
E U R O TRA: A MULTILINGUAL SYSTEM UNDER DEVELOPMENT

Rod Johnson

Centre for Computational Linguistics
University of Manchester Institute of Science and Technology

PO Box 88
Manchester M60 1QD, England

Maghi King

Institut Dalle Molle pour les etudes cognitives et semantiques
Universit$ de Geneve
54 route des Acacias

CH-1227 Geneve, Switzerland

Louis des Tombe

Instituut voor Algemene Taalwetenschap
Rijksuniversiteit Utrecht

Trans 14
3512 JK Utrecht, Holland

ACKNOWLEDGMENT

None of the authors could claim ownership of the work
and ideas presented here. They are the result of a colla-
borative effort over several years. Our thanks should go,
therefore, to all our EUROTRA colleagues, and especially
to Sergei Perschke for his help in preparing this paper.
The authors are of course, solely responsible for misre-
porting, inaccuracies or errors.

1 INTRODUCTION

This paper tries to give an overview of the state of
EUROTRA development at the beginning of 1985. The
system is under development in the sense that the project
is now an official project of the European community,
much basic preliminary work has been done, and work in
the Member States has started. However, as will be seen,
linguistic work is in a very early stage, and no very
concrete results are as yet available.

The paper is composed as follows. In the first two
sections, we describe the project 's purpose, some of the
external factors influencing its organisation, its infra-
structure and some of the design principles deriving from
these general considerations.

Section 3 discusses in more detail the model of trans-
lation on which the project is based and some of the
linguistic and metalinguistic issues involved.

In section 4 we turn to the issue of communication
between the linguists developing the linguistic modules
and the computer. It presents our choice of a software
environment that allows rapid development and modifi-
cation of problem-oriented notations for linguists.

Section 5 describes the architecture of the current
software prototype, which has been implemented follow-
ing the principles outlined in section 4.

Since EUROTRA, as already noted, is barely out of its
preparatory phase, the final sections do little more than
sketch some factors that will determine the project 's
future development.

2 PROJECT HISTORY, BACKGROUND,

AND ORGANISAT1ON

EUROTRA is a research and development programme of
the European Communities. It is intended to produce a
comparatively small operational prototype translating
operational prototype translating from each of the seven
official languages of the Community into any one of the
other seven languages. The programme period of five

Copyright1985 by the Association for Computational Linguistics. Permission to copy without fee all or part of this material is granted provided that
the copies are not made for direct commercial advantage and the CL reference and this copyright notice are included on the first page. To copy
otherwise, or to republish, requires a fee and/or specific permission,

0362-613X/85/020155-169503 .00

Computational Linguistics, Volume 1 !, Numbers 2-3, April-September 1985 155

Rod Johnson, Maghi King, and Louis des Tombe EUROTRA

and a half years started in November 1982. The total
budget is roughly equivalent to 25 million dollars.

The system is to be developed cooperatively, by inde-
pendent teams working in each of the Member States.
Seven teams, some of them involving more than one
Member State, take primary responsibility for work on
their own language. Two smaller teams carry out support
work used by all the other groups, such as acting as a
software clearing house or as expert terminologists. A
further group, independent of the organisation in the
Member States, ensures coordination, is responsible for
the linguistic framework within which the language
groups agree to work, and provides documentation both
for the software and for the linguistics. Software specifi-
cations also are being developed by an independent team.

At the time o f writing (May 1985), seven of the
Member States of the Community have already signed
the contracts of association under which the linguistic
work in the Member States is to be done. Signature of
the remaining three is expected in the near future.

The first peculiarity of EUROTRA can already be seen
from this: it is very much a linguists' project. The aver-
age size of a group working on a language will be on the
order of 10-12 people. This gives a total of around a
hundred linguists - a term that should be taken very
broadly as including linguisticians, translators, lexicogra-
phers and so on - as against perhaps ten people working
on software. This fact has had a profound influence on
the system design.

Development is broken down into three phases, of
which the first is drawing to its end:
1. 1983-1984:

The main tasks to be achieved during this period
were the definition of a basic software to be used by
all the groups and a preliminary definition of the
linguistic framework to serve as the basis for work
during the second phase.

The manpower available during this phase reflects
the concentration on setting up the basic framework.
Some twelve people have been involved in producing
software and linguistic specifications, whilst the
language groups remained comparatively small,
mostly equivalent to two or three people.

2. 1985-1986:
During this period a first working system is to be
produced, taking all the seven languages as potential
source and target languages. This system will be
corpus based, and cover approximately 2,500 lexical
entries for each of the languages. The corpus will be
a Community text in the domain of information tech-
nology. The choice of a corpus is constrained by
two factors: equivalent versions of the corpus must
be available in all of the languages, and, although the
subject area should be technical, it should be an area
with which the people in the language groups are
reasonably familiar in order to minimize dependence
on outside help for technical terminology. Certain
Community texts fulfil both these conditions, and at

.

the same time provide an interesting range of sub-
text-types, which is important in demonstrating the
generalisability of the first system. It is perhaps
superfluous to remark that testing and evaluation of
the first system will not be based on the corpus
alone. The system's ability to translate similar texts
in the same subject area and with the same vocabu-
lary will also be taken into account.

The construction of the first system serves two
main purposes. First it demonstrates the feasibility
of the approach taken. A number of aspects are
relevant here: it is laid down in the requirements the
system must meet that it must, as well as being multi-
lingual, be easily extensible in order to incorporate
new subject areas, new text types, new linguistic
techniques, and even new languages. To this end the
system is designed to be as modular as possible and
also puts a great deal of emphasis on the declarative
representation of linguistic knowledge. Extreme
modularity, besides ensuring easy extensibility, also
makes it easy to repair the system, even, if necessary,
re-writing sub-parts completely.

Secondly, the construction of the first system
provides the feed-back needed to refine and stabilize
the linguistic framework. Of our seven languages -
Danish, Dutch, English, French, German, Greek and
Italian - most have received comparatively little
study within computational linguistics, and for nearly
all of the language pairs contrastive work is almost
entirely lacking. For this reason, many of the deci-
sions taken about linguistic representation during the
first phase cannot be known to be correct until they
have been thoroughly tested during the second
phase: indeed it is a fair assumption that they will
have to be modified. Hence the emphasis in section
three on the tentativeness of current proposals. Firm
decisions will be made only towards the end of the
second phase.
1987-1988:
In this phase, the real prototype system will be
constructed. Once again, it will cover all the seven
languages and will be corpus based, but the vocabu-
lary will be approximately 20,000 lexical entries per
language. The time allowed for this phase is only a
year and a half (the programme period stops in mid-
1988), so the importance of establishing reliable
linguistic models by the end of the second phase is
clear. Note that the prototype is still only a proto-
type rather than an industrial system. During this
last phase the question of industrial development will
be considered for the first time.

The twin constraints of multilinguality and decen-
tralized development essentially determine some
fundamental choices in system design. The system
will be transfer based, but in the interests of keeping
the transfer components as small as possible an
attempt has been made in the definition of the

156 Computational Linguistics, Volume 11, Numbers 2-3, April-September 1985

Rod Johnson, Maghi King, and Louis des Tombe EUROTRA

linguistic representation that is input to transfer, to
determine what linguistic information can be consid-
ered interlingual across the European languages and
to treat it as such. For example, differences in
syntactic structure between the languages are effec-
tively neutralized before transfer, emphasis has been
put on an attempt to define an adequate set of
semantic relations common to all the languages, to
define language independent representations of time,
modality, and so on. In short, the linguistic represen-
tation is semantically based, and as close to an inter-
lingua as seems possible, whilst still recognising that
a pure interlingua based system is out of the ques-
tion. The primary aim of defining a representation
rich in semantic information is always to reduce the
size and complexity of the transfer components. In
fact, in the ideal (but unrealistic) case, transfer
would consist of simple lexical substitution. The
desirability of keeping transfer small is obvious on
purely economic grounds (42 transfer modules versus
7 analysis and 7 generation modules). But at the
same time, the extraction and use of interlingual
information should do much to improve the quality
of the translation.

The system is designed to be integrated into an overall
text-handling system suitable for use in a heavily pressed
translation service. Thus, it is not intended that there
should be any significant human intervention during the
translation process, although, of course, the possibility of
human revision of the output text is allowed for. The
amount of post editing to be foreseen depends on the use
to which the text is to be put. For simple text, or text to
be used for information gathering, there should be little
or none. For more sensitive text, careful post-editing will
be required. Special input modules are being designed to
eliminate any need for pre-editing.

Although the primary purpose of EUROTRA is to build
a working prototype for the seven languages, it is also
intended to serve some important secondary purposes. It
aims at stimulating research in Europe on machine trans-
lation and related areas, including computational linguis-
tics and natural language work in artificial intelligence,
whilst at the same time building expertise in these areas.
This is reflected in the software design, where an attempt
has been made to design a general purpose tool for
computational linguistics applications which is then
specialized down into a machine translation software.
The basic design is best seen as a system generator rather
than as one particular software system. As will be seen
later, the flexibility of a system generator is very useful
even within the specific application of machine trans-
lation. It makes it possible to offer the linguist a range of
tools with which to express himself, leaving him to
choose the tool most appropriate to the linguistic task in
hand.

3 SOME FUNDAMENTAL CHOICES

It is clear from the preceding section that EUROTRA is a
very ambitious project with a very special set of initial
requirements, which, at the time of writing, distinguish it
from all other machine translation projects of which we
are aware. In particular, there are three a priori decisions
about the general organisation of the project that have
strongly influenced our whole methodological approach:
decentralisation, diversification, and size.

3.1 DECENTRALIZATION

EUROTRA is intended from the start as a collaborative
venture between groups working in all the countries of
the European Community. Since the European Commu-
nity institutions are set up to perform a political and
administrative function, there is simply no place in the
organisation for establishing large research institutions,
particularly to serve R & D projects. In any case, the vast
majority of the contributors to EUROTRA are faculty
members in Universities and it would just be impractical
to attempt to move them to one place for a period of five
years.

The consequence of this is that most of the EUROTRA
work will be carried out by teams working semi-autono-
mously on their own language, or in pairs on transfer. If
a project of this magnitude is to succeed with such a high
level of decentralisation, there needs to be a great deal of
advance planning to ensure that all the components
developed separately will fit together smoothly and
correctly. This is why, in EUROTRA, almost all the
linguistic work done to date has been preoccupied with
the question of defining interfaces at the points where
the different components meet. There are implications,
too, for the software design, in that the software
provided should facilitate modular construction of
systems, even, if necessary, at the cost of other desidera-
ta like efficiency.

3.2 DIVERSIFICATION

EUROTRA is also unusual in that it sets out giving equal
priorities to seven languages and 42 distinct language
pairs. Some of these languages (especially English) have
been the subject of very detailed study by theoretical and
computational linguists. Others, like Greek and Danish,
have received comparatively little attention. In
EUROTRA it would be quite foolhardy to base the entire
design of the system on our experience of working with,
say, English or French, assuming that the same linguistic
and computational strategies will be appropriate every-
where else. In any case, many of the countries of Europe
have their own strong linguistic traditions, and we should
expect these traditions to be reflected in the way scholars
in these countries go about handling their own language
on a computer.

These considerations add to the problems we already
face as a result of decentralization. On the one hand,
such a level of inherent diversity increases the impor-

Computational Linguistics, Volume I I, Numbers 2-3, April-September 1985 157

Rod Johnson, Maghi King, and Louis des Tombe EUROTRA

tance of initial /planning and particularly of a well
defined; well understood, and adequate interface repre-
sentation. On the other, we have to try to ensure that
the representation chosen is sufficiently general to meet
the requirements of all languages (and linguists) in the
system, and sufficiently constrained to be practically
effective. Here again, there are implications for the soft-
ware design, of quite similar nature: we want to constrain
the software so that it helps users to express what they
want to express about their language; and we want to be
flexible enough to cope with the idiosyncrasies of all the
languages.

This tension between generality, on one side, and a
need for constraints on the other is pervasive in
EUROTRA, and constitutes one of the most interesting
and challenging aspects of the project.

3.3 SIZE

The last of the partice ar features of EUROTRA is the
question of sheer size. Even in the development of the
first initial prototype with a lexicon of a mere 2500
words per language, we can expect the number of active
contributors to the system to be over 100. Not only do
numbers of this magnitude clearly compound the serious
problem of diversification, but the mass of linguistic
knowledge which has to be encoded in a relatively short
time to meet the requirements of the full project term of
5.5 years is quite staggering. In our view it will just not
be feasible to try to encode such vast quantities of know-
ledge using specialised programmers as intermediaries.
We must expect that the people who have the knowledge
(linguists, lexicographers, translators) will themselves
have to interact directly with the system. Therefore we
have concentrated on designing a software system
intended to perform .computations on the basis of (mainly
declarative) user knowledge as input.

3.4 SUMMARY

Although the idea of EUROTRA has been with us since
1978, we are only now, at the time of writing, nearing
the end of the design stage, and just beginning to exper-
iment with the first prototype software system. Because
of the peculiar circumstances of EUROTRA, the gestation
period has been extraordinarily long, and we have been
forced to reason at length and in some depth about the
theory and methodology of machine translation. We
believe, in retrospect, that this long preparatory phase
has led to better and more secure design, and will lead in
its turn to a more manageable and robust machine trans-
lation system. By the time this paper is published, the
first intensive efforts at linguistic development will have
taken place, and we shall know whether or not we are
justified in that belief.

In the remainder of this paper, we discuss first the
current state of the EUROTRA linguistic specifications;
then we outline our approach to the development of a

suitable software environment for a project such as
EUROTRA, and finally we finish with some speculations
on the future of EUROTRA and on the question of evalu-
ating our results.

4 THE THEORY OF LINGUISTIC REPRESENTATION

4.1 BASIC NOTIONS

The following diagra m forms a good basis for the study
of representations in a transfer-based translation system:

(1)

AN

TRF
Rs Rt

I I

1 I gEN
| 1
| I

Ts T t
TRA

In (1), Ts and Tt are texts, where a language is regarded
as a set Of texts. TRA is a binary relation, consisting of
pairs of texts [Ts, Tt] where Tt is a translation of Ts. So,
given two languages, SL and TL, TRA < S L x T L . We
introduce, furthermore, p, which is a set of represen-
tations of some kind. Rs and Rt are both members of
this set. We will write R when it is unimportant whether
we are dealing with Rs or Rt, or when the context makes
it clear which is intended.

AN, TRF, and G E N are all binary relations:

AN _< SLxp , GEN < p x T L , and TRF _< p x p

We define the composition AN o TRF o G E N as the set of
pairs [Ts,Tt] such that there exist Rs and Rt such that Ts
AN Rs and Rs TRF Rt and Rt G E N Tt. We will restrict
our attention to those cases where AN o T R F o G E N =
TRA

Analysis, transfer, and generation are systems that
compute the relations AN, TRF, and GEN. For the
reasons given in the previous section, EUROTRA tries to
produce a detailed specification of the contents of the
relations as input to the research teams that write the
computational systems. For this, we have a theory of
representation. This should not be confused with the
schemes for representation of knowledge proposed by,
amongst others, Hayes (1978). Together with the know-
ledge linguists and bilinguals have of their languages, this
theory will specify the contents of AN, TRF and GEN.
The contents of the theory itself depend in part on the
aims of the EUROTRA linguistics (cf. section 2 above),
and in part on experience gathered by the writers of the
various subsystems.

158 Computational Linguistics, Volume 11, Numbers 2-3, April-September 1985

Rod Johnson, Maghi King, and Louis des Tombe EUROTRA

4.2 THREE PRINCIPLES

4.2.1 DIVISION OF LABOUR

An important consequence of decentralized development
in EUROTRA is that a serious amount of attention must
be given to the nature of Rt, because a research group
writing generation for language L should have concrete
ideas about the class of inputs to expect. Moreover, this
class should make sense to people who only know about
L. In EUROTRA, we relate Rs to Rt, where these are
both representations of texts in L, one would expect
there to be some similarity between the Rs of some text
T and the Rt that represents the same text.

At first sight, one may be inclined to think that AN
and GEN must be each other 's "mirror image", that is:

(2) [T,R] E A N (L) i f f [R,T] e GEN(L)

Given (2), there is a lot of structure in the framework. If
a given representation theory determines the Rs for some
text, it also determines the Rt. This has two advantages:
• First, since the class of Rs for language L is clearly

understandable to linguists of L, the class of Rt is also
understandable.

• Second, given (2), it becomes possible to relate simplici-
ty of transfer directly to the "depth" of the represen-
tations (for discussion, see section 4.2.2).

However, (2) is too strong, and may be in conflict with
the idea of simple transfer. For example, if surface
constituent structure is taken as (the basis for) a theory
of representation, then (2) implies that TRF relates
source language surface word order to target language
word order, which clearly involves a lot more than substi-
tution of lexical elements.

Therefore, we define an equivalence relation between
representations. We will not say anything about the
contents of this relation here, since its definition clearly
depends on the contents of the representation theory
discussed in section 4. However, it should be clear that
we can use this relation (called isoduidy, which is an
invented name) to relate GEN(L) to AN(L) as follows:

(3) Relation between AN(L) and GEN(L) :

[RP,T] GEN(L) iff [T,R] AN(L) and R r isoduid to R

In practical terms, this means that generation will relate
each R r that is isoduid to R to the T that R belongs to.

If we think again of surface constituent structure as a
possible basis for a theory of representation, one could
imagine that R p isoduid to R if they have the same verti-
cal geometry but not necessarily the same left-to-right
order of constituents. In that case, whatever structure
transfer is presented with, it would only have to produce
a representation with the target language vertical struc-
ture. Generation then produces the text from that.

As a consequence of this, the representation theory
will, amongst other things, contain a substantive defi-
nition of isoduidy.

4.2.2 SIMPLE TRANSFER

The reasons for the desirability of simple transfer have
been stated in section 2. In order to give this notion
some content, we have to be rather specific about the
nature of the representations.

In EUROTRA, the structure input to transfer (the
interface structure) is always a hierarchical structure, that
is, a tree. For our present purposes the linguistic inter-
pretation of the nodes of the tree is irrelevant; it could be
surface constituents, units of meaning, or whatever.

We then introduce another relation, called trans la tes -

as. This relation must not be confused with TRA or TRF.
Translates-as is a binary relation, probably many-to-
many. If we call 0* the set of all subtrees of all elements
of 0, then translates-as 0* x 0". Its left-hand term is a
subtree of the source language interface structure. Its
right-hand term is a tree. The relation TRA is entirely
different: it is a relation between texts. TRF is a subset
of translates-as: it is the set of those elements of trans-
lates-as for which the left-hand term is the topmost node
of a representation of a complete text.

The following example may clarify the idea of trans-
lates-as. Dotted lines indicate instantiations of the
relation.

Computational Linguistics, Volume 11, Numbers 2-3, April-September 1985 159

Rod Johnson, Maghi King, and Louis des Tombe EUROTRA

(4)

/ \ o P
• T o m / \

B F C . I (Tom) om/
D g E 0

tzwem) (swim) (g~aag)

Q R

A (likeA
O K S 1 (l i k ~ (emptg)(swim)

L M
(emptg) (swim)

Translates-as is a straightforward generalization from
two notions that have already existed for a long time in
various machine translation projects:
• TRF, which is the same relation but only between root

nodes of representations of whole texts;
• the bilingual dictionary, which is the same relation but

only between terminal nodes.
We now turn to the notion of simple transfer.

The basic EUROTRA view (see section 2, above) is
that the relation translates-as is trivially simple in all
cases except terminal nodes, which then correspond to
the lexical units of the two languages. Actually, if this
view were guaranteed to be correct, then the generalized
relation introduced here would be just a useless compli-
cation of the description of transfer: instead, we then
would just say that transfer equals substitution of the
lexical unit in a given representation.

However, there are three reasons for modifying the
basic view.

First, and most important, there are well known prob-
lem cases such as the translation of the Dutch adverb
graag to the English verb like:

(5) Tom zwemt graag translates as 'Tom likes to swim'

Many examples like this are caused by lexical holes in the
languages; in the example, English does not have the
adverb corresponding to graag. If we stick to the basic
view, examples like these force us to have a rather
abstract, "deep" theory of the interface structure. Such a
deep theory may cause difficulties to analysis and gener-
ation in many cases; it would be motivated on the
grounds of exceptions.

Second, we assume that whatever theory we choose at
the end of the second phase of the project has to stabilise

and undergo no further modification during the third
phase. Thus, even if it were feasible to construct this
deep theory, it would be hard, if not impossible, to guar-
antee that problems like the one described will never turn
up during the third phase.

Third, one importar ~. way in which EUROTRA is said
to be extensible is the possibility of adding other
languages. But it is really impossible to have a version of
the representation theory, based on the current seven
languages, guaranteed to be compatible with the basic
view on simple transfer when languages like Spanish or
Portuguese are added.

For these reasons, we believe that the possibility of
some "complex transfer" will have to be accepted, where
"complex" means that the relation translates-as is not
always trivial. However, the intention of the basic view
remains valid. That is, the number of complex transfer
relations must be minimized.

A more precise formulation is the following.

If A translates-as A t, then we will call A t a TN of A.
We now call an element [s,t] of the set defined by
translates-as a simple element iff

either
s and t are both terminal nodes,

or

(i)

and
(ii)

and
(iii)

and
(iv)

s is a subtree, whose root node is the nontermi-
nal node A.

t is a tree, whose root node is A p,

A p is a copy of A,

the immediate daughters of A' are copies of the
TNs of the immediate daughters of A.

160 Computational Linguistics, Volume 1 !, Numbers 2-3, April-September 1985

Rod Johnson, Maghi King, and Louis des Tombe EUROTRA

The principle of simple transfer then says that the
proportion of simple elements in translates-as must be
maximal.

The generalised relation translates-as makes it possible
to put some order into complex transfer. It localises it in
a natural way, based on a tree structure. In (4), only the
pair [C,I] is complex; all the others are simple. This view
on transfer is easy to implement by means of an built-in
strategy that simulates recursion. (See also section 4.4
below).

4.2.3 SPECIFICITY

The problem of this section is the relation between the
representation theory on the one hand and AN and GEN
on the other.

Clearly, the representation theory must be "specific",
in the following sense: given the representation theory, a
language group must be able to produce a device that
characterizes the right set of pairs [T,R]. That is, a
language group must be able to infer from the represen-
tation theory
(i) what the Ts are,
(ii) what the Rs are,
(iii) what the pairings between Ts and Rs are.
It is likely (but not entirely obvious) that (i) will be
unproblematic (it might be problematic if some special
restriction on text type were imposed). But the same
cannot be said for (ii) and (iii). A language group needs
clear guidelines in order to be able to analyse its language
in a way that is compatible with the principle of simple
transfer.

So, the representation theory must be rather specific.
The obvious way to specify the pairings of texts and
representations is to provide some full grammar that
enumerates all the pairs [T,R]. However, it is certainly
not the task of the representation theory to define each
of the languages in full. Its task is only to enable the
language groups to do just that. So, the representation
theory must be not only specific but also global.

In the ideal case, the representation theory should
strongly suggest a "discovery procedure"; that is, given
the representation theory and some set of relevant data
of some language L, it should be possible to construct the
"right" grammar of L:

(6) the representation theory + knowledge of L yield
correct grammar of L

However, the state of the art of discovering useful
discovery procedures or even evaluation metrics in
linguistics is not such that we may hope to achieve this in
EUROTRA. So, in practice, there will be a representation
theory that is not specific enough, and the grammars of
the languages will not necessarily be "right".

In EUROTRA, we try to partly overcome this problem
by relating the representation to the text via some inter-
mediate representations. That is, some "level" of repre-
sentation is defined with respect to some other "level",

for which it is easier to relate it to the text. Note that
this only applies to the definition of the relations AN and
GEN, and not necessarily to the working of analysis and
generation. Furthermore, we try to stick as much as
possible to traditional linguistic analyses and provide a 10t
of exemplification. Finally, there is a central linguistic
team that can bring into agreement the work in the
language-specific centres and the general representation
theory.

4.3 THE GENERAL THEORY OF REPRESENTATION

4.3.1 LEVELS OF REPRESENTATION

Texts are represented in different ways in EUROTRA;
these are called levels.

First, there is the level of normalized text, roughly a
sequence of words and special symbols. A word is any
string of characters. In what follows, by " text" we will
always mean "normalized text".

Second, there are the intermediate levels. In
EUROTRA, there are three of them:
• the EUROTRA Morphological level (EM)
• the EUROTRA Surface Syntactic level (ESS)
, the EUROTRA Deep Syntactic level (EDS)

Third, there is the Interface structure, intended to be
the level at which transfer (i.e., simple transfer) takes
place normally.

One may wonder what all these levels are for.
While the purpose of the level of normalized text is

clear, as well as the purpose of the interface structure,
this is less obvious for the intermediate levels. Their
purpose is threefold:
• They serve specificity, in that they make it possible to

talk about the interface structure and its relation to
texts in a well-defined way;

• They may be the basis for some stratificational analysis
or generation strategy; while such a strategy may ulti-
mately turn out not to be the most desirable one, espe-
cially in the case of analysis, it could serve as a "safety
net" if a more "intelligent" strategy fails to yield a
result;

• Representations at the intermediate levels may serve as
safety nets for transfer; this holds certainly for the
"morphological level", as at least the lexical units have
been identified there.

4.3.2 THE NOTION OF CONSTRUCTION

The fundamental notion in EUROTRA representations at
all levels is the construction. A construction is a struc-
ture, made out of primitive elements and other
constructions; a text is considered a construction itself.

4.3.2.1 DEPENDENCY CONSTRUCTIONS

The primary principle of the EUROTRA representation
theories is dependency. In this section, we describe the
intuitive basis for this notion.

A dependency relation is said to hold between two
elements in certain circumstances. One member of this

Computational Linguistics, Volume I 1, Numbers 2-3, April-September 1985 161

Rod Johnson, Maghi King, and Louis des Tombe EUROTRA

relation is called the gov(ernor), the other element the
dependent.

Two intuitive ideas determine the existence of a
dependency relation between a gov and some dependent.
• The gov expects to find certain types of dependents in

its neighbourhood. This expectation is inherent to the
element that constitutes the gov, and may be a piece of
dictionary knowledge.

• The goy is felt to be modified by the dependent.
Thus, to say that there is a dependency between two
items is to say that the dependent element is either a slot
filler or a modifier of some other element, called the gov.

One further principle determines the nature of
EUROTRA dependency grammar: the gov must always be
a primitive element (with respect to the level involved).
The nature of what are called primitive elements may
vary amongst levels of representation.

A dependency construction is the collection of
elements consisting of one gov and all its dependents.

The description given here is rather abstract; each
distinct level of representation instantiates dependency in
its own fashion.

4.3.3 CATEGORIES

Constructions as well as primitive elements can be cate-
gorized in various ways. For example, if we take words
as primitive elements, then we can classify them with
respect to lexical class. Constructions can be categorized
according to syntactic category, like sentence, or noun
group, which cross-classifies with the distinction between
dependency and coordinate constructions.

Dependency relations can also be categorized. For
example, notions like "subject" or "object" , and also
"agent" or "pat ient" can be taken to be types of depend-
ency relations. One classification of dependency

relations must of course be fundamental; since depend-
ency is said to be based on the notions slot filler and
modifier, there will always be two categories associated
to them. We call them complement (for the slot filler)
and modifier (obviously, for the modifier); abbreviations
are compl and mod.

There is an intimate relation between the category of
the gov and the category of the construction of which it
is a gov. As the nature of this relation varies across
levels, we will not discuss it here.

4.3.4 THE BASIC REPRESENTATION THEORY

The representational device used in EUROTRA is the
labelled tree.

The representational principles are straightforward:
• There is a one-to-one correspondence between leaves

of the tree and primitive elements of the construction
represented by the tree;

• There is a one-to-one correspondence between nonter-
minal nodes of the tree and constructions of the text;

• Labellings on the nodes express the categories of primi-
tive elements, constructions, and dependency relations.

This embodies a very strong theory about language: it
says that each text is a construction, and that each
construction is a straightforward hierarchy of primitive
elements and constructions. Elegant though this idea is,
we will shortly see that it is empirically wrong. Conse-
quently, the representation theory will have to be
augmented.

But first, we give one example of a representation:

Given the text:

(7) John and Mary went to Paris

We may have the following tree:

(8)

. . t g j \
(to)]

yov gov 9ov
(Oohn) (Ma~y) (Par i s)

Note that we have omitted all the labellings, except two:
we have indicated the govs, and the coordinate
construction has got the label con.

4.3.5 THE AUGMENTED REPRESENTATION THEORY

There are two classes of problems to the basic represen-
tation theory. First, the theory implies that no unit

162 Computational Linguistics, Volume 11, Numbers 2-3, April-September 1985

Rod Johnson, Maghi King, and Louis des Tombe EUROTRA

(primitive or construction) can be a member of more
than one construction. Second, it implies that every unit
must be a member of at least one construction (with the
exception of the text itself). Both implications turn out
to be wrong.

4.3.5.1 UNITS THAT ARE PART OF MORE THAN ONE
CONSTRUCTION

The following is a possible type of counter-example to
the basic representation theories. Suppose that in a
sentence like John tried to swim the element John is felt
to be a dependent of tried. It is then a member of two
constructions, as described informally:

n r l I I I
Construction John tried to swim

nr2" I]

The element John is a member of two constructions; this
is impossible to represent in the form of a tree.

The second example shows that one unit can also be
the gov of two dependency constructions.

nrl . I I I
Construction Tom went to Paris and Hanna to London

n r2 . [I I

The unit went is the gov of two dependency
constructions.

The representation theory is now changed in the
following way. We introduce the notion of empty
elements. These are meant to be "shadow elements" of
their antecedents, i.e. the elements that participate in
more than one construction. Obviously, the relation
between an empty element and its antecedent must be
expressed in some way other than tree geometry; in
pictures of trees, we will use coindices, but that should
not prejudice in any way the representation method
chosen in the actual computational systems analysis,
transfer, and generation.

As a consequence of this, the idea of a one-to-one
relation between leaves of trees and primitive elements of
texts is now no longer valid: the empty elements in trees
are leaves that do not correspond to anything at all in the
text.

Given empty elements, we can now represent the two
problem cases as follows:

(9)

(i) (t ~ i ed)

g ov em~ t U g ov
(, J o h n) (i) (swim)

(10)

I emptu
(i)

dohn to Par is Hanna to London

4.3.5.2 UNITS THAT ARE NOT PART OF ANY CONSTRUCTION

The typical example is:

(1 1) Frankly, I do not care a bit

Here, the element frankly cannot be said to be a depend-
ent of any gov. The problematic elements are called
transeonstruetionals. They are counter-examples to the
basic representation theory. This theory is augmented as
follows. Transconstructionals are represented as if they

Computational Linguistics, Volume 11, Numbers 2-3, April-September 1985 163

Rod Johnson, Maghi King, and Louis des Tombe EUROTRA

were dependents in the construction they are related to
intuitively. However, in order to indicate that they are
not real dependents, a special label is attached to them,

indicating pseudodependency. The actual pseudodepen-
dency label depends on the representation level.

The following is an example tree:

(12)

pseudo [gov I
(real lg) (am)

gov gov
(I) (serious)

4.4 THE INTERFACE STRUCTURE

At this moment, EUROTRA has only preliminary
proposals about the contents of the interface structure;
this is natural, since decisive arguments about it must
come from experience with the writing of transfer
systems for all the language pairs. On the current
proposals, the interface structure will be a tree,where left
to right order of the sub-trees is irrelevant, with a geom-
etry that is 'deep syntactic' in that its leaves are lexical
units and surface word order is not necessarily mirrored
by the geometry.

The trees will be labelled extensively.
As well as the more conventional labels indicating

morphological and syntactic features of constructions,
there will be labels indicating what in the introduction
was called interlingual information. There is no space
here to do more than indicate what kinds of information
are included in this category.

For example, there will be labels expressing time and
modality.

Modality labels are necessary for disambiguation of at
least modal auxiliaries. One well-known example:

(13) E : can
translates as
F : pouvoir or savoir

The choice is made on the basis of a modal label differ-
entiating between ability and possibility.

Time meaning is certainly one of the more difficult
matters in linguistics. Without some semantically-based
time label, EUROTRA would have to translate from
morphological tense to morphological tense. That would
already mean a deviation from simple transfer as defined
in the framework, as tenses are normally not considered
lexical units. However, even if the project accepts such a
deviation, then there is a severe problem of choice in
transfer. One example is the translation of 'present ' from
Dutch to English:

(14) NL : present
translates as
E : present or present progressive or future

The list indicates the kind of problem transfer writers
would meet if there was no time label. Example trans-
lations are:

(15) NL
E

(16) NL
E

(17) NL
E

These examples are relatively simple, but as soon as
we take complex sentences and sequences of sentences
into account, the problem for the transfer writer gets
really difficult. Therefore, there is good reason for a
label that captures the "time meaning" of a text; this may
even be interlingual. In any ease, we expect that such a
label will considerably simplify the task of the transfer
writer.

With similar justification, i.e. the need to simplify
transfer and to produce good translation, semantic
relation labels (such as agent, patient), Katz-Fodor type
markers, morpho-syntaetie class markers, and represen-
tations of anaphoric relations are included in the inter-
face structure.

: Ik lees een boek
: I am reading a book

: Ik lees vaak boeken
: I often read books

: Morgen lees ik zes boeken
: Tomorrow I will read six books

5 COMPUTATIONAL TECHNIQUES

In the present state of the art, the problem of machine
translation is not fully understood. In some sub-domains
(e.g., English syntax, English-French lexical equiv-
alences) we have a good deal of experience, a rich
theoretical literature, and, hence, the confidence to
predict in some detail the behaviour of the program to do
the job. In other areas, (the synthesis of Greek texts,
mapping Italian representations to equivalent Danish text
representations), we have virtually no experience and can
only make informed guesses about the "right" way to do
the job by computer. In the worst case we are still (at
the time of writing at least) hopelessly at a loss when it
comes to characterizing precisely what is preserved in
translation if more than two languages are involved. In

164 Computational Linguistics, Volume 11, Numbers 2-3, April-September 1985

Rod Johnson, Maghi King, and Louis des Tombe EUROTRA

other words, we do not have, as yet, anything like a
complete theory of multilingual machine translation. We
have argued elsewhere, and at some length (Johnson,
Krauwer, Rosner, and Varile 1984, Johnson and Rosner
1984) that it is in the nature of problem-oriented soft-
ware to embody some theory of the problem domain, and
we shall not repeat the detailed arguments here.

We simply restate our view that no existing solution to
the question of finding an appropriate problem-oriented
programming language for machine translation seems to
us to be acceptable for EUROTRA. These solutions fall
roughly into three categories:
(a) Assume some theory and implement it directly; this

approach is fairly rare, but seems inherent, for
instance, in Jan Landsbergen's Rosetta project
(1984).

(b) Use an existing programming language, perhaps
extended by a library of purposely-built macros,
sub-routines or functions (depending on persuasion):
examples of this approach are the IBM macro assem-
bler in SYSTRAN (Bruderer 1978) and FORTRAN in
SUSY (Maas 1984).

(c) Invent a new programming language, embodying a
very weak, low-level theory of machine translation -
usually based on explicit tree-to-tree mappings as in
ROBRA (Boitet and Nedobekjine 1982), Q-systems
(TAUM 1973), and GRADE (Tsujii 1983). The
underlying thesis is normally sufficiently weak, in
such cases, to allow the claim that the language has
universal or near-universal application for all or most
of machine translation tasks.

We have not adopted (a) because there is not suffi-
cient practical evidence of a single theory that encom-
passes translations between all pairs of the Community
languages. We reject (b) on the grounds discussed at
some length in section 2. above: ordinary programming
languages are just too unconstrained to be reliably
handled by a large, loosely-linked community of users,
many of whom are unskilled in their use; and they
obscure some of the true issues of linguistic knowledge
representation and use in the detail of managing a v o n
Neuman machine (or lambda calculus or Horn clauses or
what have you). The last option, (c) is more interesting.
In principle, we reject (c) also, although in the short term
we have adopted a form of it for reasons of expediency,
as we explain below in section 6. We are sceptical about
any kind of universal programming language for machine
translation, because we believe that the tasks involved in
machine translation are essentially heterogeneous in
nature. If we are constrained to use the same language
to describe syntactic parsing, "semantic" interpretation,
lexical and structural transfer, resolution of structural and
lexical ambiguities, in and between seven different
languages, it follows that either all of these are compara-
ble or that the language of description gives us very little
help in saying what we want to say.

To give a very simple example, suppose we have a
strategy for parsing English that uses phrase structure

recognition to construct a network of syntactic relations
(SUBJECT, OBJECT, etc.) and then maps these relations
to case relations like AGENT, PATIENT etc. In the
homogeneous view of the world, we might have to write
something like:

given A +B where ca t (A)=NP and ca t (B)=VP
build C(A+B) setting ca t (C)=S

and
given A +B where ca t (A)=V and ca t (B)=NP
build C(A+B) where ca t (C)=VP

followed in a later process by."

given A (B + C (X * + D + Y * + E + Z *)
where ca t (A)=S and ca t (B)=NP
and ca t (C)=VP and ca t (D)=V
and cat (E)=N P

build P (Q + R + X * + Y * + Z *)
where srel(P)=pred and srel(Q)=subj
and srel(Q)=obj and lex(P)=lex(D)
and lex(Q) =lex(B) and lex(R)=lex(E)
and semf(P)=semf(D) and semf(Q)=semf(B)
and semf(R)=semf(E)

/* semf stands for "semantic feature", X*,Y*, Z*
are intended to stand for variables over sequences
of trees * /

followed again later by
given A(B+C) where srel(A)=pred and srel(B)=subj

and srel(C)=obj and action-process in semf(A)
and animate in semf(B)

build A(B+C) adding case(A)=pred and case(B)=agent
and case(C) =patient

While the above notation is very informal, it is worth
noting the very arbitrary semantics that underly it. For
example, there are clearly conventions about the use of
identical variable names on the left and right hand side of
rules; in some cases, right hand nodes may be understood
as copies of corresponding nodes on the left (indicated
by the use of where), in others they may be interpreted as
identified with their left hand counterparts (indicated by
adding). The arbitrariness is not accidental - indeed,
since the linguistic theory underlying the notation is so
weak, the meaning of the notation cannot but be arbi-
trary to the user. Their arbitrariness, however, is not the
biggest defect of notations of this kind. Where they real-
ly fail is in being intolerably cluttered, since the user is
forced to be explicit about every detail of the operations,
precisely because in the absence of any strong linguistic
theory, none of the responsibility for details can be left to
the machine.

Consider now the same statements in a more perspicu-
ous notation:

S ~ N p [i s u B J = .] v p [i = ,]
VP ~- V[i = ,] N p [i o B J = .]

and elsewhere (in the lexicon perhaps),

Computational Linguistics, Volume I 1, Numbers 2-3, April-September 1985 165

Rod Johnson, Maghi King, and Louis des Tombe EUROTRA

if action-process in semf(PRED)
and animate in semf(SUBJ)

then [SUBJ-- AGENT,OBJ-~ PATIENT].

Again the notation is informal, but not totally arbitrary
(the debt to Lexical Functional Grammar (Kaplan &
Bresnan 1982) is obvious). What is significant, though,
is not so much the syntax of the notation as its semantics.
Because we have a theory of parsing, we can include in
the user's machine a large chunk of the meaning of what
it is to parse within that theory. As a result, the user is
left with a much clearer view of the task in hand: to
provide the details of specific cases within the theory.

The ideal goal of the EUROTRA software design
should be to provide just such a theory sensitive system
for machine translation. Unfortunately, and we have
made the point many times here, we just do not have
sufficient knowledge of the domain to provide the neces-
sary theoretical input, and the problem is magnified in
the special circumstances of EUROTRA.

What we have therefore built is an environment in
which new theories and /o r sub-theories of machine
translation can be implemented very rapidly on an exper-
imental basis. The environment consists essentially of
four parts, not including the usual editing and debugging
facilities. Two of the parts are quite standard: a compiler
compiler, which we use to write compilers for the
languages of a new theory; and a kernel interpreter that
runs the outputs from the compiler. What is interesting is
that we contrive to make the process of compilation as
much as possible a purely syntactic one, mapping state-
ments in the user language into a simple tuple language.
Statements in the tuple language are not, however,
executable directly by the kernel interpreter, since they
contain as yet uninterpreted symbols. The interpretation
of the symbols is given by external definitions, which are
of two types: control definitions and data definitions.
As the names suggest, data definitions are essentially
instructions to a pattern matcher which acts as a slave to
the main interpreter; control definitions define how and
when calls to the pattern matcher are made. By judicious
choice of the definition languages we are able to use
these external definitions in two ways - to make rapid
implementation of new theories, and to serve directly as
specifications for a more efficient implementation, should
the user agree after experimentation to include a new
theory in the system. A more detailed description can be
fou0d in Johnson, Krauwer, Rosner, and Varile (1984).

This device is already proving very effective in allow-
ing users to try out new ideas. More important, it frees
us from the dangers of committing the user community
too early to a small number of particular strategies, which
may turn out to be unsuitable in the medium term, with-
out making ultimate commitment impossible by imposing
monolithic homogeneity from the start.

Nonetheless, we clearly need to make some decisions
now, however provisional, so that we can get started.

The remainder of this section describes the first user-lan-
guage prototype implementation which is being handed
over to users for preliminary experimentation.

All our software prototyping has been done under
Unix, 1 both for reasons of easy portability and because of
the rich set of available software tools. The original
prototype was developed on a VAX-11/780 under bsd
version 4.2, and successful ports have been made to a
bsd version 4.1 on a VAX 750 and to a Dual Systems
83/20 running Unisoft Version 7. We are about to
attempt a port to a Sun Workstation and anticipate no
serious difficulty.

It should be noted that our decision to adopt Unix as a
software prototyping environment (and therefore neces-
sarily as a linguistic prototyping environment in the short
term) does not necessarily of itself commit the antic-
ipated industrial implementation to any particular
hardware/sof tware combination. The main purpose of
our own software prototypes is to help us derive more
reliable specifications for the industrial implementation,
and to provide temporary short term support for linguis-
tic experimentation.

6 THE FIRST USER-LANGUAGE PROTOTYPE

6.1 PROCESSES

The overriding design criterion we have followed is that
of modular construction. Not only is this generally desir-
able, it is virtually essential given the organisational
framework of EUROTRA. The basic unit of a user
"program" is called a process. Since we want it to be
possible for users to test parts of a system independently
of others, and indeed to combine parts together in a reli-
able way, we have been particularly careful to provide
ways of limiting or even excluding the propagation of
unexpected side effects between processes. We achieve
this by defining a process as a quintuple

process=[name, expectation, focus, body, goal]

The name is just a symbol used to identify the process.
The expectation and the goal are pattern descriptions
that serve a number of desirable functions. The most
important of these is to guarantee that the domain and
range of the process can be known when the process is
defined. They achieve this by acting as filters over the
currently active data configuration. A process may only
operate on data that satisfy the expectation; correspond-
ingly, only data that satisfy the goal are allowed to be
output from the process. Operationally what happens is:
the system attempts to apply the process by matching the
expectation against the currently active data set; the
process is invoked only if a match is found, in which case
the process is applied in parallel to all data subsets that
match; on termination (we assume that the process
terminates) all results are matched against the goal; in all,
and only, the cases where the match succeeds, the new

1 Trademark of AT&T Bell Laboratories.

166 Computational Linguistics, Volume 11, Numbers 2-3, April-September 1985

Rod Johnson, Maghi King, and Louis des Tombe EUROTRA

results are added to the active data set, and the system
proceeds to the next task.

The focus gives a way of narrowing down application,
to a subset of the data set yielded by the expectation; this
is necessary, for example, when a process invokes itself
recursively.

The process body may be either primitive or non-
primitive. Processes with primitive bodies are also called
grammars, and we shall return to them later. Non-primi-
tive bodies consist of expressions over the names of proc-
esses, where the meaning of the expression can be varied
by external definitions. In the current version, we allow
regular expressions over processes, interpreting the
concatenation operator as sequential application, the
union operator as parallel application and the closure or
star operator as all paths combinatorial application. The
principle underlying this general scheme of controlling
pattern directed invocation via a formal control language
owes much to the work of Georgeff (1982). Thus, in the
body of a process, a user might write

body
pl ,p2, (p3 I p4)

with the meaning "apply p l , then p2, then p3 and p4 in
parallel". Our current compiler is defined to translate
this into the tuple

[sequence, pl,p2,[parallel, p3,p4]]

And, in our control definition language (we currently use
FP, Backus 1978), the definition of apply includes:

apply= atom--,- execute;
eq o [1,'sequence] --,- / app ly o tail;
eq o [1, 'paral lel]~apply o tail

where, with some simplification

execute =
integrate o filter-goal o apply o filter-expectation.

It should be emphasised that the user is only concerned
with writing (and understanding!) statements like

body pl ,p2, (p3 I p4)

6.2 GRAMMARS

The process interpreter continues to try to apply proc-
esses until it bottoms out at grammars (processes whose
body is a primitive). The structure of a primitive depends
on the theory it implements: thus a general rewrite primi-
tive will be organised - and defined - differently from a
dictionary primitive, which in its turn will differ from a
transfer primitive, and so on. We currently have very
few primitives, since the system is still in an experimental
stage. The most important is a non-deterministic tree
transducer, implementing a general re-write system,
which does not differ in any interesting way from
Colmerauer 's Q-system (1971) or Kay's powerful parser

(1967). Its main purpose is to provide users with a very
(excessively) powerful tool for experimentation, and to
provide fall-back for those cases where there is no
adequate computational linguistic theory. We also have
an analysis dictionary (a device that maps strings to
nodes with complex collections of attributes and
features) and a phrase structure parser. We are about to
start on a transfer device to implement the proposal
outlined in section 3, and, as a more searching test of the
capabilities of the basic tools, an implementation of a
multilevel parser inspired by LFG. Once the basic tools
were built, we found it very easy to build prototype
implementations quickly. For example, the general
re-write system took about two man-months. The first
dictionary implementation took less than a man-week.
We expect that the transfer device will take around two
to three weeks; the multilevel parser will almost certainly
take longer - perhaps a month to six weeks.

6.3 DATA STRUCTURE

In our system, there is no data "structure" as such. The
same effect is achieved through interaction between a
pattern matcher and a data base of primitive objects
called nodes. The behaviour of the pattern matcher is
defined externally through statements in a data definition
language, much in the same way as the meaning of
system control constructs is defined in FP. At the pres-
ent time, we are using Prolog to supply both the data
base manager and the definition language. This is not
totally satisfactory, and we expect to have a more appro-
priate "in-house" data definition language shortly. 'To
give a flavour of our data definitions, we give a single
example of the definition and use of a tree, in pseudo-
Prolog.

First we define some basic relations, using built-in
higher-order relations:

antisymetric (dom)
intransitive(dom)
irre flexive (dom)
$dom(x,x)
$dom(x ,y) : -

dom(x,z),
$dom(z,y)

/* reflexive transitive closure * /

tree (R,x) : -
Sdom(R,x) /* tree x with root R * /

If the notation #x in the user program means "bind x to a
tree", then we define our compiler to translate #x to [tree
x]. The control interpreter simply performs elementary
syntactic manipulation on data requests and passes them
directly to the data manager, [tree x] is transformed to
tree (-,- x). Repeated calls to the data manager will yield
all possible trees x in the currently active data set.

Computational Linguistics, Volume 11, Numbers 2-3, April-September 1985 167

Rod Johnson, Maghi King, and Louis des Tombe EUROTRA

6.4 DISAMBIGUATION

The system potentially has a number of ways of dealing
with ambiguity. Which ones are used depends on the
extent to which disambiguation strategy is embedded into
an implemented theory.

The simplest device is an extension of the use of goals
to allow the user to supply an ordered list of goal
descriptions. The system simply continues to try to
match goals, in order, until it finds one which succeeds.
The output from that goal is the result of the process.
This rather cumbersome device is actually quite useful,
for example in constructing elementary preference strate-
gies painlessly. It is, however, not particularly subtle.

More interesting are strategies that exploit the inher-
ent parallelism of the system - defined, for example
through the (apply to all) functional of FP. Normally,
the results of a parallel process application are all added
to the current data set "in the same place". We could,
however implement a primitive that allows the user to
state criteria for selection between competing represen-
tations, and to exclude less favoured ones on the basis of
linguistically motivated judgements. This would only be
sensible, however, if the user were able to formulate such
judgements in a general way.

Finally, we also have the option of implementing a
relation a l t (for alternative) directly in the data defi-
nitions (we have, in fact, done a simulation of a chart
parser in this way). The problem here is that an alt
relation between nodes is easy to handle, but an induced
alternative relation between sets of nodes is not, unless
the process that constructs it is very well behaved (for
example, only building alternatives between simple
constructs like trees). We do not know of any practical
method of guaranteeing that such a relation can be main-
tained in a system which can perform transformations of
arbitrary complexity.

6.5 EFFICIENCY

The system we have described here is not particularly
efficient - indeed it can be dramatically inefficient when
presented with only moderately large and complex
computations to perform. We are not (yet) unduly
concerned by this inefficiency, for two reasons. First, we
are still at the experimental stage where correctness is
still more important than speed; there are no plans for an
industrial implementation before 1988. Second, the
experimental device we have described here has two
equally important functions: the first is indeed to permit
us to generate implementations of new theories rapidly
for experimentation in the field; the second is to provide
the basis for a formal specification of the semantics of
that theory. If we can construct prototypes using precise
definition languages, with the benign side effect that the
same prototypes perform tolerably well for experimental
purposes, we can be confident that an optimized imple-
mentation derived from the same specifications has a

good chance of being both correct and operationally effi-
cient.

7 CRITERIA FOR SUCCESS

It is obvious from what has been said already that
EUROTRA is to be regarded as a research and develop-
ment programme, rather than as either a pure research
project or a pure development project. This affects the
criteria that will be used in evaluating its success or fail-
ure. Main emphasis, even at the end of the five and a
half year programme period, will be put on quality of
translation, with speed and efficiency playing a relatively
minor role. (Of course, certain minimum limits of speed
must be reached if only to allow the large amount of
linguistic development work necessary to be accom-
plished). Quality will be judged in terms of ability to
cover the corpus texts and other texts in the same general
class. The testing procedure will probably bear a strong
resemblance to that used for evaluating METAL (Slocum
et al. 1984).

Apart from the quality of translation, one of the main
criteria in evaluating t h e system design will be ease of
extensibility. Exact procedures for evaluation will be
decided by the programme's management committee
towards the end of each phase, when a checkpoint must
be passed before permission is given to pass to the next
phase.

8 FUTURE DIRECTIONS

EUROTRA's future falls into two distinct parts: the future
covered by the programme period itself, up to mid-1988,
and the future after that. During the programme period
itself, two further languages (Spanish and Portuguese)
will be added, increasing the number of language pairs to
72. (It goes without saying that not all 72 language pairs
would be fully treated by mid-1988.) Apart from this
extension, it is planned to increase the variety of text-
types dealt with, although remaining within the general
area of Community texts. There will also be some exper-
imentation with subject areas other than the one initially
chosen. Throughout the programme period, the flexibili-
ty and modularity of the system design will encourage
experimentation with different linguistic techniques, as
well as making it possible to expand and repair the
system with ease, since the extremely modular approach
taken makes it possible for any single module, for
instance a primitive process treating noun groups or
carrying out dictionary look-up, to be modified independ-
ently of other processes, even, in the limit, being replaced
by a completely different process. When a process is
modified, the goal attached to each process becomes
important in that by specifying the results to be delivered
by the process, unforeseen interactions with other proc-
esses in the system are prevented.

During the third phase, planning of the future after the
programme period will begin. The feasibility and desir-

168 Computational Linguistics, Volume 11, Numbers 2-3, April-September 1985

Rod Johnson, Maghi King, and Louis des Tombe EUROTILA

ability of an economic development of the working
prototype system will be investigated, and specifications
drawn up if it is decided to go ahead. At the' same time,
by Community conventions for researcfi and develop-
ment projects, both the prototype system and the kernel
software will be distributed at cost to Government insti-
tutions, and to Universities and research institutes in the
Member States. Indeed, the software can be distributed
to these parties before the end of the programme period
to be used as a research tool. This is one of the ways in
which EUROTRA hopes to stimulate research outside the
immediate environment of the project itself.

It could, with some justice, be said that all of
EUROTRA lies in the future: given the time and resources
invested in defining a sound linguistic basis and a flexi-
ble, heavily problem oriented software, it is our hope that
the future can be faced with confidence.

REFERENCES

Backus, J. 1978 Can Programming be Liberated from the von
Neumann Style? Communications of the .4 CM 21 (8).

Boitet, C. and Nedobekjine, N. 1982 Russian-French Machine Trans-
lation at Grenoble: A General Software Used for Implementing a
Particular Linguistic Strategy. Linguistics.

Bruderer, H.E. 1978 Handbuch des maschinenunterstutzten Sprachuber-
setzung. Munchen, New York: 100.

Colmerauer, A. 1971 Les Systemes-Q: un Formalisme pour Analyser
et Synthetiser des Phrases sur Ordinateur. Groupe TAUM,,
Universit6 de Montr6al.

Georgeff, M. 1982 Procedural Control in Production Systems. Artifi-
cial Intelligence 18: 175-201.

Hayes, P.J. 1978 The Naive Physics Manifesto. ISSCO Working paper
No. 34.

Johnson, R.L.; Krauwer, S.; Rosner, M.; and Varile, G.B. 1984 The
Design of the Kernel Architecure of the EUROTRA System.
Proceedings of COLING-84.

Johnson, R. and Rosner, M. 1984 Machine Translation and Software
Tools. In: King, M., Ed.

Kaplan, R.M. and Bresnan, J. 1982 Lexical Functional Grammar: A
Formal System for Grammatical Representation. In Bresnan, J.,
Ed., The Mental Representation o f Grammatical Relations. MIT Press,
Cambridge, Massachusetts.

Kay, M. 1967 Experiments with a Powerful Parser. In Proceedings o f
the 2eme Conference International sur le Traitement Automatique des
Langues Grenoble.

King, M., Ed. to appear Machine Translation: the State of the Art.
Edinburgh University Press.

Landsbergen, J. 1984 Isomorphic Grammars and their Use in the
Rosetta Translation System. In: King, M., Ed.

Maas, H.D. 1984 The MT System SUSY. In: King, M., Ed.
Slocum, J. et al. 1984 METAL: The J Machine Translation System.

In: King, M., Ed.
TAUM, Le Systeme de Traduction Automatique de l'Universit6 de

Montr6al (TAUM). Meta 18: 227-289.
Tsujii, Jun-ichi 1983 Technical Outlines of Japanese National MT

Project. Paper given at the Joint EUROTRA-Japanese Workshop,
Brussels.

Computational Linguistics, Volume 11, Numbers 2-3, April-September 1985 169

