
SUMMARIZING NATURAL LANGUAGE DATABASE RESPONSES

Juga l K. Kal i ta

Department of Computer and Information Sc ience
University of Pennsylvania
Philadelphia, Pennsylvania

Madene L. Jones

Department of Computer Sc ience
University of Water loo

Water loo , Ontario, C A N A D A

Gordon I. McCalla
Department of Computational Sc ience

University of Saskatchewan

Saskatoon, Saskatchewan, C A N A D A

In a human dialogue it is usually considered inappropriate if one conversant monopolizes the conver-
sation. Similarly it can be inappropriate for a natural language database interface to respond with a
lengthy list of data. A non-enumerative "summary" response is less verbose and often avoids mislead-
ing the user where an extensional response might.

In this paper we investigate the problem of generating such discourse-oriented concise responses.
We present details of the design and implementation of a system that produces summary responses to
queries of a relational data base. The system employs a set of heuristics that work in conjunction with a
knowledge base to discover underlying regularities that form the basis of summary responses. The
system is largely domain-independent, and hence can be ported relatively easily from one data base to
another. It can handle a wide variety of situations requiring a summary response and can be readily
extended. It also has a number of shortcomings which are discussed thoroughly and which form the
basis for a number of suggested research directions.

1 INTRODUCTION

Research into the diverse and complex issues involved in

developing smart natural language interfaces to database

systems has been going on for over a decade. Pioneering

front-end systems such as REL (Thompson and Thomp-

son 1975), LUNAR (Woods, Kaplan, and Nash-Webber

1972), ROBOT (Harris 1977), "PLANES (Waltz 1978),

REQUEST (Plath 1976), TORUS (Mylopoulos et al.

1976), and RENDEZVOUS (Codd et al. 1978) exper-

imented with, among other things, various parsing

formalisms (e.g. semantic grammars, transformational

grammars, and augmented transition networks); different

knowledge representation schemes (e.g. using production

systems or semantic networks); and the use of clarifica-
tion dialogues in disambiguating a user's query.

Recent research has addressed various dialogue issues
that arise in natural language database interactions.
Researchers such as Davidson (1982), Grosz (1977),
Sidner and Israel (1981), and Webber (1978) have tack-
led problems such as the resolution of anaphoric refer-
ences, the tracking of the user's focus of attention, and
the generation of cooperative responses. In particular, the
CO-OP system (Kaplan 1982) analyzes the user's
presumptions in order to generate appropriate explana-
tions for answers that may otherwise mislead the user.
Janas (1979) takes a similar approach to generate indi-
rect answers instead of providing direct inappropriate
ones. Mays (1982) has developed techniques to monitor

Copyright1986 by the Association for Computational Linguistics. Permission to copy without fee all or part of this material is granted provided that
the copies are not made for direct commercial advantage and the CL reference and this copyright notice are included on the first page. To copy
otherwise, or to republish, requires a fee a n d / o r specific permission.

0362-613X/86/020107-124503.00

Computational Linguistics, Volume 12, Number 2, April-June 1986 1 0 7

Kalita, Jones, and McCalla Summarizing Natural Language Database Responses

changes in the data base and provide relevant informa-
tion on these changes to the user. McCoy (1982) and
McKeown (1982) at tempt to provide answers to ques-
tions about the structure of the data base rather than
extensional information as to its contents.

In this paper we investigate another dialogue issue: the
generation of " summary" rather than extensional
responses. Joshi, Kaplan, and Lee (1977) mention this as
an interesting issue, but so far as we know the generation
of summary responses has not been subsequently studied
to any great extent. Summary responses are formulated
in terms of general characteristics, shared by the exten-
sional response set, that distinguish responses in that set
from other information in the data base. It is often the
case, as we argue later, that summary responses are not
ordy more succinct than extensional responses, but are
often more appropriate as well. In order to explore the
issue of summary response generation, we have
constructed a system that produces summary responses
from a small relational data base of student records. The
system has two components: a domain-independent set
of heuristics and a domain-dependent set of frames that
"customize" the heuristics for a specific data base and a
particular class of users. Since the frames are relatively
easy to specify for a given database context, the summa-
ry response techniques developed here may well be wide-
ly applicable; that is, the system is to a large extent
portable.

The paper goes more fully into the nature of summary
responses and their usefulness. It describes the response
generation system in detail, including a presentation of
the frames and heuristics used in the student database
example. Extensive discussion is devoted to the
strengths, weaknesses, and subtleties of this approach to
summary response generation; and future research
directions are outlined. A readable overview of the
system can be found in Kalita, Colbourn (Jones) and
McCalla (1984); a detailed presentation is available in
Kalita (1984).

2 THE NATURE OF SUMMARY RESPONSES

An important convention of human conversation is that
no participant monopolize the discourse, ensuring that
control can be shared (Joshi, Kaplan, and Lee 1977). For
example it is often considered inappropriate for a speaker
to respond with a lengthy list of data; a shorter non-enu-
merative response is, at times, more appealing. Lengthy
response sets could be summarized, or defined by a char-
acteristic or attribute. For instance, the question

QI : Which employees engage in profit sharing?

may be answered by listing the extension of a set
containing perhaps, a long list of names, or by the inten-
sional response

SI: All vice-presidents.

Such summary answers avoid unnecessary and distracting
details, and more important, they do not mislead the user.

As another example, consider the query Q2 given
below (from Reiter et al. 1983):

Q2: Which department managers earn over $40k per
year?

$2-1: Abel, Baker, Charles, Doug.
$2-2: All of them.

Response $2-1 is what might be expected of an existing
system; response $2-2, the summary response, is normal-
ly more appropriate if conversational principles and prac-
tices are to be adhered to. By enumerating managers who
earn over $40k, the first response implies that there are
managers who do not earn that much. Such a scalar impli-
eature follows from the cooperative principle in conversa-
tion (Grice 1975:45) that requires a speaker to make
his /her "conversational contribution", such as is
required, at the stage at which it occurs, by the accepted
purpose or direction of the talk exchange in which
[he/she is] engaged". There are four maxims that derive
from this principle:

(i) the maxim of quant i ty - make the contribution as
informative as desired but not more so;

(ii) the maxim of qual i ty - do not say what is believed
to be false or that for which evidence is lacking;

(iii) the maxim of relation - be relevant;
(iv) the maxim of m a n n e r - avoid obscurity, avoid ambi-

guity, be brief, be orderly.

In the case of query Q2 above, the responder would
only enumerate positive instances if he / she could not say
the more informative A l l o f them. Thus, $2-1 might
mislead a user, who would expect the system to respond
with $2-2 if it were true. Of course, the Gricean maxims
must be viewed as being phrased relative to the
responder 's perceptions of the user 's knowledge. Thus,
the responder would have to know exactly what partic-
ular knowledge a given user had before being able to
decide with certainty which responses are likely to be
misleading. The usefulness of modelling the user will be
discussed further in section 6.

In general, summary responses are aimed at meeting
the maxims of quantity and manner. As Q2 illustrates, a
summary response can be (somewhat paradoxically)
more informative than an extensional response. It can
also be briefer and less obscure than an extensional
response. It is important to make only the relevant
summary responses. Our system tries to maintain rele-
vance through the use of a knowledge base tailored to
meet the expectations of different classes of users (see
section 4.2). Since we don ' t produce responses not satis-
fied by the data, the maxim of quality is not changed by
the generation of summary responses. It is possible,
however, to produce a summary response which itself
violates Grice's maxims. For example, assume the query
W h o passed C M P T 110? were posed to a summary
response generation system. Producing the answer A l l

s tudents who got over 5 0 % (if this happened to be true in
the current data base) would normally violate the maxims

108 Computational Linguistics, Volume 12, Number 2, April-June 1986

Kalita, Jones, and McCana Summarizing Natural Language Database Responses

of quantity and relation in that most users would be given
information they already knew. Similarly, producing the
answer All students who got over 60% (if this happened
to be true in the current data base) might mislead a user
into thinking that 60°6 was a passing grade, hence violat-
ing the maxim of quality (actually, Joshi's generalization
of this maxim since, strictly speaking, the answer is truth-
ful). Some techniques are incorporated into our system to
help reduce the chances of this kind of thing occurring
(see section 4), but it is still a problem, as we discuss in
the concluding section.

Generation of summary responses is analogous to a
reversal of the interpretation process. A natural language
question is interpreted into one or more propositions the
data in the answer must satisfy, and then the appropriate
data is retrieved. In a conventional database manage-
ment system (DBMS), this extensional response is the
only possible answer. But, we want to go back from the
extensional data to predicates describing characteristics
of the data and from there to natural language. Consider
the query, Which employees use a company car?. The
internal form into which this question is interpreted might
be

(employee uses car) & (car belongs to company)

(The actual internal notation used in our system is more
complicated than this - see section 4.3). A conventional
DBMS would produce a response consisting of a set of
employee names and possibly other relevant information
about them. But, we want to obtain a descriptive
answer, such as

(employee is president) V (employee is vice-president)

which in turn can be expressed in natural language as

The president and the vice-presidents.

Hence, we must obtain a description that is true of the
relevant data and present the description to the question-
er instead of providing the actual data values that satisfy
the propositions set forth in the question.

It is possible for a system to arrive at such concise
responses from an extended database schema by employ-
ing a heuristic search of the extensional data for the
existence of "interesting" patterns. In the next section we
overview a system for producing summary responses.

3 OVERVIEW OF THE SYSTEM

We have designed a system that produces summary
responses to queries posed to a simple relational data
base of student records. In order to concentrate on the
pragmatics issues underlying the generation of summary
responses, we ignore the complexities of starting with,
and eventually producing, surface language. Instead, the
system starts with predicates representing the user's
query and produces predicates representing a summary
response.

The flow of control in the system is simple. The user's
query is formulated in an internal form which is under-

stood by the underlying database management system.
This internal form is discussed more fully in section 4.3.
Using this query, the DBMS obtains ~ the extensional
response set, that is, the tuples that satisfy the user's
query. After the data is accessed, the system consults its
knowledge base to try to formulate a summary response.
A prime component of this knowledge base is a set of
heuristics used to find interesting non-enumerative
patterns. As soon as a heuristic succeeds in discovering
such a pattern, the system terminates the search and
produces the response as dictated by the successful
heuristic. This response is also in an internal notation
identical in form to that used to represent the input. If all
heuristics fail, the system reports its inability to produce a
descriptive response. In any event, the user may ask the
system to produce an extensional list of the data if
desired.

Let 's look at the knowledge base in slightly more
detail. In order for the system to provide meaningful
descriptive responses, the user's conceptions regarding
the nature and contents of the data base must be taken
into account. Without a separate knowledge base, this
would be impossible. The knowledge base is employed
to outline strategies for obtaining summary responses, to
ensure that the qualitative responses generated are
appropriate, and to produce salient information for
describing the data that satisfy a query. The knowledge
base consists of two distinct parts: the heuristics, and the
frames for the relations and attributes.

The heuristics guide the search for "interesting"
patterns in the data; the frames assist in determining
"interestingness". The heuristics are the procedural part
of the system's knowledge. There are several heuristics,
including the equality, inequality, range, conjunction,
disjunction, and foreign-key heuristics. They are ordered
according to the complexity of the search procedures
involved and are tried in this order so that the easiest
(and usually the simplest to understand) summary
response is found first.

The second part of the system's knowledge is repres-
ented by frames which encode useful information about
the relations in the data base and their attributes. There
are two types of frames: relation frames, which suggest
ways of joining relations together in order to facilitate
the discovery of elaborate patterns in the data; and attri-
bute frames, which give characteristics of various attri-
butes in the relations in order to aid the determination of
relevant and interesting patterns.

Currently, both the frames and the heuristics must be
prespecified by the system designer, rather than automat-
ically created by the system to suit a given database
context. However, this isn't a big problem since the
heuristics are domain-independent and, hence, may be
used with any other database domain without modifica-
tion. And, although the frames must be tailored to reflect
characteristics of the particular data base and user, the
frame notation is sufficiently straightforward that it

Computational Linguistics, Volume 12, Number 2, April-June 1986 109

Kalita, Jones, and McCaila Smnmarizlng Natural Language Database Responses

seems possible for a database manager to be able to do it
relatively easily.

4 DETAILS OF THE SYSTEM

4.1 THE RELATION AND ATI'RIBUTE FRAMES

The sample relational data base used in our implementa-
tion consists of three relations:
- STUDENTS,
- COURSE-DESCRIPTIONS, and
- COURSE-REGISTRATIONS.
The data base stores useful information about graduate
students and the courses in which they register. The
relations and their attributes are shown in Figure 1. Key
attributes are shown in italics.

The current relation frames are very simple. Each
frame corresponds to an actual relation in the data base;
it provides the possible links with all other relations. In
other words, these frames define all lossless joins of two
relations. In cases where a direct join is not possible
between two specific relations, the frame contains the
name of a third relation that must be included in the join.
If two relations R~ and R 2 can be directly joined through
attributes A 1 in R 1 and A 2 in R 2, the corresponding entry
in the LINKS siot is

((R1 R2) (A 1 A2)).
If the relations R 1 and R 2 cannot be joined directly, but
can be indirectly joined through a relation R3, the corre-
sponding entry in the LINKS slot of the relation frames
for R 1 and R 2 is

((R1 R2 R 3) (A 1 A31) (A32 A2)).

The first sublist indicates that the relations R 1 and R 2 can
be indirectly joined through relation R 3. The second
sublist indicates that R 1 and R 3 can be joined using the
attribute A 1 in R1 and the attribute A31 in R 3. Similarly,
the relations R 3 and R. 2 can then be joined through the
attribute A32 in R 3 and A 2 in R v

For the STUDENTS relation under consideration, the
relation frame can be seen in Figure 2. The relations
STUDENTS and COURSE-REGISTRATIONS may be
joined through the fields STUDENT-ID-NO in STUDENTS
and STUDENT-ID in COURSE-REGISTRATIONS. The
relations STUDENTS and COURSE-DESCRIPTIONS
cannot be joined directly; the join has to be performed
through the relation COURSE-REGISTRATIONS.
STUDENTS and COURSE-REGISTRATIONS are linked
through the fields named above. COURSE-
REGISTRATIONS and COURSE-DESCRIPTIONS are
joined through the COURSE-NO field in both these
relations.

The information in the relation frames is employed
when the system fails to produce a non-enumerative
answer after exhausting all the heuristics that deal with
only one relation. The system then attempts to find a
descriptive expression considering another relation with
which the original or target relation has some common
join-attribute(s).

Relation frames allow the database manager the flexi-
bility of naming attributes differently in different
relations. They also can be used to restrict the types of
joins that can be undertaken (i.e. not all possible joins
need to be specified). Except for these distinctions, it
would be relatively straightforward to generate the
relation frames automatically.

STUDENTS:
(STUDENT-ID-NO, NAME, NO-OF-YEARS-COMPLETED,
NATIONALITY, NATURE-OF-FINANCIAL-AID, NO-OF-COURSES-THIS-TERM,
NO-OF-COURSES-COMPLETED, TAKING-MAKEUP-COURSES?,
CUMULATIVE-GPA, UG-MAJOR)

COURSE-DESCRIPTION:
(COURSE-NO, COURSE-NAME, COURSE-LEVEL)

COURSE-REGISTRATIONS:
(COURSE-NO. STUDENT-ID, OFFERED-IN-TERM, COURSE-GRADE)

Figure 1. Relations and Attributes in Graduate Student Data Base.

Relation-Name: STUDENTS
Links:

(((STUDENTS COURSE-REGISTRATIONS)
(STUDENT-ID-NO STUDENT-ID))

((STUDENTS COURSE-DESCRIPTIONS COURSE-REGISTRATIONS)
(STUDENT-ID-NO STUDENT-ID) (COURSE-NO COURSE-NO)))

Figure 2. Relation Frame for the Relation STUDENTS.

110 Computational Linguistics, Volume 12, Number 2, April-June 1986

Kalita, Jones, and McCalla Summarizing Natural Language Database Responses

In addition to the relation frames, the system is
provided with a number of attribute frames, each of
which corresponds to an actual attribute in the data base.
Attribute frames are critical in this approach to summary
response generation and thus are described in some
detail. Attribute frames allow important attributes and
meaningful attribute values to be specified in advance.
Together with the heuristics, they give our system many
of the abilities of McCoy ' s (1982) ENHANCE system to
reflect a user's preconceived notions as to which patterns
of data a r e meaningful and which are not. A different
set of attribute frames can be designed for each type of
user (presumably by the database manager), thus allow-
ing user modelling of a sort to be implemented.

Attribute frames guide the system in describing the

data on the basis of attributes whose values serve to
partition an entity class (represented by a relation in the
data base) into two mutually exclusive subclasses, namely
the part of the entity class that satisfies the user 's query
and the part that does not. As pointed out by Lee and
Gerritsen (1978), some partitions of an entity class are
more meaningful than others. Our system employs attri-
bute frames to determine which attributes should be used
for describing a partition and which resulting classifica-
tions are meaningful. Figure 3 shows an attribute frame
for the attribute NATIONALITY in the STUDENTS

relation.

Name:- (NATIONALITY, STUDENTS)
Nature-of-Attr ibute:- String of characters
Distinguishing-Values:-

(((Canadian) (=) (# foreign))
((U.K.U.S.A. Australia ...)

(member-of English-speaking-countries))
((U.K. France ...)

(member-of Europe))
...)

Potential-range:- Any member from a given list of countries
Round-off- to-be-done?:- Not applicable
Preference-Category:- 1

Figure 3. Attribute Frame for NATIONALITY.

The NAME slot contains the internal name of the attri-
bute, i.e. the name under which it is stored in the data
base, and the name of the relation in which it occurs. If
the attribute occurs in more than one relation, this field
contains an entry for each relation. The general format
of the contents of this slot is

(Attribute-Name-in-Relation- 1 Rela t ion- l -Name)
[(Attribute-Name-in-Relation-2 Relat ion-2-Name) ...]

The expression within the "[]" brackets is optional. The
three dots indicate that an arbitrary number of repe-
titions of the immediately preceding expression is
allowed. In the case of the attribute frame of Figure 3,
the NAME slot indicates that the frame represents infor-

mation about the NATIONALITY attribute in the
STUDENTS relation.

The second slot, NATURE-OF-ATTRIBUTES, contains
information regarding the type of values contained in the
field - e.g., numeric, character, or boolean. The
NATIONALITY attribute assumes character values.

The DISTINGUISHING-VALUE slot provides informa-
tion for distinguishing a subclass of an entity from other
subclasses. This slot stores any distinguishing values the
attribute may take. These values are crucial in producing
descriptive responses to the user 's queries, so some time
will be spent elaborating this idea. The slot contains one
or more clauses, each of the following format:

(((list-of-attribute-values-1 (applicable-operator-l-1 [denominat ion- l - l])
[(applicable-operator- 1-2 [denomination- 1-2])]
.*.)

If the actual values of the attribute satisfy

"appl icab le -opera tor - l - l " with respect to the contents of

the list "l ist-of-at tr ibute-values-l" , the actual values

may be termed as "denomina t i on - l - l " for producing

responses. If the value of "denomina t i on - l - l " is null, no

special names can be attached to the actual values of the

attribute.

Looking at the NATIONALITY attribute frame of

Figure 3, a number of distinguishing values have been

specified. Consider the clause ((Canadian) (=) (#

Computational Linguistics, Volume 12, Number 2, April-June 1986 111

Kalita, Jones, and McCalla Summarizing Natural Language Database Responses

foreign)). The value "Canadian" is a distinguishing
value. The term " (=) " indicates that it is possible to
identify a class of students using the descriptive
expression "NATIONALITY ---- Canadian". If
NATIONALITY # "Canadian" , the student may be
referred to as a "FOREIGN" student. Similarly, if the
value stored for a student under the attribute
NATIONALITY is a member of the set (U . K . U . S . A .
Australia ...), he / she may be designated as coming from
an English-speaking country. Finally, if the student has
value U.K., France, etc. for NATIONALITY, he / she may
be considered to be from Europe.

Distinguishing values correspond to key values that
naturally divide the values in a domain into distinct class-
es. In this sense they are very similar to McCoy ' s (1982)
"very specific axioms", although how they interact with
heuristics to produce summary responses is different. To
illustrate, for most users the value 18 of an AGE attribute
is a distinguishing value dividing children from adults; 65
is a distinguishing value separating adults from senior
citizens. Other values are not important and, therefore,
should not be considered to be "distinguishing". Similar-
ly, suppose that a grade point average of six or greater is
necessary for a graduate student to register in four cours-
es rather than the usual three courses. The value "6" ,
then, can be considered to be a distinguishing value for
the CUMULATIVE-GPA attribute. This would allow
questions like Which students are taking four or more
courses? to be answered with All students with GPA of six
or higher rather than with the response All students with
GPA of 6.52 or higher which might be true of the current
data. The latter response is inappropriate because it
violates the maxim of quality in that it might mislead the
user into thinking that 6.52 is a significant value in the
University. (See Q8-$8 in section 4.2.4 for the details as
to how the proper summary response for this kind of
question is generated by our system.)

Returning to the NATIONALITY frame of Figure 3,
the distinguishing values specified there would make it
possible for our system to answer the question Which
students are taking the "'Intensive English" course in the
Fall term? with the response Most entering foreign
students from non-English speaking countries rather than
the misleading answer All students from China, Iran, and
France, which might happen to be true currently. Once
again, the latter response violates the maxim of quality, a
common occurrence if summary responses are not care-
fully tuned to reflect significant domain subdivisions.

The DISTINGUISHING VALUE slot enables the data-
base manager to specify classifications that he / she would
a priori like to appear meaningful to the user in descrip-
tive responses. Without this information the system may
fail to faithfully reflect the user's perceived notions
regarding appropriate partitioning of entity classes. By
changing the distinguishing values, the database manager
can adapt the system to serve the needs of a variety of
users. Although it isn't our concern here, it would even

be possible to remove all distinguishing values and hence
have the system produce no summary responses. For any
given class of users, the database manager will need to
specify all of these distinguishing values by hand, but
once they are specified, they can be used by many differ-
ent heuristics in many different situations for as long as
the database structure remains the same, even if the
tuples in the data base change. Further examples of the
use of distinguishing values and how they interact with
the heuristics will be presented shortly.

Let us return at last to the other slots in an attribute
frame. The POTENTIAL-RANGE slot provides an
approximate range in which the values of the attribute
may lie. The information in this slot is employed in
conjunction with the range heuristics which are discussed
in the next section. In the NATIONALITY attribute
frame of Figure 3, the potential range would be specified
in terms of a long list (not shown) of possible countries
of origin.

It is sometimes necessary to round off values of
numeric attributes in order to produce answers with
acceptable range specifications. However , not all numeric
attributes can be rounded. Whether rounding is allowable
for a particular attribute depends on several factors
including the type of values the attribute can assume (i.e.,
integer, real, etc.) and the potential range o~ its values as
well as other attribute characteristics. The ROUNDING-
TO-BE-DONE? slot contains a boolean value indicating
whether rounding is appropriate for the particular attri-
bute under consideration. It obviously is not for the
character values of the NATIONALITY attribute frame.
Straightforward as it may seem, rounding allows our
system to avoid violating Grice's maxims of manner,
specifically by making answers less obscure.

It is often more useful to provide descriptive answers
on the basis of certain preferred attributes. For example,
in the STUDENTS relation, it is more "meaningful" to
provide answers on the basis of the attribute
N A T I O N A L I T Y o r U G - M A J O R rather than S T U D E N T -

ID-NO or AMOUNT-OF-FINANCIAL-AID. However, it is
impossible to give a concrete weight regarding each attri-
bute 's preferability. Therefore, we have classified the
attributes into several groups; all attributes in a group are
considered equally useful in producing meaningful qual-
itative answers to queries. The groups for the STUDENTS
relation are given in Figure 4.

This classification means that it is preferable and more
useful to produce descriptive responses using the attri-
butes in group 1 than the attributes in group 2, and the
attributes in 2 are preferable to 3, which are in turn pref-
erable to 4. This categorization is done by the database
manager, based on his /her judgement as to the perspec-
tives of the various classes of users. In the slot PREFER-
ENCE-CATEGORY, there is an entry corresponding to
each relation the attribute occurs in. The information in
this slot ensures that the system chooses a description
based on the most salient attribute for producing a

112 Computational Linguistics, Volume 12, Number 2, April-June 1986

Kalita, Jones, and McCalla Summarizing Natural Language Database Responses

1: (NATIONALITY, CUMULATIVE-GPA, UG-MAJOR)
2: (NO-OF-YEARS-COMPLETED, NATURE-OF-FINANCIAL-AID)
3: (NO-OF-COURSES-THIS-TERM, NO-OF-COURSES-SO-FAR, TAKING-MAKEUP-COURSES?)
4: (STUDENT-ID-NO, NAME)

Figure 4. Preference Categories for the Relation STUDENTS.

Name:- (CUMULATIVE-GPA STUDENTS)Nature-of-Attribute:- Real
Distinguishing-Values:-

(((0.00 2.00) (in-the-range-of poor))
((2.00 4.00) (in-the-range-of satisfactory))
((4.00 6.00) (in-the-range-of good))
((6.00 7.00) (in-the-range-of excellent))
((7.00 8.00) (in-the-range-of outstanding))
((2.00) (>_) (_<))
((6.00) (_>) (_<)))

Potential range:- (0.00-8.00)
Rounding-to-be-done?:- Yes
Preference-Category:- 1

Figure 5. Attribute Frame for CUMULATIVE-GPA.

Name:- (NO-IF-COURSES-THIS-TERM STUDENTS)
Nature-of-Attr ibute:- Integer
Distinguishing-Values:-(((2) (< light-load))

((3 4) (member-of normal-load))
((5) (> heavy-load)))

Potential-Range:- (0-6)
Rounding-to-be-done:- No
Preference-Category:-3

Figure 6. Attribute Frame for NO-OF-COURSES-THIS-TERM.

response. The preference category of the NATIONALITY
attribute of Figure 3 is 1.

Preferred attributes perform for our system the same
function that McCoy 's (1982) "important attributes list"
does for the ENHANCE system. We go further than
McCoy in specifying several preference categories, rather
than having one long list. Although all attributes are
assigned a preference category in this example, we can,
like McCoy, leave out unimportant attributes altogether
if it is appropriate to do so.

Let us now look at two more attribute frames. Figure
5 shows the frame for the attribute CUMULATIVE-GPA
in the STUDENTS relation. From this, it is clear that
CUMULATIVE-GPA takes real values in the range 0.00
to 8.00. If CUMULATIVE-GPA is in the range 2.00-4.00,
it may be termed "poor ." ; Similarly, if it is in the range
4.00 to 6.00, it is considered as "good" , and so on. If
none of the first five clauses in the DISTINGUISHING
VALUE slot is satisfied, the system attempts to use the
last two clauses. The clause ((2.00) (>) (<)) says that
we can use expressions such as " G P A > 2.00" or " G P A
< 2.00", which cover a wider range than the first five
clauses (e.g. Which students are allowed to continue? might
be answered All students with GPA o f 2 or more. - see

also Q7-$7 in section 4.2.4). It should be noted that
these expressions may be used only if all values for the
attribute GPA in the selected tuples satisfy the corre-
sponding condition. However, we cannot use expressions
of the form " G P A = 2.00". We avoid using equafities for
attributes that assume rational values. The clause ((6.00)
(>) (<)) conveys a similar idea.

Figure 6 shows the frame for the attribute
NO-OF-COURSES-THIS-TERM in the STUDENTS
relation. From this figure, one can conclude that the
attribute NO-OF-COURSES-THIS-TERM assumes integer
values in the range 0-6. If this field has a value <2, it
may be termed "light-load". If NO-OF-COURSES-THIS-
TERM is either 3 or 4, it is "normal- load". If the value of
the attribute is > 5, it is "heavy load". The values of the
thresholds shown here are applicable in the case of grad-
uate students. These values would, obviously, be differ-
ent if we considered a data base of undergraduate
students.

Currently, the attribute frames are static entities with
their contents being defined a priori by the database
manager to reflect the expectations of one set of users.
Of course it is possible to have many different sets of
attribute frames for many different classes of users, but a

Computational Linguistics, Volume 12, Number 2, April-June 1986 113

Kalita, Jones, and McCalla Summarizing Natural Language Database Responses

better approach might be to allow the user to alter the
contents of these frames interactively to suit h is /her own
idiosyncratic perceptions of the information in the data
base. This would require us to figure out how to present
the frames and the possible changes to the user, some-
thing we haven ' t done as yet. Even more difficult would
be the automatic creation (and later adjustment) of the
attribute frames as the result of feedback from a partic-
ular user or class of users. This is dear ly a major
research issue beyond the scope of our current concerns.

4.2 THE HEURISTICS

AS mentioned earlier, the heuristics employed in the
system are procedural in nature. In conjunction with the
frames described above, they guide the system to search
for various interesting patterns that distinguish the tuples
describing the query response from the rest of the tuples
in the data base. The interesting patterns are similar to
McCoy ' s (1982) "distinguishing descriptive attributes",
although we use them to produce summary responses
rather than to answer questions on database structure.
Our use of a number of specially designed heuristics
using frames to produce meaningful responses is also
different from McCoy ' s approach, which uses three
different kinds of axioms to control a general search
procedure.

In order to help overcome possible problems of combi-
natorial explosion (mentioned as a problem for McCoy ' s
ENHANCE as well), the heuristics are linearly ordered
according to the complexity of the required search proce-
dures. Hence, the system first searches for simple
patterns; the complexity of the response patterns grows
as later heuristics are employed. This ordering of the
heuristics assumes that, if more than one descriptive
answer can be obtained for a query, it is sensible to
produce the "simplest" one. It would be easy to change
this if more sophisticated termination conditions for the
search were desired.

We assume that the natural language query has been
parsed and transformed to an internal form, and the
required data have been accessed. The heuristics are
applicable only after the tuples that satisfy the user's
query are at hand. Let Tqual be the set of tuples that
satisfy the user 's query, and Tunqual be the rest of the
tuples in the relation relevant to the current query.

4.2.1 THE EQUALITY HEURISTIC

The equality heuristic is the most elementary of all the
heuristics. It corresponds to the usage of everyday words
such as all, everybody and everyone. To start our
discussion, we present a formal specification of the
heuristic.

Determine if all data values appearing as the value
of a particular attribute A in Tqual are the same
(say, a). a must be a DISTINGUISHING VALUE in
the domain of values for attribute A. If so, and if no
tuple in Tunqual has the value a for the attribute A,
the general formulation of the response is:

All tuples having the value a for attribute A.

An example is the question-answer pair Q3-$3:

Q3: Who are the Canadian students with GPA of 7.5 or
higher?

$3: All students receiving NSERC scholarships.

For applying this heuristic, the value a of the attribute
A must have some "distinguishing" importance in the
domain. In the above example, the attribute under
consideration is NATURE-OF-FINANCIAL-AID. The
value NSERC is considered to be a DISTINGUISHING
VALUE in the domain of values that the attribute
NATURE-OF-FINANCIAL-AID can take.

The equality heuristic may also be applied to certain
numeric attributes. Consider the following question and
answer pertaining to the graduate student data base.

Q4: Which students have completed less than 5 courses?
$4: All first year students.

Here, the value of the attribute NO-OF-YEARS-COM-
PLETED is 0 for all tuples that satisfy the query Q4.
Also, among the unqualified tuples, there is none in
which NO-OF-YEARS-COMPLETED ---- 0. Finally, the
value 0 distinguishes first year students from others,
according to the attribute frame for NO-OF-YEARS-
COMPLETED.

Before leaving the equality heuristic, it should be
noted that Q1-S1 (Which employees engage in profit shar-
ing? - All vice-presidents.) f rom section 2 could be
handled by the equality heuristic (all employees engaging
in profit sharing have the rank "vice-president"; nobody
who isn't engaging in profit sharing has this rank).

4.2.2 THE INEQUALITY HEURISTIC

The dual of the equality heuristic is the inequality heuris-
tic; instead of looking for equalities, the system searches
for inequalities. Formally, the heuristic may be stated as,

Determine if each data value for a particular attri-
bute in Tqual is not equal to some particular value 7
and all tuples in Tunqual have that value. This value
-f must be a DISTINGUISHING VALUE in the
domain of the values for attribute A. The general
formulation of the response is

All tuples with value of attribute A ~ V.
In order to produce the required response, the
system must make certain that A ~ ~, is not true in
any of the tuples which do not satisfy the user 's
query.

Let us consider an example. In the student data base,
the value "Compute r Science" for the attribute UG-MA-
JOR may be considered a distinguishing value. This
allows us to produce a response such as

All students with majors other than Computer Science.

or, equivalently,

All non-Computer Science majors.

as in the following question and answer pair:

Q5: Which students have taken more than six courses?

114 Computational Linguistics, Volume 12, Number 2, April-June ! 986

Kalita, Jones, and McCalla Snmmarizing Natural Language Database Responses

$5: All students with non-Computer Science under-
graduate background.

At the same time, we may avoid producing a response
such as (say)

All students from departments other than
Mechanical Engineering,

if Mechanical Engineering is not of interest to us. Thus, it
is clear that the specification of distinguishing attribute
values is dependent on the user's conception of the data
as well as the application under consideration. It should
be noted that phraseology subtleties such as the differ-
ences between All non-Computer Science majors, All
students with majors other than Computer Science, or All
students with non-Computer Science undergraduate back-
ground are not reflected in different internal notations,
but are the responsibility of the natural language gener-
ation component which we haven't developed as yet.
Such subtleties can be quite important, but are left for
future research. The whole issue of natural language
generation (and interpretation) is discussed further in
section 4.3.

4.2.3 MODIFICATION OF THE EQUALITY AND
INEQUALITY HEURISTICS

If the equality or inequality heuristics are not applicable
in their pure form and there are a "few" ("few" depends
on the relative number of tuples in Tqual and Tunqual and
some other factors) tuples in Tunqual t h a t do not satisfy
the requirement of the heuristic, a modification of the
response produced by the heuristic may be presented to
the user. An example of such a modification is seen in the
following:

Q6: Which students are receiving University scholar-
ships?

$6: All but one foreign student. In addition, two Cana-
dian students are also receiving University scholar-
ships.

4.2.4 RANGE HEURISTICS

These heuristics determine if the data values for an attri-
bute in the tuples in Tqual are within a particular well-de-
fined range. There are two main types of range heuristics
- one is concerned with maximum values and the other
with minimum values. The first of these, the maximum
heuristic, may be formally stated as,

Determine if all data values for attribute C in Tqual
are below some maximum (say,/3), and there is no
tuple in Tunqual with values for C < /3. This value/3
must have some "distinguishing importance" in the
domain of the values of attribute C. In this case, the
general formulation of the response is

All tuples with the value of attribute C < /3.

An illustrative example is

Q7: Which students have been advised to discontinue
studies at the University?

$7: All students with a cumulative GPA of 2.0 or less.

Here GPA = 2.0 is assumed to have some "distinguishing
importance" in the field of numbers representing GPAs
of students (i.e., a value that may be "generally" used to
partition the set of all possible GPAs into two classes:
ones above 2.0, and ones equal to or lower than 2.0).
The maximum heuristic is generally applicable in the case
of numeric attributes.

Similarly, the minimum heuristic may be formally speci-
fied as,

Determine if all data values for attribute C in Tqual
are above a certain minimum (say, d) and there are
no tuples in Tunqual with value for C > d • dJ must
have some "distinguishing importance" in the
domain of the values of attribute C. The general
formulation of the response is

All tuples having the value in column C > &

An illustrative example is

Q8: Which students are taking four or more courses?
$8: All students with GPA of six or higher.

When the tuples in Tqual satisfy both the maximum
and the minimum heuristics for the same attribute A, we
get a range specification. Let a be the minimum value
and/3 be the maximum value of the attribute A in Tqual.
Then the response can be modified as

All tuples with value of attribute ranging
from a through/3.

An example of an answer with range specification is

Q9: Who are the students taking courses in second
year?

$9: All students who have completed between 3 and 5
courses so far.

There are several rules that should be followed while
producing answers in terms of ranges. Some of the rules
employed in the current implementation are given below.
These rules are fairly arbitrary, but rules like them will be
necessary to prevent summary responses from themselves
violating Grice's maxims, especially the maxims of
manner and quality.
• If the upper limit of the actual range for an attribute is

the maximum potential value for the attribute, it is
better to modify the answer as more than a where a is
the lower limit of the actual range. For example, if for
an attribute A the upper limit of the maximum poten-
tial range is 1000, instead of providing a response
between 750 and 1000, it is advisable to say more than
750 if Grice's maxim of manner (be brief) is to be
satisfied.

• A similar action is taken at the other end of the scale.
For example, if the lower limit of the maximum poten-
tial range is 0, instead of responding as between 0 and
200, we might answer as less than 200.

• The actual range specified in an answer should not be
more than 75% of the potential range of the attribute
values. The particular choice of 75% is not sacrosanct,
but the rule itself is important if we are to avoid the
problem of producing a response that essentially covers

Computational Linguistics, Volume 12, Number 2, April--June 1986 115

Kalita, Jones, and McCalla Summarizing Natural Language Database Responses

the entire range of potential attribute values. Such a
response would mislead the user into thinking that
there existed values outside of this range, which would
violate Grice's maxim of quality.

• The actual range specified in an answer should not be
so small as to identify the actual tuples that constitute
the answer. For example, we should not produce a
response such as, All students with student-id-no between
821661 and 821663. In fact, such answers are not
brief when compared with the size of the set of tuples
they qualify. Moreover, they can mislead the user into
thinking that there are many more tuples than there
actually are in the response set.

These violations of the maxims of manner and quality
should be avoided.

While producing range specifications, it is often neces-
sary to round off the upper and lower limits in case of
numeric attributes. For example, instead of saying
Students with GPA between 6. 06 and 6.92 we may as well
say Students with GPA between 6. O0 and 7. 00.

Rounding cannot be done for all numeric attributes.
The applicability of the rounding operation depends on
several factors including the nature of the values the
attribute takes - e.g. whether they are an integer or
rational, and their potential range.
• In case of integer values, if the potential range is

"small", rounding should be avoided. For example, the
field NO-OF-YEARS-COMPLETED in a student data
base has a tight potential range (0-5 years). In this
case, if we have data values between 2 and 4 years, we
should not round off and say between 2 and 5 years.

• For integer values, if the potential range is wide,
rounding off may be done (except for some cases
discussed below). For example, the expression Students
with marks between 61 and 78 may be rounded to
Students with marks between 60 and 80. However, for
this rounding to be correct, it is necessary to ensure
that there are no tuples in Tunqual with marks 60, 79 or
80.

• There are certain attributes that are integral and do not
allow approximation by their inherent nature. One
example of such an attribute is STUDENT-ID-NO. A
student identification number 82116 cannot be approx-
imated as STUDENT-ID-NO = 82115 or STUDENT-
ID-NO = 82120. Similarly, we cannot round the attri-
bute YEAR-OF-BIRTH in many circumstances. This
decision whether rounding should be done or not is
often subjective. Hence, this information must be
provided by the system builder and stored in the know-
ledge base.

• If an attribute assumes non-integer (i.e., rational)
values, the system may nearly always proceed with
rounding. It may be possible to find counter examples
to this assertion in some database domains. However,
for the purpose of the current implementation, we
accept this assumption to be true at all times.

It should be noted that the heuristics explained above
are applicable when a single attribute of the relevant
relation is considered. If no such heuristic can be success-
fully applied to the pertinent data, the system attempts to
use one of the conjunction or disjunction heuristics joint-
ly on two or more attributes.

4.2.5 CONJUNCTION HEURISTIC

The conjunction heuristic is the first of the complex
heuristics involving more than one predicate. Usually,
each of these predicates involves a distinct attribute in
the data base, although it is possible that two or more
predicates relate to values of the same attribute. These
heuristics provide the system with the facility to use
common connectives such as and and or.

The conjunction heuristic is expressed succinctly in the
following paragraph.

If all values of an attribute C in Tqual satisfy a
relation R (in the mathematical sense), and there
are tuples in Tunqual that also satisfy the same
relation R, determine via the above heuristics if
there i s /a re some "interesting" distinguishing
characteristic(s) that the set Tqual satisfies, but the
set of tuples in Tunqual satisfying the relation R do
not. Let us call the distinguishing characteristic(s)
D. The general formulatioh of the response is

All tuples that satisfy the relation R and have the
characteristics D.

An example is,

Q10: Which students are working as T.A. or R.A.?
S10: Students who have completed more than 1 year at

the University and who are not employed outside
the University.

All the tuples in Tqual resulting f rom Q 10 are found by
the system to have the values for the attribute
NO-OF-YEARS-COMPLETED > 1. However , the system
finds that there are some tuples in Tunqual that also have
values greater than 1 for the attribute NO-OF-
YEARS-COMPLETED. Let us call these tuples Tequa 1.
Next the system attempts to find some characteristics
that distinguish Tequa 1 from Tqual. It finds that in Tequa 1
the field NATURE-OF-FINANCIAL-AID _- OUT-
SIDE-JOB for all tuples whereas in Tqual , NATURE-OF-
FINANCIAL-AID -- UNIVERSITY-SCHOLARSHIP for all
tuples. After finding this difference, the system is able to
qualify the phrase Students who have completed more than
1 year in the University by the phrase who are not
employed outside the University to produce the complete
response.

4.2.6 DISJUNCTION HEURISTIC

If none of the above heuristics can be applied successful-
ly, the system attempts to use the disjunction heuristic. As
is evident f rom the nomenclature, this heuristic enables
the system to formulate complex responses using the
connective OR. Formally, this heuristic may be expressed
as follows.

116 Computational Linguistics, Volume 12, Number 2, April-June 1986

Kalita, Jones, and McCalla Summarizing Natural Language Database Responses

Divide the tuples in Tqual into a number of subsets
and try to apply one of the heuristics explained
earlier to each subset. If successful, the resulting
response consists of several predicates connected
by the relational operator OR (V). It has the gener-
alized format

Tuples with (attribute I R I a~) V (attribute e R 2 a2)

l V (attribute 3 R 3 a 3) ... !
where Ri's are relations (in the mathematical
sense); ai's are distinguishing values of the corre-
sponding attributei's.

While formulating responses with the disjunction
heuristic, the number of such subsets should be restricted
to two or three, if possible. If too many subsets are iden-
tified, it is difficult for the user to grasp all of them. If
more than three subsets are presented, this approach is
no more elegant than listing the data, which we are trying
to avoid. The number of allowable subsets also depends
on the number n of tuples in Tqual. If n is "large", the
number of subsets one would consider acceptable may be
somewhat higher.

It should be mentioned that in the generalized
expression for the response, the various attributei's may
be the same attribute, or they may be different. In certain
cases, the same attribute may partition the relevant infor-
mation into two or more groups in distinct ways. An
example showing three partitions based on the values of
three different attributes is,

Q I 1: Which students are not receiving University schol-
arships?

S11: Students who are receiving NSERC scholarships or
have cumulative GPA less than 6.0 or have
completed at least two years at the University.

In attempting to answer Q11, the system finds that it
is not possible to obtain an appropriate answer using the
previous heuristics. It then checks to see if the tuples in
Tqual can be divided into two or three separately identifi-
able subsets. In this case, it successfully partitions Tqual
into three subsets - Tqual_l, Tqual_ 2 a n d Tqual_ 3 where

• Tqual_ 1 consists of all tuples in Tqual for which
NATURE-OF-FINANCIAL-AID = NSERC-SCHOLAR-
SHIP,

• Tqual_ 2 is the subset of all tuples in Tqual with CUMU-
LATIVE-GPA < 6.00, and

• Tqual_ 3 is the subset of tuples in Tqual for which
NO-OF-YEARS-COMPLETED > 2.

While subdividing the total response set Tqual into
subsets, the system should ensure that no tuple in Tunqual
satisfies the various disjunctive predicates.

4.2.7 FOREIGN-KEY HEURISTIC

If nothing satisfactory can be found employing all of the
above heuristics, the system attempts to search other
"related" relations to obtain a suitable response. A
related relation is one with which the relation under
consideration has some common or join attribute(s).
Formally, the foreign-key heuristic may be stated as,

Obtain the tuples in the target relation R t that satis-
fy the user 's query. Let these tuples constitute a
new relation R n. Determine if the target relation R t
may be joined directly or indirectly with some other
relation(s) in the data base by consulting the
relation frame for R t. Let these other relations be
designated {Rj} where maximum(j) = number of
such "related" relations. Take join of R n with the
Rj's one at a time (these joins may be direct or indi-
rect and are performed via the attributes specified
in the relation frame). Project the resulting relation
on the attributes of Rj and try to apply one of the
previous heuristics to this resultant relation. Stop
only when there is successful application of a
heuristic for some Rj, or each relation Rj has been
tried unsuccessfully.

As an example, consider the following question and
the response to it:

Q12: Which students are taking CMPT 994?
S12: All students who have completed at least one year

of studies.

While attempting to answer Q 12, the system finds that
the question pertains to the relation COURSE-REGIS-
TRATION. However, it fails to obtain any interesting
descriptive pattern about the tuples in Tqual by consider-
ing this relation alone. Hence, the system consults the
LINKS slot in the relation frame for COURSE-REGISTRA-
TION and finds that COURSE-REGISTRATION may be
joined with the relation STUDENT via the fields
STUDENT-ID-NO in STUDENTS and STUDENT-ID in
COURSE-REGISTRATION. It takes a join of all the tuples
constituting Tqual with the relation STUDENTS and
projects the resulting relation on the attributes of the
relation STUDENTS. Let us call these tuples Tnew_qual.
Next, it at tempts to discover the existence of some
pattern in the Tnew_qual tuples. Ultimately, it succeeds in
producing the response given in S12 by employing a
minimum range heuristic.

4.3 THE INTERNAL FORM OF A QUERY

The internal form of a query is

(C o m m a n d D a t a b a s e - I d e n t i f i c a t i o n P r e d i c a t e - F o r m)

• Command is some operation to be performed, at the
moment limited to the command OBTAIN, meaning
obtain information from the data base.

• D a t a b a s e - I d e n t i f i c a t i o n names a particular data base on
which the command is to be carried out; in the current
implementation, GRAD-STUDENT-RECORDS.

• Predicate-Form breaks down into
- (Predicate (Relation-Name Attribute-Name)

A t t r i b u t e - V a l u e)

(e.g., (GREATER-OR-EQUAL (STUDENTS CUMU-
LATIVE-GPA) 6))

o r

- (C o n j u n c t i o n P r e d i c a t e - F o r m I P r e d i c a t e - F o r m 2 ...
P r e d i c a t e - F o r m n)

(e.g., (OR-ANY-OF

Computational Linguistics, Volume 12, Number 2, April-June 1986 117

Kalita, Jones, and McCalla Summarizing Natural Language Database Responses

(EQUAL (STUDENTS
NATURE-OF-FINANCIAL-AID) NSERC)
(LESS-THAN (STUDENTS CUMULATIVE-GPA) 6)
(GREATER-OR-EQUAL (STUDENTS
NO-OF-YEARS-COMPLETED) 2)))

Common predicates such as EQUAL, NOT-EQUAL,
LESS-THAN, and GREATER-OR-EQUAL, and conjunc-
tions such as AND-ALL-OF, AND-ANY-OF, etc. can be
handled. The internal form of the system output is
defined in a similar manner except there is no command.

The following examples of queries and answers (taken
from section 4.2) represented in this internal form should
clarify this notation. First we look at a relatively simple
case:

Q4: Which students have completed less than 5 courses?

(OBTAIN GRAD-STUDENT-RECORDS
(LESS-THAN (STUDENTS NO-OF-COURSES-COM-
PLETED) 5))

$4: All first year students.

(GRAD-STUDENT-RECORDS
(EQUAL (STUDENTS NO-OF-YEARS-COMPLET-
ED) 0))

Next we take a more complicated question-answer pair:

Q10: Which students are working as T.A. or R.A.?

(OBTAIN GRAD-STUDENT-RECORDS
(AND-ANY-OF

(EQUAL (STUDENTS NATURE-OF-FINAN-
CIAL-AID) TA)
(EQUAL (STUDENTS NATURE-OF-FINAN-
CDd~-AID) ILA)))

S10: Students who have completed more than one year
at the University and who are not employed outside
the University.

(GRAD-STUDENT-RECORDS
(AND-ALL-OF

(GREATER-THAN (STUDENTS NO-OF-YEARS-
COMPLETED) 1)
(NOT-EQUAL (STUDENTS NATURE-OF-FINAN-
CIAL-AID) OUTSIDE-JOB)))

We do not want to downplay the difficulties of inter-
preting natural language into an internal form such as
this, nor do we want to trivialize the difficulty of produc-
ing surface language responses from the internal form.
However, parsing and natural language generation were
not the central concerns of this research; we instead
wanted to concentrate on the pragmatic issues underlying
summary response generation in a natural language data-
base interface. There is a plethora of work, of course,
describing various approaches to parsing we could draw
on should we want to extend our system. Possibly the
most appropriate parsing strategy for this domain would
be a keyword approach (e.g., Small 1980) where the
input query is scanned for words indicative of attribute
names or predicates relevant to the particular data base
being queried. This approach might work well here
because the target internal form is phrased only in terms
of these domain specific attributes and predicates.

Similarly, generation could be in terms of catch phras-
es triggered by the presence of predicates or attributes in
the internal form of the output. There is relatively less
work on natural language generation on which to base a
more sophisticated natural language generation compo-
nent, but work such as McDonald's (1983) MUMBLE
system 1night be usefully adapted to the determination of
appropriate surface phraseology of summary responses.
The approach taken in McKeown's (1982) TEXT system
is also appealing in this regard since its area of applica-
tion is data bases (albeit describing database structure
rather than database contents). To adapt methods from
either of these systems (or in fact from most other
approaches to generation) would require a considerable
enhancement of the knowledge base of our system,
something that is currently beyond the scope of the
research.

5 IMPLEMENATION CONSIDERATIONS

A system incorporating the details discussed above has
been implemented in Franz Lisp on a VAX-11/750
running under UNIX 1 and has been tested on a data base
of student records. The system was tested on a variety of
questions. These included all of the examples Q3-Q12
where the system produced internal versions of the
summary responses $3-S12. Further details of these
examples (and others) are contained in Kalita (1984).
The data base is currently very small (containing the
records of only 25 students or so), so the average
response time of the system was in the order of seconds,
even for the most time consuming heuristics. A more
meaningful analysis is a complexity analysis of the
response time in terms of the number of tuples in the
data base. With this in mind, in this section we examine
implementation aspects of the system, including a
complexity analysis of the various heuristics.

The system has two main components - one for data
manipulation, the other to produce the summary
responses. The data manipulation component enables
the system builder to introduce new relations, new attri-
butes, and new tuples into the relations. As new tuples
are entered, various checks regarding the nature of the
attribute values and the number of attributes are
performed. The data manipulation component also
accesses the data that satisfy a query and performs stand-
ard relational functions such as selection, projection, and
lossless join. This component does not possess the
sophistication of a standard database package. However,
it is sufficient for the purposes of this research since the
internal form of a query can be directly handled by the
data manipulation routines.

The other main component of the system produces
summary responses to a user's queries. First the user's
input is read and checked for syntactic accuracy (i.e.,
that it follows the proper internal form, that it contains
only references to valid names of relations and attributes,
etc.). The query is then passed to the data manipulation

118 Computational Linguistics, Volume 12, Number 2, April-June 1986

Kalita, Jones, and McCalla Summarizing Natural Language Database Responses

component for data access. Returned are the two sets of
tuples: Tqual, those tuples satisfying the user's query, and
Tunqual , those that do not. The summary response
component then regains control and invokes routines
corresponding to the individual heuristics. The invoca-
tion of the heuristics is done successively in predeter-
mined order until one of them is successful. There is
some dependence among the heuristic routines since
certain information, once obtained, can be shared. The
heuristics receive assistance from the frames during the
process of obtaining summary responses. These frames
are stored as property lists associated with the relation
and attribute names.

The heuristics attempt to determine a descriptive
response by searching through Tqual and Tunqual. In the
current implementation, the tuples are examined serially.
Once a tuple has been accessed, various attribute values
in it are tested in parallel to determine if they satisfy the
requirement of a heuristic. Such tuple-serial attribute-
parallel inspection of attribute values may increase proc-
essing time in some cases. However, on average, the time
required for obtaining a response is considerably reduced
since the tuples need not be accessed repeatedly for each
candidate attribute under consideration.

While applying the equality heuristic for each attribute
in the target relation, the system keeps a frequency count
of different values that occur in the various attributes in
Tqual. If at any time during the equality processing of
Tqual the system finds more than three different data
values for a particular attribute, it ignores the attribute
during subsequent processing for the equality heuristic. If
for a particular attribute, all values in Tqual are the same
and this particular value is (a) a distinguishing value and
(b) does not occur in any of the tuples in Tunqual, the
system produces a response using the equality heuristic.
If there are up to three different values that occur for an
attribute in Tqual and do not occur in Tunqual, the system
compares the dominant frequency with the other
frequencies. In the current implementation, the system
produces an answer using a modification of the equality
heuristic if the other frequencies are less than 10% of
the dominant frequency.

For the application of the inequality heuristic, the
roles played by Tqual and Tunqual are interchanged.
Otherwise, the processing is essentially the same.

For the range heuristics, the maximum and minimum
values for each attribute in Tqual are found in tuple-serial
attribute-parallel mode. If both heuristics are successful
for a particular attribute, a response in terms of range
specification is generated. The rules discussed in section
4.2.4 are applied for obtaining responses using the
heuristics.

The disjunction heuristic is attempted when it is possi-
ble to divide the tuples in Zqual into two or three
subgroups based on equality, inequality, or range heuris-
tics. While applying the earlier heuristics, the system has
retained information that may help in the application of

the disjunction heuristic. However, application of the
disjunction heuristic may necessitate a substantial
amount of repetitive grouping and regrouping of tuples
and may be expensive in its time requirements. Even so,
success is not guaranteed.

The conjunction heuristic is successful when there are
tuples in Tunqual that satisfy the predicate(s) satisfied by
the tuples in Tqual. Let the tuples in Tunqual that satisfy

f the predicate(s) be called T unqual. To obtain an answer,
the equality, inequality, and range heuristics are

t employed using Tqual and T unqual (instead of the usual
Tqual and Tunqual) to find some distinguishing character-
istics between the two sets. This distinguishing
description is then used as a qualifier to obtain the final
complete response.

The foreign-key heuristic involves a join and a projec-
tion, and finally the application of all previous heuristics.
If the target relation has common join attributes with
several other relations, joins may have to be performed
with each such relation, and the process repeated again
for each resultant relation.

If one of the heuristics succeeds, a response is gener-
ated in the format described above. If none of the
heuristics succeeds, the extensional response Tqual is
produced. The user can also ask for Tqual to be produced
if he or she is unsatisfied with just the summary response.

In order to determine the implications of our approach
to summary response generation, it is important to look
at the computational complexity of the algorithms. The
application of the equality, inequality, and the range
heuristics takes time of the order of O (N a N t) where N a is
the number of attributes in the target relation, and N t is
the number of tuples in the target relation (i.e., the sum
of the number of tuples in Tqual and Tunqual for the target
relation). Performance is improved if the value compar-
isons are done in parallel for all attributes in a tuple. This
performance improvement results since the tuples need
not be accessed for each attribute separately. However,
this does not reduce the basic complexity involved in the
determination.

The complexity of applying the disjunction heuristic is
dependent on the nature of data distribution in Tqual.
Successful application may involve a large number of
permutations of the tuples for repetitive grouping and
regrouping. This is the heuristic most likely to lead to a
combinatorial explosion.

The conjunction heuristic takes time of the order O (N a

N t + N a N t l) where Ntl is the sum of the number of
tuples in Tqual and the number of tuples in Tunqual that
satisfy some mathematical relation(s) satisfied by the

!
tuples in Tunqual (i.e., T unqual defined earlier). This
complexity can be arrived at only if we assume that the
disjunction heuristic is not applied to determine the

!
distinguishing characteristics between Tqual and T unqual.
Otherwise, the time required will be O (N a N t + N a N t l)

+ Odh (Tqual, 74unqual) where Odh is the time requirement
for the application of the disjunction heuristic.

Computational Linguistics, Volume 12, Number 2, April-June 1986 1 1 9

Kalita, Jones, and McCalla Summarizing Natural Language Database Responses

The foreign-key heuristic requires additional time for
performing joins and projections. The number of joins
that may be performed is a function of the number of
relations with which the target relation has common join
(direct or indirect) attributes. Indirect joins involve one
or more additional simple joins. The complexity of the
computations necessary after completion of the join and
subsequent projection is the same as discussed in the
preceding paragraphs.

The implications of these complexity bounds for large
data bases cannot be ignored. Processing time for the
simple equality, inequality, and range heuristics is linear
in the number of tuples in the data base. This is about as
good as can be expected, although it still may be quite
slow if real time response is needed. Processing times for
the disjunction, conjunction, and foreign-key heuristics
can be substantially worse as juggling, rejuggling, and
joining take place. If each query must be independently
processed, we don' t see much hope of improving on these
times. However, it may be possible to add a "memory" to
the system's knowledge base to keep track of previous
responses and hence avoid re-accessing the data base for
each query. The nature of such a memory and some of
the implications are discussed in the next section.

6 CONCLUSIONS AND FUTURE RESEARCH

Generation of descriptive summary responses has impor-
tant implications if interactions with a data base are to
have the properties and constraints normally associated
with human dialogue. Without these constraints, inter-
actions with a DBMS can simply be viewed as dull factual
exchanges between a human being and a machine. No
doubt, the necessary data is obtained by the user, but
these interactions lack the "intelligence" and elegance we
ascribe to human behaviour.

Furthermore, such interactions may fail to present the
information content of the data. The data produced is the
superficial representation of the "actual contents" or the
information that underlies it. In general, most commercial
DBMSs make little attempt to extract this deep-seated
abstract information. Advances in data modelling have
helped to bridge this gap (see, for example, Chen 1976,
Smith and Smith 1977, Roussopoulos 1977, Mylopoulos
et al. 1980). However, the data models are tools meant
principally for the database administrator. They provide
little guidance to the user in interpreting the data. The
task of interpretation and obtaining a "feeling" for the
information content of the data still rests mostly with the
user. A system such as the one discussed here transfers
some of the responsibility of data interpretation from the
user to the computer system. It undertakes a guided
search of the data that satisfy the user's query and
attempts to extract a brief qualitative expression describ-
ing the information therein.

Currently, while producing summary responses, the
system stops as soon as any heuristic is successful in

obtaining a pattern. Such responses are composed of one
or more predicate forms, as explained in section 4.3.
However, the first such response may not be the "best"
possible one. In order to obtain the best answer, it is
advisable to continue the process of identifying responses
using the remaining heuristics. If, ultimately, several
answers are obtained, a decision regarding which one to
present to the user must be made. For this purpose, each
answer could be assigned a weight and those with
weights below a particular threshold would not be
presented. Although the problem of assigning weights is
encountered in several other applications of artificial
intelligence, the issues involved are complicated; we do
not delve into this topic here.

There are a number of issues that arise concerning the
interaction of the data base and the knowledge base.
The current system depends on the discovery of relation-
ships occurring in the data base and makes use of the
knowledge base only to find distinguishing values, possi-
ble joins, and appropriate heuristics. Since the heuristics
are universal in nature, this implies that the techniques
employed here can be transported to another domain (or
used by another set of users) without undue modifica-
tion. The only changes that have to be incorporated are
new relation and attribute frames for each new database
domain (or each new type of user).

Unfortunately, the portability is achieved by going
directly to the data base, and is bought at the expense of
using reasonably inefficient sequential searches (see
section 5). This raises the question of whether it might
be possible to avoid database access altogether. The
current knowledge base is too impoverished to be used
directly, but we could consider various enhancements.
One possibility might be to generalize the idea of distin-
guishing values to provide rules describing the criteria for
membership in a given class. For example, one such
criterion could be that a passing mark is a grade point of
1 so that any question such as Who fai led CMPT 110?
could be answered with All students with a mark o f less
than 1 without needing to consult the data base at all
(assuming the user didn't know this so that the maxim of
quality isn't violated). This kind of criterion would be
simple to represent, but is obviously not a complete
representation of what it means to fail a course since it
ignores students who have failed by withdrawing too late,
by not writing the final exam, by murdering the profes-
sor, etc. In general, to represent all the various subtleties
of such criteria is a substantial problem in knowledge
representation (consider, for example, having to repre-
sent the qualifications needed for a scholarship or all the
requirements to get an undergraduate degree). Although
it would be nice to be able to represent such general
rules, it should be pointed out that consulting the data
base as in our current approach circumvents the need to
consider these representation issues. The heuristics can
pick out relevant commonalities among students who
failed a course, or won a scholarship, or received an

120 Computational Linguistics, Volume 12, Number 2, April-June 1986

Kalita, Jones, and McCalla Summarizing Natural Language Database Responses

undergraduate degree, without the need for sophisticated
knowledge representation techniques.

Even if the representation issues were to be solved,
however, database access would still be necessary. A
prime reason is that any general rules will sometimes
have exceptions that can only be discovered by looking at
the data. Our heuristics currently allow some such
exceptions to be found, although they are by no means a
complete solution to the problem of exceptions. The
modified equality and inequality heuristics (section 4.2.3)
explicitly allow for occasional deviations (e.g., see
Q6-$6), and the conjunction and disjunction heuristics
can find characteristics common to entire exception
classes (e.g., if one entire section of a class were given
exemption from the final examination, the disjunction
heuristic could answer the question Who completed CMPT
378? with the response All students who wrote the final
examination or were in section 02.). Nevertheless, there
are still open questions involving exceptions (such as
being less ad hoe in defining exactly what a few means in
the modified equality and inequality heuristics), which
could be worked on as a further direction of this
research.

There is still a third reason (besides avoiding know-
ledge representation problems and recognizing excep-
tions) that the data base should be consulted: to discover
patterns in the data that can ' t be explicitly predicted.
Consider the following question answer pair:

Q12: Which athletes failed HIST 101?

S12: The football players.

Response S12 summarizes information that can ' t be
represented in a rule in the knowledge base (i.e., it isn't
necessary that only the football players failed this course)
and can only be found by looking through the data.
Again, our heuristics would be able to find this pattern in
the data, assuming that football player is a distinguishing
value (which it might be to the athletic director, for
example). In general there will be many such situations
where the system knows that something interesting (i.e.,
something for which there is a distinguishing value) could
occur in the data, but the exact context in which it actu-
ally occurs can ' t be foreseen.

Thus, it will normally be necessary to consult the data
base. Nevertheless, an interesting research direction will
certainly be to enhance the knowledge base as much as
possible to provide rules that can at least direct the
search through the data with more subtlety than distin-
guishing values are able to.

Another possible knowledge-base extension, which
would avoid the problem of having rules disembodied
from the data they reflect and which might be an answer
to some of the efficiency problems of database consulta-
tion mentioned above, is to create a "m em or y" that
would store patterns found in previous database searches.
In other words, the memory would store the scalar impli-
catures that the system finds to be valid in the data base.
This is similar in intent to Lebowitz 's (1983)

RESEARCHER system, which attempts to generalize
concepts read from patent abstracts into a generaliza-
tion-based memory. We would not be as concerned with
describing how given instances differ from their gener-
alizations, but would have to be concerned with how the
generalizations change as the database contents are
modified.

The memory would obviate the need to search the
data base for repeated queries. For example, let a ques-
tion Q that has been answered by the system have an
answer A stored in an internal form. If the question Q is
posed by the user again, the answer A can be returned.
Similarly, if the question posed matches A, Q can be
produced as the answer. For example, let us consider the
example Q7-$7 from section 4.2.4. If the question posed
is Q7-1, which is the interrogative form of $7, the answer
provided may be S7-1, the assertive form of Q7.

Q7-1 :Who are the students with cumulative GPA of 2.0
or less?

$7-1: All students who have been advised to discontinue
studies at the University.

In some cases, it may not be possible to phrase a
meaningful English question corresponding to the inter-
rogative form of the response to a query. This is especial-
ly true in situations where complex responses are
produced (e.g., in questions Q6, Q10, and Q11 in section
4). However, it may be possible to break up a complex
query into two or more sub-queries. If answers to these
sub-queries are already resident in the memory, the
system may be able to compose the final response from
the existing answers to these sub-queries. Clearly, the
amount of search required to answer the query may be
considerably reduced if parts of the answer can be
retrieved from the memory, assuming the memory itself is
organized for efficient retrieval.

The memory would usually be empty at system initial-
ization; it would grow in size as the system interacted
with the user and learned new facts about the data. It
would have to be modified as the data in the data base
changed. This would mean that the memory would
somehow have to keep track of how the stored queries
related to the data that produced them so as to be able to
determine which queries would be affected by a given
change in the data. It would also require some means of
determining how new data affected queries summarizing
existing data. This is the reverse process to that
suggested by the Mays (1982) monitoring scheme, where
monitors are posted to look for future changes in the data
base. The memory part of our system would have to
reason backwards from the current situation to infer how
changes affect previously abstracted summaries. Wheth-
er Mays 's temporal logic can be adapted to be useful in
backwards reasoning is an interesting question. In any
event, the amount of processing time required to keep
the memory up to date is unclear. However, it would
seem to be a computationally intense activity, which
suggests there would be a t rade-off between the time

Computational Linguistics, Volume 12, Number 2, April-June 1986 121

Kalita, Jones, and McCalla Snmmarlzlng Natural Language Database Responses

spent maintaining the memory, on the one hand, and the
time saved in database access by having the memory, on
the other hand.

As mentioned earlier, the database manager can
implement different user models by creating different
sets of attribute and relation frames for each type of user.
This capability is similar to the idea of database views.
For each type of user, the system would contain informa-
tion about stereotypical knowledge possessed by that
class of user. Different classes of users have different
ideas about what values are "distinguishing" (e.g., an
average of 4 might be fairly insignificant to an under-
graduate accessing a student record data base, but to a
graduate student it represents the dividing line between
being allowed to graduate or not). The
CUMULATIVE-GPA attribute frame in the graduate
student user model would therefore be different from the
CUMULATIVE-GPA frame in the undergraduate student
model. For security purposes, it might be useful to
prevent certain joins from taking place (e.g., it wouldn' t
be appropriate for students to access their professors '
marks lists by joining the relation COURSE-
REGISTRATIONS to the relation MARKS-LISTS (say) on
the attribute COURSE-NO). The student user models
could reflect this by appropriate restrictions on the
relation frames. It is even possible to prevent summary
responses altogether for certain attributes by having no
distinguishing values in the corresponding attribute
frames, or by providing them with a "nil" preference
category. Such security and privacy considerations can
be important for certain classes of users. All of this is
currently possible, although not something we have
actively experimented with. An extension to this capabili-
ty might make it possible for the user to customize the
kinds of summary responses he / she receives, rather than
relying on the database manager to provide h im/he r with
the appropriate user model. Whether to have the user fill
in a template corresponding to each attribute frame, or
whether to use natural language to specify the informa-
tion in the various attribute frames is an open research
question.

In the present system we have assumed that the
system is provided with (and produces) a formal repre-
sentation of the user 's query. Ideally, the system's inter-
face should include a natural language parser and
generator, but as discussed earlier (section 4.3) this issue
was not tackled here. There are still many open ques-
tions having to do with surface language, apart f rom
issues of interpretation and generation per se. One such
question of particular interest to this research is categor-
izing types of surface language that demand a summary
response, as opposed to types that demand an exten-
sional response or types where either an extensional or a
summary response are appropriate. For example, What
are the characteristics o f the students who failed CMPT
110? requires a summary response; Give me the names o f
the students who failed CMPT 110 demands an exten-

sional response; and Who failed CMPT 110? allows for
either kind of response. However, the problem is subtle.
For example, the request Give me the names o f the
students who registered on Wednesday could be answered
with an extensional response (which would normally be
what is expected) or conceivably the summary response
Those with surnames beginning with the letters N through
R.

The key to recognizing what kind of response is need-
ed is to recognize the user 's intent (or at least h is /her
knowledge) in asking the question; that is, to consult a
user model to see which kind of answer is appropriate.
Thus, if it is known that the user is an administrator in
charge of registration and that he / she is formulating
registration policies, the second answer above might be
reasonable. If the user is a clerk in charge of sending out
registration forms, the first might be correct. Finally, if
the user already knows all the names, then perhaps the
summary response is desired (assuming the user has been
unable to discern the pattern on h is /her own).

The kind of user model needed to handle this is more
sophisticated than the simple user model currently used.
To see this, let 's look at the ambiguous query Who fai led
CMPT 1107 once again. This question can admit either a
summary response or an extensional response. If the
system knows the user knows all the students who failed
CMPT 110, then some description of their characteristics
(e.g., students who were absent f rom the f inal examination)
is probably more appropriate. On the other hand, if the
system knows the user knows that students who miss the
final examination fail the course, then a summary
response describing this fact would be inappropriate, and
a list of the students ' names is likely what is desired.
This won' t be foolproof, of course. The user could be
asking for a re-iteration of something he / she already
knows (for confirmation purposes, perhaps) or could be
asking for another summary pattern besides the one the
user already knows. Another subtlety that arises is the
distinction between implicit and explicit knowledge - the
user may know something but not realize it, or may not
be able to make the inferences needed to deduce some-
thing that he / she has the knowledge to deduce. For
example, the user may know the names of all the students
who failed CMPT 110 but not realize these are the only
students; or he / she may know everybody who didn't
write the final examination and also the rule that if the
final examination is missed a student fails the course, but
the user may not have applied the rule in this case.
Finally, for some extensional responses, it still might be
appropriate to repeat a general rule that the user knows,
just to re-inforce in his /her mind the applicability of the
rule in this situation. Thus, if the user has asked which
managers earn more than $40K (see Q2), then even if
the user knows that in general all managers earn over
$40k, it might be useful to re-iterate this fact after
producing the list of managers ' names since it would be
difficult for the user to check that all the names had

122 Computational Linguistics, Volume 12, Number 2, April-June 1986

Kalita, Jones, and McCalla Snrnmarizing Natural Language Database Responses

appeared without exceptions (especially if the list were
long).

These kinds of complications make the task of devis-
ing the user model quite tricky. It must keep track of
subtle degrees of knowledge, incomplete knowledge,
changing knowledge, laziness in applying knowledge,
etc., and it must be possible to recognize user 's intentions
in the use of this knowledge. There is a growing body of
research involved in representing the kinds of knowledge
needed here, and in dealing with language as intentional
behaviour. The work by the University of Toronto
group, in particular, pioneered this approach (see Cohen
1978, Allen 1979, and Allen and Perrault 1980, for
example) and could form a starting point for research
into user model extensions. The first problem would be
to represent what the user knows and doesn ' t know
(since many of the decisions about what to present to
h im/her depend on this). Subsequent steps could get
into recognizing intentions and other sophisticated
discourse phenomena.

There are other, more subtle, problems that arise with
this approach to summary response generation. One
such problem involves avoiding the production of
responses that "overlap" (i.e., are implicit in) the ques-
tion. Such overlapping definitions themselves violate
Grice's maxims of relation and quantity. For example,

Q14: Which students had a GPA of greater than 5?
S14: All students with a GPA of greater than 5.

or

Q15: Which graduate students are both teaching and
research assistants?

S15: All graduate students receiving money for teaching
and being paid by a professor to do research.

Simple cases like Q14-S14 can be prevented by explicitly
prohibiting responses that have the same predicates as
the question. This would apply even if only one conjunct
or disjunct is the same in both question and response.
Q15-S15 presents a more complex problem since the
answer, although directly implied in the user 's mind, may
in fact involve attributes different from the question
(e.g., the data base may have attributes such as TEACH-
ING-ASSISTANT?, RESEARCH-ASSISTANT?, MONEY-
RECEIVED-FROM-TEACHING, MONEY-RECEIVED-
FOR-RESEARCH). In cases such as this, where the data
base is in some sense redundant, extra information would
have to be added to the attribute frames to indicate over-
lapping attributes. This information could then be used to
avoid producing responses that overlap the query. Even
this extension would not provide a total solution to the
problem, since the user may be able to make many subtle
connections among the data in the data base that will
lead to an overlapping response from his /her point of
view. Additional user modelling techniques to those
discussed above will have to be developed to predict
these connections and thus prevent the production of a
response implicit in the query.

Another subtle problem that arises is the problem of
"accidental summaries", i.e., summaries that are true of
the current data base but not in general. Our use of
distinguishing values is an at tempt to reduce the chances
of this occurring, but it can still happen. For example, it
may be true in the simple student data base that, current-
ly, all people who are from Canada also have NSERC
grants. "NSERC" may also be a distinguishing value for
the NATURE-OF-FINANCIAL-AID attribute (e.g., to
answer question Q3). However, to respond to the ques-
tion Who are the students from Canada? with the answer
All students with NSERC grants might mislead the user
into thinking that there was some necessary connection
between being f rom Canada and having an NSERC grant,
rather than an accidental one. Accidental summaries
violate Grice's maxim of quality in that they imply some-
thing is true that is not. Just avoiding the production of
summary responses in such cases will not solve the prob-
lem, since it still may be very useful to produce a summa-
ry response. Thus, it may be accidental that all managers
earn over $40k, but answer $2-1 (Abel Baker, Charles,
Doug.) to question Q2 (.Which department managers earn
over $40k per year?) still (normally) violates Grice's
maxims, and the summary response $2-2 (All of them.) is
still (normally) more appropriate. The only long term
solution to this problem is to expand the knowledge base
with further information about necessary relationships in
the world being modelled (e.g., for the student data base,
the knowledge base could be stocked with rules and
regulations about academic programmes, student eligibil-
ity for various prizes, etc.) These necessary relationships
could then be used to clarify the summaries provided to
the user as to whether accidental or necessary relation-
ships were being reported.

In conclusion, we would like to say that, despite its use
over the last twenty years, the database environment still
forms a nice microworld to study a variety of natural
language issues. Hopefully, some of these have been illu-
minated by this research.

7 ACKNOWLEDGEMENTS

This paper is based on graduate research done by Jugal
Kalita at the University of Saskatchewan. We would like
to thank the other members of his M.Sc. thesis commit-
tee, Robin Cohen and Paul Sorenson, for their construc-
tive comments. Thanks also to the referees for their
useful and constructive comments - that the final version
of this paper is considerably bet ter than the original is, in
no small measure, due to them. We would also like to
acknowledge the financial support of the University of
Saskatchewan and the Natural Sciences and Engineering
Research Council of Canada.

R~EFERENCES

Allen, J.F. 1979 A Plan-Based Approach to Speech Act Recognition.
TR-131, Department of Computer Science, University of Toronto,
Toronto, Ontario, Canada.

Computational Linguistics, Volume 12, Number 2, April-June 1986 123

Kalita, Jones, and McCalla Summarizing Natural Language Database Responses

Allen, J.F. and Perrault, C.R. 1980 Analyzing Intention in Dialogues.
Artificial Intelligence 15(3): 143-178.

Codd, E.F.; Arnold, R.S.; Cadious, J.M.; Chang, C.L.; and Roussopou-
los, N. 1978 RENDEZVOUS Version 2: An Experimental English
Language Query Formulation System for Casual Users of Relational
Databases. Research Report No. RJ2144 (29407), IBM Research
Laboratory, San Jose, California.

Chen, P.P.S. 1976 The Entity-Relationship Model - Towards a
Unified View of Data. ACM Transactions on Database Systems 1 (2):
9-36.

Cohen, P.R. 1978 Planning Speech Acts. TR-118, Department of
Computer Science, University of Toronto, Toronto, Ontario, Cana-
da.

Davidson, J. 1982 Natural Language Access to Database: User
Modelling and Focus. Proceedings of Fourth National Conference of
the Canadian Society for Computational Studies of Intelligence, Saska-
toon, Saskatchewan, Canada: 204-212.

Grice, H.P. 1975 Logic and Conversation. In Cole, P. and Morgan,
J.L., Eds., Syntax and Semantics: Speech Acts, Vol. 3. Academic
Press, New York: 41-58.

Grosz, B.J. 1977 The Representation and the Use of Focus in a
System for Understanding Dialogues. Proceedings of the Fifth Inter-
national Joint Conference on Artificial Intelligence. Cambridge,
Massachusetts: 67-76.

Harris, L. 1977 User Oriented Database Query with the ROBOT
Natural Language Query System. International Journal of Man-Ma-
chine Studies 9: 697-713.

Janas, J.M. 1979 How to Not Say "NIL" - Improving Answers to
Failing Queries in Data Base Systems. Proceedings of the Sixth Inter-
national Joint Conference on Artificial Intelligence. Tokyo, Japan:
429-434.

Joshi, A.K.; Kaplan, S.J.; and Lee, R.M. 1977 Approximate
Responses from a Data Base Query System: An Application of
Inferencing in Natural Language. Proceedings of the Fifth Interna-
tional Joint Conference on Artificial Intelligence. Cambridge, Massa-
chnsetts: 211-212.

Kalita, J.K. 1984 Generating Summary Responses to Natural
Language Database Queries. Technical Report 84-9, Department of
Computational Science, University of Saskatchewan, Saskatoon,
Canada.

Kalita, J.K.; Colbourn (Jones), M.J.; and McCalla, G.I. 1984 A
Response to the Need for Summary Responses. Proceedings of
COL1NG-84: lOth International Conference on Computational Linguis-
tics. Stanford, California: 432-436.

Lebowitz, M. 1983 RESEARCHER: An Overview. Proceedings of the
American Association for Artificial Intelligence Conference (AAAI-83).
Washington, D.C.: 232-235.

Kaplan, S.J. 1982 Cooperative Responses from a Portable Natural
Language Query System. Artificial Intelligence 19(2): 165-187.

Lee, R.M. and Gerritsen, R. 1978 Extended Semantics for Generaliza-
tion Hierarchies. Proceedings of the 1978 ACM SIGMOD International
Conference on Management of Data. Austin, Texas.

Mays, E. 1982 Monitors as Responses to Questions: Determining
Competence. Proceedings of the American Association for Artificial
Intelligence Conference (AAA1-82). Pittsburgh, Pennsylvania: 421-423.

McCoy, K.F. 1982 Augmenting a Database Knowledge Represen-
tation for Natural Language Generation. Proceedings of the Twentieth

Annual Conference of the Association for Computational Linguistics,
Toronto, Ontario, Canada: 121-128.

McDonald, D. 1983 Natural Language Generation as a Computational
Problem: An Introduction. In Brady, M. and Berwick. R., Eds.,
Computational Models of Discourse, M1T Press, Cambridge, Massa-
chusetts: 209-265.

McKeown, K.R. 1982 The TEXT System for Natural Language Gener-
ation: An Overview. Proceedings of the Twentieth Annual Conference
of the Association for Computational Linguistics, Toronto, Ontario,
Canada: 113-120.

Mylopoulos, J.; Bernstein, P.A.; and Wong, H.K.T. 1980 A Language
Facility for Designing Database-Intensive Applications. ACM Trans-
actions on Database Systems 5(2): 185-207.

Mylopoulos, J.; Borgida, A.; Cohen, P.; Roussopoulos, N.; Tsotsos, J.;
and Wong, H.K.T. 1976 TORUS: A Step Towards Bridging the
Gap between Databases and the Casual User. Information Systems
2(1): 49-64.

Plath, W.J. 1976 REQUEST: A Natural Language Question Answering
System. IBM Journal of Research and Development 20(4): 326-335.

Reiter, R.; Gailaire, H.; King, J.J.; Mylopoulos, J.; and Webber, B.L.
1983 A Panel on AI and Databases. Proceedings of the 8th Interna-
tional Joint Conference on Artificial Intelligence. Karlsruhe, West
Germany: 1199-1206.

Roussopoulos, N. 1977 A Semantic Network Model of Databases.
TR104, Department of Computer Science, University of Toronto,
Toronto, Ontario, Canada.

Sidner, C.L. and Israel, D.J. 1981 Recognizing Intended Meaning and
Speakers' Plans. Proceedings of the Seventh International Joint Confer-
ence on Artificial Intelligence. Vancouver, British Columbia, Canada:
203-208.

Small, S. 1980 Word Expert Parsing: A Theory of Distributed Word-
Based Natural Language Understanding. TR-954, University of
Maryland, College Park, Maryland.

Smith, J.M. and Smith, D.C.P. 1977 Database Abstraction: Aggre-
gation and Generalization. ACM Transactions on Database Systems
2(2): 105-133.

Thompson, B.H. and Thompson, F.B. 1975 Practical Natural
Language Processing: The REL System as Prototype. In: Rubinoff,
M. and Yovits, M., Eds., Advances in Computers 13. Academic
Press, New York: 109-168.

Waltz, D.L. 1978 An English Language Question Answering System
for a Large Relational Database. Communications of the ACM 21 (7):
526-539.

Webber, B.L. 1978 Description Formation and Discourse Model
Synthesis. Proceedings of the Theoretical Issues in Natural Language
Processing Workshop (TINLAP-2), University of Illinois at Urbana-
Champaign, Illinois: 42-50.

Woods, W.; Kaplan, R.; and Nash-Webber, B. 1972 The Lunar
Sciences Natural Language Information System: Final Report. BBN
Report 2378, Bolt, Beranek and Newman 2ne., Cambridge, Massa-
chusetts

NOTE

UNIX is a trademark of AT&T Bell Laboratories.

124 Computational Linguistics, Volume 22, Number 2, April-June 2986

