
A Phrase-Structured Grammatical Framework

for Transportable Natural Language Processing I

Bruce W. Ballard

AT & T Bell Laboratories
600 Mountain Avenue

Murray Hill, N.J. 07974

Nancy L. T inkham

Department of Computer Science
Duke University

Durham, N.C. 27706

We present methods of dealing with the syntactic problems that arise in the construction of natural
language processors that seek to allow users, as opposed to computational linguists, to customize an
interface to operate with a new domain of data. In particular, we describe a grammatical formalism,
based on augmented phrase-structure rules, which allows a parser to perform many important
domain-specific disambiguations by reference to a pre-defined grammar and a collection of auxiliary
files produced during an initial knowledge acquisition session with the user. We illustrate the workings
of this formalism with examples from the grammar developed for our Layered Domain Class (LDC)
system, though similarly motivated systems ought also to benefit from our formalisms. In addition to
showing the theoretical advantage of providing many of the fine-tuning capabilities of so-called seman-
tic grammars within the context of a domain-independent grammar, we demonstrate several practical
benefits to our approach. The results of three experiments with our grammar and parser are also
given.

1. Introduction

As a result of advances in natural language processing,
programs that provide practical English-language capabil-
ities have begun to rival more conventional means of
computer interactions for certain purposes, including data-
base retrieval, online help facilities, and limited forms of
office assistance. Although several prototype systems have
provided customization facilities that allow users to specify
synonyms, syntactic paraphrases, and the like, traditional
approaches have resulted in systems wedded to a single
domain of data. That is, users are unable to access novel
types of data without acquiring ~ new or modified process-
or specifically tailored to the new domain by the system
designer(s). Not surprisingly, an important trend in

natural language system design is in allowing users them-
selves to adapt an existing processor for a new domain.
Accordingly, prototype systems that permit user customi-
zations or rapid customizations by a designer have
included REL, POL and ASK (Thompson and Thompson
1975, 1981, 1983), CONSUL (Mark 1981; Wilczynski
1981), IRUS (Bates and Bobrow 1983), KLAUS (Haas and
Hendrix 1980), TEAM (Hendrix and Lewis 1981; Grosz
1983), a system developed at Bell Labs (Ginsparg 1983),
and our own LDC system (Ballard 1982, 1984; Ballard and

1
This research was supported in part by the National Science Founda-

tion under Grant Numbers MCS-81-16607 and IST-83-01994 and in
part by the Air Force Office of Scientific Research under Grant Number
81-0221.

Copyright 1984 by t~'z Association for Computational Linguistics. Permission to copy without fee all or part of this material is granted provided that the
copies are not madc for direct commercial advantage and the CL reference and this copyright notice are included on the first page. To copy otherwise, or
to republish, requires a fee and/or spccific permission.

0362-613X/84/020081-16503.00

Computational Linguistics Volume 10, Number 2, April-June 1984 81

Bruce W. Ballard and Nancy L. Tinkham A Phrase-Structured Grammatical Framework for Transportable NLP

Lusth 1983, 1984; Ballard, Lusth and Tinkham 1984a,
1984b). Since the successful construction of a transport-
able system requires sound methods of representing what is
to be learned, the design of formalisms to be used in trans-
portable natural language processors relates to the scien-
tific, as well as the engineering, aspects of computational
linguistics.

In this paper we present methods of dealing with the
syntactic problems that have arisen in the construction of
our LDC system. In particular, we shall describe a gram-
matical formalism, based on augmented phrase-structure
rules, which allows a parser to make domain-specific deci-
sions by referring to a dictionary and other auxiliary files
produced during an initial learning session with the user.
We illustrate the workings of our grammatical formalism
with examples from the existing LDC grammar, but we
note that similarly motivated systems ought also to benefit
from our formalisms. We will also include the results of
some experiments with our existing grammar as applied to
several domains.

In addition to showing the theoretical advantage of
being able to provide many of the fine-tuning capabilities
of so-called semantic grammars within the context of a
domain-independent grammar, we demonstrate several
practical benefits to our approach. For example, the
conciseness of our formalism allows shorter grammars
than many previous formalisms would allow, at least for
the intended class of retrieval applications. This offers not
only added perspicuity but other benefits as well. For
instance, we have been able to write simple (almost trivial)
LISP routines that pre-process a g rammar to construct the
files used by the parser to increase efficiency and to
perform valuable disambiguations.

2. O v e r v i e w of S y n t a c t i c Process ing

The primary purpose of this paper is to introduce a gram-
matical formalism that we have developed for use in speci-
fying grammars for a transportable natural language
processor. As suggested by the term "framework" in the
title of the paper, however, we will touch upon certain
related concepts in order to give a complete account of the
language constructs that can be dealt with by our formal-
ism. In total, then, we shall discuss

1. a phrase-structured grammatical formalism;

2. a required dictionary format and associated compatibil-
ity file; and

3. an implied format for parse structures.

We begin with a brief indication of the ways in which
these topics tie together in our existing and in other
conceivable systems.

2.1 T h e p h r a s e - s t r u c t u r e g r a m m a r

The format we have developed to represent our grammars
is intended to capture the spirit of phrase-structure specifi-

cations such as the following, which specifies simple noun
phrases.

the (Ord / Super) (Num) (Super) Adj* Noun=Head PP*

Parentheses denote optionality, * denotes the Kleene-star,
and / denotes alternation. To distinguish between termi-
nal symbols, parts-of-speech, and multiple-word grammat-
ical categories, we have used the convention of no caps,
initial cap, and all caps, respectively.

In deciding on a precise, internal representation for
grammars, we decided to adopt a LISP-like prefix nota-
tion. Thus, the actual specification of the expression
shown above, assuming it intends to capture the structures
of descriptive noun phrases (say, "NPdesrip"), is as
follows. Note that we have included a context-sensitive
augmentation, of a form to be discussed later, for the
second Super.

(setq NPdescrip '(Seq
(Quote the)
(Opt Alt (Get Ord)

(Get Super))
(Opt Get Num)
(Opt Get Super = (need not part Super))
(* Get Adj)
(Get Noun Head)
(* Call PP)

))

Each of the seven command types illustrated here is
described in detail in Section 3, together with examples of
their idiomatic usage. The reader may notice that our
grammatical formalism resembles both transition network
and phrase-structure grammars (Woods 1970, 1980;
Heidorn 1975), and our later speaking of g rammar rules
as "commands" further reveals an affinity with ATNs.
For the reasons given in Section 5.2, however, we prefer to
view the grammars as collections of augmented phrase-
structure rules, while certain aspects of the current top-
down parser act very much like an ATN parser. The
reader may also notice that the current utilization of the
formalism has resulted in parse structures having the
flavor of case grammars, especially the ways in which
complex relative clauses and handled. On the other hand,
the provision for associating a feature list with each phrase
somewhat resembles the systemic structures of Winograd
1972.

2.2 T h e d i c t i o n a r y and c o m p a t i b i l i t y f i les

Our grammar rules assume that an input to be parsed will
be presented as a sequence of sets of token candidates,
where each token candidate corresponds roughly to a word
or inflection of a word found in the system dictionary.
Each dictionary listing for a word is made up of one or
more meanings, where each meaning comprises
(a) the word itself;
(b) its part o f speech;
(c) the associated root word; and

82 Computational Linguistics Volume 10, Number 2, April-June 1984

Bruce W. Ballard and Nancy L. Tinkham A Phrase-Structured Grammatical Framework for Transportable NLP

(d)
more possible values.

As an example, the entry

(offices Subtype office
1 2 3

says that
1.

zero or more associated features, each with one or

(nt room) (sp plur))
4 5

the word "offices" has been found or is being proposed
for the current token candidate;

2. the word refers to some of the domain objects of some
object type;

3. the root word is "office";
4. the objects being referred to are of type "room"; and
5. the word is a plural noun.

In addition to the "features" found in the dictionary,
which provide for simple context dependencies, a compat-
ibility file is assumed to be available which contains infor-
mation on acceptable attachments for such units as
prepositional phrases and relative clauses. An example of
how this information can be used, together with a simple
example of a possible set of prepositional triples, is found
in Section 3.3.3.

2.3 Parse structures

Our grammar assumes that, during parsing, each non-a-
tomic syntactic category will have associated with it a
"parse structure" consisting of
(a) the name of the structure;
(b) a list of features giving possible values of various

parameters (as illustrated shortly) associated with
the phrase; and

(c) a list of labeled items, namely words and pointers to
nested phrases.

For example, the parse structure

(NP (feats (nt person) (sp plur))
(Adj . lousy)
(Head . advisor))

might correspond to the noun phrase "lousy advisors",
where the features indicate that the phrase refers to
domain objects of nountype (nt) person and is plural
(plur), and the items indicate that the head noun is
"advisor" and the adjective "lousy" is present. For the
sake of completeness, and to help prepare the reader for
the discussion that follows, Figure 1 gives both complete
and "abbreviated" parse structures (i.e. a skeleton struc-
ture without nountype and compatibility information) for
the sentence

"How many graduate students were failed by the
instructor that John took AI from?"

As shown in Section 6.2.2, our feature lists are reminiscent
of the systemic structures given in Winograd (1972). In
effect, they constitute a repository of information about
words contained within a phrase (possibly nested within it)
and allow information to be passed both up and down a

parse tree, thus enabling valuable context-sensitivities,
both syntactic and semantic.

3. The Grammatical Formalism

Our grammatical formalism is built around seven types of
syntax rules which we will often refer to as "command"
types. The first three of these ("basic" commands) are
used to specify words, parts of speech, and syntactic cate-
gories, while the remaining four ("control" commands)
provide facilities lor optionahty, possible repetition, alter-
nation, and sequence. In addition to the primary tunction
of each of the commands, through which the grammar
writer (i.e. system designer) can specify any context-free
grammar, each of the basic commands may be augmented
with information that enables the grammar writer to spec-
ify certain context-sensitive constraints that (a) enable
similar grammatical constructs to be collapsed into what
would otherwise be an over-generating unit, and (b) allow
the parser to perform useful disambiguations. The latter
facility can be especially valuable in a transportable envi-
ronment, where the system designer is unable to predict
many of the syntactic, word sense, and other forms of
ambiguity that will arise.

We now discuss each command type, after which we
describe each of the augmentations allowed.

3.1 Basic commands

The three basic grammar commands are

Quote to specify a given word or set of words;
Get to specify a part of speech; and
Call to specify a syntactic category.

All grammar "commands" are processed by the parser (a
LISP program) and should not be confused with operations
in LISP or other programming languages. We will now
briefly describe these commands. As described shortly,
these commands may contain augmentations to assure
proper agreement among syntactic components.

The Quote command instructs the parser to find one of
a list of words in the next token slot of the input (i.e. as the
next token). For example,

(Quote (a an))

says to pick up the next word if it is "a" or "an", otherwise
fail. If the list of words contains just one word, the super-
fluous parentheses may be dropped, for instance

(Quote the) = (Quote (the))

The default action of Quote is not to add to the parse
structure being built up, but an optional label is provided
for. Thus, if the article "an" is seen by the command

(Quote (a an the) Art)

then the feature (Art . an) will be added to the parse
structure. Our current g rammar uses Quote sparingly,
partly since few words are known in advance in our trans-
portable environment. However, having a Quote facility is

Computational Linguistics Volume 10, Number 2, April-June 1984 83

Bruce W. Ballard and Nancy L. Tinkham A Phrase-Structured Grammatical Framework for Transportable NLP

(NP (feats (nt student) (head noun) (sp plural) (func count))
(RelO (feats (hi (Subj Verb Obj Part Prep Arg)

(instructor fail student nil nil nil))
(sp plural))

(Subj (feats (nt instructor) (sp sing) (head noun) (Art def))
(RelA (feats (nl (Subj Verb Obj Part Prep Arg)

(student take course nil from instructor))
(sp sing))

(Prep . from)
(Obj (feats (nt course) (sp sing) (head nounval))

(Nounval . AI))
(Verb . take)
(Subj (feats (nt student) (sp sing) (head nounval))

(Nounval . John)))
(H e a d . instructor))

(Verb . fail))
(Head . student)
(Nounmod . graduate))

(a) Complete Parse Structure

(NP (func count)
(RelO (Subj (RelA (Prep . from)

(Obj (Nounval . AI))
(Verb . take)
(Subj (Nounval . John)))

(Head . instructor))
(Verb . fail))

(Head . student)
(Nounmod . graduate))

(b) Abbreviated Parse Structure

Figure I. Complete and Abbreviated Parse Structures for the Sentence
"How many graduate students were failed by the instructor that John took A l from.~'

useful in allowing the grammar writer to capture various
"noise words" without having to define artificial grammat-
ical category names or resort to a proliferation of features.
Thus we feel quite comfortable in writing, at the appropri-
ate place(s) in a grammar, the command

(Quote (whether if))

The Get command instructs the parser to find a word
having one of a list of parts of speech. As with Quote, an
abbreviation is permitted if only one part of speech is to be
allowed (which is most often the case). Some examples
are:

(Get (Ord Super))
(Get Noun)

When a Get command is processed, the word it picks up is
incorporated into the current parse structure and labeled
appropriately. The default label is the part-of-speech
category but an optional second argument to Get may be
used to specify any other label name. For instance,

(Get Noun Head)

says to pick up a noun and label it Head. This would be
useful if several nouns occur within a given phrase and
need to be distinguished. If it is desired to recognize a
given part of speech without adding to the parse structure,
the label "nil" may be given, thus

(Get Art nil)

would recognize an article without affecting the parse
being built up. Finally, if one of several parts of speech is
to be allowed, the dummy label "=" may be used to assure
the default action. However, this is necessary only in situ-
ations where augmentations (as discussed in Section 3.3)
are present. For example,

(Get (Vpres Vpast) = (vtype intrans))

would cause the word being recognized to be labeled
according to its dictionary specification.

The Call command instructs the parser to process an
embedded constituent, such as a noun phrase, preposi-
tional phrase, relative clause, and so forth, and so our Call
is analogous to the "push" operation of conventional ATNs
(Woods 1970). As with the Get command, whatever is

84 Computat ional Linguistics Volume 10, Number 2, Apri l-June 1984

Bruce W. Ballard and Nancy L. Tinkham A Phrase-Structured Grammatical Framework for Transportable NLP

found will be labeled as specified or by default. Thus, the
commands

(Call NP Arg)

(Call Relc)

call for a noun phrase (NP) to be labeled Arg and a rela-
tive clause (Relc) to be labeled Relc.

Normally, each Call-ed routine, and also the top-level
constituent S, will have a separate parse structure associ-
ated with it. Thus, when a constituent phrase has been
parsed using a Call command, it will be pointed to rather
than having its components physically included in the
parent phrase. In the LISP implementation, the associated
structure is simply buried one additional level and
assigned a feature list (to be discussed shortly) of its own.
For example, if in recognizing the phrase "big houses" the
adjective "big" is parsed directly by the grammar routine
for noun phrases, it would be placed into the parse struc-
ture as indicated by

(NP ((sp plur) (nt building))
(H e a d . house)
(Adj . big))

where the first set of nested parentheses give the feature
list of the noun phrase as discussed in Sections 3.3. and
6.2.2. If on the other hand our grammar identified some
potentially larger unit (say, adjective phrase) as a separate
syntactic construct, and the word "big" was recognized as
a constituent of it, we would have

(NP (feats (sp plur) (nt ...))
(Head . house)

(AdjPh (feats (nt ...))
(Adj . big)))

where the precise "nt" value would be determined by the
augmentations present in the Call command.

In some instances, however, either for the sake of
perspicuity or to avoid redundancy, it is useful to isolate
and name a sequence of commands as a "macro" for
which recognized items will be incorporated directly into
the parent structure, i.e. the parse structure current when
the Call command was encountered. This is handled by
giving a label of nil when the macro interpretation is
desired. For example, our noun phrase grammar includes
the command

(Call Ordnum nil)

where Ordnum looks for ordinals, superlatives, and
numbers.

3.2 Control commands

In addition to the three primitive commands just
described, we provide commands to specify optionality,
possible repetition, alternatives, and sequence.

The Opt command instructs the parser to attempt to
process an arbitrary command, but Opt will succeed even
if this attempt fails. Some example Opt commands are

(Opt Quote of)

(Opt Get Noun Head)

(Opt Call PP)

In addition to applying Opt to a basic command, as shown
here, Opt may be applied to any of the remaining control
commands discussed below. Since the scope of Opt, and
also of * as discussed next, consists of a single command,
we have avoided introducing a superfluous set of parenthe-
ses surrounding its argument.

The Star command, or simply *, denotes the Kleene-
star and says to perform the embedded command 0 or
more times. Some examples are

(* Get Adj)

(* Call Relc)

During parsing, a * command is treated as an Opt that
re-invokes itself upon each success.

The Alt command instructs the parser to perform exact-
ly one of a set of commands, which it tries in the order
they are given. Alt will fail if none of its arguments
succeeds. Some examples are

(Alt (Get Noun)
(Get Pron))

(Alt (Call PP)
(Call Relc))

An interesting and frequent instance arises when one of
several constructs is to be optionally recognized. We have
found it pragmatically preferable in these instances, both
visually and for the sake of efficiency, to code for an Alt of
alternatives, and surround this Alt with an Opt, rather
than apply Opt to each alternative with an Alt outside.
That is, we would normally write

(Opt Alt (Call PP)
(Call Relc))

rather than

(Alt (Opt Call PP)
(Opt Call Relc))

As a second pragmatic remark related to Alt, we note that
the command

(Alt (Get Noun)
(Get Pron))

may function differently from

(Get (Noun Pron))

when the next word to be parsed has several parts of
speech associated with it. In the former case, the noun
reading will be taken if at all possible, while in the latter
either a noun or pronoun reading is equally acceptable to
the grammar, so the first grammatical category appearing
in the scanner output will determine what is selected.

Computational Linguistics Volume 10, Number 2, April-June 1984 85

Bruce W. Ballard and Nancy L. Tinkham A Phrase-Structured Grammatical Framework for Transportable NLP

Since the problem of mis-recognitions is especially trouble-
some in our projected voice-input environment (Biermann
et al. 1983), this distinction can be important.

Finally, the Seq command instructs the parser to
perform a list of commands in order. For example,

(Seq (Get Prep)
(Call NP))

says to recognize a preposition, then call for a noun phrase.
If any member of the list supplied to Seq fails, then the
entire Seq command will fail. Before doing so, however,
attempts will be made via the backtracking mechanisms of
the parser to re-interpret what has already been parsed by
previous commands of the Seq. Strictly speaking, Seq is
redundant since its effect can be obtained by using a
macro with a dummy name. However, we find it conven-
ient to be able to code nameless sequences where they are
used, somewhat analogous to the use of LAMBDA in LISP,
or of BEGIN-END blocks in Algol.

3.3 Augmentat ions

The seven syntax commands described above provide the
grammar writer with convenient means of specifying
context-free rules for fragments of natural language (in
fact, only four of the seven are required in order to do
this). However, the inadequacies of a pure context-free
formulation of natural language syntax are well recog-
nized, and various treatments have been used to overcome
them (Bobrow and Webber 1980; Heidorn 1975; Colmer-
auer 1978; Kimball 1972; Marcus 1980; Pereira 1981;
Pratt 1975; Rieger and Small 1979; Robinson 1982; Sager
andGrishman 1975; and Woods 1970, 1980). Within our
grammatical formalism, we have provided means of speci-
fying several forms of useful "compatibilities" among the
elements of a phrase or clause. As the reader may
observe, most of our provisions for context-sensitive spec-
ifications could in theory be done in a strictly context-free
fashion, though not conveniently (e.g. a large and poten-
tially exponential increase in the number of parts of speech
might be required). A related use of augmentations is to
"annotate" the parse structure with information that will
be useful in its subsequent semantic processing.

Compatibility checking is done according to augmenta-
tions which occur as optional parameters of Quote, Get
and Call commands. With a few exceptions, augmenta-
tions may be used in any combination. Thus, the general
form of the three basic commands, wfiich we described in
simplified form in Section 3.1, is

(Quote <literal word(s)> { <label> { <pl> ... <pN> } })

(Get <part(s) of speech> {<label> {<pl> ... <pN>} })

(Call <routine name> {<label> {<pl> ... <pN>} })

where braces denote optionality and where each parameter
(denoted by pi) has one of the forms we now describe.

3.3.1 Feature-value pairs and a not-local marker

The simplest type of augmentation, which applies to any of
the three basic commands (i.e., Quote, Get, Call), consists
of a feature-value pair that supplies information on, and
thus restricts the allowable values for, some "feature" of
the current phrase. Since dictionary listings also contain
feature-value pairs, and words being incorporated into a
phrase must have features compatible with those already
in the phrase, a feature-value specification in the grammar
may serve to restrict the set of legal words to be processed.
That is, the information about a word about to be incorpo-
rated creates an inconsistency, thus causing the command
being considered to fail. As an example, the command

(Get Noun Head (sp sing))

contains the feature-value augmentation "(sp sing)" which
says that the "sp" feature of the current phrase must have
the value "sing". In essence, the command calls for a
singular noun. The command

(Get Ved Verb (type past part))

gives an example of a feature-value pair that somewhat
more liberally requires that the "type" feature of the
current phrase be one of two possible values.

Another use of feature-value pairs is to incorporate
information into the phrase being processed that will be
used to determine the acceptability of subsequent
commands, as described in Section 3.3.4. For example,
the command

(Opt Quote by nil (byfront))

might be used at the top of a grammar routine for passive
relative clauses to indicate that the phrase actually began
with the word "by" as opposed to the word being found
elsewhere. Note that, in situations such as this, an isolated
feature name without associated values is sufficient and
thus allowed by the formalism.

Still another use of feature labels is to annotate the
parse structure being built up, as in

(Get (Aux = (func yesno))

Naturally, different uses of feature labels may occur in a
single command. For instance, the word "many" in the
determining phrase "how many" might be coded as

(Quote many nil (func count) (sp plural))

where the "func" feature is an annotation and the "sp"
feature assures that the subsequent head noun will be
plural.

In some situations, it may be desirable to ignore
feature-value pairs in the dictionary listing for a word and,
in this event, a notlocal augmentation may be used. For
example, the command

(Get Prep Part notlocal)

might be used to indicate that the features associated with
a preposition are to be ignored when the word is being

86 Computational Linguistics Volume 10, Number 2, April-June 1984

Bruce W. Ballard and Nancy L. Tinkham A Phrase-Structured Grammatical Framework for Transportable NLP

used as a particle. By allowing an attachment of
"notlocal", we avoid some of the need to associate multiple
senses with all the words that some command is interested
in recoghizing.

3.3 .2 F e a t u r e labe ls

The second type of augmentation applies to Call
commands and consists of a feature label specification
similar to the feature-value pairs discussed above. The
effect is to require some feature of the current phrase to
agree with some possibly different feature of the child
phrase about to be created. That is, the values of the two
features are to be shared. If the parent and child phrase
are to agree on the same feature label, this label is merely
included at the end of the Call command. As an example,
we might account for the first part of postnominal compar-
ative phrases of the form "(which is) (not) <compar>
than", where parentheses denote optionality and
"<compar>" denotes a comparative such as "better" or
"bigger", by

(Call CompPh Comp nt sp)

which assures that the top-level verb will agree in plurality
(sp), and the relative pronoun in nountype (nt), with the
head noun to be modified. In the event that every feature
of the parent and child phrases should agree, the fictitious
label all may be used. For example, our Adj routifie
handles adjective and present participle modifiers, and
also negated forms of these (e.g. "non failing"), and the
latter are processed by a low-level NegAdj routine invoked
by

(Call NegAdj neg all)

This allows the scope of the negation to be retained, since
the modifier is nested inside a "neg" label to the noun
phrase being built up, yet assures that the modifier is
compatible with all features in the noun phrase just as
though it were to be processed directly.

When parent and child phrases are to agree on different
labels, we include an "agree" triple of the form

(agree <parent feature> <child feature>)

As an example, we might wish to associate two separate
nountype features with argument-taking nouns like
"classmate", one for the type of world object the word
itself refers to and one for the type of world object associ-
ated with its argument. In this case, the word
"classmates" might receive the dictionary listing

(classmates Argnoun classmate
(nt student) (ntarg student) (sp plur))

and we might recognize the phrase "classmates of John"
by

(Seq (Get Argnoun Head (head argnoun))
(Quote of)
(Call NP NounArg (agree ntarg nt)))

since at the time the Call command is encountered the
parse structure will be

(NP (feats (head argnoun) (ntarg student)
(nt student) (sp plur))

(Head . classmate))

3.3 .3 N o n l o c a l f r a m e p a r a m e t e r s

Another form of augmentation associated with Call
commands is the nonlocal frame parameter, which is simi-
lar to, but more general than, what is available using a
feature-value pair. It allows the grammar writer to
enforce agreements between or among phrases, and has
the form

((agreement type) { <labels> <feature> })*

where {... }* indicates repetition of "..." 0 or more times.
The required compatibility among the indicated constitu-
ents is that an appropriate tuple be found in the set of
tuples associated with the specified agreement type. Each
label-feature pair tells what elements of the tuple have
already been found, and which of their features contains
the desired compatibility information. As indicated in
Section 6.1, compatibility tuples are created during know-
ledge acquisition and made available to our parser in
parallel with the dictionary listings from the scanner. For
example, prepositional compatibilities might be indicated
by a set of triples such as

((Head Prep Arg)
(book in table)
(book on table)
(book on chair)
(chair on table))

so that the prepositional phrase "in the old table" would be
allowed to attach to a phrase whose head noun has the
nountype book but not to one having the nountype chair.
As an example, we might use the command

(Call PP PP ((Prepinfo) Head nt))

to require a 3-way agreement among the indicated compo-
nent (Head) of the current phrase and remaining compo-
nents (Prep and Arg) of the routine (PP) about to be
invoked. The "nt" feature tells where in the current
phrase and the remaining phrases the values for agreement
are to be found. In our current grammar, the preposi-
tional phrase (PP) routine locates a single word to fill the
Prep slot and finds an NP phrase to fill the Arg slot. Thus,
the 3-way compatibility in effect is to be found among

1. the nt feature of the current phrase,
2. the single word filler for the Prep slot, and
3. the nt feature for the phrase that fills the Arg slot.

As a second example of compatibility information, we
currently maintain 6-tuples for verb phrases, where each
position corresponds to a possible clause element as shown
in Section 4.1, so that the tuples

Computational Linguistics Volume 10, Number 2, April-June 1984 87

Bruce W. Ballard and Nancy L. Tinkham A Phrase-Structured Grammatical Framework for Transportable NLP

((Subj Verb Obj Prep Arg Part)
(student fail course nil nil nil)
(student take course from instructor nil)
(student make grade in course nil)
(instructor fail student nil nil nil)
(instructor cross student nil nil up))

might be used to say that a student may take a course but
not an instructor, an instructor may fail a student but not
vice versa, an instructor may be said to have crossed up a
student, and so forth.

In the implementation of our parser, compatibility
information is maintained in only one place and all related
structures point to this location. This means that compat-
ibility information will be passed both up and down the
parse structure under construction to aid in disambigua-
tion and subsequent interpretation.

In the event that one or more of the clause elements
associated with a nonlocal frame parameter is to be
considered optional, a nonlocal frame parameter may be
accompanied by an opt parameter to this effect, so that

(Call Passive Relc (Relinfo) Obj nt) (opt Subj))

calls for a passive relative clause in which the object (Obj)
has been relativized and in which the subject (Subj) may
be omitted, as in "the book given to Paul". As an example
of when more than one element of a compatibility tuple
will already have been found when tuple agreement is
requested, suppose we wish to handle "deep" relativiza-
tions, as in a "a book Smith wrote the last chapter of".
(Although a linguist friend has recently told one of us that
this is bad English, it occurs quite often in computational
settings and is therefore sensible to inject into a realistic
grammar.) Here, the triple chapter-of-book is to be
checked, so the preposition "of" is preceded by its argu-
ment as well as by the noun it modifies. Thus, assuming
"nt!" gives the nountype of "Smith" that has been passed
down by the methods of Section 3.3.2, we might write

Call Prep PP-hole ((Prepinfo) Head nt Arg nt!))

to find a lone preposition with appropriate agreement.

3.3.4 T h e " n e e d f e a t u r e " p a r a m e t e r

Another form of augmentation, which enables the gram-
mar writer to deal with situations where the presence of
certain information enables rather than blocks another
phrase, involves a need parameter that may occur with any
of the three basic commands or, with a related effect, with
an Opt command. The effect of this type of augmentation
is to allow the associated grammar command to be used
only if one of a specified list of features or items (parts of
speech) is already present in the current phrase or, if
desired, to enable a command only in the absence of previ-
ous features or items. Ordinarily "need" will check for the
presence of a feature, but optional "not", "par t" , and
"tok" flags will cause its behavior to be modified appropri-
ately. As an example usage of "need", assume that we

want to account for "ordinal modifiers", i.e. phrases such
as "from the right", that may occur as postnominal modi-
fiers when a prenominal ordinal has occurred. That is, we
wish to allow "second column from the right" yet disallow
"columns from the right". This might be accomplished by
using the command

(Call Ordmod = (need part Ord))

As a second example, we might use the command

(Get Noun Head (sp plur) (need part Art Num))

to indicate that a plural noun is to be accepted only if
either an article (Art) or number (Num) has already
appeared in the current phrase as a "par t " (of speech).

To check for a token feature, we use "tok". For exam-
ple, to treat "more interesting" but not "more good" as a
comparative (thus ruling out the anaphoric comparative
reading of a sentence such as "we'll have more good things
to talk about tomorrow"), we put a "parap" feature in the
dictionary listing for paraphrastic adjectives (i.e., those
that take "more" as opposed to "-er") and then write

(Get Adj Compar (need tok parap))

As an example of the complementary usage of "need",
suppose we wish to allow a post-nominal comparative to
occur with its associated " than" phrase only if a pre-nomi-
hal comparative has not been found. That is, we want to
allow "better student than Jack" and "students better
than Jack" but not "better students better than Jack". In
this situation we might check for a possible post-nominal
comparative with the command

(Get Compar = (need not part Compar))

In the event that a command is to be treated as optional in
some cases but is required in others, a "need" augmenta-
tion may be used along with an Opt command and, in such
situations, the command to be considered optional must be
given inside parentheses (otherwise the "need" would be
associated with the command itself and not with its option-
ality). As an example, we might account for elliptical
noun phrases such as "the seven" or "the last" via the
command

(Opt (Get Noun Head) (need part Ord Num))

which says that a Noun must appear unless the phrase
being processed already has an ordinal (Ord) or a number
(Num).

3.3.5 T h e " n e x t w o r d s " p a r a m e t e r

Finally, to allow a fixed grammar to be applicable to
domains in which certain unpredicted idiomatic
constructions arise, we provide a next parameter that indi-
cates that the dictionary word being processed must be
literally followed by one or more words. The "next"
parameter is available for both Quote and Get commands
and, more important, may also be contained within the
dictionary listing of a word. As an example, we might

88 Computational Linguistics Volume 10, Number 2, April-June 1984

Bruce W. Ballard and Nancy L. Tinkham A Phrase-Structured Grammatical Framework for Transportable NLP

account for the idiom "to pick up on" by including the
following as one of the senses for the word "picked"

(picked Ved pick-1 (next up))

and then indicate in the compatibility file that "on" acts as
a particle for the verb whose root is "pick-l". To be more
extreme, we might have

(kicking Ving kick-2 (next the bucket))

together with an indication that "kick-2" is an intransitive
verb, to indicate that the phrase "to kick the bucket" is to
be treated idiomatically. The "next" feature might also be
used in the grammar as a simplification, allowing us to
replace

(Seq (Quote at nil (quant leastmany))
(Quote least)
(Quote as)
(Quote many))

with the simpler

(Quote at nil (next least as many) (quant leastmany))

4. Current Utilization of the Grammatical Formal-
ism

We have indicated that the phrase-structure grammatical
formalism discussed in this paper is being used in the
context of LDC, a transportable natmal language process-
or. We now describe briefly the nature of the parser and
current grammar associated with this system, then give
the results of some experiments with the grammar and
parser.

4.1 The current LDC grammar

Most of the present LDC grammar comprises
(a) a fairly elaborate noun phrase grammar, and
(b) a case-like specification of sentence-level and fairly

complex relative clauses.
For example, we presently provide for relative clauses of
many varieties (e.g. "by whom a book was given to Bill" as
well as "who gave a book to Bill") having case frames of
the form

Subj Verb {Object} {{Prep} Arg} {Particle}

where braces denote optionality. We also provide for
many kinds of pre-nominal modifiers, including ordinals,
superlatives, adjectives, and noun modifiers. Many forms
of comparative phrases are also provided, including ellip-
tical ones such as "a longer document than xletter" and
"students making a better grade than Bill in CPS152".
Our initial grammar was approximately six pages in
length and yet, due to the consolidations made possible by
our phrase-structure rules, contained almost all syntactic
structures available in the original 20-page ATN grammar
used by NLC from which it was adopted, and many other
structures (notably, more elaborate comparative and rela-
tive clause forms). However, this grammar provided for

only noun phrases, albeit complex ones. Our current
grammar is eight pages in length and, due to consol-
idations made possible by enhancements to the formalism,
allows both wh- and yes-no questions, imperatives,
passives, deep raisings, several forms of fronting, a few
discontinuous constituents, and some exotic modifier types
mentioned in Ballard (1984). The syntactic processing of
a representative input for LDC was indicated in Figure 1,
and information of the scope of the current syntactic and
semantic coverage of LDC can be found in Ballard (1984).

As indicated below, some of the first domains that we
used to test the modules of LDC were
(a) a final grades domain,
(b) a document preparation domain, and
(c) the original matrix domain of NLC.
In the interest of assuring domain independence, only
those constructs that arise in two or more of these domains
(or others we have tested Prep with) appeared in the initial
LDC grammar. This has caused us to temporarily
discount certain features, especially (a) low-level syntax
for domain-specific noun phrases, such as the optional
indefinite article in "a B+" for the final grades domain
and floating-point numbers for the matrix domain, and (b)
certain unusual or idiomatic verb phrase forms.

4.2 The initial to-down parser

When designing a syntax processor for a class of formal or
natural language grammars, one often begins with a top-
down implementation, then uses this system to test and
refine the formalism and/or grammar(s) of interest, and
only later contemplates a more efficient bottom-up, possi-
bly table-driven, implementation. We have followed this
practice in designing an initial top-down parser for LDC.
Backtracking is used when a command fails because either
the wrong type of input word has been encountered or an
inconsistency has been created by compatibility informa-
tion. Since semantic information is being used for disam-
biguation during parsing, our parser returns the first (and
only) fully acceptable structure if finds.

Our kernel parser, which deals with the seven command
types but ignores augmentations, was designed, coded and
tested by one person in fewer than 10 days and occupies
less than four pages of lightly commented LISP code. The
full repertoire of augmentations, on the other hand,
required roughly six man-months of effort to design and
implement and occupies about eight additional pages of
code. This is partly due to the additions and refinements
being made to the formalism as the parser developed.
Detailed information on the construction of the initial LDC
parser is given in Ballard and Tinkham (1983).

4.3. Experiments with the LDC Grammar and
Parser

Having completed the parser and constructed a suitably
broad grammar for use in several layered domains, we
have begun to experiment with our parser in the manner of
Slocum (1981) to see how significantly certain of our

Computational Linguistics Volume 10, Number 2, April-June 1984 89

Bruce W. Ballard and Nancy L. Tinkham A Phrase-Structured Grammatical Framework for Transportable NLP

pruning methods can reduce the time complexity of pars-
ing. Some of the pruning techniques we have studied are
I. the use of a Start file that tells what grammatical cate-

gories may begin each syntax routine,
2. the use of local compatibility checking Section 3.3.1),

and
3. the use of non-local compatibility checking (Sections

3.3.2 and 3.3.3).
In addition to efficiency interests, the latter two tech-
niques influence what parse structure is found for spurious
or ambiguous inputs, which is also a concern worthy of
study. However, we have postponed an investigation of
parsing "accuracy" until we have begun to elicit actual
inputs from realistic users. We now describe several
experiments with the LDC grammar and parser.

4.3.1 Usefulness of the "S ta r t " file

As an initial experiment with the LDC grammar and
parser, we constructed representative inputs of varying
lengths from each of the three domains mentioned above
and ran the parser both with and without the pruning
capability provided by the Start file. This file gives infor-
mation analogous to that provided by the First relation of
conventional LL(1) compiler theory, and is created auto-
matically by an off-line process that traverses a grammar
(see Section 6.1). The actual inputs that were used follow.

Document domain:

"the first two sentences"
"the longest sentence in the first paragraph"
"the shortest sentence in the first paragraph containing a

misspelled word"

Final Grades domain:

"the best student"
"the best undergraduate Ballard taught in AI"
"the student with the highest grade in the course Mary

made a B+ in"

Matrix domain:

"the first two rows"
"the entries added up by command 7"
"the second entry the last four commands added five to

that is positive in matrix 2"

Statistics were gathered for both the number of grammar
commands executed, and the actual running time. In
particular, we had the parser keep track of the number of
times an attempt was made to execute a Call command,
and also how many times the test of whether to invoke the
body of the Call succeeded. At the system level, we had
UN IX 2 report the amount of time (in seconds) spent by the
parser for each of the 18 runs (9 sentences each run with
and without Start information). The results of this study
are given in Table 1. As can be seen, the use of the Start
file led to a significant reduction both in the number of
Call statements entered or executed and in the actual
parsing time. In fact, for 8 of the 9 inputs, parse time was

reduced by more than half. An explanation for the fairly
long parse times is given in Section 5.3.

4.3.2 Expense of macro-sty le SEQ c o m m a n d s

After studying the results given above, we wondered how
greatly the observed improvements were due to the pres-
ence of unnecessary Call commands. In the grammar
being tested we had, for the sake of clarity, included many
Call commands that were invoked at only one place in the
grammar, and we wondered what the results would be if
these "superfluous" Call commands were replaced by their
associated bodies. Since only Call commands have
"Star t" lists associated with them, we conjectured that it
would actually be an advantage to have many Call
commands, especially for a lengthy Alt (alternative)
command that would do lots of superfluous work. To test
this hypothesis we ran an experiment to compare the
original g rammar against a modification of it in which the
bodies of several of the superfluous Call commands were
instantiated at the point of call. For reasons not relevant
to this discussion, it was first necessary to re-order some of
the grammar rules in order to make a fair comparison.
Thus, there were three grammars to be tested. Each
grammar was run both with and without the Start infor-
mation for several of the sample inputs shown above. For
the most complicated input, "the second entry the last four
commands added five to that is positive in matrix 2", the
results are given in Table 2, where the statistics for
comparison are found in the second and third lines.
Although the full significance of these preliminary results
is not clear, it is apparent that the instantiations had
(a) a small positive effect when Start information was

not being used, and
(b) a small negative effect when Start information was

used.
These results lend credence to the hypothesis that intro-
ducing convenient Call commands will not lead to an
increase in parsing efficiency in the presence of the Start
file.

4.3.3 Expense of nonlocal compat ib i l i ty checking

Upon noting the long parse times in the preceding exper-
iments, we wondered how much of this time was being
spent in nonlocal compatibility checking and whether this
checking increased parse time, due to the extra work
involved, or decreased it, by early pruning of erroneous
potential parses. Accordingly, we considered two gram-
mars, one with augmentations calling for nonlocal check-
ing to be done, the other without such parameters, but
identical otherwise, and compared the parsing times for
each grammar for each of the four noun phrases

"the first class"
"the best undergraduate student Ballard taught in AI"
"the name of the class the student the professor taught

liked"

2UN IX is a trademark of AT&T Bell Laboratories.

90 Computational Linguistics Volume 10, Number 2, April-June 1984

Bruce W. Ballard and Nancy L. Tinkbam A Phrase-Structured Grammatical Framework for Transportable NLP

Table 1. Reduction in Parsing Times by the Use of the "Start" File

Sentence Without Start With Start Percent
Domain Length Considered Time Considered Entered Time Savings

short 21 8.5 6 4 2.9 66
Document medium 49 18.9 24 12 8.5 55

long 80 32.3 29 16 12.2 62

short 21 8.2 6 4 2.7 67
Grades medium 36 14.3 16 10 6.5 55

long 94 37.i 42 22 13.8 64

short 21 7.4 6 4 2.4 68
Matrix medium 29 12.0 17 8 5.5 54

short 8.0 2.7 66
Average medium 15.1 6.8 55

long 36.7 16.7 55

* "the four tallest classes"

where "*" denotes an unacceptable sentence. In each case
both local compatibility checking and checking of Start
information were done. The results appear in Table 3. As
with the experiments discussed above, these measurements
have limited statistical significance due to the small
sample sizes of grammars and of inputs. However, the
preliminary indication is that checking for nonlocal
compatibility adds more time to parsing than it saves.
This suggests that the benefits of such nonlocal checking
will be primarily in improved accuracy of disambiguations,
rather than speed of parsing.

5. D i s c u s s i o n

We now summarize what we believe to be the most signif-
icant aspects of our formalism, briefly comment on the
relation of our grammars to conventional ATN grammars,
and finally mention some of the drawbacks to our
approach.

5.1 S o m e a d v a n t a g e s o f o u r f o r m a l i s m

Our goals in developing the grammatical formalism
discussed in this paper were, first, to prepare for transpor-
tability and, second, to be able to specify grammars in a
simple, understandable, and succinct fashion. Concerning
the first goal, we have seen how nountype, plurality, and
various forms of compatibility information can be conven-
iently passed up and down a parse structure under
construction. This information can prove useful in disam-
biguations and in subsequent semantic processing. In
particular, our formalism allows us to state many
restrictions of semantic grammars within a general gram-
mar, independent of the domain(s) at hand. This is possi-

ble because the files created during knowledge acquisition,
namely the dictionary and associated compatibility file,
contain many types of domain-specific information that is
useful in making syntactic and semantic decisions during
parsing. For instance, we can write a simple and relatively
short set of syntax routines for relative clauses that over-
generates (i.e. allows many spurious structures) since
adequate restriction information is available in the pre-
processed files. This is similar in spirit to the isolation of
restriction information described in Sager and Grishman
(1975).

Some of the features of our formalism which we consid-
er desirable but not related directly to the goal of transpor-
tability are the following.

1. Our Quote and Get commands represent a consol-
idation over lower-level command types of the ATN
form adopted for our previous NLC system. For
instance, we use a single Get command to take the
place of what would require three separate
commands in the NLC grammar.

2. We have provided for default labels in the parse
structures being built, which grammar writers can
override if they choose.

3. We often allow for lists of items where only one item
would be expected. For instance, we may ask for one
of several words or parts or speech, as in
(Quote (that which who)) or (Get (Num Super)),
or specify several compatibility-checking augmenta-
tions in a single command.

4. We provide for arbitrary embeddings of commands
within any of the composite commands, similar to the
nestings provided in LISP and a number of modern
programming languages.

Computational Linguistics Volume 10, Number 2, April-June 1984 91

Bruce W. Ballard and Nancy L. Tinkham A Phrase-Structured Grammatical Framework for Transportable NLP

Table 2. Effect of In-line Instantiation of Superfluous Call Commands

Without Start With Start
Grammar Considered Time Considered Entered Time

Original Grammar 84 40.2 54 28 25.1

Re-ordered Grammar 94 46.7 59 30 27.0

Re-ordered Grammar
with Instantiated Calls 69 45.5 52 27 31.1

5. Our grammars do not require dummy node names,
such as those occurring in typical ATN grammars.

6. We handle most restriction specifications by a small
number of augmentations which cling to the seven
command types. This implies the presence within our
grammars of an easily visible context-free skeleton
grammar, which one can detect without having to
trace through and ignore various testing commands.

7. Due to the crispness of our g rammar commands,
presence of consolidations with appropriate defaults,
and manner of embedding augmentations within
commands, we are able to work with relatively
compact grammars, which aids in their comprehen-
sion and manipulation.

8. The crispness of our seven commands has also
allowed for useful preprocessing of the grammar to
create the Start and Adjacency files. This form of
information has been found useful by several
researchers, yet is often supplied directly from the
human author of the grammar, and must be updated
when the grammar changes. Our files are created
automatically.

5.2 C o m p a r i s o n s w i t h A u g m e n t e d T r a n s i t i o n
N e t w o r k F o r m a l i s m s

As remarked earlier, our grammatical formalism, which is
based on what we regard as phrase-structure rules, bears
some resemblance to ATN grammars (Woods 1970, 1980),
but there are important differences. First, the notion of a
network node is almost entirely absent from our formal-
ism. For example, in the following typical ATN node

(Q2 (PUSH NP / T
(SETR Subj *)
(TO Q3)))

we note the presence of both (a) the label Q2, and (b) the
reference to the successor node Q3, neither of which has a
counterpart in our grammars. By eliminating such node
names, we reduce the space needed to specify grammar
rules, which helps make our grammars more readable.
We also reduce the redundancy of the grammar represen-
tation, which makes updates easier and less error-prone.

Actually, node names for ATN grammars need not be
given explicitly, but their elimination requires that
networks be stored as linked structures that resist conven-
ient manipulations with standard text editors. This was
the alternative representation chosen for the ATN gram-
mars of NLC. As a final point concerning readability of
grammars, we note the common practice of conveying
ATN grammars by giving an actual network diagram,
which by its non-linear nature cannot be so conveyed to
the computer system.

A second departure of our formalism from conventional
ATNs is that we have systematically avoided the tempta-
tion to introduce opportunities for making arbitrary tests (a
provision shared, evidently, with even more glee, in various
logic grammars, e.g., Pereira 1981). Such opportunities
are provided for in ATN grammars by the TST node type,
and also by allowing arbitrary LISP predicates at various
points. As indicated in Section 4.3, we have taken pains to
restrict the repertoire of conditions that may be checked,
hoping that such restrictions will better direct the gram-
mar writer to the salient features that need to be consid-
ered. Our interest is more to provide a formalism that can
be used easily and profitably than to provide something
with formal Turing ability. Thus, we have sought to iden-
tify a small but adequate number of easily understandable
conditions to be checked when doing a Get, Call, and so
forth. Another departure is that many of our augmenta-
tions, most conspicuously that described in Section 3.3.3,
amounts to setting up demons to monitor the process of a
routine about to be called so that appropriate information
passing will occur. This allows a routine to be written just
once, yet lead to different sorts of compatibility checking
based upon the context in which it is invoked. This philos-
ophy appears to differ from that upon which the essential-
ly bottom-up SEND mechanism of ATNs is based.

5.3 L imi ta t ions of our approach

We now mention some of the difficulties we have encount-
ered with our approach to transportable parsing. Before
doing so, we note that the excessive parse times suggested
in Tables 1-3 are no longer a problem, since our parser
now runs on a VAX in compiled LISP (and the tables were

92 Computational Linguistics Volume 10, Number 2, April-June 1984

Bruce W. Ballard and Nancy L. Tinkham A Phrase-Structured Grammatical Framework for Transportable NLP

Table 3. Time Spent in Nonlocal Compatibility Checking

Sentence Without Checking With Checking Percent Overhead

Short 4.6 5.2 13.0

Medium 10.2 13.7 34.3

Long 18.8 25.7 36.7

Incorrect 8.7 9.0 3.4

created on a 16-bit PDP-11/70 running fully interpreted
LISP without hash tables). At present, parse times are
hovering at around one second.

First, we note that at present the noun positions in case
frames and prepositional triples consist of object types of
the domain at hand. Although this level of abstraction is
somewhat more general than specific surface words, we
are considering means whereby the user can make use of
the hierarchical relationships among domain entities to
reduce the redundancy of some case frame specifications.
For example, "person" might be used to mean "either
student or instructor", and in fact entire taxonomies might
be introduced.

Second, we have observed a few places in our grammar,
especially the treatment of quantifiers, determiners, and
their allowable co-occurrences, where the old ATN formal-
ism we used for the NLC grammar would result in more
concise and not necessarily less perspicuous grammars.
For instance, "all/each of the" is okay but not "every of
the"; "every/each one of" is okay but not "all one of the";
and "all the" is okay but not "each/every the". In fact,
we at times sketch out a new class of constructs to be
incorporated into our grammar in a pidgin transition
network form, then seek ways to linearize.

Finally, we note that several existing grammatical
formalisms, such as string grammar and ATN grammar,
have enjoyed more than a decade of refinement and have
led to quite efficient parsing mechanisms. We expect the
principles we have developed to undergo similar improve-
ments during the course of our research. Though much of
the current LDC grammar was derived from corresponding
parts of the ATN grammar of NLC, there is no reason to
doubt that we will be able to adopt relevant portions of
other large grammars (e.g. Robinson 1982; Sager 1981),
thus taking advantage of previous research directed more
toward the linguistic versus domain-modeling aspects of
natural language syntax.

6. A G l i m p s e at the Overa l l LDC E n v i r o n m e n t

The design of LDC began in 1981 with the goal of allowing
a system designer to quickly create interfaces to new
domains by supplying vocabulary and domain structure

information to a customizing module. However, LDC soon
developed into a system where all information about a new
domain is acquired from prospective users, as had been
done for REL (Thompson and Thompson 1975) and
KLAUS (Haas and Hendrix 1980). The system is loosely
based upon strategies developed for our English-language
programming system NLC (Ballard and Biermann 1979;
Biermann and Ballard 1980; Sigmon 1981; Fink 1982;
Geist, Kraines and Fink 1982; and Biermann, Ballard and
Sigmon 1983), and has been designed to provide a natural
language query capability for office domains whose data
are stored on the computer as informally structured text-
edited data files (Ballard and Lusth 1984). The system
comprises
(a) a knowledge acquisition module called "Prep",
(b) a highly-parameterized English-Language processor,

and
(c) a knowledge-based Retrieval module.
We now summarize the operation of the knowledge acqui-
sition and English processing components, referring the
reader to Ballard and Lusth (1984) for details concerning
retrieval processing.

6.1 K n o w l e d g e acqu is i t ion

The initial interaction between a user and LDC, which
involves telling the system about a new domain, consists of
a knowledge-acquisition session with the preprocessor,
which we call "Prep". In particular Prep asks for
(1) the names of each type of "entity" (object) of the

domain;
(2) the nature of the relationships among entities;
(3) the English words that will be used as nouns, verbs,

and modifiers; and
(4) morphological and semantic properties of these new

words.
For example, in describing a building organization
domain, a user might supply to Prep the structural and
language-related information that "room" is a primitive
entity type; "large", "small", and "vacant" are adjective
modifiers; "conference" is a noun modifier; "office" is a
noun referring to some objects of type "room"; and that
rooms have "wing" as a higher-level domain entity. At

Computational Linguistics Volume 10, Number 2, April-June 1984 93

Bruce W. Ballard and Nancy L. Tinkham A Phrase-Structured Grammatical Framework for Transportable NLP

this point semantic specifications for the modifiers
mentioned above are given, and morphological variants are
supplied, e'g. "rooms" is the plural of "room", "larger" is
the comparative form of "large", "vacant" has no associ-
ated comparative, and so forth.

Having completed a session with the user, Prep digests
its newly acquired information to produce various files to
be used during subsequent processing of English inputs by
the English-Language processor. The first file created by
Prep is the Dictonary, which is used as input by the scan-
ner, and whose format was suggested in Section 2.2. Some
dictionary listings are provided for common, domain-inde-
pendent terms such as articles, ordinals, and certain verbs.

The second file created by Prep gives Compatibility
information on (a) verb case frames and (b) expected
prepositional attachments. Verb case frames are passed
along almost directly from the user's specifications, where-
as prepositional attachments are determined by heuristics
related to layered domains. Case frames are specified by
subject, verb, optional particle, optional object, and
optional preposition-argument pair, while legitimate
prepositional attachments are specified by entity-preposi-
tion-entity triples.

The third file created by Prep tells the parser what
dictionary words can Start each grammatical unit (syntax
routine) of the grammar. This information is roughly
equivalent to that provided by the LL(1) tables of compiler
theory. However, Prep takes the attached features into
account, and must also account for multiple word mean-
ings. Several existing natural language processors have
found such Start information useful, though to our know-
ledge most implementations have had the information
supplied by hand from the system designer, rather than
automatically constructed from a novel dictionary file and
for an evolving grammar, as we provide for. The entire
code needed to create the Start file is about 30 LISP lines.
Its brevity and conceptual simplicity are due to the crisp-
ness of our phrase-structure formalism.

The fourth file created by Prep is a Adjacency file that
tells the scanner which dictionary words a given word may
be followed by in a legal input. This form of information,
which is being used by the current "voice scanner" of our
related NLC system (Biermann 1981), will likely prove
useful when we introduce voice input to LDC. To our
knowledge the Adjacency file is without counterpart in
conventional compiler design. Although the recursive
routines responsible for creating the Adjacency file resem-
ble those related to the Start file, they involve combinator-
ic considerations and are much more complicated.

Finally, two additional files created by Prep, which are
not involved in parsing, supply domain structure informa-
tion for semantic processing and adjective and verb seman-
tics for retrieval.

6.2 English-language processing

The organization of the natural language processing
portion of LDC resembles that of interpreters for conven-

tional programming languages by exhibiting a linear
sequence of modules without complex interaction among
them. A pictorial overview of the English-language
processor and retrieval module is given in Figure 2, which
also gives an idea of how the domain-specific files
produced during the user's interactive session with Prep
are used. As suggested there, the scanner and parser
supply the semantics module with an internal rendering of
the user's input, whereupon semantics appeals to a
retrieval component, and then sends the top-level response
to the output module to be printed in user-readable form.
We now comment briefly upon each module involved in
English-language processing.

6.2.1 Scanning

The role of the scanner is to identify each word of the
typed or spoken input and retrieve information about it
from the Dictionary file, which will have been created by
Prep as described in Section 2.1. For words having more
than one dictionary listing, all possible meanings (read-
ings) are sent to the parser, where context will be used to
select one of them. For the sake of run-time efficiency,
morphological variants (inflections) of domain-specific
terms will already have been stored in the dictionary, so
run-time stemming is not needed.

The existing LDC scanner assumes typed input but, as
described in Biermann et al. (1983), we have used a
Nippon DP-200 voice recognition unit, and more recently a
continuous-speech Verbex device, with our previous NLC
system, and its introduction into LDC is being contem-
plated. When this occurs, some of the word meanings will
have been taken from a "synophone" list

6.2.2 Parsing

As an example of how parse structures are built up,
consider the noun phrase

"the largest white house in Ohio"

for which the scanner will have supplied information such
a s

(the Art the)
(largest Super large (nt building parcel))
(white Adj white (nt building))
(house Subtype house (sp sing) (nt building))
(in Prep in)
(Ohio Nounval Ohio (sp sing) (nt state))

For simplicity we have given just one reading for each
word, but in general each word may have several.

When the NP routine is entered, an initial structure
with a label of NP but null feature and item lists is
created.

(NP (feats))

Since our present grammar checks for the word "the"
using Quote, rather than Get, no parser output occurs
when "the" is seen, although optional output is allowed by

94 Computational Linguistics Volume 10, Number 2, April-June 1984

Bruce W. Ballard and Nancy L. Tinkham A Phrase-Structured Grammatical Framework for Transportable NLP

DICTIONARY

iDJACENC Y

• Scanner H

START

COMPAT

Parser H Translator

t Grammar

DOMAIN MODIFIER
STRUCTURE SEMANTICS

L L
H Retrieval H

t
Raw-Data

Figure 2. Pictorial Overview of the English-Language Processor and Retrieval Module

the Quote command. Next, since the dictionary listing for
"largest" indicates that it can modify entities of type
building and parcel, the parse structure upon parsing the
word "largest" will become

(NP (feats (nt building parcel))
(Super . large))

Now since "white" is marked as an adjective that may
only modify entities of type building, its incorporation will
lead to an updated parse structure of

(NP (feats (nt building))
(A d j . white)
(Super . large))

Here the fact that more recent phrase elements appear to
the left of previous ones is an artifact of the LISP imple-
mentation, and the order is basically ignored during post-
parser processing. Next, the word "house" will be
processed by the grammar command

(Get Subtype Head (head subtype))

giving rise to

(NP ((head subtype) (sp sing) (nt building))
(Head . house)
(A d j . white)
(Super . large))

Next, the post-modifier "in Ohio" will be processed and,
upon returning from a recursive call to-the noun phrase
grammar, the new parse structure will be

(NP (feats (head subtype) (sp sing) (nt building))
(PrepPh (feats (nl (Head Prep Arg)

(building in state)))
(NP (feats (head nounval)

(nt state) (sp sing))
(Head . Ohio))

(Prep . in))
(Head . house)
(A d j . white)
(Super . large))

The interested reader may wish to reconsider Figure 1 for
an example of a complete parse structure for a more
complicated input. Further details on the mechanisms of
parsing are given in Ballard and Tinkham (1983).

6 .2 .3 T h e t r a n s l a t o r

Traditional approaches to natural language database
interface seek to provide access to a user's data by
constructing a formal query to an existing retrieval system
that arose in the database community without the inten-
tion of an eventual English-language interface. Our
approach differs in that we have built our own retrieval
processor and endowed it with the ability ¢o act as a know-
ledge-base by directly processing complex semantics of
English modifiers (Ballard 1984). In this manner, we
avoid many of the awkward requirements of the typical
"translation" process from formatted English (e.g. parse
structures) to a formal query. Thus, our translation proc-
ess involves traversing the nodes of a parse structure in a
prescribed order (e.g. relative clauses are processed before
adjectives, which are processed before ordinals and
numbers). Translation is carried out recursively, starting
with a top-level noun phrase, and proceeding to embedded
phrases. A complete discussion of the query language
produced can be found in Ballard and Lusth 1984.

Computational Linguistics Volume 10, Number 2, April-June 1984 95

Bruce W. Ballard and Nancy L. Tinkham A Phrase-Structured Grammatical Framework for Transportable NLP

6.3 Current s t a t u s of the LDC s y s t e m

The initial version of the knowledge acquisition module of
LDC was completed in the fall of 1982, and the separately
tested modules of the English-language processor and the
retrieval module were integrated in May 1983 to form a
complete system. Since that time, the system has been run
by the system authors and gives a real-time response to
each input in under a minute while time-sharing on a
heavily-loaded 16-bit PDP-11/70 minicomputer running
UNIX. All coding of LDC has been done in a local dialect
of LISP, except for the retrieval module which was first
written in Pascal and later re-written in C. Some of the
domains which we have been using to test the modules of
LDC, along with sample noun phrase inputs for these
domains, were mentioned in Section 4.3.1.

At present, most work with LDC will is being carried
out by the first author at A T & T Bell Laboratories, where
a conversion from Duke LISP to Franz LISP has enabled
the system to run on a VAX computer. Both Duke and
Bell Labs have acquired Symbolics 3670 LISP machines,
and a Lisp Machine version of the system, possibly result-
ing from redesign as well as recoding, is likely. In any
event, the system is expected to undergo substantial
enhancements in both syntactic and semantic coverage
during the coming months.

References

Ballard, B. 1982 A "'domain class" approach to transportable natural
language processing. Cognition and Brain Theory, 5 (3): 269-287.

Ballard, B. 1984 The syntax and semantics of user-defined modifiers in
a transportable natural language processor. Proceedings of Coling84.
Stanford University (July): 52-56.

Ballard, B. and Biermann, A. 1979 Programming in natural
language: NLC as a prototype. ACM National Conference, Detroit,
Mich.: 228-237.

Ballard, B. and Lusth, J. 1983 An English-language processing system

that "learns" about new domains. National Computer Conference:
1-46.

Ballard, B. and Lusth, J. 1984 The design of DOMINO: a knowledge-
based retrieval module for transportable natural language access to
personal databases. Proceedings of the Workshop on Expert Database
Systems. Kiawah Island, South Carolina.

Ballard, B.; Lusth, J.; and Tinkham, N. 1984 LDC-I: a transportable,
knowledge-based natural language processor for office environments.
ACM Transactions on Office Information Systems, 2(I): 1-25.

Ballard, B.; Lusth, J.; and Tinkham, N. 1984 Transportable English
language processing for office environments. National Computer
Conference.

Ballard, B. and Tinkham, N. 1983 A phrase-structured grammatical
formalism for transportable natural language processing. Technical
Report CS- 1983-4, Department of Computer Science, Duke Universi-
ty (April).

Bates, M. and Bobrow, R. 1983 A transportable natural language inter-
face for information retrieval. Sixth Annual International ACM
SIGIR Conference, Washington, D.C.

Biermann, A. 1981 Natural Language Programming. Nato Advanced
Study Institute on Automatic Program Construction, Bonas, France
(September 28 to October 10).

Biermann, A. and Baltard, B. 1980 Toward natural language computa-
tion. American Journal of Computational Linguistics, 6(2): 71-86.

Biermann, A.; Ballard, B.; and Sigmon, A. 1983 An experimental study
of natural language programming. International Journal of Man-Ma-
chine Studies 18 (1): 71-87.

Biermann, A.; Rodman, R.; Ballard, B.; Betancourt, T.; Bilbro, G.; Deas,
H.; Fineman, L.; Fink, P.; Gilbert, K.; and Heidlage, F. 1983 Inter-
active natural language processing: a pragmatic approach. Confer-
ence on Applied Natural Language Processing, Santa Monica, Ca.:
180-191.

Bobrow, R. and Webber, B. 1980 Knowledge representation for
syntactic/semantic processing. First Annual Conference on Artificial
Intelligence, Stanford University.

Colmerauer, A. 1978 Metamorphosis grammars. In Bolc, Ed., Natural
Language Communication with Computers. Springer-Verlag.

Fink, P. 1982 Conditionals in a natural language system. Master's
thesis, Department of Computer Science, Duke University.,

Geist, R.; Kraines, D.; and Fink, P. 1982 Natural language con~putation
in a linear algebra course. National Educational Computer Confer-
ence: 203-208.

Ginsparg, J. 1983 A robust portable natural language data base inter-
face. Conference on Applied Natural Language Processing, Santa
Monica, Ca.: 25-30.

Grosz, B. 1983 TEAM: A transportable natural language interface
system. Conference on Applied Natural Language Processing, Santa
Monica, Ca.: 39-45.

Haas, N. and Hendrix, G. 1980 An approach to acquiring and applying
knowledge. First National Conference on Artificial Intelligence, Stan-
ford University: 235-239.

Heidorn, G. i975 Augmented phrase-structure grammars. In Webber,
B. and Schank, R., Eds., Theoretical Issues in Natural Language Proc-
essing: 1-5.

Hendrix, G. and Lewis, W. 1981 Transportable natural-language inter-
faces to databases. Proceedings of the 19th Annual Meeting of the
A CL, Stanford University: 159-165.

Kimball, J. 1972 Seven principles of surface structure parsing in natural
language. Cognition 2 (1): 15-47.

Marcus, M. 1980 A Theory of Syntactic Recognition for Natural
Language. MIT Press, Cambridge, MA.

Mark, W. 1981 Representation and inference in the Consul system.
International Joint Conference on Artificial Intelligence.

Pereira, F. 1981 Extraposition grammars. Americal Journal of Compu-
tational Linguistics 7(4): 243-256.

Pratt, V. 1975 LINGOL - A progress report. International Joint
Conference on Artificial Intelligence: 422-428.

Rieger, C. and Small, S. 1979 Word expert parsing. International Joint
Conference on Artificial Intelligence: 723-728.

Robinson, J. 1982 DIAGRAM: A grammar for dialogues. Communi-
cations of the ACM 25(I): 27-47.

Sager, N. 1981 Natural Language Information Processing: A Computer
Grammar of English and Its Applications. Addison-Wesley.

Sager, N. and Grishman, R. 1975 The restriction language for comput-
er grammars of natural language. Communications of the ACM 18:
390-400.

Sigmon, A. 1981 The semantics of looping structures in natural
language computation. Master's thesis, Department of Computer
Science, Duke University.

Slocum, J. 1981 A practical comparison of parsing strategies. Annual
Meeting of the Assoc. for Computational Linguistics, 1-6.

Thompson, B. and Thompson, F. 1981 Shifting to a higher gear in a
natural language system. National Computer Conference: 657-662.

Thompson, B. and Thompson, F. 1983 Introducing ASK, a simple
knowledgeable system. Conference on Applied Natural Language
Processing, Santa Monica, CA: 17-24.

Thompson, F. and Thompson, B. 1975 Practical natural language proc-
essing: the REL system as prototype. In Rubinoff, M. and Yovits,
M., Eds., Advances m Computers, Vo!. 3, Academic Press.

Wilczynski, D. 1981 Knowledge acquisition in the Consul system.
International Joint Conference on Artificial Intelligence.

Winograd, T. 1972 Understanding Natural Language. Academic Press.
Woods, W. 1970 Transition network grammars for natural language

analysis. Communications of the A CM, 13 (I 0): 591-606.
Woods, W. 1980 Cascaded ATN grammars. American Journal of

Computational Linguistics 6(1): 1 - 12.

96 Computational Linguistics Volume 10, Number 2, April-June 1984

