (1982, 1983). 

The Linguistic String Parser English grammar (Sager 
1981) is an augmented context-free grammar. Its princi- 
pal components  are a context-free grammar (stated in 
terms of the grammatical categories of English), a set of 
procedural restrictions (written in Restriction Language: 
Sager and Grishman 1975), and a lexicon. Adding selec- 
tional constraints to this grammar involved specifying the 
sublanguage classifications of words, specifying the 
allowed co-occurrence patterns in positive terms, and 
providing restrictions that check the parse tree for these 
patterns. 

Each word in the domain vocabulary is assigned to 
one or more sublanguage word classes; these class 
assignments are recorded as part  of the lexical entry for 
each word. Thus a lexical entry consists of each major 
syntactic class for a word followed by a list of attributes, 
including its domain subclass. Words that have two or 
more meanings and, as a result, occur in different 
contexts will be assigned to more than one word class; 
such words are referred to as homographs. For example, 
in the medical domain, discharge refers both to a patient 's  
discharge from a hospital and to the excretion of some- 
thing from the patient 's  body. It is classified as a noun 
with attributes H-VMD (medical verb for 'discharge from 
hospital ') and H-BODYPART (for 'b loody discharge'). 
As a verb, however, discharge is classified only as 
H-VMD. (Only words specific to the domain receive 
sublanguage classes and participate in selection.) 

The allowed co-occurrence patterns are specified by a 
set of lists in the grammar. There is a separate list for 
each major syntactic relation: clauses (subject-verb-ob- 
ject structures), prepositional phrases, prenominal adjec- 
tives, compound nouns. Each list element may have 
associated sub-lists; this recursive structure provides a 
reasonably compact  specification of the allowable combi- 
nation of sublanguage classes. For  example, the V-S-O 
list gives the positive co-occurrence patterns for the 
VERB-SUBJECT-OBJECT relation, where the list associ- 
ated with each verb class (e.g., H-SHOW below) has a 
sub-list of associated subject classes (e.g., H-BODYPART 
and H-TEST), each of which have associated lists of 
object types (H-INDIC, H-RESULT, H-DIAG). 

LIST V-S-O -- 

H-SHOW: (H-BODYPART: (H-INDIC, H-RESULT, 
H-DIAG), 

H-TEST: (H-INDIC, H-RESULT, 
H-DIAG), 

. . .) ,  

This is interpreted as follows: 
• H-SHOW verbs with H-BODYPART ("body  par t"  class) 

as subject take objects of classes H-INDIC 
("indicators"),  H-RESULT or H-DIAG ("diagnosis"),  
as in liver showed no abnormalities; 

206 Computational Linguistics, Volume 12, Number 3, July-September 1986 



Ralph Grishman, Lynette Hirschman, Ngo Thanh Nhan Discovery Procedures for Sublanguage Selectional Patterns 

• with H-TEST ("test")  as subject, H-SHOW verbs also 
take the objects H-INDIC, H-DIAG, and H-RESULT, as 
in test showed metastasis. 

The list imposes selection only for listed verbs, and not 
all verbs appear on the list. In particular, be and related 
verbs do not, since they obey a different kind of selection 
(between subject and object). Similarly, not all prep- 
ositions participate in selection for prepositional phrases; 
specifically, o f  has too broad a distribution for the state- 
ment of selectional patterns. In this way, selection is 
applied only to sublanguage-specific constructs, where it 
is possible to describe the allowed patterns with reason- 
able conciseness. 

The selectional constraints are enforced by a set of 
restrictions that use the lists of co-occurrence patterns. 
Whenever a structure involved in selection (e.g., clause, 
noun phrase, prepositional phrase) is completed during a 
parse, a restriction is executed that compares the classes 
assigned to the words in the parse tree with the allowed 
selectional patterns for this structure. If the word partic- 
ipates in selection, but its associated arguments do not 
match the patterns on the list, then the analysis is 
rejected and the parser backs up to seek an alternative 
analysis. Because it operates on surface structure, the 
restriction that tests for subject-verb-0bject selection 
must take into account all the transforms of this basic 
structure. For clauses, the restriction checks selection for 
both active and passive sentences, sentences with inter- 
vening aspectuals (as in patient continued to receive medi- 
cation), and relative and reduced relative clauses. It does 
this by identifying the " t ransformed" subject, verb, and 
object; it can then use a single canonical set of subject- 
verb-object patterns for selection. 

2.3 THE VALUE OF SELECTION 

Although it is generally agreed that selectional 
constraints are important in separating correct and incor- 
rect analyses, we are not aware of any measurements of 
the impact of selectional constraints, particularly in text 
analysis (as contrasted with the analysis of natural 
language database queries, for example). In order to 
obtain a more objective measure of the importance of 
these constraints, we conducted an experiment compar- 
ing the effectiveness of grammars with and without selec- 
tional constraints. 

The test corpus was a set of hospital discharge 
summaries containing 407 sentences and sentence frag- 
ments. We used the NYU Linguistic String Project 
medical grammar, which is a modification of the Linguis- 
tic String Project English grammar including the sentence 
fragments and other constructs (such as descriptions of 
medication dosages) that appear in medical reports but 
not in standard English (Marsh 1983). Each sentence 
was analyzed twice, once without any selectional 
constraints and once with selectional constraints (the 
selectional patterns were developed manually at NYU by 
linguists from a study of this test corpus and other similar 
medical reports). The results of each analysis were clas- 

sifted into one of three categories: no parses obtained; 
one or more parses obtained, good first parse; 1 one or 
more parses obtained, bad first parse. These results are 
summarized in Table 1. 

good parses 

bad parses 

no parses 

with selection without selection 

308 ( 7 6 % )  306 ( 7 5 % )  

30 ( 7 % )  68 (17%)  

69 (17%)  33 ( 8 % )  

Table 1. Parsing results for 407 sentences, run with and 
without selectional constraints. 

We found, in brief, that adding selectional constraints 
had only a marginal effect on the number  of good parses. 
However,  it greatly reduced the number of bad parses. 
Sentences that previously got bad parses now got no 
parse at all. This somewhat surprising result can be 
explained by noting that a certain number of sentences 
that had previously parsed correctly were blocked by 
over-constraining due to selection. For  example, the 
phrase herpes type lesion was parsed successfully without 
selection, but failed to parse with selection, because there 
were no selection patterns for allowing a compound noun 
of the form herpes type (H-DIAG + H-TYPE) + lesion 
(H-INDIC). On the other hand, some sentences that 
received an incorrect first parse without selection 
received a correct parse with selection because the incor- 
rect parse is blocked by selection. For example, the 
patient had no JVD and no increase in thyroid size parsed 
incorrectly without selection due to incorrect distribution 
of the adjunct in thyroid size, but correctly with selection. 
Overall, 21 sentences (out of a corpus of 400) changed 
from good to no parse and 23 from bad parse to good or 
acceptable parse. 

Despite the fact that the number of correct parses did 
not show any significant increase, the use of selection 
produced a very substantial improvement in reliability of 
parses. We consider this an important benefit, for two 
reasons. First, in critical applications, an undetected 
error (bad parse) may lead to erroneous data in the data 
base; this is much worse than an error detected by the 
system (no parse). Second, if the analysis failure can be 
detected, it is possible to try various recovery techniques, 
such as employing a different analysis technique or 
asking the user for additional information. 

2.3 THE ROLE OF SELECTION 

We recognize that selectional constraints may only be the 
tip of the iceberg in terms of domain-specific informa- 
tion. Much more detailed knowledge of the domain and 
the structure of discourse in the sublanguage will doubt-  
less be needed for a high-quality text analysis system. 
Nonetheless, we believe selection has an important role 
to play. As shown by the experiment just described, 
more than half of the analysis errors resulting from 
syntactic analysis can be detected using selectional 
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constraints alone. In addition, selectional constraints are 
simple in structure and have been more intensively 
studied than most other domain knowledge; in particular, 
their relationship to distributional information in the 
sublanguage is better  understood. It therefore seemed 
appropriate to focus on selectional constraints in our 
studies of discovery procedures for domain-specific 
knowledge. 

3 DISCOVERY PROCEDURES 

3.1 EXPERT VS. TEXT-BASED PROCEDURES 

Two basic approaches have been proposed for mechaniz- 
ing (or partially mechanizing) the acquisition of domain- 
specific information for natural language systems. One 
of these is based on the systematic interviewing of a 
domain expert, who provides information on the basic 
semantic classes and relations of the domain and their 
linguistic forms and properties. Such an approach has 
been incorporated into some natural language interfaces 
for database retrieval, such as TEAM (Grosz 1983) and 
LDC (Ballard, Lusth, and Tinkham 1984). This 
approach assumes that the domain expert has some 
model of the relations in the domain, and a knowledge of 
the different ways in which these relations can be refer- 
enced. This is not unreasonable in the database context, 
since the database schema can serve as a domain model 
(divining all the ways in which a relationship can be 
referenced may still be difficult, however).  This 
approach is more difficult, however, in text analysis 
applications, particularly because the user may not have 
such a clear model of the domain semantics from which 
to work. 

An alternative approach is to acquire some of the 
domain-specific information from the text itself. To the  
extent that this information is reflected in distributional 
relationships in the text, we can hope to extract this 
information by automatically analyzing a sample of text 
in a new domain. We have been pursuing this approach 
for a number of years, and describe some of our earlier 
efforts in the next subsection. 

Although we present the expert and text-based 
approaches as alternatives, we do not believe them to be 
mutually exclusive. It may turn out that the most effec- 
tive approach is a combination of these two, in which 
information gleaned from the text "fills in" the skeletal 
information provided by an expert, and the expert 
provides generalizations that could not easily be derived 
directly from the text. We shall return to this point in our 
concluding section. 

3.2 OUR PRIOR WORK 

Our previous work on discovery procedures has aimed at 
automating the characterization of syntactic usage and 
the identification of the principal semantic classes in 
sublanguages. Both of these procedures, as well as the 
procedure to be described below, start from a set of 
parse trees (prepared automatically or manually) for a 

sample text in the domain. The procedures for determin- 
ing syntactic usage process the file of parse trees to 
extract frequency data on the use of various productions 
from the context-free grammar. Recent  tests of this 
procedure on both medical records and equipment failure 
records indicate that accurate characterizations can be 
obtained from a sample of a few hundred sentences, and 
that (for both sublanguages) the size of the grammar 
used was roughly one-third the size of the full Linguistic 
String Parser English grammar (Grishman, Nhan, and 
Marsh 1984; Grishman, Nhan, Marsh, and Hirschman 
1984). 

The procedure for discovering sublanguage classes is 
based on identifying words that occur in the text in simi- 
lar syntactic contexts, e.g., as subject of a given verb or 
as object of a given verb or as adjective modifying a 
given head, etc. We defined a similarity coefficient for 
pairs of words, based on the number  of contexts the 
words shared. Then, using a statistical clustering proce- 
dure, we grouped together words of high mutual similari- 
ty. This procedure was successful in identifying classes 
containing the high frequency words of the domain 
(Hirschman, Grishman, and Sager 1975); the procedure 
was not effective for words that occurred only a few 
times in the sample corpus. Also, a number  of false clus- 
ters were generated, due to linguistic phenomena we 
were able to identify, such as the omission of the head in 
a noun phrase. This produced anomalies in the classifica- 
tion, since the text contained occurrences such as chest 
normal (understood as 'chest X-ray  normal ' )  as well as 
X-ray normal. The result was a high similarity between 
chest and X-ray and a resulting false cluster containing 
chest with various test words such as X-ray, film, and 
mammogram. 

4 AUTOMATIC GENERATION OF SELECT1ONAL 
PATI'ERNS 

Determining the selectional constraints for a new sublan- 
guage involves both determining the sublanguage word 
classes and determining the allowed co-occurrence 
patterns among those classes. In principle, both can be 
determined by a distributional analysis of a sample 
corpus. In practice, this is a labor-intensive procedure 
involving iteration between setting up sublanguage class- 
es and identifying sublanguage patterns. However,  in 
order to simplify the work during our initial experiments, 
we chose to separate these two tasks. We mentioned just 
above the experiments we had conducted earlier on 
discovering sublanguage classes. We describe here a 
complementary set of experiments to demonstrate our 
ability to generate co-occurrence patterns from a text 
sample. These experiments assume a (manual) assign- 
ment of words to sublanguage classes and aim at collect- 
ing the co-occurrence patterns and evaluating their 
completeness. These complementary experiments are 
needed to validate our techniques before we address the 
more difficult problem of building the selectional patterns 
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for a new domain (see section 7 for a discussion of this 
issue). 

Given our goal of evaluating the completeness of auto- 
matically generated patterns, our initial experiments drew 
on a domain where sublanguage vocabulary had already 
been classified. Our test corpus consisted of eleven 
medical reports. Six were patient documents that 
included patient history, examination, and plan of treat- 
ment; five were hospital "discharge summaries" which 
included patient history, examination, and summaries of 
the course of treatment in the hospital. The corpus 
contained about 750 sentences and sentence fragments. 

In analyzing these sentences, we used the Linguistic 
String Project medical grammar, a modification of the 
LSP English grammar that had been used for processing a 
number of medical documents (Hirschman et al. 1981), 
including the discharge summaries in our corpus. The 
sublanguage word classes, which are recorded in our lexi- 
con, had been developed based on the discharge summa- 
ries and other similar medical records. However,  neither 
the grammar nor the word classes had been revised to 
reflect any new syntactic forms or semantic patterns that 
appeared in the other six patient documents; these docu- 
ments were being analyzed for the first time. 

The discovery procedure for selectional patterns has 
five principal steps: 

1. generating a set of correct parses; 
2. resolving homographs; 
3. generating instances of selectional patterns from the 

parses; 
4. collecting the patterns into lists sorted by syntactic 

construct (e.g., a list for subject-verb-object patterns, 
a list for head-prepositional modifier patterns, etc.); 

5. final review of patterns for correctness. 

We began by parsing the entire text with the Linguis- 
tic String Parser and the Linguistic String Project medical 
grammar, and collecting the resulting parse trees. Gener-  
ation of correct patterns depends critically on having 
correct parses; therefore, the automatically generated 
parse trees had to be manually screened to select only 
correct parses. One possibility would have been to 
generate (without relying on selection) all parses for each 
sentence and then to choose the correct parse by hand. 
This would have required a great deal of work, since 
without selection there may be many parses for each 
sentence. Since we were focusing on evaluating the 
completeness of the set of generated patterns, rather than 
on the feasibility of acquiring the selectional patterns in a 
new domain, we chose to use the existing selection mech- 
anism as a short-cut to getting the correct parse. This 
reduced drastically the number of parses that had to be 
screened; it did not affect correctness of the chosen 
parse, since the parse is or is not correct, regardless of 
how it is generated. However,  for sentences blocked by 
selection, we did parse these sentences without selection 
and did go through the manual procedure to select the 
correct parse. For  a number of sentences, we failed to 

obtain an automatically generated correct parse by either 
parsing method. These sentences were not included in 
the corpus. This procedure furnished us with good parses 
for about 520 sentences and sentence fragments (about 
2 / 3  of the initial corpus). 

The next step was to resolve homographs. As we 
noted above, some words may have more than one mean- 
ing or be used in more than one way, and thus be 
assigned to more than one sublanguage class. Within any 
particular sentence, the word was used in one of these 
senses and should therefore have been identified with the 
corresponding sublanguage class in order to produce the 
correct sublanguage co-occurrence patterns. Much of the 
homograph resolution was done automatically, by the 
selection mechanism. However,  in certain cases, a word 
emerged from the processing with multiple sublanguage 
classes. In some cases, this was due to insufficient 
context resulting from omission of implicit (zeroed) 
information, e.g., discharge on 1/12 would probably refer 
to discharge of patient from the hospital, but selection 
could not rule out the SYMPTOM reading of discharge 
from this limited context. A second source of unresolved 
homographs came from parses generated without 
selection, in which case there was no automatic mech- 
anism for homograph resolution. Whatever the source, 
words listed as having multiple subclasses were screened 
and disambiguated manually: we scanned the parse trees 
for sentences containing multiply-classified words, and, 
in each case, selected manually the sublanguage class 
relevant to its use in that sentence. 

We then proceeded to the task of extracting the 
sublanguage class co-occurrence patterns from the file of 
correct surface parse trees. Since co-occurrence patterns 
reflect a regularized or canonical structure (e.g., verb- 
subject-object relations), it was necessary to map surface 
structure into the normalized set of relations required for 
co-occurrence patterns. This involved locating the 
"logical" subject and object in passive sentences, relative 
clauses, reduced relatives, and clauses with aspectual 
verbs. For example, in patient continued to receive medi- 
cation, the ve rb / sub jec t /ob jec t  co-occurrence pattern of 
interest is " receive/pat ient /medicat ion" .  

The computation of co-occurrence patterns was done 
by a set of restrictions that borrowed code from those 
used for the selection mechanism itself. (This was possi- 
ble because the selection mechanism also has to find the 
logical elements involved in co-occurrence, including the 
cases where these differ from the surface structure). An 
appropriate restriction (e.g., a subject-verb-object  or an 
adjective-noun or a noun-preposit ion-noun restriction) 
identified the structures that participate in selection 
(subject-verb-object,  adjective-noun, or noun-preposi- 
tion-noun). For  each such structure, the restriction 
located the words participating in the co-occurrence 
relation and retrieved the sublanguage classes associated 
with these words. The restriction then wrote the sublan- 
guage class pattern onto a file. The pattern consisted of 
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a tag identifying the pattern type (e.g., PRED- 
ARG1-ARG2 for verb-subject-object or NVAR-APOS for 
noun-adjective) and the actual words in that instance of 
the pattern, followed by a line for each member of that 
pattern, containing the major class (e.g., noun = N or 
past participle = VEN), followed by the word, followed 
by the subclass. 

*81A 1C. 1.11 
PRED-ARG 1-ARG2 EXAMINED () 
VEN EXAMINED (H-VMD) 
N 0 (NIL) 
N JOINTS (H-AREA) 

*81A 1C. I . l l  
NVAR-APOS JOINTS OTHER 
N JOINTS (H-AREA) 
ADJ OTHER OTHER 

J O I N T S  

The final stage involved collecting, counting and refor- 
matting the set of co-occurrence patterns into the selec- 
tional lists required by the grammar. This permitted us to 
use the automatically generated sets of co-occurrence 
patterns as input to the selectional constraints of the 
grammar. 

Prior to running any parsing experiments, we 
compared the automatically generated selection lists to 
the lists produced manually by a linguist. Our expecta- 
tion was that the automatically generated lists would be a 
subset of the manually prepared set. It turned out that 
this was not the case, primarily because a number of 
human errors had allowed erroneous patterns to enter the 
file: errors in assigning sublanguage classes to words, 
errors in resolving homographs, oversights in weeding out 

bad parses. We therefore found it necessary in practice 
to make a final manual pass over the file of patterns, 
discarding bad patterns that had crept in in one way or 
another. Only then were the patterns suitable for use as 
data to the selectional restrictions. 

Although most of the data manipulation (generation of 
parse trees, generation and collection of selectional 
patterns) was automated, considerable manual inter- 
vention was still needed to verify the processing at each 
stage. We shall return to this issue below. 

5 E V A L U A T I O N  

We have evaluated the selectional patterns obtained by 
the procedure just described in two ways. First, we have 
tried to estimate how complete the set of patterns is. 
Second, we have compared the effectiveness of these 
patterns in parsing new material with that of selectional 
patterns generated by hand. 

5.1 G R O W T H  CURVES 

A crucial question we wanted to answer with our exper- 
iment was whether the size of our text sample was 
adequate to obtain a reasonably complete set of selec- 
tional patterns. To answer this question, we plotted the 
growth in our sets of selectional patterns as a function of 
the size of the sample we have processed (i.e., the 
number of different patterns encountered in the first X 
sentences). Figures 1, 2, and 3 show the growth curves 
for the subject-verb-object, prepositional phrase, and 
adjective-noun selectional patterns. 2 
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Figure 1. The growth in the number of subject-verb-object selectional patterns as a function of the size of the text 
sample (in sentences). The solid curve is the actual data, the dashed line the least-squares fit to a function 
of the form A * ( 1 - e x p ( - B * x ) ) .  
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Figure 2. 
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If our corpus had yielded a reasonably complete set of 
patterns, we would expect the growth curves to flatten 
out by the end (indicating that very few new patterns 
were being encountered in the text). In our earlier study 
of syntactic patterns in sublanguages, we had found just 
such an effect after 200-250 sentences. Unfortunately - 
as is evident in the figures - this is not the case ihere even 
after 500 sentences; the slope of the curve has clearly 
decreased, but it is by no means flat. 

A pessimistic reader might suggest at this point that 
the set of selectional patterns is not closed, and that the 
curve will continue rising at a substantial rate until nearly 
all possible patterns are present. Our experience with 
sublanguage selection - and that of other linguists - 
suggests, however, that, to a first approximation, the set 
of patterns is closed and that, with a text sample several 
times larger than the present one, the curve will flatten 
out. In order to get a more quantitative estimate of the 
size of corpus that will be needed, we can use the follow- 
ing crude model. The successive patterns encountered in 
processing the sentences represent a random selection 
(with replacement) from a finite population (the 
complete set of patterns for the sublanguage). We there- 
fore expect the growth curve to have the form 
Y = A * ( 1 - e x p ( - B s ) ) ,  where s is the number of 
sentences processed, A is the size of the complete set of 
patterns, and B is a parameter  related to the rate of 
growth of the set of patterns. A least-squares fit of this 
function to the growth curve yields the following values: 
for subject-verb-object patterns, A=180 ,  B=0.00264;  
for prepositional phrase patterns, A=276 ,  B=0.00162;  
for adjective-noun patterns, A=126 ,  B=0.00416.  The 
fitted exponential curves are shown as dashed lines in 
Figures 1-3. These results can be more meaningfully 
viewed in terms of the size of the corpus we would need 
to get 9 0 %  complete patterns: for subject-verb-object 
patterns, about 900 sentences; for prepositional phrase 
patterns, about 1400 sentences; for adjective-noun 
patterns, about 550 sentences. 

5.2 PARSING TESTS 

The primary objective of our discovery procedure is to 
produce a set of selectional patterns that can be used in 
parsing further texts in the sublanguage; the ultimate test 
of the patterns we generate, therefore, is to use them in 
parsing new text and see how they affect the parsing 
rates. The prospects for such a' test are clouded by the 
results of the previous subsection, which showed that the 
set of patterns we had collected was still quite incom- 
plete. Nonetheless we thought it worthwhile to proceed 
with this second stage of evaluation. 

In order to avoid the substantial labor associated with 
processing a new text (entering the text, entering defi- 
nitions for the new words, etc.), we proceeded as follows. 
We took two medical records from our corpus of 11 
records (about 2 0 %  of the corpus) and treated them as 
"new text". We reran the programs for collecting selec- 

tional patterns, using only the remaining nine records 
(the "old text").  We then parsed the new text using the 
selectional patterns thus generated, and classified the 
results for each sentence: good parse (first parse correct), 
bad parse (first parse incorrect), or no parse for the 
sentence. 

We compared these results with the results of parsing 
the text using manually prepared selectional patterns. 
These patterns had been prepared by a computational 
linguist, based on a study of various medical records 
(including five of the records in our current corpus), 
generalizing from observed patterns where it seemed 
reasonable. 

The results of the comparison are shown in Table 2. 
The rate of successful analyses was substantially lower 
with the automatically generated selectional patterns. 
This is not surprising given our observations in the earlier 
section about the incompleteness of these patterns. 
Where a selectional pattern is missing, an analysis will be 
blocked, thus generally producing no parse for the 
sentence. 

good parses 

bad parses 

no parses 

Selectional patterns generated: 

manually 

54 

25 

27 

automatically 

43 

22 

41 

Table2.  Parsing results for 106 "new"  sentences, 
comparing manually and automatically gener- 
ated selectional patterns. 

The parsing rates shown here are relatively low (about 
5 0 %  good parses) when compared with the data of 
Table 1 (about 7 5 %  success). This reflects the fact that 
the six patient summaries in our corpus, including the two 
treated here as new text, were analyzed "cold":  words 
were added to the lexicon as needed, but otherwise no 
adjustments were made to the grammar or lexicon. The 
documents are unedited medical reports with many 
sentence fragments; they contain a substantial number of 
sublanguage-specific constructs not previously encoun- 
tered in processing other types of reports, (for example, 
prepositions were sometimes omitted before body parts: 
Synovial thickening both wrists bilaterally.). In addition, 
the experiments revealed a substantial number  of errors 
in the lexicon. Of the 63 failures (bad or no parse) using 
the automatically generated patterns, 20 were due to 
syntactic constructs not present in the grammar, 3 to 
other grammar or parser bugs, 11 to errors in the diction- 
ary, and 23 to missing selectional patterns; 4 sentences 
got a bad parse on the first parse and a good parse on the 
second parse; 2 more were considered unanalyzable 
sentence fragments. The syntactic gaps and lexical errors 
uniformly depress the success rates for these exper- 
iments, but we feel that the data is still valid for compar-  
ing different sets of selectional constraints. 
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5.3 RESTRICTION RELAXATION 

The incompleteness of semantic information is a serious 
and general problem that transcends our particular work 
on discovery procedures. As the domains with which 
natural language systems deal become more complex, it 
becomes more difficult to acquire a complete set of selec- 
tional patterns. Furthermore, in many sublanguage texts 
there are passages that fall outside the sublanguage; for 
example, in one medical record domain, there is a 
mention of a vacation a patient took, during which he got 
sick. These passages will not satisfy the selectional 
constraints of the sublanguage. 

In the manual preparation of selectional patterns, 
some small measures were taken to compensate for this 
incompleteness. In preparing the patterns, the linguist 
generalized from the patterns observed in the text, 
adding new patterns that seemed equally reasonable 
based on a knowledge of the domain. For  certain very 
common prepositions (e.g., of) for which it would be 
difficult to collect all the selectional patterns, selection 
was disabled. Similarly the linguist chose to omit some 
verbs from the selectional patterns; in these cases, 
subject-verb-object selection was not applied. 

In the automatically generated patterns, no similar 
measures were taken. This, combined with the limited 
corpus used to gather the patterns, accentuated the effect 
of the incompleteness of the patterns. Because absence 
of a co-occurrence pattern can be interpreted as either 
negative information (a particular pattern is not allowed 
in the sublanguage) or as incomplete information (this 
pattern has not yet been seen), any automatically gener- 
ated set of patterns will over-constrain the parsing. We 
therefore sought some way of automatically compensat-  
ing for this incompleteness. 

The approach we chose to try was restriction relaxa- 
tion. If no parse can be obtained satisfying all selectional 
constraints, the parser tries for an analysis that will satis- 
fy all but one of the selectional constraints. 3 In effect, the 
parser is willing to relax any one of the selectional 
constraints in order to get an analysis. Such an approach 
has been suggested before by several computational 
linguists (for example, Weischedel and Sondheimer 
1983), although primarily to account for ungrammatical 
input rather than for incompleteness of semantic know- 
ledge. 

We originally applied this technique in connection 
with the manually generated selectional patterns. These 
results were not very encouraging: about 5 %  of the 
sentences in the sample that had previously gotten no 
parse now got a correct parse, but another 5 %  got a bad 
parse. This was not too surprising in retrospect; the 
various measures mentioned above to compensate for the 
incompleteness of the patterns resulted in a set of rela- 
tively "loose" constraints, and any further loosening 
(such as restriction relaxation) would let quite a few bad 
parses through. 

Our results using this technique in connection with the 
automatically generated patterns, which are tighter and 
less complete, have been more positive (although based 
to date on an extremely small sample). Within our two- 
record sample, there were 14 sentences that had previ- 
ously not gotten a parse and now got one with restriction 
relaxation. Of these, 10 were correct and 4 were incor- 
rect. The automatically generated patterns, when 
coupled with the mechanism for restriction relaxation, 
did about as well as the manually generated patterns 
(Table 3). Given the small text sample, and the 
acknowledged incompleteness of the set of patterns, we 
found this somewhat encouraging. Of course, these 
experiments are still too small to reach any definite 
conclusions. 

good parses 

bad parses 

no parses 

Selectional patterns generated: 

manually 

54 

25 

27 

automatically 

53 

26 

27 

Table3.  Parsing results for 106 "new"  sentences, 
comparing manually and automatically gener- 
ated selectional patterns, and using restriction 
relaxation when parsing with automatically 
generated patterns. 

6 WHY Is  IT So  HARD.'? 

When it is first described, the discovery procedure - 
parse the text, extract certain syntactic structures, collect 
the sublanguage class patterns - may seem quite simple 
and straightforward. It has, however, taken us several 
iterations to achieve even the small success described 
here. It is worthwhile to reflect briefly on why this is so. 

First, there are several sources of human error, each of 
which contributes some errors to the final set of patterns. 
There are errors of word classification, where the wrong 
sublanguage class is recorded in the lexicon. There are 
errors in weeding out bad parses: a small defect (e.g., 
incorrect conjunction scope) is easily overlooked. Final- 
ly, there are errors due to selecting the wrong subclass 
for a homograph. We have tried to cope with these 
errors by repeatedly reviewing the generated set of 
sublanguage patterns, going back each time to find the 
source of any unexpected patterns. However,  as our text 
samples grow from thousands of words to tens of thou- 
sands (as they must to get a better  set of patterns), more 
systematic control will be needed to minimize such 
e r ro r s .  

Second, there are a number  of linguistic phenomena 
that complicate the extraction of the selectional patterns. 
Specifically, there are cases in which the sublanguage 
class of a noun phrase cannot be determined from the 
class of the head alone. In some constructs of the form 
N1 preposition N2, the head N1 is " t ransparent" ,  and the 
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phrase has the class of (has the distribution of) N2. 
Examples are h i s t o r y  o f  . . . .  i n c r e a s e  in . . . .  In other 
cases, the class of the phrase depends on both the head 
and the modifier; thus t h r o a t  has the class BODYPART 
but s o r e  t h r o a t  the class SYMPTOM. We have incorpo- 
rated the patterns and procedures for computing such 
phrasal attributes for the medical domain into our selec- 
tional restrictions. In moving to a new domain, we would 
have to acquire new sets of phrasal attribute patterns as 
well as selectional patterns. To limit our current exper- 
iment, however, our procedure for generating selectional 
patterns used the phrasal attribute patterns that had been 
previously developed manually. 

None of these difficulties pose insurmountable road- 
blocks to our goal. Rather they point out that, as in any 
experiment where a large body of reliable data must be 
collected, the procedures may be complex and special 
measures must be taken to assure accuracy. 

7 CONCLUSIONS 

Overall, the experiments we have conducted using our 
discovery procedure are encouraging but not conclusive. 
The selectional patterns gathered from a limited text 
sample - when coupled with a procedure for restriction 
relaxation - do about as well as manually prepared selec- 
tional patterns. Furthermore, the growth curves for the 
selectional patterns suggest that a corpus several times 
larger would yield a more complete set of patterns and 
thus better performance in parsing. 

We have learned that such a procedure requires 
substantial human interaction and we intend, before 
advancing to a larger corpus, to restructure the system to 
facilitate this interaction. The present system is basically 
organized for batch processing; interaction takes place 
by editing intermediate files. Our next step will be to 
move to an interactive environment that supports the 
following capabilities: 
• isolating parse ambiguities and homographs and 

prompting the user to choose the appropriate 
reading/meaning; 

• displaying new selectional patterns the first time they 
are encountered; 

• supporting simultaneous inspection and manipulation 
of text, parse tree, and selectional patterns. 
In all of this interaction, however, the user is still 

acting only as a monitor of the patterns generated. We 
are still faced with the difficult issue of how to bootstrap 
the system into a new domain. In the absence of selec- 
tional patterns, choosing the correct parse can become a 
tedious and time-consuming procedure, requiring exten- 
sive interaction with both a domain expert and a linguist. 
It is clearly not a realistic method of building up a set of 
patterns sufficient for semi-automated processing ~3f the 
type described above. 

Combining the text-based approach with elicitation 
procedures offers a more practical method of acquiring 
an initial set of domain knowledge. An expert could 

provide some initial word classes and a partial set of 
relationships, from which to generate selectional patterns. 
A sample of text would then provide additional examples, 
with the expert available to elaborate on further patterns. 
For example, a system being developed at BBN 4 uses a 
hierarchy of sublanguage classes; given a selectional 
pattern, it asks the user to generalize it by replacing 
classes with superclasses where possible. This initial peri- 
od of intensive interaction with an expert would provide 
a sufficient pattern base so that the text-driven tools 
would become effective in filling in the knowledge base. 
Such an approach would offer the assurance of good 
coverage provided by a text-based system while requiring 
a smaller text sample than a purely text-based procedure. 
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N O T E S  

1. "Good parses" included some parses that were not entirely correct 
but that were good enough so they did not cause errors in the 
process that converted the parsed trees into information formats 
(a structured data base). 

2. The curves are rather jagged because the reports are divided into 
sections containing different types of information; when we begin 
processing a new section, new patterns are encountered, and there 
is therefore a sharp rise in the growth curves. 

3. If no analysis can be obtained by relaxing one restriction, the 
parser is able to try for an analysis that relaxes two, three, or more 
restrictions. Our experiments have indicated, however, that relax- 
ing more than one restriction produced bad parses more often than 
good ones. 

4. Private communication with M. Bates. 
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