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In a human dialogue it is usually considered inappropriate if one conversant monopolizes the conver- 
sation. Similarly it can be inappropriate for a natural language database interface to respond with a 
lengthy list of data. A non-enumerative "summary" response is less verbose and often avoids mislead- 
ing the user where an extensional response might. 

In this paper we investigate the problem of generating such discourse-oriented concise responses. 
We present details of the design and implementation of a system that produces summary responses to 
queries of a relational data base. The system employs a set of heuristics that work in conjunction with a 
knowledge base to discover underlying regularities that form the basis of summary responses. The 
system is largely domain-independent, and hence can be ported relatively easily from one data base to 
another. It can handle a wide variety of situations requiring a summary response and can be readily 
extended. It also has a number of shortcomings which are discussed thoroughly and which form the 
basis for a number of suggested research directions. 

1 INTRODUCTION 

Research into the diverse and complex issues involved in 

developing smart natural language interfaces to database 

systems has been going on for over a decade. Pioneering 

front-end systems such as REL (Thompson and Thomp- 

son 1975), LUNAR (Woods, Kaplan, and Nash-Webber 

1972), ROBOT (Harris 1977), "PLANES (Waltz 1978), 

REQUEST (Plath 1976), TORUS (Mylopoulos et al. 

1976), and RENDEZVOUS (Codd et al. 1978) exper- 

imented with, among other things, various parsing 

formalisms (e.g. semantic grammars, transformational 

grammars, and augmented transition networks); different 

knowledge representation schemes (e.g. using production 

systems or semantic networks); and the use of clarifica- 
tion dialogues in disambiguating a user's query. 

Recent research has addressed various dialogue issues 
that arise in natural language database interactions. 
Researchers such as Davidson (1982), Grosz (1977), 
Sidner and Israel (1981), and Webber (1978) have tack- 
led problems such as the resolution of anaphoric refer- 
ences, the tracking of the user's focus of attention, and 
the generation of cooperative responses. In particular, the 
CO-OP system (Kaplan 1982) analyzes the user's 
presumptions in order to generate appropriate explana- 
tions for answers that may otherwise mislead the user. 
Janas (1979) takes a similar approach to generate indi- 
rect answers instead of providing direct inappropriate 
ones. Mays (1982) has developed techniques to monitor 
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changes in the data base and provide relevant informa- 
tion on these changes to the user. McCoy (1982) and 
McKeown (1982) at tempt to provide answers to ques- 
tions about the structure of the data base rather than 
extensional information as to its contents. 

In this paper we investigate another dialogue issue: the 
generation of " summary"  rather than extensional 
responses. Joshi, Kaplan, and Lee (1977) mention this as 
an interesting issue, but so far as we know the generation 
of summary responses has not been subsequently studied 
to any great extent. Summary responses are formulated 
in terms of general characteristics, shared by the exten- 
sional response set, that distinguish responses in that set 
from other information in the data base. It  is often the 
case, as we argue later, that summary responses are not 
ordy more succinct than extensional responses, but are 
often more appropriate as well. In order to explore the 
issue of summary response generation, we have 
constructed a system that produces summary responses 
from a small relational data base of student records. The 
system has two components: a domain-independent set 
of heuristics and a domain-dependent  set of frames that 
"customize" the heuristics for a specific data base and a 
particular class of users. Since the frames are relatively 
easy to specify for a given database context, the summa- 
ry response techniques developed here may well be wide- 
ly applicable; that is, the system is to a large extent 
portable. 

The paper goes more fully into the nature of summary 
responses and their usefulness. It  describes the response 
generation system in detail, including a presentation of 
the frames and heuristics used in the student database 
example. Extensive discussion is devoted to the 
strengths, weaknesses, and subtleties of this approach to 
summary response generation; and future research 
directions are outlined. A readable overview of the 
system can be found in Kalita, Colbourn (Jones) and 
McCalla (1984); a detailed presentation is available in 
Kalita (1984). 

2 THE NATURE OF SUMMARY RESPONSES 

An important convention of human conversation is that 
no participant monopolize the discourse, ensuring that 
control can be shared (Joshi, Kaplan, and Lee 1977). For  
example it is often considered inappropriate for a speaker 
to respond with a lengthy list of data; a shorter non-enu- 
merative response is, at times, more appealing. Lengthy 
response sets could be summarized, or defined by a char- 
acteristic or attribute. For  instance, the question 

QI :  Which employees engage in profit sharing? 

may be answered by listing the extension of a set 
containing perhaps, a long list of names, or by the inten- 
sional response 

SI:  All vice-presidents. 

Such summary answers avoid unnecessary and distracting 
details, and more important, they do not mislead the user. 

As another example, consider the query Q2 given 
below (from Reiter et al. 1983): 

Q2: Which department managers earn over $40k per 
year? 

$2-1: Abel, Baker, Charles, Doug. 
$2-2: All of them. 

Response $2-1 is what might be expected of an existing 
system; response $2-2, the summary response, is normal- 
ly more appropriate if conversational principles and prac- 
tices are to be adhered to. By enumerating managers who 
earn over $40k, the first response implies that there are 
managers who do not earn that much. Such a scalar impli- 
eature follows from the cooperative principle in conversa- 
tion (Grice 1975:45) that requires a speaker to make 
his /her  "conversational contribution", such as is 
required, at the stage at which it occurs, by the accepted 
purpose or direction of the talk exchange in which 
[he/she is] engaged".  There are four maxims that derive 
from this principle: 

(i) the maxim of quant i ty  - make the contribution as 
informative as desired but not more so; 

(ii) the maxim of qual i ty  - do not say what is believed 
to be false or that for which evidence is lacking; 

(iii) the maxim of relation - be relevant; 
(iv) the maxim of m a n n e r  - avoid obscurity, avoid ambi- 

guity, be brief, be orderly. 

In the case of query Q2 above, the responder would 
only enumerate positive instances if he / she  could  not say 
the more informative A l l  o f  them.  Thus, $2-1 might 
mislead a user, who would expect the system to respond 
with $2-2 if it were true. Of  course, the Gricean maxims 
must be viewed as being phrased relative to the 
responder 's  perceptions of the user 's knowledge. Thus, 
the responder would have to know exactly what partic- 
ular knowledge a given user had before being able to 
decide with certainty which responses are likely to be 
misleading. The usefulness of modelling the user will be 
discussed further in section 6. 

In general, summary responses are aimed at meeting 
the maxims of quantity and manner.  As Q2 illustrates, a 
summary response can be (somewhat  paradoxically) 
more informative than an extensional response. It can 
also be briefer and less obscure than an extensional 
response. It is important to make only the relevant 
summary responses. Our system tries to maintain rele- 
vance through the use of a knowledge base tailored to 
meet  the expectations of different classes of users (see 
section 4.2). Since we don ' t  produce responses not satis- 
fied by the data, the maxim of quality is not changed by 
the generation of summary responses. It is possible, 
however, to produce a summary response which itself 
violates Grice's  maxims. For  example, assume the query 
W h o  passed  C M P T  110?  were posed to a summary 
response generation system. Producing the answer A l l  

s tudents  who got  over 5 0 %  (if this happened to be true in 
the current data base) would normally violate the maxims 
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of quantity and relation in that most users would be given 
information they already knew. Similarly, producing the 
answer All students who got over 60% (if this happened 
to be true in the current data base) might mislead a user 
into thinking that 60°6 was a passing grade, hence violat- 
ing the maxim of quality (actually, Joshi's generalization 
of this maxim since, strictly speaking, the answer is truth- 
ful). Some techniques are incorporated into our system to 
help reduce the chances of this kind of thing occurring 
(see section 4), but it is still a problem, as we discuss in 
the concluding section. 

Generation of summary responses is analogous to a 
reversal of the interpretation process. A natural language 
question is interpreted into one or more propositions the 
data in the answer must satisfy, and then the appropriate 
data is retrieved. In a conventional database manage- 
ment system (DBMS), this extensional response is the 
only possible answer. But, we want to go back from the 
extensional data to predicates describing characteristics 
of the data and from there to natural language. Consider 
the query, Which employees use a company car?. The 
internal form into which this question is interpreted might 
be 

(employee uses car) & (car belongs to company) 

(The actual internal notation used in our system is more 
complicated than this - see section 4.3). A conventional 
DBMS would produce a response consisting of a set of 
employee names and possibly other relevant information 
about them. But, we want to obtain a descriptive 
answer, such as 

(employee is president) V (employee is vice-president) 

which in turn can be expressed in natural language as 

The president and the vice-presidents. 

Hence, we must obtain a description that is true of the 
relevant data and present the description to the question- 
er instead of providing the actual data values that satisfy 
the propositions set forth in the question. 

It is possible for a system to arrive at such concise 
responses from an extended database schema by employ- 
ing a heuristic search of the extensional data for the 
existence of "interesting" patterns. In the next section we 
overview a system for producing summary responses. 

3 OVERVIEW OF THE SYSTEM 

We have designed a system that produces summary 
responses to queries posed to a simple relational data 
base of student records. In order to concentrate on the 
pragmatics issues underlying the generation of summary 
responses, we ignore the complexities of starting with, 
and eventually producing, surface language. Instead, the 
system starts with predicates representing the user's 
query and produces predicates representing a summary 
response. 

The flow of control in the system is simple. The user's 
query is formulated in an internal form which is under- 

stood by the underlying database management system. 
This internal form is discussed more fully in section 4.3. 
Using this query, the DBMS obtains ~ the extensional 
response set, that is, the tuples that satisfy the user's 
query. After the data is accessed, the system consults its 
knowledge base to try to formulate a summary response. 
A prime component of this knowledge base is a set of 
heuristics used to find interesting non-enumerative 
patterns. As soon as a heuristic succeeds in discovering 
such a pattern, the system terminates the search and 
produces the response as dictated by the successful 
heuristic. This response is also in an internal notation 
identical in form to that used to represent the input. If all 
heuristics fail, the system reports its inability to produce a 
descriptive response. In any event, the user may ask the 
system to produce an extensional list of the data if 
desired. 

Let 's look at the knowledge base in slightly more 
detail. In order for the system to provide meaningful 
descriptive responses, the user's conceptions regarding 
the nature and contents of the data base must be taken 
into account. Without a separate knowledge base, this 
would be impossible. The knowledge base is employed 
to outline strategies for obtaining summary responses, to 
ensure that the qualitative responses generated are 
appropriate, and to produce salient information for 
describing the data that satisfy a query. The knowledge 
base consists of two distinct parts: the heuristics, and the 
frames for the relations and attributes. 

The heuristics guide the search for "interesting" 
patterns in the data; the frames assist in determining 
"interestingness". The heuristics are the procedural part 
of the system's knowledge. There are several heuristics, 
including the equality, inequality, range, conjunction, 
disjunction, and foreign-key heuristics. They are ordered 
according to the complexity of the search procedures 
involved and are tried in this order so that the easiest 
(and usually the simplest to understand) summary 
response is found first. 

The second part of the system's knowledge is repres- 
ented by frames which encode useful information about 
the relations in the data base and their attributes. There 
are two types of frames: relation frames, which suggest 
ways of joining relations together in order to facilitate 
the discovery of elaborate patterns in the data; and attri- 
bute frames, which give characteristics of various attri- 
butes in the relations in order to aid the determination of 
relevant and interesting patterns. 

Currently, both the frames and the heuristics must be 
prespecified by the system designer, rather than automat- 
ically created by the system to suit a given database 
context. However, this isn't a big problem since the 
heuristics are domain-independent and, hence, may be 
used with any other database domain without modifica- 
tion. And, although the frames must be tailored to reflect 
characteristics of the particular data base and user, the 
frame notation is sufficiently straightforward that it 
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seems possible for a database manager to be able to do it 
relatively easily. 

4 DETAILS OF THE SYSTEM 

4.1 THE RELATION AND ATI'RIBUTE FRAMES 

The sample relational data base used in our implementa- 
tion consists of three relations: 
- STUDENTS, 
- COURSE-DESCRIPTIONS, and 
- COURSE-REGISTRATIONS. 
The data base stores useful information about graduate 
students and the courses in which they register. The 
relations and their attributes are shown in Figure 1. Key 
attributes are shown in italics. 

The current relation frames are very simple. Each 
frame corresponds to an actual relation in the data base; 
it provides the possible links with all other relations. In 
other words, these frames define all lossless joins of two 
relations. In cases where a direct join is not possible 
between two specific relations, the frame contains the 
name of a third relation that must be included in the join. 
If two relations R~ and R 2 can be directly joined through 
attributes A 1 in R 1 and A 2 in R 2, the corresponding entry 
in the LINKS siot is 

( (R1 R2) (A 1 A2)). 
If the relations R 1 and R 2 cannot be joined directly, but 
can be indirectly joined through a relation R3, the corre- 
sponding entry in the LINKS slot of the relation frames 
for R 1 and R 2 is 

((R1 R2 R 3) (A 1 A31) (A32 A2)). 

The first sublist indicates that the relations R 1 and R 2 can 
be indirectly joined through relation R 3. The second 
sublist indicates that R 1 and R 3 can be joined using the 
attribute A 1 in R1 and the attribute A31 in R 3. Similarly, 
the relations R 3 and R. 2 can then be joined through the 
attribute A32 in R 3 and A 2 in R v 

For  the STUDENTS relation under consideration, the 
relation frame can be seen in Figure 2. The relations 
STUDENTS and COURSE-REGISTRATIONS may be 
joined through the fields STUDENT-ID-NO in STUDENTS 
and STUDENT-ID in COURSE-REGISTRATIONS. The 
relations STUDENTS and COURSE-DESCRIPTIONS 
cannot be joined directly; the join has to be performed 
through the relation COURSE-REGISTRATIONS. 
STUDENTS and COURSE-REGISTRATIONS are linked 
through the fields named above. COURSE- 
REGISTRATIONS and COURSE-DESCRIPTIONS are 
joined through the COURSE-NO field in both  these 
relations. 

The information in the relation frames is employed 
when the system fails to produce a non-enumerative 
answer after exhausting all the heuristics that deal with 
only one relation. The system then attempts to find a 
descriptive expression considering another  relation with 
which the original or target relation has some common 
join-attribute(s). 

Relation frames allow the database manager  the flexi- 
bility of naming attributes differently in different 
relations. They also can be used to restrict the types of 
joins that can be undertaken (i.e. not all possible joins 
need to be specified). Except  for these distinctions, it 
would be relatively straightforward to generate the 
relation frames automatically. 

STUDENTS: 
(STUDENT-ID-NO, NAME, NO-OF-YEARS-COMPLETED, 
NATIONALITY, NATURE-OF-FINANCIAL-AID, NO-OF-COURSES-THIS-TERM, 
NO-OF-COURSES-COMPLETED, TAKING-MAKEUP-COURSES?, 
CUMULATIVE-GPA, UG-MAJOR) 

COURSE-DESCRIPTION: 
(COURSE-NO, COURSE-NAME, COURSE-LEVEL) 

COURSE-REGISTRATIONS: 
(COURSE-NO. STUDENT-ID, OFFERED-IN-TERM, COURSE-GRADE) 

Figure 1. Relations and Attributes in Graduate  Student Data Base. 

Relation-Name: STUDENTS 
Links: 

(((STUDENTS COURSE-REGISTRATIONS) 
(STUDENT-ID-NO STUDENT-ID)) 

((STUDENTS COURSE-DESCRIPTIONS COURSE-REGISTRATIONS) 
(STUDENT-ID-NO STUDENT-ID) (COURSE-NO COURSE-NO))) 

Figure 2. Relation Frame for the Relation STUDENTS. 
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In addition to the relation frames, the system is 
provided with a number  of attribute frames, each of 
which corresponds to an actual attribute in the data base. 
Attribute frames are critical in this approach to summary 
response generation and thus are described in some 
detail. Attribute frames allow important attributes and 
meaningful attribute values to be specified in advance. 
Together with the heuristics, they give our system many 
of the abilities of McCoy ' s  (1982) ENHANCE system to 
reflect a user's preconceived notions as to which patterns 
of data a r e  meaningful and which are not. A different 
set of attribute frames can be designed for each type of 
user (presumably by the database manager),  thus allow- 
ing user modelling of a sort to be implemented. 

Attribute frames guide the system in describing the 

data on the basis of attributes whose values serve to 
partition an entity class (represented by a relation in the 
data base) into two mutually exclusive subclasses, namely 
the part  of the entity class that satisfies the user 's query 
and the part  that does not. As pointed out by Lee and 
Gerritsen (1978), some partitions of an entity class are 
more meaningful than others. Our system employs attri- 
bute frames to determine which attributes should be used 
for describing a partition and which resulting classifica- 
tions are meaningful. Figure 3 shows an attribute frame 
for the attribute NATIONALITY in the STUDENTS 

relation. 

Name:-  (NATIONALITY, STUDENTS) 
Nature-of-Attr ibute:-  String of characters 
Distinguishing-Values:- 

(((Canadian) (= )  ( #  foreign)) 
( (U.K.U.S.A.  Australia ...) 

(member-of English-speaking-countries)) 
((U.K. France ...) 

(member-of Europe))  
...) 

Potential-range:- Any member  from a given list of countries 
Round-off- to-be-done?:-  Not  applicable 
Preference-Category:-  1 

Figure 3. Attribute Frame for NATIONALITY. 

The NAME slot contains the internal name of the attri- 
bute, i.e. the name under which it is stored in the data 
base, and the name of the relation in which it occurs. If 
the attribute occurs in more than one relation, this field 
contains an entry for each relation. The general format  
of the contents of this slot is 

(Attribute-Name-in-Relation- 1 Rela t ion- l -Name)  
[(Attribute-Name-in-Relation-2 Relat ion-2-Name) ... ] 

The expression within the "[ ]" brackets is optional. The 
three dots indicate that an arbitrary number of repe- 
titions of the immediately preceding expression is 
allowed. In the case of the attribute frame of Figure 3, 
the NAME slot indicates that the frame represents infor- 

mation about the NATIONALITY attribute in the 
STUDENTS relation. 

The second slot, NATURE-OF-ATTRIBUTES, contains 
information regarding the type of values contained in the 
field - e.g., numeric, character, or boolean. The 
NATIONALITY attribute assumes character values. 

The DISTINGUISHING-VALUE slot provides informa- 
tion for distinguishing a subclass of an entity from other 
subclasses. This slot stores any distinguishing values the 
attribute may take. These values are crucial in producing 
descriptive responses to the user 's queries, so some time 
will be spent elaborating this idea. The slot contains one 
or more clauses, each of the following format: 

(((list-of-attribute-values-1 (applicable-operator-l-1 [denominat ion- l - l ] )  
[ (applicable-operator- 1-2 [denomination- 1-2])] 
.*.) 

If the actual values of the attribute satisfy 

"appl icab le -opera tor - l - l "  with respect to the contents of 

the list "l ist-of-at tr ibute-values-l" ,  the actual values 

may be termed as "denomina t i on - l - l "  for producing 

responses. If the value of "denomina t i on - l - l "  is null, no 

special names can be attached to the actual values of the 

attribute. 

Looking at the NATIONALITY attribute frame of 

Figure 3, a number  of distinguishing values have been 

specified. Consider the clause ((Canadian) ( = )  ( #  
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foreign)). The value "Canadian"  is a distinguishing 
value. The term " ( = ) "  indicates that it is possible to 
identify a class of students using the descriptive 
expression "NATIONALITY ---- Canadian".  If 
NATIONALITY # "Canadian" ,  the student may be 
referred to as a "FOREIGN" student. Similarly, if the 
value stored for a student under the attribute 
NATIONALITY is a member of the set ( U . K . U . S . A .  
Australia ...), he / she  may be designated as coming from 
an English-speaking country. Finally, if the student has 
value U.K., France, etc. for NATIONALITY, he / she  may 
be considered to be from Europe. 

Distinguishing values correspond to key values that 
naturally divide the values in a domain into distinct class- 
es. In this sense they are very similar to McCoy ' s  (1982) 
"very specific axioms", although how they interact with 
heuristics to produce summary responses is different. To 
illustrate, for most users the value 18 of an AGE attribute 
is a distinguishing value dividing children from adults; 65 
is a distinguishing value separating adults from senior 
citizens. Other values are not important and, therefore, 
should not be considered to be "distinguishing". Similar- 
ly, suppose that a grade point average of six or greater is 
necessary for a graduate student to register in four cours- 
es rather than the usual three courses. The value "6" ,  
then, can be considered to be a distinguishing value for 
the CUMULATIVE-GPA attribute. This would allow 
questions like Which students are taking four or more 
courses? to be answered with All  students with GPA of  six 
or higher rather than with the response All students with 
GPA of  6.52 or higher which might be true of the current 
data. The latter response is inappropriate because it 
violates the maxim of quality in that it might mislead the 
user into thinking that 6.52 is a significant value in the 
University. (See Q8-$8 in section 4.2.4 for the details as 
to how the proper summary response for this kind of 
question is generated by our system.) 

Returning to the NATIONALITY frame of Figure 3, 
the distinguishing values specified there would make it 
possible for our system to answer the question Which 
students are taking the "'Intensive English" course in the 
Fall term? with the response Most entering foreign 
students from non-English speaking countries rather than 
the misleading answer All students from China, Iran, and 
France, which might happen to be true currently. Once 
again, the latter response violates the maxim of quality, a 
common occurrence if summary responses are not care- 
fully tuned to reflect significant domain subdivisions. 

The DISTINGUISHING VALUE slot enables the data- 
base manager to specify classifications that he / she  would 
a priori like to appear meaningful to the user in descrip- 
tive responses. Without this information the system may 
fail to faithfully reflect the user's perceived notions 
regarding appropriate partitioning of entity classes. By 
changing the distinguishing values, the database manager 
can adapt the system to serve the needs of a variety of 
users. Although it isn't our concern here, it would even 

be possible to remove all distinguishing values and hence 
have the system produce no summary responses. For  any 
given class of users, the database manager  will need to 
specify all of these distinguishing values by hand, but 
once they are specified, they can be used by many  differ- 
ent heuristics in many different situations for as long as 
the database structure remains the same, even if the 
tuples in the data base change. Further examples of the 
use of distinguishing values and how they interact with 
the heuristics will be presented shortly. 

Let  us return at last to the other slots in an attribute 
frame. The POTENTIAL-RANGE slot provides an 
approximate range in which the values of the attribute 
may lie. The information in this slot is employed in 
conjunction with the range heuristics which are discussed 
in the next section. In the NATIONALITY attribute 
frame of Figure 3, the potential range would be specified 
in terms of a long list (not shown) of possible countries 
of origin. 

It  is sometimes necessary to round off values of 
numeric attributes in order to produce answers with 
acceptable range specifications. However ,  not all numeric 
attributes can be rounded. Whether  rounding is allowable 
for a particular attribute depends on several factors 
including the type of values the attribute can assume (i.e., 
integer, real, etc.) and the potential range o~ its values as 
well as other attribute characteristics. The ROUNDING- 
TO-BE-DONE? slot contains a boolean value indicating 
whether rounding is appropriate for the particular attri- 
bute under consideration. It  obviously is not for the 
character values of the NATIONALITY attribute frame. 
Straightforward as it may seem, rounding allows our 
system to avoid violating Grice's  maxims of manner,  
specifically by making answers less obscure. 

It  is often more useful to provide descriptive answers 
on the basis of certain preferred attributes. For example, 
in the STUDENTS relation, it is more "meaningful"  to 
provide answers on the basis of the attribute 
N A T I O N A L I T Y  o r  U G - M A J O R  rather than S T U D E N T -  

ID-NO or AMOUNT-OF-FINANCIAL-AID. However,  it is 
impossible to give a concrete weight regarding each attri- 
bute 's  preferability. Therefore,  we have classified the 
attributes into several groups; all attributes in a group are 
considered equally useful in producing meaningful qual- 
itative answers to queries. The groups for the STUDENTS 
relation are given in Figure 4. 

This classification means that it is preferable and more 
useful to produce descriptive responses using the attri- 
butes in group 1 than the attributes in group 2, and the 
attributes in 2 are preferable to 3, which are in turn pref- 
erable to 4. This categorization is done by the database 
manager, based on his /her  judgement as to the perspec- 
tives of the various classes of users. In the slot PREFER- 
ENCE-CATEGORY, there is an entry corresponding to 
each relation the attribute occurs in. The information in 
this slot ensures that the system chooses a description 
based on the most salient attribute for producing a 
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1: (NATIONALITY, CUMULATIVE-GPA, UG-MAJOR) 
2: (NO-OF-YEARS-COMPLETED, NATURE-OF-FINANCIAL-AID) 
3: (NO-OF-COURSES-THIS-TERM, NO-OF-COURSES-SO-FAR, TAKING-MAKEUP-COURSES?) 
4: (STUDENT-ID-NO, NAME) 

Figure 4. Preference Categories for the Relation STUDENTS. 

Name:-  (CUMULATIVE-GPA STUDENTS)Nature-of-Attribute:- Real 
Distinguishing-Values:- 

(((0.00 2.00) (in-the-range-of poor))  
((2.00 4.00) (in-the-range-of satisfactory)) 
((4.00 6.00) (in-the-range-of good)) 
((6.00 7.00) (in-the-range-of excellent)) 
((7.00 8.00) (in-the-range-of outstanding)) 
((2.00) (>_) (_<)) 
((6.00) (_>) (_<))) 

Potential range:- (0.00-8.00) 
Rounding-to-be-done?:-  Yes 
Preference-Category:-  1 

Figure 5. Attribute Frame for CUMULATIVE-GPA. 

Name:-  (NO-IF-COURSES-THIS-TERM STUDENTS) 
Nature-of-Attr ibute:-  Integer 
Distinguishing-Values:-(((2) (< light-load)) 

((3 4) (member-of normal-load)) 
((5) (> heavy-load)))  

Potential-Range:- (0-6) 
Rounding-to-be-done:-  No 
Preference-Category:-3 

Figure 6. Attribute Frame for NO-OF-COURSES-THIS-TERM. 

response. The preference category of the NATIONALITY 
attribute of Figure 3 is 1. 

Preferred attributes perform for our system the same 
function that McCoy 's  (1982) "important  attributes list" 
does for the ENHANCE system. We go further than 
McCoy in specifying several preference categories, rather 
than having one long list. Although all attributes are 
assigned a preference category in this example, we can, 
like McCoy, leave out unimportant attributes altogether 
if it is appropriate to do so. 

Let  us now look at two more attribute frames. Figure 
5 shows the frame for the attribute CUMULATIVE-GPA 
in the STUDENTS relation. From this, it is clear that 
CUMULATIVE-GPA takes real values in the range 0.00 
to 8.00. If CUMULATIVE-GPA is in the range 2.00-4.00, 
it may be termed "poor ." ;  Similarly, if it is in the range 
4.00 to 6.00, it is considered as "good" ,  and so on. If 
none of the first five clauses in the DISTINGUISHING 
VALUE slot is satisfied, the system attempts to use the 
last two clauses. The clause ((2.00) (> )  (< ) )  says that 
we can use expressions such as " G P A  > 2.00" or " G P A  
< 2.00", which cover a wider range than the first five 
clauses (e.g. Which students are allowed to continue? might 
be answered All  students with GPA o f  2 or more. - see 

also Q7-$7 in section 4.2.4). It  should be noted that 
these expressions may be used only if all values for the 
attribute GPA in the selected tuples satisfy the corre- 
sponding condition. However,  we cannot use expressions 
of the form " G P A  = 2.00". We avoid using equafities for 
attributes that assume rational values. The clause ((6.00) 
(> )  (< ) )  conveys a similar idea. 

Figure 6 shows the frame for the attribute 
NO-OF-COURSES-THIS-TERM in the STUDENTS 
relation. From this figure, one can conclude that the 
attribute NO-OF-COURSES-THIS-TERM assumes integer 
values in the range 0-6. If this field has a value <2, it 
may be termed "light-load". If NO-OF-COURSES-THIS- 
TERM is either 3 or 4, it is "normal- load".  If the value of 
the attribute is > 5, it is "heavy load". The values of the 
thresholds shown here are applicable in the case of grad- 
uate students. These values would, obviously, be differ- 
ent if we considered a data base of undergraduate 
students. 

Currently, the attribute frames are static entities with 
their contents being defined a priori by the database 
manager to reflect the expectations of one set of users. 
Of course it is possible to have many  different sets of 
attribute frames for many different classes of users, but a 
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better  approach might be to allow the user to alter the 
contents of these frames interactively to suit h is /her  own 
idiosyncratic perceptions of the information in the data 
base. This would require us to figure out how to present 
the frames and the possible changes to the user, some- 
thing we haven ' t  done as yet. Even more difficult would 
be the automatic creation (and later adjustment) of the 
attribute frames as the result of feedback from a partic- 
ular user or class of users. This is dear ly  a major 
research issue beyond the scope of our current concerns. 

4.2 THE HEURISTICS 

AS mentioned earlier, the heuristics employed in the 
system are procedural in nature. In conjunction with the 
frames described above, they guide the system to search 
for various interesting patterns that distinguish the tuples 
describing the query response from the rest of the tuples 
in the data base. The interesting patterns are similar to 
McCoy ' s  (1982) "distinguishing descriptive attributes", 
although we use them to produce summary responses 
rather than to answer questions on database structure. 
Our use of a number  of specially designed heuristics 
using frames to produce meaningful responses is also 
different from McCoy ' s  approach, which uses three 
different kinds of axioms to control a general search 
procedure. 

In order to help overcome possible problems of combi- 
natorial explosion (mentioned as a problem for McCoy ' s  
ENHANCE as well), the heuristics are linearly ordered 
according to the complexity of the required search proce- 
dures. Hence,  the system first searches for simple 
patterns; the complexity of the response patterns grows 
as later heuristics are employed. This ordering of the 
heuristics assumes that, if more than one descriptive 
answer can be obtained for a query, it is sensible to 
produce the "simplest" one. It  would be easy to change 
this if more sophisticated termination conditions for the 
search were desired. 

We assume that the natural language query has been 
parsed and transformed to an internal form, and the 
required data have been accessed. The heuristics are 
applicable only after the tuples that satisfy the user's 
query are at hand. Let  Tqual be the set of tuples that 
satisfy the user 's query, and Tunqual be the rest of the 
tuples in the relation relevant to the current query. 

4.2.1 THE EQUALITY HEURISTIC 

The equality heuristic is the most elementary of all the 
heuristics. It corresponds to the usage of everyday words 
such as all, everybody and everyone. To start our 
discussion, we present a formal specification of the 
heuristic. 

Determine if all data values appearing as the value 
of a particular attribute A in Tqual are the same 
(say, a).  a must be a DISTINGUISHING VALUE in 
the domain of values for attribute A. If so, and if no 
tuple in Tunqual has the value a for the attribute A, 
the general formulation of the response is: 

All tuples having the value a for attribute A. 

An example is the question-answer pair Q3-$3: 

Q3: Who are the Canadian students with GPA of 7.5 or 
higher? 

$3: All students receiving NSERC scholarships. 

For  applying this heuristic, the value a of the attribute 
A must have some "distinguishing" importance in the 
domain. In the above example, the attribute under 
consideration is NATURE-OF-FINANCIAL-AID. The 
value NSERC is considered to be a DISTINGUISHING 
VALUE in the domain of values that the attribute 
NATURE-OF-FINANCIAL-AID can take. 

The equality heuristic may also be applied to certain 
numeric attributes. Consider the following question and 
answer pertaining to the graduate student data base. 

Q4: Which students have completed less than 5 courses? 
$4: All first year students. 

Here,  the value of the attribute NO-OF-YEARS-COM- 
PLETED is 0 for all tuples that satisfy the query Q4. 
Also, among the unqualified tuples, there is none in 
which NO-OF-YEARS-COMPLETED ---- 0. Finally, the 
value 0 distinguishes first year students from others, 
according to the attribute frame for NO-OF-YEARS- 
COMPLETED. 

Before leaving the equality heuristic, it should be 
noted that Q1-S1 (Which employees engage in profit shar- 
ing? - All vice-presidents.) f rom section 2 could be 
handled by the equality heuristic (all employees engaging 
in profit  sharing have the rank "vice-president";  nobody 
who isn't engaging in profit sharing has this rank). 

4.2.2 THE INEQUALITY HEURISTIC 

The dual of the equality heuristic is the inequality heuris- 
tic; instead of looking for equalities, the system searches 
for inequalities. Formally, the heuristic may be stated as, 

Determine if each data value for a particular attri- 
bute in Tqual is not equal to some particular value 7 
and all tuples in Tunqual have that value. This value 
-f must be a DISTINGUISHING VALUE in the 
domain of the values for attribute A. The general 
formulation of the response is 

All tuples with value of attribute A ~ V. 
In order to produce the required response, the 
system must make certain that A ~ ~, is not true in 
any of the tuples which do not satisfy the user 's 
query. 

Let  us consider an example. In the student data base, 
the value "Compute r  Science" for the attribute UG-MA- 
JOR may be considered a distinguishing value. This 
allows us to produce a response such as 

All students with majors other than Computer Science. 

or, equivalently, 

All non-Computer Science majors. 

as in the following question and answer pair: 

Q5: Which students have taken more than six courses? 
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$5: All students with non-Computer Science under- 
graduate background. 

At the same time, we may avoid producing a response 
such as (say) 

All students from departments other than 
Mechanical Engineering, 

if Mechanical Engineering is not of interest to us. Thus, it 
is clear that the specification of distinguishing attribute 
values is dependent on the user's conception of the data 
as well as the application under consideration. It should 
be noted that phraseology subtleties such as the differ- 
ences between All non-Computer Science majors, All 
students with majors other than Computer Science, or All 
students with non-Computer Science undergraduate back- 
ground are not reflected in different internal notations, 
but are the responsibility of the natural language gener- 
ation component which we haven't  developed as yet. 
Such subtleties can be quite important, but are left for 
future research. The whole issue of natural language 
generation (and interpretation) is discussed further in 
section 4.3. 

4.2.3 MODIFICATION OF THE EQUALITY AND 
INEQUALITY HEURISTICS 

If the equality or inequality heuristics are not applicable 
in their pure form and there are a "few" ("few" depends 
on the relative number of tuples in Tqual and Tunqual and 
some other factors) tuples in Tunqual t h a t  do not satisfy 
the requirement of the heuristic, a modification of the 
response produced by the heuristic may be presented to 
the user. An example of such a modification is seen in the 
following: 

Q6: Which students are receiving University scholar- 
ships? 

$6: All but one foreign student. In addition, two Cana- 
dian students are also receiving University scholar- 
ships. 

4.2.4 RANGE HEURISTICS 

These heuristics determine if the data values for an attri- 
bute in the tuples in Tqual are within a particular well-de- 
fined range. There are two main types of range heuristics 
- one is concerned with maximum values and the other 
with minimum values. The first of these, the maximum 
heuristic, may be formally stated as, 

Determine if all data values for attribute C in Tqual 
are below some maximum (say,/3), and there is no 
tuple in Tunqual with values for C < /3. This value/3 
must have some "distinguishing importance" in the 
domain of the values of attribute C. In this case, the 
general formulation of the response is 

All tuples with the value of  attribute C < /3. 

An illustrative example is 

Q7: Which students have been advised to discontinue 
studies at the University? 

$7: All students with a cumulative GPA of 2.0 or less. 

Here GPA = 2.0 is assumed to have some "distinguishing 
importance" in the field of numbers representing GPAs 
of students (i.e., a value that may be "generally" used to 
partition the set of all possible GPAs into two classes: 
ones above 2.0, and ones equal to or lower than  2.0). 
The maximum heuristic is generally applicable in the case 
of numeric attributes. 

Similarly, the minimum heuristic may be formally speci- 
fied as, 

Determine if all data values for attribute C in Tqual 
are above a certain minimum (say, d) and there are 
no tuples in Tunqual with value for C > d • dJ must 
have some "distinguishing importance" in the 
domain of the values of attribute C. The general 
formulation of the response is 

All tuples having the value in column C > & 

An illustrative example is 

Q8: Which students are taking four or more courses? 
$8: All students with GPA of six or higher. 

When the tuples in Tqual satisfy both the maximum 
and the minimum heuristics for the same attribute A, we 
get a range specification. Let a be the minimum value 
and/3 be the maximum value of the attribute A in Tqual. 
Then the response can be modified as 

All tuples with value of  attribute ranging 
from a through/3. 

An example of an answer with range specification is 

Q9: Who are the students taking courses in second 
year? 

$9: All students who have completed between 3 and 5 
courses so far. 

There are several rules that should be followed while 
producing answers in terms of ranges. Some of the rules 
employed in the current implementation are given below. 
These rules are fairly arbitrary, but rules like them will be 
necessary to prevent summary responses from themselves 
violating Grice's maxims, especially the maxims of 
manner and quality. 
• If the upper limit of the actual range for an attribute is 

the maximum potential value for the attribute, it is 
better to modify the answer as more than a where a is 
the lower limit of the actual range. For example, if for 
an attribute A the upper limit of the maximum poten- 
tial range is 1000, instead of providing a response 
between 750 and 1000, it is advisable to say more than 
750 if Grice's maxim of manner (be brief) is to be 
satisfied. 

• A similar action is taken at the other end of the scale. 
For example, if the lower limit of the maximum poten- 
tial range is 0, instead of responding as between 0 and 
200, we might answer as less than 200. 

• The actual range specified in an answer should not be 
more than 75% of the potential range of the attribute 
values. The particular choice of 75% is not sacrosanct, 
but the rule itself is important if we are to avoid the 
problem of producing a response that essentially covers 
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the entire range of potential attribute values. Such a 
response would mislead the user into thinking that 
there existed values outside of this range, which would 
violate Grice's maxim of quality. 

• The actual range specified in an answer should not be 
so small as to identify the actual tuples that constitute 
the answer. For example, we should not produce a 
response such as, All  students with student-id-no between 
821661 and 821663. In fact, such answers are not 
brief when compared with the size of the set of tuples 
they qualify. Moreover,  they can mislead the user into 
thinking that there are many more tuples than there 
actually are in the response set. 

These violations of the maxims of manner  and quality 
should be avoided. 

While producing range specifications, it is often neces- 
sary to round off the upper and lower limits in case of 
numeric attributes. For  example, instead of saying 
Students with GPA between 6. 06 and 6.92 we may as well 
say Students with GPA between 6. O0 and 7. 00. 

Rounding cannot be done for all numeric attributes. 
The applicability of the rounding operation depends on 
several factors including the nature of the values the 
attribute takes - e.g. whether they are an integer or 
rational, and their potential range. 
• In case of integer values, if the potential range is 

"small",  rounding should be avoided. For  example, the 
field NO-OF-YEARS-COMPLETED in a student data 
base has a tight potential range (0-5 years). In this 
case, if we have data values between 2 and 4 years, we 
should not round off and say between 2 and 5 years. 

• For integer values, if the potential range is wide, 
rounding off may be done (except for some cases 
discussed below). For  example, the expression Students 
with marks between 61 and 78 may be rounded to 
Students with marks between 60 and 80. However,  for 
this rounding to be correct, it is necessary to ensure 
that there are no tuples in Tunqual with marks 60, 79 or 
80. 

• There are certain attributes that are integral and do not 
allow approximation by their inherent nature. One 
example of such an attribute is STUDENT-ID-NO. A 
student identification number  82116 cannot be approx- 
imated as STUDENT-ID-NO = 82115 or STUDENT- 
ID-NO = 82120. Similarly, we cannot round the attri- 
bute YEAR-OF-BIRTH in many  circumstances. This 
decision whether rounding should be done or not is 
often subjective. Hence, this information must be 
provided by the system builder and stored in the know- 
ledge base. 

• If an attribute assumes non-integer (i.e., rational) 
values, the system may nearly always proceed with 
rounding. It  may be possible to find counter examples 
to this assertion in some database domains. However,  
for the purpose of the current implementation, we 
accept this assumption to be true at all times. 

It  should be noted that the heuristics explained above 
are applicable when a single attribute of the relevant 
relation is considered. If no such heuristic can be success- 
fully applied to the pertinent data, the system attempts to 
use one of the conjunction or disjunction heuristics joint- 
ly on two or more attributes. 

4.2.5 CONJUNCTION HEURISTIC 

The conjunction heuristic is the first of the complex 
heuristics involving more than one predicate. Usually, 
each of these predicates involves a distinct attribute in 
the data base, although it is possible that two or more 
predicates relate to values of the same attribute. These 
heuristics provide the system with the facility to use 
common connectives such as and and or. 

The conjunction heuristic is expressed succinctly in the 
following paragraph. 

If all values of an attribute C in Tqual satisfy a 
relation R (in the mathematical  sense), and there 
are tuples in Tunqual that also satisfy the same 
relation R, determine via the above heuristics if 
there i s /a re  some "interesting" distinguishing 
characteristic(s) that the set Tqual satisfies, but the 
set of tuples in Tunqual satisfying the relation R do 
not. Let  us call the distinguishing characteristic(s) 
D. The general formulatioh of the response is 

All  tuples that satisfy the relation R and have the 
characteristics D. 

An example is, 

Q10: Which students are working as T.A. or R.A.? 
S10: Students who have completed more than 1 year at 

the University and who are not employed outside 
the University. 

All the tuples in Tqual resulting f rom Q 10 are found by 
the system to have the values for the attribute 
NO-OF-YEARS-COMPLETED > 1. However ,  the system 
finds that there are some tuples in Tunqual that also have 
values greater than 1 for the attribute NO-OF- 
YEARS-COMPLETED. Let  us call these tuples Tequa 1. 
Next  the system attempts to find some characteristics 
that distinguish Tequa 1 from Tqual. It finds that in Tequa 1 
the field NATURE-OF-FINANCIAL-AID _- OUT- 
SIDE-JOB for all tuples whereas in Tqual , NATURE-OF- 
FINANCIAL-AID -- UNIVERSITY-SCHOLARSHIP for all 
tuples. After  finding this difference, the system is able to 
qualify the phrase Students who have completed more than 
1 year in the University by the phrase who are not 
employed outside the University to produce the complete 
response. 

4.2.6 DISJUNCTION HEURISTIC 

If  none of the above heuristics can be applied successful- 
ly, the system attempts to use the disjunction heuristic. As 
is evident f rom the nomenclature, this heuristic enables 
the system to formulate complex responses using the 
connective OR. Formally, this heuristic may be expressed 
as follows. 
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Divide the tuples in Tqual into a number of subsets 
and try to apply one of the heuristics explained 
earlier to each subset. If  successful, the resulting 
response consists of several predicates connected 
by the relational operator OR (V). It  has the gener- 
alized format 

Tuples with (attribute I R I  a~ ) V (attribute e R 2 a2) 

l V  (attribute 3 R 3 a 3 ) ... ! 
where Ri's are relations (in the mathematical 
sense); ai's are distinguishing values of the corre- 
sponding attributei's. 

While formulating responses with the disjunction 
heuristic, the number of such subsets should be restricted 
to two or three, if possible. If too many subsets are iden- 
tified, it is difficult for the user to grasp all of them. If 
more than three subsets are presented, this approach is 
no more elegant than listing the data, which we are trying 
to avoid. The number of allowable subsets also depends 
on the number n of tuples in Tqual. If n is "large",  the 
number of subsets one would consider acceptable may be 
somewhat higher. 

It should be mentioned that in the generalized 
expression for the response, the various attributei's may 
be the same attribute, or they may be different. In certain 
cases, the same attribute may partition the relevant infor- 
mation into two or more groups in distinct ways. An 
example showing three partitions based on the values of 
three different attributes is, 

Q I 1: Which students are not receiving University schol- 
arships? 

S11: Students who are receiving NSERC scholarships or 
have cumulative GPA less than 6.0 or have 
completed at least two years at the University. 

In attempting to answer Q11, the system finds that it 
is not possible to obtain an appropriate answer using the 
previous heuristics. It then checks to see if the tuples in 
Tqual can be divided into two or three separately identifi- 
able subsets. In this case, it successfully partitions Tqual 
into three subsets - Tqual_l,  Tqual_ 2 a n d  Tqual_ 3 where 

• Tqual_ 1 consists of all tuples in Tqual for which 
NATURE-OF-FINANCIAL-AID = NSERC-SCHOLAR- 
SHIP, 

• Tqual_ 2 is the subset of all tuples in Tqual with CUMU- 
LATIVE-GPA < 6.00, and 

• Tqual_ 3 is the subset of tuples in Tqual for which 
NO-OF-YEARS-COMPLETED > 2. 

While subdividing the total response set Tqual into 
subsets, the system should ensure that no tuple in Tunqual 
satisfies the various disjunctive predicates. 

4.2.7 FOREIGN-KEY HEURISTIC 

If nothing satisfactory can be found employing all of the 
above heuristics, the system attempts to search other 
"related" relations to obtain a suitable response. A 
related relation is one with which the relation under 
consideration has some common or join attribute(s). 
Formally, the foreign-key heuristic may be stated as, 

Obtain the tuples in the target relation R t that satis- 
fy the user 's query. Let  these tuples constitute a 
new relation R n. Determine if the target relation R t 
may be joined directly or indirectly with some other 
relation(s) in the data base by consulting the 
relation frame for R t. Let  these other relations be 
designated {Rj} where maximum(j)  = number  of 
such "related" relations. Take join of R n with the 
Rj's one at a time (these joins may be direct or indi- 
rect and are performed via the attributes specified 
in the relation frame). Project the resulting relation 
on the attributes of Rj and try to apply one of the 
previous heuristics to this resultant relation. Stop 
only when there is successful application of a 
heuristic for some Rj, or each relation Rj has been 
tried unsuccessfully. 

As an example, consider the following question and 
the response to it: 

Q12: Which students are taking CMPT 994? 
S12: All students who have completed at least one year 

of studies. 

While attempting to answer Q 12, the system finds that 
the question pertains to the relation COURSE-REGIS- 
TRATION. However,  it fails to obtain any interesting 
descriptive pattern about the tuples in Tqual by consider- 
ing this relation alone. Hence,  the system consults the 
LINKS slot in the relation frame for COURSE-REGISTRA- 
TION and finds that COURSE-REGISTRATION may be 
joined with the relation STUDENT via the fields 
STUDENT-ID-NO in STUDENTS and STUDENT-ID in 
COURSE-REGISTRATION. It  takes a join of all the tuples 
constituting Tqual with the relation STUDENTS and 
projects the resulting relation on the attributes of the 
relation STUDENTS. Let  us call these tuples Tnew_qual. 
Next, it at tempts to discover the existence of some 
pattern in the Tnew_qual tuples. Ultimately, it succeeds in 
producing the response given in S12 by employing a 
minimum range heuristic. 

4.3 THE INTERNAL FORM OF A QUERY 

The internal form of a query is 

( C o m m a n d  D a t a b a s e - I d e n t i f i c a t i o n  P r e d i c a t e - F o r m )  

• Command is some operation to be performed, at the 
moment  limited to the command OBTAIN, meaning 
obtain information from the data base. 

• D a t a b a s e - I d e n t i f i c a t i o n  names a particular data base on 
which the command is to be carried out; in the current 
implementation, GRAD-STUDENT-RECORDS. 

• Predicate-Form breaks down into 
- (Predicate (Relation-Name Attribute-Name) 

A t t r i b u t e - V a l u e )  

(e.g., (GREATER-OR-EQUAL (STUDENTS CUMU- 
LATIVE-GPA) 6) ) 

o r  

- ( C o n j u n c t i o n  P r e d i c a t e - F o r m  I P r e d i c a t e - F o r m  2 ... 
P r e d i c a t e - F o r m  n) 

(e.g., (OR-ANY-OF 
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(EQUAL (STUDENTS 
NATURE-OF-FINANCIAL-AID) NSERC) 
(LESS-THAN (STUDENTS CUMULATIVE-GPA) 6) 
(GREATER-OR-EQUAL (STUDENTS 
NO-OF-YEARS-COMPLETED) 2) ) ) 

Common predicates such as EQUAL, NOT-EQUAL, 
LESS-THAN, and GREATER-OR-EQUAL, and conjunc- 
tions such as AND-ALL-OF, AND-ANY-OF, etc. can be 
handled. The internal form of the system output is 
defined in a similar manner except there is no command. 

The following examples of queries and answers (taken 
from section 4.2) represented in this internal form should 
clarify this notation. First we look at a relatively simple 
case: 

Q4: Which students have completed less than 5 courses? 

(OBTAIN GRAD-STUDENT-RECORDS 
(LESS-THAN (STUDENTS NO-OF-COURSES-COM- 
PLETED) 5)) 

$4: All first year students. 

(GRAD-STUDENT-RECORDS 
(EQUAL (STUDENTS NO-OF-YEARS-COMPLET- 
ED) 0)) 

Next we take a more complicated question-answer pair: 

Q10: Which students are working as T.A. or R.A.? 

(OBTAIN GRAD-STUDENT-RECORDS 
(AND-ANY-OF 

(EQUAL (STUDENTS NATURE-OF-FINAN- 
CIAL-AID) TA) 
(EQUAL (STUDENTS NATURE-OF-FINAN- 
CDd~-AID) ILA))) 

S10: Students who have completed more than one year 
at the University and who are not employed outside 
the University. 

(GRAD-STUDENT-RECORDS 
(AND-ALL-OF 

(GREATER-THAN (STUDENTS NO-OF-YEARS- 
COMPLETED) 1) 
(NOT-EQUAL (STUDENTS NATURE-OF-FINAN- 
CIAL-AID) OUTSIDE-JOB))) 

We do not want to downplay the difficulties of inter- 
preting natural language into an internal form such as 
this, nor do we want to trivialize the difficulty of produc- 
ing surface language responses from the internal form. 
However, parsing and natural language generation were 
not the central concerns of this research; we instead 
wanted to concentrate on the pragmatic issues underlying 
summary response generation in a natural language data- 
base interface. There is a plethora of work, of course, 
describing various approaches to parsing we could draw 
on should we want to extend our system. Possibly the 
most appropriate parsing strategy for this domain would 
be a keyword approach (e.g., Small 1980) where the 
input query is scanned for words indicative of attribute 
names or predicates relevant to the particular data base 
being queried. This approach might work well here 
because the target internal form is phrased only in terms 
of these domain specific attributes and predicates. 

Similarly, generation could be in terms of catch phras- 
es triggered by the presence of predicates or attributes in 
the internal form of the output. There is relatively less 
work on natural language generation on which to base a 
more sophisticated natural language generation compo- 
nent, but work such as McDonald's (1983) MUMBLE 
system 1night be usefully adapted to the determination of 
appropriate surface phraseology of summary responses. 
The approach taken in McKeown's (1982) TEXT system 
is also appealing in this regard since its area of applica- 
tion is data bases (albeit describing database structure 
rather than database contents). To adapt methods from 
either of these systems (or in fact from most other 
approaches to generation) would require a considerable 
enhancement of the knowledge base of our system, 
something that is currently beyond the scope of the 
research. 

5 IMPLEMENATION CONSIDERATIONS 

A system incorporating the details discussed above has 
been implemented in Franz Lisp on a VAX-11/750 
running under UNIX 1 and has been tested on a data base 
of student records. The system was tested on a variety of 
questions. These included all of the examples Q3-Q12 
where the system produced internal versions of the 
summary responses $3-S12. Further details of these 
examples (and others) are contained in Kalita (1984). 
The data base is currently very small (containing the 
records of only 25 students or so), so the average 
response time of the system was in the order of seconds, 
even for the most time consuming heuristics. A more 
meaningful analysis is a complexity analysis of the 
response time in terms of the number of tuples in the 
data base. With this in mind, in this section we examine 
implementation aspects of the system, including a 
complexity analysis of the various heuristics. 

The system has two main components - one for data 
manipulation, the other to produce the summary 
responses. The data manipulation component enables 
the system builder to introduce new relations, new attri- 
butes, and new tuples into the relations. As new tuples 
are entered, various checks regarding the nature of the 
attribute values and the number of attributes are 
performed. The data manipulation component  also 
accesses the data that satisfy a query and performs stand- 
ard relational functions such as selection, projection, and 
lossless join. This component does not possess the 
sophistication of a standard database package. However,  
it is sufficient for the purposes of this research since the 
internal form of a query can be directly handled by the 
data manipulation routines. 

The other main component of the system produces 
summary responses to a user's queries. First the user's 
input is read and checked for syntactic accuracy (i.e., 
that it follows the proper internal form, that it contains 
only references to valid names of relations and attributes, 
etc.). The query is then passed to the data manipulation 
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component for data access. Returned are the two sets of 
tuples: Tqual, those tuples satisfying the user's query, and 
Tunqual , those that do not. The summary response 
component then regains control and invokes routines 
corresponding to the individual heuristics. The invoca- 
tion of the heuristics is done successively in predeter- 
mined order until one of them is successful. There is 
some dependence among the heuristic routines since 
certain information, once obtained, can be shared. The 
heuristics receive assistance from the frames during the 
process of obtaining summary responses. These frames 
are stored as property lists associated with the relation 
and attribute names. 

The heuristics attempt to determine a descriptive 
response by searching through Tqual and Tunqual. In the 
current implementation, the tuples are examined serially. 
Once a tuple has been accessed, various attribute values 
in it are tested in parallel to determine if they satisfy the 
requirement of a heuristic. Such tuple-serial attribute- 
parallel inspection of attribute values may increase proc- 
essing time in some cases. However, on average, the time 
required for obtaining a response is considerably reduced 
since the tuples need not be accessed repeatedly for each 
candidate attribute under consideration. 

While applying the equality heuristic for each attribute 
in the target relation, the system keeps a frequency count 
of different values that occur in the various attributes in 
Tqual. If at any time during the equality processing of 
Tqual the system finds more than three different data 
values for a particular attribute, it ignores the attribute 
during subsequent processing for the equality heuristic. If 
for a particular attribute, all values in Tqual are the same 
and this particular value is (a) a distinguishing value and 
(b) does not occur in any of the tuples in Tunqual, the 
system produces a response using the equality heuristic. 
If there are up to three different values that occur for an 
attribute in Tqual and do not occur in Tunqual, the system 
compares the dominant frequency with the other 
frequencies. In the current implementation, the system 
produces an answer using a modification of the equality 
heuristic if the other frequencies are less than 10% of 
the dominant frequency. 

For the application of the inequality heuristic, the 
roles played by Tqual and Tunqual are interchanged. 
Otherwise, the processing is essentially the same. 

For the range heuristics, the maximum and minimum 
values for each attribute in Tqual are found in tuple-serial 
attribute-parallel mode. If both heuristics are successful 
for a particular attribute, a response in terms of range 
specification is generated. The rules discussed in section 
4.2.4 are applied for obtaining responses using the 
heuristics. 

The disjunction heuristic is attempted when it is possi- 
ble to divide the tuples in Zqual into two or three 
subgroups based on equality, inequality, or range heuris- 
tics. While applying the earlier heuristics, the system has 
retained information that may help in the application of 

the disjunction heuristic. However,  application of the 
disjunction heuristic may necessitate a substantial 
amount of repetitive grouping and regrouping of tuples 
and may be expensive in its time requirements. Even so, 
success is not guaranteed. 

The conjunction heuristic is successful when there are 
tuples in Tunqual that satisfy the predicate(s) satisfied by 
the tuples in Tqual. Let  the tuples in Tunqual that satisfy 

f the predicate(s) be called T unqual. To obtain an answer, 
the equality, inequality, and range heuristics are 

t employed using Tqual and T unqual (instead of the usual 
Tqual and Tunqual) to find some distinguishing character- 
istics between the two sets. This distinguishing 
description is then used as a qualifier to obtain the final 
complete response. 

The foreign-key heuristic involves a join and a projec- 
tion, and finally the application of all previous heuristics. 
If the target relation has common join attributes with 
several other relations, joins may have to be performed 
with each such relation, and the process repeated again 
for each resultant relation. 

If one of the heuristics succeeds, a response is gener- 
ated in the format described above. If none of the 
heuristics succeeds, the extensional response Tqual is 
produced. The user can also ask for Tqual to be produced 
if he or she is unsatisfied with just the summary response. 

In order to determine the implications of our approach 
to summary response generation, it is important to look 
at the computational complexity of the algorithms. The 
application of the equality, inequality, and the range 
heuristics takes time of the order of O ( N  a N t) where N a is 
the number of attributes in the target relation, and N t is 
the number of tuples in the target relation (i.e., the sum 
of the number of tuples in Tqual and Tunqual for the target 
relation). Performance is improved if the value compar- 
isons are done in parallel for all attributes in a tuple. This 
performance improvement results since the tuples need 
not be accessed for each attribute separately. However,  
this does not reduce the basic complexity involved in the 
determination. 

The complexity of applying the disjunction heuristic is 
dependent on the nature of data distribution in Tqual. 
Successful application may involve a large number of 
permutations of the tuples for repetitive grouping and 
regrouping. This is the heuristic most likely to lead to a 
combinatorial explosion. 

The conjunction heuristic takes time of the order O ( N  a 

N t + N a N t l )  where Ntl is the sum of the number of 
tuples in Tqual and the number of tuples in Tunqual that 
satisfy some mathematical relation(s) satisfied by the 

! 
tuples in Tunqual (i.e., T unqual defined earlier). This 
complexity can be arrived at only if we assume that the 
disjunction heuristic is not applied to determine the 

! 
distinguishing characteristics between Tqual and T unqual. 
Otherwise, the time required will be O ( N  a N t + N a N t l )  

+ Odh (Tqual, 74unqual) where Odh is the time requirement 
for the application of the disjunction heuristic. 
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The foreign-key heuristic requires additional time for 
performing joins and projections. The number of joins 
that may be performed is a function of the number of 
relations with which the target relation has common join 
(direct or indirect) attributes. Indirect joins involve one 
or more additional simple joins. The complexity of the 
computations necessary after completion of the join and 
subsequent projection is the same as discussed in the 
preceding paragraphs. 

The implications of these complexity bounds for large 
data bases cannot be ignored. Processing time for the 
simple equality, inequality, and range heuristics is linear 
in the number of tuples in the data base. This is about as 
good as can be expected, although it still may be quite 
slow if real time response is needed. Processing times for 
the disjunction, conjunction, and foreign-key heuristics 
can be substantially worse as juggling, rejuggling, and 
joining take place. If each query must be independently 
processed, we don' t  see much hope of improving on these 
times. However, it may be possible to add a "memory" to  
the system's knowledge base to keep track of previous 
responses and hence avoid re-accessing the data base for 
each query. The nature of such a memory and some of 
the implications are discussed in the next section. 

6 CONCLUSIONS AND FUTURE RESEARCH 

Generation of descriptive summary responses has impor- 
tant implications if interactions with a data base are to 
have the properties and constraints normally associated 
with human dialogue. Without these constraints, inter- 
actions with a DBMS can simply be viewed as dull factual 
exchanges between a human being and a machine. No 
doubt, the necessary data is obtained by the user, but 
these interactions lack the "intelligence" and elegance we 
ascribe to human behaviour. 

Furthermore, such interactions may fail to present the 
information content of the data. The data produced is the 
superficial representation of the "actual contents" or the 
information that underlies it. In general, most commercial 
DBMSs make little attempt to extract this deep-seated 
abstract information. Advances in data modelling have 
helped to bridge this gap (see, for example, Chen 1976, 
Smith and Smith 1977, Roussopoulos 1977, Mylopoulos 
et al. 1980). However, the data models are tools meant 
principally for the database administrator. They provide 
little guidance to the user in interpreting the data. The 
task of interpretation and obtaining a "feeling" for the 
information content of the data still rests mostly with the 
user. A system such as the one discussed here transfers 
some of the responsibility of data interpretation from the 
user to the computer system. It undertakes a guided 
search of the data that satisfy the user's query and 
attempts to extract a brief qualitative expression describ- 
ing the information therein. 

Currently, while producing summary responses, the 
system stops as soon as any heuristic is successful in 

obtaining a pattern. Such responses are composed of one 
or more predicate forms, as explained in section 4.3. 
However,  the first such response may not be the "best"  
possible one. In order to obtain the best answer, it is 
advisable to continue the process of identifying responses 
using the remaining heuristics. If, ultimately, several 
answers are obtained, a decision regarding which one to 
present to the user must be made. For  this purpose, each 
answer could be assigned a weight and those with 
weights below a particular threshold would not be 
presented. Although the problem of assigning weights is 
encountered in several other applications of artificial 
intelligence, the issues involved are complicated; we do 
not delve into this topic here. 

There are a number of issues that arise concerning the 
interaction of the data base and the knowledge base. 
The current system depends on the discovery of relation- 
ships occurring in the data base and makes use of the 
knowledge base only to find distinguishing values, possi- 
ble joins, and appropriate heuristics. Since the heuristics 
are universal in nature, this implies that the techniques 
employed here can be transported to another domain (or 
used by another  set of users) without undue modifica- 
tion. The only changes that have to be incorporated are 
new relation and attribute frames for each new database 
domain (or each new type of user). 

Unfortunately, the portability is achieved by going 
directly to the data base, and is bought at the expense of 
using reasonably inefficient sequential searches (see 
section 5). This raises the question of whether it might 
be possible to avoid database access altogether. The 
current knowledge base is too impoverished to be used 
directly, but we could consider various enhancements. 
One possibility might be to generalize the idea of distin- 
guishing values to provide rules describing the criteria for 
membership in a given class. For  example, one such 
criterion could be that a passing mark is a grade point of 
1 so that any question such as Who fai led CMPT 110? 
could be answered with All  students with a mark o f  less 
than 1 without needing to consult the data base at all 
(assuming the user didn't know this so that the maxim of 
quality isn't violated). This kind of criterion would be 
simple to represent, but is obviously not a complete 
representation of what it means to fail a course since it 
ignores students who have failed by withdrawing too late, 
by not writing the final exam, by murdering the profes- 
sor, etc. In general, to represent all the various subtleties 
of such criteria is a substantial problem in knowledge 
representation (consider, for example, having to repre- 
sent the qualifications needed for a scholarship or all the 
requirements to get an undergraduate degree). Although 
it would be nice to be able to represent such general 
rules, it should be pointed out that consulting the data 
base as in our current approach circumvents the need to 
consider these representation issues. The heuristics can 
pick out relevant commonalities among students who 
failed a course, or won a scholarship, or received an 
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undergraduate degree, without the need for sophisticated 
knowledge representation techniques. 

Even if the representation issues were to be solved, 
however, database access would still be necessary. A 
prime reason is that any general rules will sometimes 
have exceptions that can only be discovered by looking at 
the data. Our heuristics currently allow some such 
exceptions to be found, although they are by no means a 
complete solution to the problem of exceptions. The 
modified equality and inequality heuristics (section 4.2.3) 
explicitly allow for occasional deviations (e.g., see 
Q6-$6),  and the conjunction and disjunction heuristics 
can find characteristics common to entire exception 
classes (e.g., if one entire section of a class were given 
exemption from the final examination, the disjunction 
heuristic could answer the question Who completed CMPT 
378? with the response All  students who wrote the final 
examination or were in section 02.). Nevertheless, there 
are still open questions involving exceptions (such as 
being less ad hoe in defining exactly what a few means in 
the modified equality and inequality heuristics), which 
could be worked on as a further direction of this 
research. 

There is still a third reason (besides avoiding know- 
ledge representation problems and recognizing excep- 
tions) that the data base should be consulted: to discover 
patterns in the data that can ' t  be explicitly predicted. 
Consider the following question answer pair: 

Q12: Which athletes failed HIST 101? 

S12: The football players. 

Response S12 summarizes information that can ' t  be 
represented in a rule in the knowledge base (i.e., it isn't 
necessary that only the football players failed this course) 
and can only be found by looking through the data. 
Again, our heuristics would be able to find this pattern in 
the data, assuming that football player is a distinguishing 
value (which it might be to the athletic director, for 
example). In general there will be many such situations 
where the system knows that something interesting (i.e., 
something for which there is a distinguishing value) could 
occur in the data, but the exact context in which it actu- 
ally occurs can ' t  be foreseen. 

Thus, it will normally be necessary to consult the data 
base. Nevertheless, an interesting research direction will 
certainly be to enhance the knowledge base as much as 
possible to provide rules that can at least direct the 
search through the data with more subtlety than distin- 
guishing values are able to. 

Another possible knowledge-base extension, which 
would avoid the problem of having rules disembodied 
from the data they reflect and which might be an answer 
to some of the efficiency problems of database consulta- 
tion mentioned above, is to create a "m em or y"  that 
would store patterns found in previous database searches. 
In other words, the memory would store the scalar impli- 
catures that the system finds to be valid in the data base. 
This is similar in intent to Lebowitz 's  (1983) 

RESEARCHER system, which attempts to generalize 
concepts read from patent abstracts into a generaliza- 
tion-based memory. We would not be as concerned with 
describing how given instances differ from their gener- 
alizations, but would have to be concerned with how the 
generalizations change as the database contents are 
modified. 

The memory would obviate the need to search the 
data base for repeated queries. For example, let a ques- 
tion Q that has been answered by the system have an 
answer A stored in an internal form. If the question Q is 
posed by the user again, the answer A can be returned. 
Similarly, if the question posed matches A, Q can be 
produced as the answer. For  example, let us consider the 
example Q7-$7 from section 4.2.4. If the question posed 
is Q7-1, which is the interrogative form of $7, the answer 
provided may be S7-1, the assertive form of Q7. 

Q7-1 :Who are the students with cumulative GPA of 2.0 
or less? 

$7-1: All students who have been advised to discontinue 
studies at the University. 

In some cases, it may not be possible to phrase a 
meaningful English question corresponding to the inter- 
rogative form of the response to a query. This is especial- 
ly true in situations where complex responses are 
produced (e.g., in questions Q6, Q10, and Q11 in section 
4). However,  it may be possible to break up a complex 
query into two or more sub-queries. If answers to these 
sub-queries are already resident in the memory,  the 
system may be able to compose the final response from 
the existing answers to these sub-queries. Clearly, the 
amount of search required to answer the query may be 
considerably reduced if parts of the answer can be 
retrieved from the memory,  assuming the memory  itself is 
organized for efficient retrieval. 

The memory would usually be empty at system initial- 
ization; it would grow in size as the system interacted 
with the user and learned new facts about  the data. It  
would have to be modified as the data in the data base 
changed. This would mean that the memory  would 
somehow have to keep track of how the stored queries 
related to the data that produced them so as to be able to 
determine which queries would be affected by a given 
change in the data. It would also require some means of 
determining how new data affected queries summarizing 
existing data. This is the reverse process to that 
suggested by the Mays (1982) monitoring scheme, where 
monitors are posted to look for future changes in the data 
base. The memory  part of our system would have to 
reason backwards from the current situation to infer how 
changes affect previously abstracted summaries. Wheth-  
er Mays 's  temporal  logic can be adapted to be useful in 
backwards reasoning is an interesting question. In any 
event, the amount of processing time required to keep 
the memory up to date is unclear. However,  it would 
seem to be a computationally intense activity, which 
suggests there would be a t rade-off  between the time 
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spent maintaining the memory,  on the one hand, and the 
time saved in database access by having the memory,  on 
the other hand. 

As mentioned earlier, the database manager can 
implement different user models by creating different 
sets of attribute and relation frames for each type of user. 
This capability is similar to the idea of database views. 
For each type of user, the system would contain informa- 
tion about stereotypical knowledge possessed by that 
class of user. Different classes of users have different 
ideas about what values are "distinguishing" (e.g., an 
average of 4 might be fairly insignificant to an under- 
graduate accessing a student record data base, but to a 
graduate student it represents the dividing line between 
being allowed to graduate or not). The 
CUMULATIVE-GPA attribute frame in the graduate 
student user model would therefore be different from the 
CUMULATIVE-GPA frame in the undergraduate student 
model. For  security purposes, it might be useful to 
prevent certain joins from taking place (e.g., it wouldn' t  
be appropriate for students to access their professors '  
marks lists by joining the relation COURSE- 
REGISTRATIONS to the relation MARKS-LISTS (say) on 
the attribute COURSE-NO). The student user models 
could reflect this by appropriate restrictions on the 
relation frames. It  is even possible to prevent summary 
responses altogether for certain attributes by having no 
distinguishing values in the corresponding attribute 
frames, or by providing them with a "nil" preference 
category. Such security and privacy considerations can 
be important for certain classes of users. All of this is 
currently possible, although not something we have 
actively experimented with. An extension to this capabili- 
ty might make it possible for the user to customize the 
kinds of summary responses he / she  receives, rather than 
relying on the database manager to provide h im/he r  with 
the appropriate user model. Whether to have the user fill 
in a template corresponding to each attribute frame, or 
whether to use natural language to specify the informa- 
tion in the various attribute frames is an open research 
question. 

In the present system we have assumed that the 
system is provided with (and produces) a formal repre- 
sentation of the user 's query. Ideally, the system's inter- 
face should include a natural language parser and 
generator, but as discussed earlier (section 4.3) this issue 
was not tackled here. There are still many open ques- 
tions having to do with surface language, apart f rom 
issues of interpretation and generation per se. One such 
question of particular interest to this research is categor- 
izing types of surface language that demand a summary 
response, as opposed to types that demand an exten- 
sional response or types where either an extensional or a 
summary response are appropriate. For example, What 
are the characteristics o f  the students who failed CMPT 
110? requires a summary response; Give me the names o f  
the students who failed CMPT 110 demands an exten- 

sional response; and Who failed CMPT 110? allows for 
either kind of response. However,  the problem is subtle. 
For  example, the request Give me the names o f  the 
students who registered on Wednesday could be answered 
with an extensional response (which would normally be 
what is expected) or conceivably the summary response 
Those with surnames beginning with the letters N through 
R. 

The key to recognizing what kind of response is need- 
ed is to recognize the user 's intent (or at least h is /her  
knowledge) in asking the question; that is, to consult a 
user model to see which kind of answer is appropriate. 
Thus, if it is known that the user is an administrator in 
charge of registration and that he / she  is formulating 
registration policies, the second answer above might be 
reasonable. If the user is a clerk in charge of sending out 
registration forms, the first might be correct. Finally, if 
the user already knows all the names, then perhaps the 
summary response is desired (assuming the user has been 
unable to discern the pattern on h is /her  own). 

The kind of user model needed to handle this is more 
sophisticated than the simple user model currently used. 
To see this, let 's look at the ambiguous query Who fai led 
CMPT 1107 once again. This question can admit either a 
summary response or an extensional response. If the 
system knows the user knows all the students who failed 
CMPT 110, then some description of their characteristics 
(e.g., students who were absent f rom the f inal  examination) 
is probably more appropriate. On the other hand, if the 
system knows the user knows that students who miss the 
final examination fail the course, then a summary 
response describing this fact would be inappropriate, and 
a list of the students '  names is likely what is desired. 
This won' t  be foolproof, of course. The user could be 
asking for a re-iteration of something he / she  already 
knows (for confirmation purposes, perhaps) or could be 
asking for another summary pattern besides the one the 
user already knows. Another  subtlety that arises is the 
distinction between implicit and explicit knowledge - the 
user may know something but not realize it, or may not 
be able to make the inferences needed to deduce some- 
thing that he / she  has the knowledge to deduce. For  
example, the user may know the names of all the students 
who failed CMPT 110 but not realize these are the only 
students; or he / she  may know everybody who didn't  
write the final examination and also the rule that if the 
final examination is missed a student fails the course, but 
the user may not have applied the rule in this case. 
Finally, for some extensional responses, it still might be 
appropriate to repeat  a general rule that the user knows, 
just to re-inforce in his /her  mind the applicability of the 
rule in this situation. Thus, if the user has asked which 
managers earn more than $40K (see Q2), then even if 
the user knows that in general all managers earn over 
$40k, it might be useful to re-iterate this fact after 
producing the list of managers '  names since it would be 
difficult for the user to check that all the names had 
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appeared without exceptions (especially if the list were 
long). 

These kinds of complications make the task of devis- 
ing the user model quite tricky. It must keep track of 
subtle degrees of knowledge, incomplete knowledge, 
changing knowledge, laziness in applying knowledge, 
etc., and it must be possible to recognize user 's intentions 
in the use of this knowledge. There is a growing body of 
research involved in representing the kinds of knowledge 
needed here, and in dealing with language as intentional 
behaviour. The work by the University of Toronto 
group, in particular, pioneered this approach (see Cohen 
1978, Allen 1979, and Allen and Perrault 1980, for 
example) and could form a starting point for research 
into user model extensions. The first problem would be 
to represent what the user knows and doesn ' t  know 
(since many of the decisions about what to present to 
h im/her  depend on this). Subsequent steps could get 
into recognizing intentions and other sophisticated 
discourse phenomena. 

There are other, more subtle, problems that arise with 
this approach to summary response generation. One 
such problem involves avoiding the production of 
responses that "overlap" (i.e., are implicit in) the ques- 
tion. Such overlapping definitions themselves violate 
Grice's maxims of relation and quantity. For  example, 

Q14: Which students had a GPA of greater than 5? 
S14: All students with a GPA of greater than 5. 

or 

Q15: Which graduate students are both teaching and 
research assistants? 

S15: All graduate students receiving money for teaching 
and being paid by a professor to do research. 

Simple cases like Q14-S14 can be prevented by explicitly 
prohibiting responses that have the same predicates as 
the question. This would apply even if only one conjunct 
or disjunct is the same in both question and response. 
Q15-S15 presents a more complex problem since the 
answer, although directly implied in the user 's mind, may 
in fact involve attributes different from the question 
(e.g., the data base may have attributes such as TEACH- 
ING-ASSISTANT?, RESEARCH-ASSISTANT?, MONEY- 
RECEIVED-FROM-TEACHING, MONEY-RECEIVED- 
FOR-RESEARCH). In cases such as this, where the data 
base is in some sense redundant, extra information would 
have to be added to the attribute frames to indicate over- 
lapping attributes. This information could then be used to 
avoid producing responses that overlap the query. Even 
this extension would not provide a total solution to the 
problem, since the user may be able to make many subtle 
connections among the data in the data base that will 
lead to an overlapping response from his /her  point of 
view. Additional user modelling techniques to those 
discussed above will have to be developed to predict 
these connections and thus prevent the production of a 
response implicit in the query. 

Another subtle problem that arises is the problem of 
"accidental summaries",  i.e., summaries that are true of 
the current data base but not in general. Our use of 
distinguishing values is an at tempt to reduce the chances 
of this occurring, but it can still happen. For  example, it 
may be true in the simple student data base that, current- 
ly, all people who are from Canada also have NSERC 
grants. "NSERC" may also be a distinguishing value for 
the NATURE-OF-FINANCIAL-AID attribute (e.g., to 
answer question Q3). However,  to respond to the ques- 
tion Who are the students from Canada? with the answer 
All students with NSERC grants might mislead the user 
into thinking that there was some necessary connection 
between being f rom Canada and having an NSERC grant, 
rather than an accidental one. Accidental summaries 
violate Grice's  maxim of quality in that they imply some- 
thing is true that is not. Just avoiding the production of 
summary responses in such cases will not solve the prob- 
lem, since it still may be very useful to produce a summa- 
ry response. Thus, it may be accidental that all managers 
earn over $40k, but answer $2-1 (Abel Baker, Charles, 
Doug.) to question Q2 (.Which department managers earn 
over $40k per year?) still (normally) violates Grice's  
maxims, and the summary response $2-2 (All of  them.) is 
still (normally) more appropriate. The only long term 
solution to this problem is to expand the knowledge base 
with further information about  necessary relationships in 
the world being modelled (e.g., for the student data base, 
the knowledge base could be stocked with rules and 
regulations about academic programmes, student eligibil- 
ity for various prizes, etc.) These necessary relationships 
could then be used to clarify the summaries provided to 
the user as to whether accidental or necessary relation- 
ships were being reported. 

In conclusion, we would like to say that, despite its use 
over the last twenty years, the database environment still 
forms a nice microworld to study a variety of natural 
language issues. Hopefully, some of these have been illu- 
minated by this research. 
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