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Introduction 

What makes a language a natural language? A long- 
standing tradition in generative grammar holds that a 
language is natural just in case it is learnable under a 
constellation of auxiliary assumptions about input 
evidence available to children. Yet another approach 
seeks some key mathematical property that distinguishes 
the natural languages from all possible symbol-systems. 
With some exceptions - for example, Chomsky's demon- 
stration that a complete characterization of our grammat- 
ical knowledge lies beyond the power of finite state 
languages - the mathematical approach has not provided 
clear-cut results. For example, for a variety of reasons we 
cannot say that the predicate is context-free characterizes 
all and only the natural languages. 

Still another use of mathematical analysis in linguistics 
has been to diagnose a proposed grammatical formalism as 
too powerful (allowing too many grammars or languages) 
rather than as too weak. Such a diagnosis was supposed 
by some to follow from Peters and Ritchie's demonstration 
that the theory of transformational grammar as described 
in Chomsky's Aspects of the Theory of Syntax could speci- 
fy grammars to generate any recursively enumerable set. 
For some this demonstration marked a watershed in the 
formal analysis transformational grammar. One general 
reaction (not prompted by the Peters and Ritchie result 
alone) was to turn to other theories of grammar designed 
to explicitly avoid the problems of a theory that could 
specify an arbitrary Turing machine computation. The 
proposals for generalized phrase structure grammar 
(GPSG) and lexical-functional grammar (LFG) have 
explicitly emphasized this point. GPSG aims for gram- 
mars that generate context-free languages (though there is 
some recent wavering on this point; see Pullum 1984); 
LFG, for languages that are at worst context-sensitive. 
Whatever the merits of the arguments for this restriction 
in terms of weak generative capacity - and they are far 

from obvious, as discussed at length in Berwick and Wein- 
berg (1983) - one point remains: the switch was prompted 
by criticism of the nearly two-decades old Aspects theory. 

Much has changed in transformational grammar in 
twenty years. Modern transformational grammars no 
longer contain swarms of individual rules such as Passive, 
Raising, or Dative. The modern government-binding (GB) 
theory does not reconstruct a "deep structure", does not 
contain powerful deletion rules, and has introduced a 
whole host of new constraints. Given these sweeping 
changes, it would seem appropriate, then, to re-examine 
the Peters and Ritchie result, and compare the power of 
the newer GB-style theories to these other current linguis- 
tic theories. That is the aim of this paper. The basic 
points to be made are these: 

• Since modern transformational grammars do not 
contain the powerful deletion rules available in the 
Aspects theory and need not explicitly reconstruct an 
underlying deep structure, they are not immediately 
subject to the Peters and Ritchie results. Thus the fears 
recently advanced by Bresnan and Kaplan (1982: 
xli-xlii) or Johnson-Laird (1983: 280) simply do not 
hold. 

• Because modern transformational grammars use traces 
to mark the site of displaced constituents, the size of 
underlying structures that need be recovered for 
language recognition are just linearly larger than their 
corresponding surface sentences. Indeed, it appears 
that deep structures ("D-structures" in the current 
theory) need not be built at all to test grammaticality. 

• Modern transformational grammars seem more 
restricted than theories like LFG, not less restricted, in 
the sense that the agreement predicates available in a 
modern transformational theory are defined solely over 
unordered sets of features, rather than, as in the lexi- 
cal-functional theory, over hierarchical trees. Agree- 
ment ("unification") over trees adds extra power to the 
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lexical-functional formalism. The result is that there 
are some strikingly unnatural grammars that lexical- 
functional grammars can describe, but not GB gram- 
mars. This result about strong generative capacity 
shows up on the weak generative capacity side: GB 
grammars  cannot generate some strictly context-sensi- 
tive languages that can be easily generated by lexical- 
functional grammars.  

This paper is organized as follows. Section 1 reviews some 
of the basic formal and linguistic examples demonstrating 
that the excess power of the Aspects theory comes from 
unbounded deletion. It then shows why this power is not 
permitted in current transformational theories. Section 2 
turns to a general analysis of the power of government- 
binding grammars.  Section 3 compares the strong and 
weak generative capacity, of lexical-functional grammar  
and transformational grammars.  It aims to pinpoint just 
why lexical-functional grammars are more powerful than 
government-binding grammars.  Section 4 concludes with 
some speculations about the precise formal characteriza- 
tion of natural languages. More generally, these results 
suggest a different role for the formal analysis of natural 
languages. Instead of trying to fit natural languages into 
some pre-defined mathematical or formal mold, this 
revised strategy aims to discover the properties of natural 
languages first, and then characterize them formally. The 
results here may be regarded as the first fruits of this stra- 
tegy, applied to current linguistic theories. 

1. U n b o u n d e d  De le t ion ,  Past  and P r e s e n t  

It has long been recognized that the possibility of 
unbounded deletion is at the root of the computational 
power of Aspects style transformational theories. If  what a 
machine must do to recognize whether or not a given 
sentence (surface string) is in the language generated by 
some transformational g rammar  is to recover its deep 
structure, and if deep structures can be arbitrarily large 
compared to the surface strings derived from them, then 
the recognition procedures for such languages are not even 
recursive. 

Before describing Peters and Ritchie's formal charac- 
terization of this connection between deep structure length 
and the complexity of recognition, it would be valuable to 
give some insight into just why this connection should 
hold. Recall that a recursive set is one where membership 
in the set can be determined in some finite (though 
perhaps large) amount of time. Here, the set we have in 
mind is the language generated by some transformational 
grammar,  L(TG); given some sentence s, our job is to 
calculate s ~ L(TG) and return a yes or no answer in some 
finite amount of time. Also recall that a set is recursively 
enumerable (r.e.) if, whenever s is in fact in L(TG), there is 
a procedure such that the answer yes can come back in 
some finite amount of time, but if s is not in the language, 
we have no such guarantee; the procedure could just run 
forever. 

The key insight connecting length of deep structure to 
recursive enumerability comes from examining the condi- 

tions under which a computation could run forever. If we 
use a standard Turing machine model of computation, one 
thing that could happen is that the machine could just 
keep using more and more new tape cells, moving a step 
each time. This could go on forever. So one way to obtain 
unbounded computation time is to use unbounded space. 
If  we substitute for the "tape cells" of the Turing machine 
the number of embedded s or np cycles in some arbitrarily 
large deep structure, and i f  we must recover this deep struc- 
ture in order to figure out whether or not the sentence is in 
the grammar, then. we have our correspondence between 
unbounded deep structures and unbounded time for 
computation. 

But is this the only way to achieve unboundedly long 
computations? Why not just have the machine shuttle 
back forth along some fixed sequence of tape cells, using 
the same space but looping forever? This is certainly 
possible, but in this case one can show that the number of 
distinct machine configurations is bounded above by the 
cross-product of a fixed number of possible moves times a 
fixed number of possible cell contents. But this means we 
could "shut off" the machine after this number of time 
steps (counting each Turing machine move as a tick of the 
clock), since the machine cannot do anything new after 
this number of moves, t In other words, given an upper 
bound on the space a machine uses, we can fix an upper 
bound on the length of time the machine can ever use 
without looping forever. 2 

In short then, the only way to get non-recursive compu- 
tations is by using unbounded space. In the transforma- 
tional analog, Peters and Ritchie (1973) connected 
recognition complexity to the possible difference in length 
between deep structures and surface strings: 

Let G be a transformational grammar.  L e t f c  be the 
cycling function of G, where f o x  is 0 if x is not in 
L(G), and otherwise is the least number s such that G 
assigns x a deep structure with s subsentences, l f f c  
is bounded by an elementary (primitive) recursive 
function, then L(G) is elementary (primitive) recur- 
sive. (In fact, if f 6  is linear, then L(G) is in a still 
smaller class.) If the cycling function is not bounded, 
then L(G) is not even recursive. 

It is the possibility of arbitrary deletion that makes a 
surface sentence arbitrarily "shorter" than its correspond- 
ing underlying deep structure. Lapointe (1977), in an 
excellent review, sums up the situation: 

Putnam noted that early theories of transformations 
allowed grammars which could generate any r.e. language 
(whether recursive or not). The chief reason for this was 
that early theories allowed arbitrary deletions and substi- 
tutions in the course of a derivation. Arbitrary permuta- 
tions or copying could never cause a grammar to generate 
a nonrecursive set, for if w i and ~i+l a r e  successive steps in 
a derivation such that Ti+ 1 arises through the application 

i The "clock" takes up a bit of extra space - log space - since it has to 
count! 
2 This standard result may be found in Hoperoft and Ullman (1979: 
300-301 ). 
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of a permutation or copying rule [from] ri then . . . the 
number of terminal symbols in ~i+1 will be at least as 
great as [the number of] terminal symbols in ~i- But this 
property, that successive steps in a derivation do not 
"shrink" in length, is the basic defining characteristic of 
context-sensitive grammars. Therefore only the applica- 
tion of rules which reduce length (that is, deletions and 
substitutions) could cause a grammar to generate a non- 
CS [context-sensitive rcb], and perhaps a nonrecursive, 
language. (1977: 228) 

We can exhibit this result in a compact form. It is well 
known that any r.e. set can be described as the homo- 
morphic image of the intersection of two context-free 
languages (Ginsburg, Greibach] and Harrison 1967). 
That is, 

LO = H(CFL 1 N CFL2) 

Recall that a homomorphism is simply a "respelling" of 
the symbols of a language. The key point is that the 
homomorphism required here permits the deletion of 
unbounded strings of symbols, that is, 

H(z) = 

where ~ is the empty string. In fact, all the proofs demon- 
strating the power of Aspects-style transformational gram- 
mars make use of this erasing power in one fashion or 
another. The remainder of this section reviews two of 
these demonstrations in the literature, one by Peters 
(1973), and one by Kimball (1967). (Another demon- 
stration that Aspects-style TGs can generate any r.e. 
language, given by Salomma (1971), also uses unbounded 
deletion, but is similar to Kimball's approach and will not 
be discussed here.) The point of going through the exam- 
ples in detail is to show exactly how each proof relies on 
unbounded deletion, and why it is that each does not go 
through under the assumptions of the current govern- 
ment-binding theory. The basic reason for the change is 
that unlimited erasing or deletion is no longer allowed. 
Indeed, as the next section will make clear, only a linear 
amount of erasing is permitted in current theories. This 
insight is the key to the analysis of the modern theory. 

We begin with Peters's 1973 demonstration. Peters 
gives a specific example showing just how "large" deep 
structures can be associated with "short" surface 
sentences. Again, copying and deletion are the culprits. 
Peters's example relies on the "Equi np deletion" analysis 
of sentences such as these: 

1. Their sitting down promises to steady the canoe. 

On this account, such sentences have an underlying 
structure that explicitly reconstructs the missing np 
subject of the embedded complement to promise: 

2. [NP Their sitting down] promises [s [NP their sitting 
down] to steady the canoe]. 

Note that this sentence consists of three S phrases: the root 
S and two embedded S phrases (the subject NP of the 
matrix clause and the subject NP of the complement of the 
VP). The subject NP of the VP complement is deleted 

under structural identity with the matrix subject NP. This 
deletion follows the "recoverability of deletion" constraint. 
Peters next builds a surface string that has a large associ- 
ated deep structure by embedding this sentence recursively 
in a construction of the same type, that is, a sentence that 
has a matrix subject NP structurally identical to the 
subject NP of a verb complement. But the subject NP has 
more than two S phrases (three). Given identity between 
subject NP of the matrix and the subject of the comple- 
ment, it follows that at the level of deep structure the 
subject NP of the complement must have the same number 
of subsentences as the subject NP of the matrix, here, 
three. The hew sentence given below must have a deep 
structure with more than 22 = 4 S phrases in all: 

3. Their sitting down promising to steady the canoe 
threatens to spoil the joke. 

Clearly, as Peters notes, we can carry out this embedding 
over and over again. Each time the number of deep struc- 
ture subsentences is at least doubled, because of the 
assumption that the complement NP subject is identical to 
that of the matrix subject. If we let ds(n) be the size of the 
deep structure corresponding to such a sentence of length 
n, then we have the inductive formula that ds(n) > 
2ds(n-1). If we solve this formula, we find that the 
number of deep structure subsentences grows as an expo- 
nential function when compared to the length of the 
surface string, exactly the sort of sentence that was to be 
constructed. If the sentence recognizer must reconstruct 
this entire deep structure in order to determine language 
membership, then at least this much space, and hence at 
least this much time, will be required, just to write down 
the deep structure. 

Interestingly, the argument does not work under 
current versions of transformational theory. The simple 
reason is that we no longer explicitly copy material to 
reconstruct a deep structure; in fact, we no longer rebuild 
deep structure at all. In place of the literally duplicated 
subject complement NPs, we have an empty category 
placeholder, PRO, indexed to the proper antecedent NP as 
appropriate? 

4. [NP [NP Their sitting down], promising [Pro/to steady 
the canoe]]j threatens [Proj to spoil the joke] 

Crucially, the indexed Pros are not "nested". What does 
this mean and why does this matter? Proj is indexed to the 
entire matrix subject NP their sitting down promising to 
steady the canoe. But it does not contain as a subpart the 
PRO corresponding to their sitting down (although it may 
be indexed to a subpart of a long antecedent string). The 
underlying predicate-argument structure is fixed without 
building up an explicit representation of antecedents in the 
embedded clause, what used to be called "deep structure." 

3 The other possibility is that the empty category is a trace, the result of 
the movement of an NP from an argument position like the direct object 
of a transitive verb. Here the empty category is PRO rather than t r a c e  

because the subject NP position in the complement is not governed by 
tense or the matrix verb, but the reader may safely ignore this detail for 
our purposes here. 
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By changing what the representation looks like we have 
avoided the problem of exponential space growth. At each 
step we add just a single new element to the reconstructed 
structure, the new PRO. Our  new inductive equation is 
simply ds (n )=ds (n -1 )+ l  - a linear increase in the size of 
reconstructed forms, compared to the surface sentence 
lengths. In fact, if we ignored the bracketing and just 
counted the PROs, at each step we also add a new word 
(the new verb) and the underlying representations are 
always just a fixed constant larger than the corresponding 
surface sentences. 

One subtle point still remains. At  each step we add an 
indexed element, PRO/. The index itself must  grow as the 
number of PROs increases. If  we assume a standard bina- 
ry encoding, an index of size i will take log2i space to write 
down, not the constant space implicitly assumed just 
above. Since l o g / <  i, at worst the space added for each 
embedding will be proportional to i. Summed over n possi- 
ble embeddings, this is at worst n 2 space, not exponential 
space. In the next section we shall see how this represen- 
tation of so-called "empty  categories" works in general? 

Peters's example centered on a "natura l"  example that  
exhibited exponential deep structure growth. We next 
turn to a more artificial example, but one showing how 
arbitrarily large deep structures may be used to generate 
any r.e. language. Kimball (1967) does this by exhibiting 
a transformational g rammar  that meets a variant of the 
Ginsburg, Greibach, and Harrison theorem (due to 
Haines, cited in Kimball 1967: 185). In brief, Kimball 
sets up a base context-free g rammar  to generate two trees, 
rooted at S 1 and S 2, corresponding to the two context-free 
languages demanded by the homomorphism theorem 
( C F L i  and CFL2) and a third tree dominating these two 
that  eventually "simulates" the homomorphism H.  S 1 

dominates a terminal string labeled x and S 2, a terminal 
string labeled y. Dominating these two subtrees is a third 
tree that, besides x and y, dominates a terminal string z. 
The idea is to use a single transformation to successively 
check that the first member  of x matches the first member  
of y and z; if so, this element is erased in x and y. If  all 
elements match, and we are at the end of z (indicated by a 
special symbol), then the two strings are identical; this 
step carries out the intersection of the two context-free 
languages. A final transformation performs the required 
homomorphism. Figure 1 depicts the overall scheme. It is 
important  to point out that  both S 1 and S 2 generate 
context-free languages that are self-embedding, of the 
general form aicaii. Thus they must exhibit recursion on 
some nonterminal node in the relevant context-free gram- 
mar. 

As Kimball notes, the strings x and y are deleted under 
identity with z, so nothing is amiss here in the Aspects  

theory. X and y are arbitrarily long. The underlying 
"deep structure" (the context-free base) is arbitrarily larg- 
er than the resulting surface string, namely, some part of z 
that remains after the homomorphism does its work. 

What  happens to this example in a modern transforma- 
tional theory? The key point is that  the modern theory 

does not have a deletion operation like the one just 
presented. Instead, a constituent is moved from one posi- 
tion to a "landing site" within its own cyclic domain or to 
the next higher cyclic domain?  In English, the cyclic 
nodes are S and NP. 6 When a node is moved, it leaves 
behind a trace, denoted e, of the same category as the 
displaced constituent, but with no phonological features. 
(Thus the trace is not "pronounced"  and does not show up 
in the surface sentence.) The trace is co-indexed to the 
displaced constituent, as indicated by a subscript. For 
example, given the sentence, 

5. John bought what  

we could move what,  yielding (after some adjustment  with 
the auxiliary verb), 

6. What  did John buy e i 

Now consider Kimball 's  tree structures again. Since S 1 
and S 2 are true recursive sub-trees, in a trace-oriented 
theory the way that  we would get deletion would be to 
successively move elements of  x and y to higher and higher 
phrases, leaving behind traces (denoted by ei) as we go. 
Schematically,  oar  output structure would have to look 
something like that  in figure 2, where R indicates a cyclic 
node. As it stands though, this structure is impossible 
because it requires traces to be linked to elements that  are 
"too far away":  according to a key constraint of  the 
modern transformational  theory, the subjaceney 
constraint, the linking can cross at most one cyclic node. 
Since all recursion must eventually pass through S or NP 
nodes, subjacency must be violated by the trees pictured in 
figure 2. Put another way, the rule that  "erases",  for 
example, x 1, now must move x I across many S or NP 
nodes, and this movement  is not directly possible. An 
alternative is to move X i successive cyclically, up the chain 
of R nodes one step at a time. But there are only two ways 
to do this: either we wind up moving more and more nodes 
at each step - at the n th step we move n nodes, which must 
" land"  at n spots at the next higher cyclic domain - or we 
collapse how many nodes we move by adjoining some of 
the moved elements together. Figure 3 shows both possi- 
bilities. 

Both solutions are ruled out in current  theories of  trans- 
formational grammar .  The movement  of an arbi t rary 
number  of nodes in a single cycle is impossible because it 
calls for an arbi t rary number  of " landing sites" in domain 
n+ l .  In fact, there can only be a finite number  of  such 
possibilities, as specified by a set of  context-free base rules. 
For example, we can move an NP to a subject or object 

4 There is another solution to the index growth problem, one that will be 
required later on. Suppose that each indexed NP or PRO is in effect a 
distinct element of the grammar's vocabulary. Thus the grammar allows 
a denumerable infinity of "'pre-indexed" elements NPi, NP 2 . . . . .  This 
is not such a strange proposal, since the index is not used for any syntactic 
process, but simply for co-indexing. As we shall see, this same proposal is 
made, usually implicitly, in most current theories, for example, in the 
lexical-functional theory. 
5 In the next section we shall take a slightly different position and define 
admissible annotated surface structures without literal movement. 
6 For our purposes here, cyclic nodes are those that exhibit recursion. 
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Transformation: 

structural condition (roughly): 
[s, Xx] Yy] Zz 
x = y = z; .~, y, z are terminal symbols 

structural change: 
delete x and y 

S / \  
Sl $2 

/ \ 
CT"LL CFT,2 

! I 
x y 

Figure 1. Kimball 's  transformation to generate any r.e. set. 

position, a wh phrase to a comp position (the position occu- 
pied by that in I know that Mary  likes ice cream). 7 But we 
cannot move n nodes in a single cycle, because there will 
not be enough places tO put the moved constituents. 

The second solution is also ruled out. Either the 
adjoined NPs linked to the traces violate subjacency (as 
pictured), or else we must also adjoin at each step i a copy 
of the i - 1  st trace to the i th trace. But this last method is 
also barred, because we do not admit  "nested" traces, or 
tree structures that dominate some arbitrarily deep 
sequence of nested empty elements. In other words, a 
trace can be co-indexed at its "top-level" to a displaced 
constituent, but is otherwise "opaque";  it has no interior 
structure. There are in fact good linguistic reasons for a 
principle banning nested traces (see Hornstein 1984). 
Section 3 probes the formal implications of this constraint 
in more detail. 

It is hard then to see how the required trace structure 
linking x and z could even be built. But this is just the first 
step in Kimball 's proof. Enforcing equality between x and 
y looks even harder. Of  course, this by no means shows 
that there is no way to carry out Kimball 's  construction, 
but it does hint at some of the difficulties in a revised 
grammatical  framework that does not permit the same 
liberties with deletions as Aspects, and does not rely on an 
explicitly reconstructed D-structure. 

2. The Complexity of Modern Transformational 
Grammar 

As we have seen, the crux of the problem with 
Aspects-style transformational grammars  is deletion, and, 
more pointedly, the demand to recover unboundedly large 
deep structures in order to determine sentence-hood. The 
proofs of intractability all hinge on the assumption that 
the job of the parser is to recover a literal copy of deleted 
elements. If  this assumption is not needed, then the job of 
the recognizer could well be easier. The modern theory 
requires only the recovery of a t r ace -  or PRO-augmented  

7 See the  next sect ion for more  on " l a n d i n g  s i tes ."  

structure, an "annotated surface structure".  This makes a 
difference. As Lapointe (1977) shows, it makes the recog- 
nition problem for such languages recursive. Whatever  
the merits of their arguments  on other grounds, Lapointe 's  
result renders moot Bresnan and Kaplan ' sconcerns  (1982: 
xli) about the non-recursiveness of transformational theo- 
ry, since their criticisms apply only to the older Aspects 
theory. This is our first conclusion. 

Much more than this can be said. If  the recognizer 
does not have to recover full deep structures, then its job 
could be much easier, as observed by Peters and Ritchie 
1973: 

Putnam proposed that the class of transformational gram- 
mars be defined so that they satisfy a "cut-elimination" 
theorem. We can interpret this rather broadly to mean 
that for for every grammar G 1 in a class there exists 2 such 
that (i) L(G 1) = L(G2) and (ii) there is a constant k with the 
property that for every x in L(G2), there is a deep phrase marker 
q~ underlying x with respect to G 2 such that l[d(q~)] < kx. 

(1973: 81-82) 

Here, the notation l(x) stands for "length of", while d((~) is 
the "debracket izat ion" of  the deep structure. The 
debracketization consists of terminal elements sans right 
and left brackets, but with traces and PROs. As Peters 
and Ritchie go on to say: 

We now see that any grammar satisfying such a cut-elimi- 
nation theorem generates a language which more than 
being recursive is context sensitive. This is so because a 
nondeterministic linear bounded automaton can determine 
both that a labeled bracketing 4 is strongly generated by 
a context sensitive grammar and that it underlies a given 
string $x$ if the automaton has enough tape to write 4. 

(1973:82) 

How would such a linearly-bounded recognizer work? 
Roughly,  it would use a kind of  "analysis by synthesis": 
given a sentence of length n, it would mark out a length of  
input tape kn,  k a constant depending on the t ransforma- 
tional grammar .  The machine would be guaranteed that  
annotated surface structures could not get larger than this. 
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/ S ~ I  z 2  • • .  Z n  

S1,, $ 2 ~  

R R 

/ \e .  /'e. 
R R 

/ 
~ e n -  1 en--  1 

. . . /  . . .  / 

R R 

el ~et  

Figure 2. Traces and the Kimball construc~tion. 

The machine would then use its nondeterministic power to 
"guess" all possible annotated surface structures less than 
or equal to this length, now with the proviso that one of 
them must be a correct underlying structure if the 
sentence in question is in fact in the language generated by 
the grammar. Since the number of (NP or S) cycles in 
each structure is bounded, we may simply try all possible 
transformational rules (again nondeterministically) to 
produce possible surface sentences, one at a time. If there 
is a match, then the sentence is in the language; if all 
structures less than our bound are tested an fail, then the 
sentence is not in the language, s 

What then of modern transformational grammar? We 
claim that D-structure need not be reconstructed at all to 
determine grammaticality. This may be a surprise for 
some readers accustomed to the older picture of a transfor- 
mational grammar, where annotated surface structure is 
just the result of mapping from D-structure under the 
operation of Move a. But it is nonetheless true. Chomsky 
(1981: 91ff.) observes that annotated surface structures 
may be simply defined with respect to certain admissibility 
conditions (more on these shortly) without regard to an 
actual movement rule that maps from one level to 
another. 9 

Our goal, then, will be to assume that only annotated 
surface structure is built to test grammaticality. "~ We 
must now define more carefully just what annotated 
surface structure is in the current GB theory. We then 
show that these representations are at most linearly larger 
than their corresponding surface sentences. 

We begin simply by describing the set of admissible 
annotated surface structures without reference to D-struc- 
ture. That is, we define the set of annotated surface struc- 
tures statically, in the manner that Joshi and Levy (1977) 
define a set of admissible tree structures. Roughly, the 
annotated surface structures of a given grammar are just 
the set of all well-formed labeled bracketings produced by 
the constraints of X theory plus the restrictions imposed 
by lexical subcategorization, plus bracketings where empty 
categories appear in certain positions, governed by a fixed 

set of conditions. In more detail, the well-formed anno- 
tated surface structures are defined inductively as 
follows: ~ 

(l): Following standard assumptions, constraints along 
with locality conditions on subcategorization togeth- 
er yield a system describable by a context-free gram- 
mar (see, e.g., Gazdar and Pullum 1981). All NPs 
dominate some lexical material and correspond in 
one and only one way to the A positions, arguments 
subcategorized by the relevant verbs, again following 
the method outlined by Joshi and Levy (1977); the 
positions in English are: adjacent to the verb, for an 
object NP; first NP under S, for subject NP; first NP 
under PP for oblique PP, and so forth. ~2 Further, all 
such lexical NPs must appear in argument (A) posi- 
tions, where the notion of an argument position again 
depends in a strictly local way on the verb (e.g., the 
subject position of s e e m  in English is not an argu- 
ment position). Finally, we allow a finite number of 
specified lexical deletions (of particular words), such 

s The details of the testing procedure a r e  not given here, but may of 
course add some fixed space to the kn bound required to write down the 
annotated surface structures. 

9 At least, this seems to be so for all cases in English. But a note of quali- 
fication is required. There may be subtle examples showing that D-struc- 
ture must be explicitly rebuilt in order to test grammaticality. Such 
examples do not seem to arise in English, but they may in other 
languages, such as Italian. So for example, it may be in Italian that the 
grammaticality of such examples as was built a house may demand 
explicit reference to D-structure, in order to determine whether a verb is 
a real passive or merely adjectival. If so, then the conclusions in the main 
text might not hold, since D-structure would have to be built. 

to Note that this is true of the Marcus parser (Marcus 1982). 

II Even this account is incomplete in some details, ignoring certain alter- 
native formulations of the theory. But these defects can be repaired at 
the cost of adding more or slightly different clauses to the definition. For 
example, we omit a discussion of clitics, verb movement, government 
defined as mutual c-command, or Subject-Verb agreement. This last 
constraint may be defined via lexical insertion contexts, following Chom- 
sky (1965) as formalized by Joshi and Levy (1977). 

12 Note that all these constraints are readily checked in the manner of 
Joshi and Levy (1977). 
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Case 1: successive elements of individual nodes 
n + 1 st c y c l e :  

:T I X 2  • • • X n  

nth c y c l e : / /  / 

e n  

Case 2: adjunction 
n + 1 st cycle: 

R 

R, -1 

en / ] :rr(- l ~ X n .  2 
/ 

R 
i 

e n - 2  

. . . .  i 

lit 
/ 

e l  

Figure 3. Successive cyclic trace-based Kimball analyses. 

as of, you, in any single phrase, as long as no other 
constraints are violated. All labeled bracketings 
meeting these conditions are well-formed annotated 
surface structures. 

(II): Any of the structures of (I) with empty categories 
(e.c.'s) replacing NPs, subject to the following condi- 
tions, are well-formed annotated surface structures: 
(i) Every such e.c. is an atomic constituent with a 

numerical index and with no internal bracket- 
ing; 

(ii) If  the e.c is governed by some X ° (lexical 
element such as verb, noun, and so on), where 
X governs Y iff the first branching node domi- 
nating X dominates Y, and there is no interven- 
ing maximal projection (full phrase) between X 
and Y then: 
1. the e.c. must be c-commanded by an NP 

antecedent(= element with the same numer- 
ical index), where c-command is defined 
just as government but dropping the clause 
about maximal projections; and 

2. the antecedent is either a lexical NP or 
another e.c. in a non-argument (A) position 
(the complement of the A positions defined 
above); and 

3. the e.c. must be subjacent to that antece- 
dent, where subjacency is defined as usual. 

(iii) Else, the e.c. is ungoverned (is a "sc PRO") and 
can receive an arbitrary index. ~3 

(III):  Any of the structures defined by (I) and (II),  and, in 
addition, with a wh phrase in COMP position c-com- 
manding a governed e.c., or another wh phrase in 
COMP position and with the same index as that 
other e.c. or phrase, is a well-formed annotated 
surface structure. 

(IV): Any of the structures defined by ( I ) - ( I I I ) ,  and, in 
addition, with one of those structures with an e.c. 
having an index the same as that of an element 
adjoined to VP (following Baltin 1982), and c-com- 
manded and subjacent to that element, is a well- 
formed annotated surface structure/4 There can be 
at most one such adjoined position. 

(V): Any of the structures defined by ( I ) - ( IV)  conjoined 
so as to meet Williams's (1978) Across the Board 
(ATB) conventions is a well-formed annotated 

t3 Subject to constraints dictated by "control" theory, that is. We ignore 
this matter here by assuming an arbitrary index for PRO; this does not 
bear in any essential way on the description of the possible annotated 
surface structures. Neither c-command nor subjacency seem required for 
control; hence this may fall under whatever mechanism it is that inter- 
prets the indices of ordinary pronouns generally, a matter we leave 
outside scope of annotated surface structure. 

t4 Note that the position so adjoined to VP is not part of the obligatory 
argument  structure mentioned by the verb. 
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surface structure. ~5 Without going into detail on the 
ATB constraint, its effect is to place e.c.'s in a 
conjunct if its verb or verb phrase is missing; the e.c. 
is bound to a c-commanding antecedent, as before. 
In the case of more complex reduced conjunctions 
(The  mea t  is ready to heat, serve, and eat) the miss- 
ing constituent sequence may be represented by a 
single e.c. in each missing position, though alterna- 
tive analyses are to be preferred here. ~5 

~ (VI) :Nothing else is a well-formed annotated surface 
structure. 

We also need some technical constraints. As pointed out 
above, we must assume that the actual index of an NP (as 
denoted by a subscript) takes up no extra space beyond the 
constant storage required for a distinct nonterminal name. 
Otherwise the amount of space required to write down an 
annotated structure of length proportional to $n$ could be 
at worst proportional to n logn, where the logn factor is 
used to hold the number of the index n. To sidestep this 
problem we assume a denumerable infinity of distinct NP 
"names".  

This same assumption must be made explicitly or 
implicitly in any theory that assumes co-indexing but still 
strives for linearity in the size of underlying structures. 
Consider Kaplan and Bresnan's sketch (1982:263-267) 
that lexical-functional language recognition uses only line- 
ar space. In the full description of lexical-functional 
languages, names are distinguished as co-referential or 
not. Thus, two occurrences of, say, M a r y  must be distinct. 
In the LFG formalism, this is indicated by subscripts. (See 
for example Kaplan and Bresnan's ' examples 
1982:225-227.) But then, this means that the sheer size of 
a functional structure (f-structure), the lexical-functional 
analog of an annotated surface structure, could be of size 
n logn, again with logn space for the indices. Just writing 
down one f-structure could take more than linear space. 
Kaplan and Bresnan do not say in any detail just how they 
intend to check for sentence-hood using just linear space, 
but since all of their descriptions involve building an 
f-structure, we may assume that at least this much space 
will be required. In short, in order to a linear space bound, 
Kaplan and Bresnan need to adopt exactly the proposal 
made above. 

A second key assumption is that traces may not be nest- 
ed; a trace cannot contain another trace. This ban is 
required because otherwise we could build a tree represen- 
tation containing just empty elements (the traces). Since 
a tree can be arbitrarily large, a single NP or S domain 
could have an arbitrarily large but surface-empty struc- 
ture of elements, just what was to be avoided. We are now 
ready to state just what we want to show. 

Theorem Let G be a government-binding grammar,  and 
L(G)  the language it generates. Let A S  i be the anno- 
tated surface structure) associated with sentence w i in 
L(G).  ( I f  there is more than one such annotated surface 
structure, then A S  i is a set of annotated surface struc- 
tures; A S  i is a singleton set if there is just one annotated 

surface structure.) Then there is a constant k such that 
for a l l  sentences w i in L(G),  and for all annotated 
surface structures A S  i underlying w i, ]ASi[ <_ k[wi[. 

The proof proceeds by induction on the number of cycles 
(S or NP domains) in an annotated surface structure 
corresponding to a sentence in L(G).  First we shall show 
that the length of a one-cycle annotated surface structure 
is linearly proportional to its corresponding surface 
sentence. This will be easy, since within a single cycle (S 
or NP domain), there can be movement to at most a fixed 
number of "landing sites" as defined above: the ~ posi- 
tions, plus COMP, plus one adjunct to a VP. The lexical 
entry for a verb mentions only a finite number of such 
arguments. The one additional landing site adjoined to VP 
can receive only one phrase, because in order to receive 
more, additional phrases would have to be adjoined in the 
manner of the Kimball-type structures discussed in the 
previous section. But these would violate subjacency? 6 

Once we have established linearity in the base case, we 
now look at annotated surface structures i and i + l  cycles 
deep. Assuming that structures of depth i maintain linear- 
ity, we show that those of depth i + l  do also. This step is 
tedious, since one must go through the possible ways to 
obtain the i + l  cycle from the one preceding it, one by one. 
The landing site analysis is exploited here, as is subjacen- 
cy. The empty category analysis is also used. Subjacency 
helps because there is no way to "skip" a cycle, construct- 
ing structures of depth i + 2  from those of depth i directly. 

Proof 

Bas is  step. i = 1 (bottom cycle, no embedded sentences or 
NPs.) Given a surface sentence w i, we consider the length 
of the corresponding annotated surface structure. Let s = 
the length of the surface sentence. There are four cases. 

Case 1. No e.c.'s in the S or NP cycle, and no specified 
lexical deletions. Assume a context-free base with no 
useless nonterminals or cycles, and with rules where the 
length of the longest righthand side is p. If  m = the 
number of nonterminals in the derivation of a sentence 
in this grammar,  then m _< cs for some fixed positive 
integer ¢, as may be easily verified by induction. In 
addition, to write down the annotated surface structure, 
we must add two bracket labels for each nonterminal 
symbol. Thus IASi] = 2m + s _< 3cs. Note that if we 
wanted to establish a relationship between debracketed 
annotated surface structures and surface strings, then 
this last step would be unnecessary. 

Case 2. A finite number of specified lexical deletions with- 
in this cycle, e.g, of,  as in, all  o f  the people  ~ al l  the 
people,  or an imperative (if a root sentence). Let the 

t5 For a more recent formulat ion of the ATB conventions as the l inear  
union of phrase markers ,  see Goodall  (1983).  We  note in passing tha t  the 
phrase  marker  union also preserves l inear i ty  of annota ted  surface struc- 
tures. 

t6 Recall  tha t  now we are  applying subjacency as a s ta t ic  const ra in t  on 
annota ted  surface s tructures.  In fact, since in the basis step we consider  
only annota ted  surface s t ructures  one S or N P  cycle deep, this case does 
not arise. 
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maximum number of these deletions be K. Then IASil 
_< 3cs + 3K. For s >_ 1, 3cs + 3K _< 3cs + 3Ks = 
(3c+3K)s. Let c r = 3c + 3K. Then IASil _< c's. Again, 
we can omit the 2K factor for the debracketed case. 

Case 3. Empty categories within this (S or NP) cycle, with 
antecedents in the same S or NP. There are a finite 
number of such positions, as described earlier: only NP 
argument positions (thematically marked by the verb); 
or the adjoined position to VP. Let C bound this 
number from above. Then IASil < cPs + C; using the 
same approach as in case 2, the righthand side of this 
inequality is less than c ' s .  Clearly, combinations of 
cases 2 and 3 cause no problems because we can add a 
constant number of deletions together with the 
constants obtained from within cycle e.c.'s to obtain a 
new constant factor. 

Case 4. Empty categories in the cycle without antecedents 
in that domain. If an empty category exists in an S or 
NP without an antecedent (NP, wh, etc.) in that 
domain, then clearly the corresponding surface string is 
shorter than the corresponding annotated surface struc- 
ture, since it does not include the empty category 
symbols. However, again the addition of each empty 
category symbol adds just one to the total annotated 
surface structure length, and there are at most a finite 
number of such positions (~'positions, such as COMP, 
as described earlier). Therefore, the corresponding 
annotated surface structure is just a constant longer 
than the corresponding surface sentences, as in Case 3. 

Well-formed annotated surface structures exhibiting 
the features of gapping, VP deletion, and conjunction 
reduction do not show up at this step, since they 
combine two i level cycles into an i + l  domain. They 
are considered in the induction step. This completes the 
basis step. 

Induction step. Suppose that up through cycle i we have 
that IASil _< ksi, where s i is the terminal length at the ith 
cycle, and k is a constant. We now must show that this 
relation holds for structures of depth i+1. There are five 
possibilities. 

Case 1. No empty categories athe top level of cycle i+1. 
Then the terminal string associated with this cycle 
consists of two parts, whatever terminals are introduced 
directly by nonterminals in cycle i+ 1 and new elements 
of cycle i+1 bound to e.c.'s in cycle i. But there are a 
finite number of empty category sites for material in 
the current domain, by the definition of a well-formed 
annotated surface structure. Call this number C. By 
the inductive hypothesis, any of these constituents 
themselves meet the condition that their annotated 
surface structures are bounded above by a linear multi- 
ple of their terminal strings. Thus the total annotated 
surface structure for the current cycle is at most C 
times the bound on previous cycles, plus a constant to 
accommodate the length of terminals introduced direct- 
ly in cycle i+1. 

i d t 
A S i +  1 <_ d]~j= 1 A S j  + 

• i 

Zt] IAS j  < C ~j=l  sj 

Substituting, we obtain: 

i tt 
A S i +  1 < C Zj=I  sj  + k si+ 1 

-< ksi+ 1 

Case 2. Specified deletions in cycle i + l .  If  there are a 
finite number of specified lexical deletions, this is just 
like the basis case. This case includes the introduction 
of PROs. PRO can appear in a finite number of new 
positions in cycle i + l  (the Subject position, if ungov- 
erned). 

Case 3. E.c.'s with antecedents within cycle i+1. The 
demonstration proceeds as in the basis case. 

Case 4. E.c.'s with antecedents in cycle i+2. Again, like 
the basis case. This cannot change the linearity bound. 

Case 5. Annotated surface structures with empty verb, 
verb phrase, and coordinate reduction positions. This is 
the only new situation that arises in the induction step 
as opposed to the basis step. Suppose we have a 
conjunct formed by deleting material from each of n 
conjuncts. An example is the meat is ready to take out 
o f  the fridge, heat, and serve. The example is from 
Rounds (1975:137) attributed to E. Bach. If  such 
constructions involved actual recovery of deleted deep 
structure material, then problems could arise. The 
literal material would have to be copied, and we could 
get a linearity-violating Peters-type sentence. 

But this problem can be avoided with an interpretive 
approach governed by the "across the board" 
conventions of Williams (1978). We supply indices, not 
actual copied material, for the well-formed annotated 
surface structure. The ATB constraint lines up the 
conjuncts to be co-ordinated, one under the other. For 
example, a sentence like the meat is ready to heat, serve, 
and eat is factored as follows, where we have deleted 
duplicate material in other conjuncts. 

The meat/is  ready to heat e i 
1 serve 3 

eat 
2 

We can represent term (2) as an unordered set of lexi- 
cal items, for example, heat, eat, serve. Plainly, this 
representation cannot be more than linearly larger than 
the surface sentence? 7 

Similar results hold for empty categories linked to verbs 
and verb phrases. Each cyclic domain of the the associ- 
ated annotated surface structure contains a constant 
number of empty VP "gaps",  denoted [e]; there can be 
at most one main verb, VP, or auxiliary verb sequence 

17 Again, the Goodall (1983) representation would be suitable here. 
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per cyclic domain. Therefore, the total number of gaps 
in the conjoined structure is bounded from above by a 
constant times Si+l, the length of the terminal string. 

This exhausts the range of possible cases, completing the 
induction and the proof. 

The linearity demonstration shows restricting deletions 
has a powerful effect on the weak generative capacity of a 
transformational grammar.  The implications of that 
result for linguistic description are discussed in the next 
section. 

3. The Root of Complexity: kexicaI-Functional 
Grammars and GB grammars 

The results of the previous section show something about 
the weak generative capacity of modern transformational 
grammars.  The study of weak generative capacity is not 
an end in itself, however. In the best case, we would like 
weak generative capacity to be a kind of diagnostic aid to 
tell us that something is amiss with a linguistic theory. 
We would like our theory to be able to describe all and 
only the natural languages. A theory could fail to do this 
in two ways, either in terms of weak generative capacity or 
in terms of strong generative capacity. A theory that is 
too powerful could generate either unnatural tree struc- 
tures (and so be too powerful in terms of strong generative 
capacity) or it could generate unnatural sentences (and be 
too powerful in terms of weak generative capacity). I f  we 
are interested in the rule systems (grammars) that underly 
linguistic behavior, then it is ultimately strong generative 
capacity that is of interest. Still, weak generative capacity 
can help here to point the way to excess strong generative 
capacity. We will also not want to stop at diagnosis. We 
also want to determine just why a particular theory can 
generate too many languages - what the source of its 
excess power is. We saw that with Aspects transforma- 
tional grammars  the additional power lay with unbridled 
deletion. What  of other recent theories of grammar?  

In this section we shall present an example of exactly 
this kind. This will be a language that is presumably not a 
natural language. We will use this language as a "probe" 
into the power of current linguistic theories. We shall see 
that this language can be easily generated by lexical-func- 
tional grammar,  but not by a GB grammar.  More impor- 
tant, this weak generative result has a strong generative 
capacity reflex. We can use this result to locate the excess 
power of the LFG system. This could be of value in 
discovering restrictions for the LFG system. In terms of 
strong generative capacity, the more important goal, we 
shall see that the LFG theory has the ability to define 
unification predicates over hierarchical tree structures, 
something unavailable in the GB theory. This extension of 
the traditional definition of linguistic predicates has impli- 
cations for the ability of LFG to describe unnatural gram- 
mars, not just unnatural languages. 

Here is what we mean to show in more detail. LFGs use 
a particular kind of unification machinery (described 
below) in order to account for well-formed sentence struc- 

tures of Dutch (Bresnan, Kaplan, Peters, Zaenen 1982). 
This unification procedure is central to the construction of 
the grammatical  structures of lexical-functional theory. 
But it is also powerful enough to describe grammars  quite 
unlike any natural grammatical  system. By changing the 
Dutch LFG only slightly we can produce a rule system that 
allows "object control" via a preceding NP (as in Mary 
persuaded John to leave) just in case the NP in question 
and the controlled position are equally deeply embedded. 
This we take to be an unnatural rule system. 

To begin, we present our artificial "diagnostic" 
language, the power of 2 language, L 2 = {aili is a power of 
2}. L 2 is a lexical functional language, since the following 
lexical-functional g rammar  generates it: 

1. A --,- A A 

( t f ~  = ~ ( i . / )  = 

2. A ~  a 
(I  J) = 1 

The (I  f )  = ,I, functional structure constraints on the 
nonterminals enforce the restriction that the same number 
of A expansions be taken on each subtree; expansions are 
symmetric all the way down the "words", the as. This 
guarantees a power of 2 expansion; the details are left to 
the reader. 

We can now ask deeper questions. First, why can lexi- 
cal-functional grammars  generate such languages? More 
on this shortly. Second, can L 2 be generated by a GB 
grammar?  To answer the second question first, the 
answer here seems to be no, because of a property of GB 
languages that is violated by L 2, namely, the constant 
growth property, defined and discussed for tree adjunct 
grammars  by Joshi (1983). This property will only be 
briefly explored below; for more complete remarks, see 
Berwick and Weinberg (1984). 

I f  we arrange the sentences of L 2 in order of increasing 
length, we see that they become farther and farther apart. 
In fact, for any fixed set of constants C, we can always 
find a sentence of Le, w i, say, such that there is no wj in 
L2, with Iwi[ = Iwjl + c, for c • C. We state this property 
as follows: 
Definition. A language L is said to possess the constant 
growth property (or be constant growth) if and only if 
there exists a constant M and a set of constants C such 
that for all sentences w k • L with Iwkl > M, there exists 
another sentence in L, wkr, such that w k is at most a 
constant longer than Wkt, Iwkl = IWk' I ÷ c, for c • C. A 
grammar  is said to possess the constant growth property 
iff the language it generates is constant growth. ~8 

Lexical-functional grammars,  then, are not constant 
growth. In contrast, government-binding grammars  
cannot generate such languages because they are constant 
growth. Intuitively, the demonstration works much like 
the linearity proof. For a full discussion, see Berwick and 

18 So far as it can be now determined, constant growth seems to be a 
purely mathematical  property of natural languages that has no clear 
"'functional" reflection. Presumably, constant growth is a derivative of 
other, deeper properties of natural languages. 
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Weinberg (1984: Appendix A). The point is that no 
government-binding grammar can generate L 2 or any 
nonconstant growth language.E9 

What is it that gives lexical-functional grammars their 
ability to define languages like L2? LFGs can test 
complete subtrees for compatibility. At a dominating 
node we can check whether an entire hierarchical struc- 
ture is feature compatible with another structure• This 
follows from the account of functional structure unifica- 
tion defined by Kaplan and Bresnan (1982). Functional 
structures are hierarchical in nature; they are directed, 
acyclic graphs. Functional structure well-formedness is 
defined by the condition of functional structure unique- 
ness. Roughly speaking, there can be no conflicts in the 
assignment of feature complexes, even if those features are 
in fact hierarchical structures. 

This kind of feature compatibility test goes well beyond 
that required for the checking of "ordinary" agreement, as 
in subject-verb number agreement. When we test a 
subject and verb for agreement, all that we do is check an 
unordered list of features for compatibility• The number, 
gender, and so forth of the subject NP must agree with 
that of the verb, as percolated through the VP. It is a far 
cry from this kind of agreement checking to the 
"agreement" of two entire tree structures, but this is what 
is implied by the lexical-functional unification procedure) ° 

As we saw in our earlier example, this unification 
procedure is sufficient to generate the power of 2 
language• A natural question to ask then is whether this 
ability to compare entire functional structures is necessary. 
For if all cases of functional structure unification can be 
replaced by unordered feature agreement tests, then there 
is no motivation for adopting the more powerful mech- 
anism, at least on these grounds.  

The lexical-functional theory is, perhaps, already 
committed to the ability to test hierarchical functional 
structures for compatibility. For functional structures are 
certainly hierarchical in nature. They must encode the 
hierarchical relationships between root and embedded 
propositions, for example• A functional structure is used 
as the input to semantic interpretation, and so must reflect 
hierarchical dependencies. Otherwise we cannot decipher 
the relationships in a complex sentence like John expected 
Mary to persuade Bill to win. The feature checking 
machinery must be designed to test for functional struc- 
ture compatibility because that is the only level of repre- 
sentation where features like the number of the subject are 
to be found• But once we permit feature checking of func- 
tional structures at a single, 'unembedded level for the 
number of a subject NP, it is hard to see how we can rule it 
out for a more complex functional structure. 

In fact, lexical-functional researchers have proposed 
natural language cases where one must check one complex 
functional structure for compatibility against another. 

19 Another example is the language of perfect squares. 

20 Several other theories also adopt a directed, acyclic graph notation for 
features, among these, Kay's (1982) unification grammar and Shieber's 
(1983) PATR I1 formalism. Interestingly, Sag et al. (1984) adopt the 
more restricted view of features. 

Just such a case has been discussed by Bresnan, Kaplan, 
Peters, and Zaenen (1982), in the analysis of certain 
Dutch sentences. We will not review all the details of their 
proposal here except to establish the point that hierarchi- 
cal functional structure comparisons are crucially impli- 
cated. The data Bresnan et al. want to account for is this. 
Dutch contains infinitely many sentences of the following 
sort (examples from Bresnan et al. 1982: 614): 

• . .  dat Jan de kinderen zag zwemmen 
• . .  that Jan the children saw swim 
• . .  that Jan saw the children swim 

• . .  dat Jan Piet Marie de kinderen zag helpen laten 
zwemmen 

• . .  that Jan Peter Marie the children saw help make 
swim 

• . .  that Jan saw Piet help Marie make the children 
swim 

These Dutch sentences must have a certain constituent 
structure• Their proposed structure consists of two 
branching "spines", one a right branching tree of VPs 
containing objects and complements, the other a right 
branching tree of V containing verbs without their objects 
and complements. Every verb uses its lexical argument 
structure to demand certain NP objects or that the verb 
complement's subject be controlled by the verb's object or 
subject• For example, the verb zag demands that its object 
control the subject of zag's verbal complement• This is 
analogous to the English case where the object of a verb, 
for example, persuade, controls the subject of persuade's 
complement, as in, We persuaded John to leave. 

The lexical-functional system encodes this agreement in 
number of verbs and NPs by forcing an identification 
between the functional structure of the object of zag and 
the functional structure of the verb complement of zag 
(denoted VCOMP). The "equation" is written (~ VCOMP 
SUB J) = (q OBJ) .  The problem, of course, is that if we 
have three verbs then we have three such constraints, but 
the associated NPs that satisfy them lie along a distinct VP 
"spine" of the constituent structure tree that is separated 
from the verbs along the V spine• In other words, the 
"control" equations are built up along the rightmost, V 
spine of the constituent structure tree, but the NPs that 
satisfy these equations lie along the left side. How can we 
assemble the NP functional structures for proper checking 
against the control equation demands? Because feature 
checking can occur only at some common dominating 
mother node, the first place where all elements are 
"visible" to each other is at the first VP node completely 
dominating both right and left subtrees. The way that 
Bresnan et al. accomplish this task is to build up along the 
rightmost subtree a functional structure representation 
that encodes all of the control equations, in the form of a 
hierarchical functional structure with unfilled slots for the 
subjects and objects mentioned by the controlling verbs. 
Note that the structure is indeed hierarchical, containing 
embedded components• Along the lefthand side of the 
constituent tree Bresnan et al. build up a second hierarchi- 
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cal functional structure that "merges" successfully into 
the righthand one just in case the number of NPs and their 
assignment to controlled positions meshes with the "slots" 
left remaining in the righthand functional structure. 

One must build and check a hierarchy of features 
because in order to encode the possibility of an arbitrary 
number of controlled NPs below the dominating VP node, 
we must adopt some means of encoding a potentially arbi- 
trary number of features (denoting each of the NPs and 
their associated verbs). But given that the functional 
structure "equations" annotating the underlying context- 
free grammar  are fixed once the grammar  is written down, 
the only way to do that is by building up some recursive 
structure that mimics the constituent structure derivation 
as a chain. (With only a finite number of features, we can 
only encode an infinite number of different cases by means 
of chains or trees.) This means that Bresnan et al. are 
forced to adopt hierarchical feature checking as the means 
to describe the Dutch sentences. 

In contrast, the government-binding theory represents 
the same pairing of NPs and verbs via a "f lat"  co-indexing 
scheme. Jan de kinderen zag zwemmen would be roughly, 
NP/ NP 2 [p" V 1 V2] in annotated surface structure (see 
Evers 1975 and Berwick and Weinberg 1984). As 
outlined in Berwick and Weinberg (1984), potential co-in- 
dexings can be evaluated by non-erasing pushdown trans- 
ductions that test only single, unanalyzed nodes, never 
building up tree-structured features as in the lexical-func- 
tional grammar  example. (Note again that D-structures 
are not reconstructed to carry out this Check.) 

The problem for the lexical-functional machinery is 
that once hierarchical checking is admitted for this one 
example, there is nothing to bar it in other cases. But then 
the power of 2 language can be generated. One can also 
build "unnatural" lexical-functionat grammars  using just 
the linguistically motivated control equation apparatus 
and phrase structure rules proposed in the lexical-func- 
tional theory. The same linguistically motivated rules 
used for Dutch, combined in slightly different ways, lead 
to grammars quite unlike anything ever attested or likely 
to be attested in natural rule systems. The example we 
give uses almost precisely the Dutch control equations, and 
a slightly different context-free base. 

The idea behind our unnatural g rammar  is this. We 
will build a grammar  where a verb controls a higher object 
NP just in case both the verb and that NP are essentially 
equally deeply embedded along different "spines" of the 
constituent structure tree. This we take to be a highly 
unnatural system. There is no natural language where a 
control property "counts". 

We need these context-free rules and their functional 
structure annotations: 

1. VP --,- NP V (V) 
( f s u b j ) = +  ( f V c o m p ) = ~  f =  

2. VP --- NP 
(f obj) = 

m 

3. V -~ V V 
(f Vcomp) = I, 

4. V --- V 

5. NP -,- N 

Rules (2)-(5)  are precisely those used by Bresnan et al. 
Rule (1) is different. ( I )  has the associated equation (f 
subj) = ~ attached to the NP node instead of the equation 
(f obj) = 4. We must also add new lexical entries for the 
following "verbs": 

V3: (f Vcomp subj) = 
(f pred) = 

V2: (4' pred) = 
VI: (f pred) = 

(t' obj) 
V3((f subj)(t' ob)('l' Vcomp))" 
V2((4' subj)(q Vcomp)) 
Vl(('t subj)('l' Vcomp)) 

The effect of this modest change is a rule system that has 
exactly the properties we claimed. Consider first the func- 
tional structure built up along the lefthand VP branching 
spine. The last NP expansion will have the associated 
equation (4' obj) = 4. Each VP demands that the VCOMP 
functional structure component associated with the node 
above it be identified with the functional structure built up 
at that VP. The effect is to build up a hierarchical 
arrangement of VCOMP functional structures, one for 
every VP node that is generated except for the top and the 
bottommost vP. In addition, a subject functional struc- 
ture component is passed up from all NPs but the last one. 

The object from the lefthand functional structure merg- 
es into this righthand structure successfully if and only if it 
has one level of embedding less than the righthand struc- 
ture. This is our desired result. Otherwise the object 
structure cannot be laid on top of the righthand structure 
and overlap properly; it must coincide with the empty 
object slot on the righthand side. 2~ 

4. The Formal Characterization of Natural 
Languages 

Summarizing the analysis so far, we have seen just how 
modern transformational theories differ formally from 
their older counterparts. We have also seen that that 
difference is reflected as a weak and strong generative 
capacity difference between the new theory and the lexi- 
cal-functional theory. 

Some questions are still unanswered. In the previous 
section, we came to a partial diagnosis of the source of the 
extra power of the lexical-functional theory. In this 
section we would like to pin down that diagnosis. At the 
same time we shall offer a different perspective on the 
formal characterization of natural languages. This analy- 

21 For example, suppose we interchanged V 2 and V 3. Then the control 
verb V 3 is less deeply embedded than the object NP it is supposed to 
control. This structure should be ruled out, and it is. The lefthand func- 
tional structure will be as before. But now the righthand functional struc- 
ture will not merge properly with the lefthand functional structure 
because that functional structure demands that the object be embedded 
inside two VCOMPs, whereas the righthand structure calls for an object 
embedded inside just one. Similarly, if V 3 were embedded one more level 
down, the number of VCOMPs would not match. Only when the number 
of embeddings is the same (plus one) on both left- and righthand sides is 
the structure well-formed. 
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sis will necessarily be more speculative. Still, it is hoped 
that the discussion will provoke a fresh look at how to go 
about the mathematical analysis of natural languages. 

To begin, let us recall that the suspected source of extra 
power in the lexical-functional theory is the unification 
procedure defined over hierarchical structures (constituent 
structures). We also argued that nothing like this kind of 
power is required to describe natural languages. In this 
section we shall investigate this claim more deeply~ We 
shall look at one case, co-ordination, that might seem to 
require full unification, and see that in fact hierarchical 
unification is not required. 

At first glance, co-ordination would seem to demand 
some kind of unification predicate. The reason is that 
co-ordinate structures obey a familiar principle (Williams 
1978) that permits only "similar" conjuncts to be linked. 22 
One way to visualize the parallelism constraint is to imag- 
ine the two conjuncts being laid ~n top of one another. If 
they match, then the conjunction is permitted, otherwise, 
it is not permitted. Williams (1978) formalizes this condi, 
tion. This process is reminiscent of the lexical-functional 
unification procedure. (Compare it to the Dutch example 
given earlier.) Here too, we "overlaid" two hierarchical 
structures to determine well-formedness. The Dutch 
sentences were legal just in case two hierarchical spines 
could be so overlaid, or unified. Is unification required? 

On closer inspection the analogy with unification 
breaks down. It is true that the parallelism of co-ordinate 
conjuncts demands a match in terms of phrasal nodes. The 
key difference between lexical-functional unification and 
the co-ordination constraint is that co-ordinate parallelism 
need only hold at the top level of a phrasal sequence. 
Internal details of the matched conjuncts do not matter. 
This is in contrast to the unification predicate, which, as 
the Dutch example shows, can demand a hierarchical 
match. For example, the following conjunction is perfectly 
grammatical, even though the conjoined VPs are internally 
different, one containing an Adjectival Phrase and the 
other a Noun Phrase (example from Goodall 1983): the 
bouncer was muscular and was a guitarist. One can even 
conjoin active and passive sentences (John went to Boston 

and was taken f o r  a ride). As Goodall (1983) demon- 
strates, one way to describe this effect is as the union of 
the top level of phrasal nodes (actually, phrase markers). 

In contrast, the Kaplan and Bresnan unification proce- 
dure (1982: 272), as defined by their statement (190c), 
recursively defines a union over what may be an entire 
tree: 

(190) c. If e I e 2 are both f-structures, let A 1, A 2 be sets 
of attributes e! and e2, respectively. Then a new f-struc- 
ture e is constructed with e = {(a,v) I a • A 1 U A 2 and v 
= merge [Locate I(el,a)], Locate [(e2,a)] ]} (Locate is an 
operator that actually finds the sub-f-structure with 
the specified attribute structure.) 

Here, (a, v) is the union of a hierarchical attribute set, 
since this last step is carried out recursively to all levels of 
structure. This means that there is nothing to stop us from 
writing a co-ordination rule in the lexical-functional 

system that demands equality in tree structure through all 
levels of hierarchical detail, contrary to what is observed. 23 
We might speculate then that a general property of 
constraint statements in natural languages is that they are 
defined in terms of predicates on linear sequences of struc- 
tures (phrase markers), rather than by hierarchically 
defined unification predicates. It remains to explore just 
what this restriction comes to, b u t  it is clear that this is 
exactly where and how lexical-functional grammar 
diverges from the "classical" view of generative grammar. 
The classic view, outlined in Chomsky's Logical Structure 
o f  Linguistic Theory, defined predicates in terms of a 
concatenative algebra at each of several levels of repr6sen- 
tation (phonetic, syntactic, and so forth). The details are 
not essential here, but one property of these algebras is: 
they fixed predicates in terms of linear sequences of 
elements, rather than trees. 24 The lexical-functional 
system extends the power of representational description 
to include the possibility of unification predicates defined 
over nonlinear constituent structures. While this violation 
of the usual syntactic adjacency restrictions (observed 
from earliest days of generative grammar) is certainly 
sufficient to describe natural languages, the examples 
presented here show that it is not necessary. 

This diagnosis also tells us one way to repair the lexi- 
cal-functional theory. One could restrict the lexical-func- 
tional theory to ban hierarchical unification predicates. 
One way to do this is to simply eliminate the recursive step 
of Kaplan and Bresnan's unification procedure (190c), 
(1982:272) excerpted earlier. For example, feature merg- 
er could be restricted to operate over just two cyclic (S or 
NP) domains. One would still need a way to handle 
constructions like those in Dutch, or, should they be neces- 
sary, the ww constructions. Of course, it may be that other 
restrictions suffice. 

Whatever the outcome of these changes, a more general 
question for future work centers on the status of the 
concatenation algebras underpinning traditional genera- 
tive grammar. While there has been some formal work in 
this area (see Borgida 1983 and Berwick 1982), it remains 
to be seen whether the linear predicates presupposed by 
such a model do indeed characterize what it means to be a 
natural grammar. If they do, then extensions to more 
general unification predicates, as in LFG, unification 
grammar, or PATR-II, may well be unwarranted. 
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