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Scott -Strachey style denotational semantics is proposed as  a suitable means of  commu-  
nicating the specification of  "natural" language question answerers to computer program- 
mers and software engineers. The method is exemplified by a simple question answerer 
communicating with a small data base. This example is partly based on treatment of  
fragments of  English by Montague.  Emphasis is placed on the semantic interpretation of  
questions. The "meaning" of  a question is taken as a function from the set of  universes to 
a set of  possible answers. 

1. Introduction 

We advocate the use of Scot t-Strachey denotat ional  
semantics for "na tura l"  language quest ion-answering 
programs. The majority of this paper demonstrates 
the use of denotational semantics for a small question 
answerer. The types of questions possible are similar 
to those in Harris (1979),  Winograd (1972),  and 
Woods (1972). The analysis is not as deep as in Kart- 
tunen (1977) or similar studies, as it is oriented to the 
specification of useful, but linguistically modest, capa- 
bilities. 

Before the demonstration, we discuss the benefits 
of formal semantics and why denotational semantics is 
an appropriate formalization. The semantics of a 
question answerer is given by defining the action of 
the program for each possible input. An informal 
semantic description, perhaps in narrative form, is 
necessary for a potential user who wants to know what 
questions he may ask and what sort of answers the 
program will provide. Informal meanings are also 
valuable to the designer and implementer of a question 
answerer. However,  the designer and implementer 
must understand all aspects of a proposed question 
answerer in a precise unambiguous way that informal 

1 This research was supported in part by NSF grants 
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methods do not provide. In short, a formal method of 
specifying the semantics is needed at the design and 
implementation stage (see Ashcroft  and Wadge 1982). 

Once a formal semantics has been given, it can be 
put to other uses as well. It can provide the basis for 
a rigorous proof of correctness of an implementation. 
Furthermore,  formal specifications might allow partial 
automation of the implementation process in the same 
way that automatic compiler-writers produce parts of a 
compiler from a formal specification of a programming 
language (see Johnson 1975). With the advent of at 
least one commercially available "na tura l"  language 
question-answering program (Harris 1979), these ad- 
vantages become even more concrete. 

If there is a familiarity to these arguments,  it is 
because the same reasoning is used to justify formal 
semantics for programming languages. The problems 
of design and analysis of question answerers are much 
the same for programming languages - Benson (1975) 
argues this point at length. An obvious approach is to 
apply a programming language technique - denotation- 
al semantics - to the problem of formally specifying a 
question answerer. As a bonus, the method is under- 
stood by many programmers and software engineers 
through introductory textbooks such as Stoy (1977),  
Gordon  (1979),  McGet t r ick (1980),  Pagan (1981),  
and Tennent  (1981).  Additionally, linguistic treat- 
ments of natural language, such as Montague (1973), 
are basically denotat ional  and we can modify such 
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t reatments  to meet  our needs. 
In denota t ional  semant ics  for p rogramming  lan- 

guages,  evaluat ion funct ions map program segments  
into objects in various semantic domains.  These ob- 
jects are taken as the meanings of the program seg- 
ments,  and determine the output  of a program. Simi- 
larly, in the semantics of a question answerer,  evalua- 
tion functions map input (questions) into objects  that  
determine the output  (answers).  

Deciding what objects are in the semantic  domains 
has a fundamenta l  e f fec t  on the capabili t ies of the 
overlying question answerer,  as well as an effect  on 
the usefulness and clarity of the semantic  descriptions. 
Lewis (1972) discusses these considerat ions for natu- 
ral language sentences and the domains described in 
section 2 are based on his, al though the t rea tment  of 
questions is closer to Ajdukiewicz (1926).  Also intro- 
duced in sect ion 2 are the lambda  expressions that  
denote  individual semantic  objects.  Such expressions 
have been used in denotat ional  semantics of program-  
ming languages (see Scott 1970, Milne and Strachey 
1976, Stoy 1977) and in t rea tments  of f ragments  of 
English by Montague  (1973).  

In section 3, evaluation functions mapping inputs 
for a small question answerer  to objects in the seman-  
tic domain  are given. The allowable quest ions are 
defined by a category grammar  as has been done by 
Ajdukiewicz (1935) ,  Carnap  (1937) ,  Lewis (1972) ,  
Montague  (1973) ,  and others.  An account  of the 
answer relationship is given in section 4. 

In the final section, we briefly describe an imple- 
menta t ion  of the question answerer  and suggest some 
broad principles for designing question answerers.  

2. Semantic Domains for Natural Language 

2.1 The Domains 

A semantic  domain is a set of objects.  The objects  are 
meanings of syntactic constructs;  in our case the syn- 
tactic constructs are natural  language phrases. In de- 
nota t ional  semantics  for p rogramming  languages,  the 
semantic domains of ten have some order imposed on 
the objects to treat  recursively defined functions. The 
specification of a question answerer  may also involve 
explicit recursively defined questions, al though in this 
demonst ra t ion  only quantif icat ion is used and not re- 
cursion. This does not  prevent  an implementa t ion  
f rom using recursion - almost  surely it will, to handle 
the quantification. But lack of recursion does allow us 
to use unordered semantic domains,  as described be-  
low. 

One domain is the set of objects about  which ques- 
tions will be asked, e.g., moon  rocks, toy blocks, or 
whatever .  We are not concerned  with the internal  
structure of these objects;  hence they are called atoms 
and the domain is designated A. Two other  domains 

are the set of natural  numbers ,  designated N, and the 
set of truth values {true, false}, designated T. 

A fourth domain is the set of possible universes,  
designated U. Intuitively, a universe is a description 
of propert ies  of atoms,  the relationships be tween at- 
oms, the relationships be tween relationships, etc .... A 
universe is usually a partial descript ion including only 
the propert ies  and relationships of interest.  For  exam- 
ple, in the toy blocks world (Winograd 1972) a uni- 
verse is the specification of the size, shape, color, and 
posit ion of all the blocks in the scene. A toy blocks 
universe does not include a descript ion of the density,  
mass, or material  composi t ion of the various blocks. 
In applicat ion,  the set of  possible universes may  be 
called a " d a t a  base" ,  and each actual  universe is a 
specific state or configurat ion of the data base. The 
internal structure of such a data base is left unspeci-  
fied in this paper.  

Other  semant ic  domains  are built f rom the four  
basic domains.  For  example,  the set of functions f rom 
universes to truth values, designated [U--T},  is a new 
domain. In general, if X and Y designate sets, then 
[X--Y} designates the set of functions f rom X to Y. 
Other  semant ic  domains  could be conceived  (e.g., 
product  or sum domains) ,  but funct ion domains will be 
adequate  for our examples.  

2.2 Assigning domains to syntactic categories 

Natural  language phrases have been divided into many  
different categories (see Kahn  1978). Exact ly  which 
categories are used depends upon syntax. In the cate-  
gory g rammar  of section 3, the categories include sen- 
tence,  intransit ive verb,  c o m m o n  noun,  noun group,  
noun modifier,  numeral,  and so on. There  are also 
separate  interrogative categories for  phrases that  ask a 
question, such as how many  stones. 

To each syntactic category,  a semantic  domain is 
assigned. The meaning of a phrase is an object  in the 
assigned domain. Ultimately,  f rom the meaning of a 
question, we will derive its answer. But first we assign 
domains  to non- in te r roga t ive  categories ,  beginning 
with the category of sentences.  

A declarat ive sentence is a proposi t ion - that  is, 
something to which a truth value can be assigned. The 
meaning of a sentence somehow determines  what  that  
truth value is in any possible universe. So, an appro-  
priate semant ic  ob jec t  for  a sentence  is a funct ion 
f rom possible universes to truth values. The domain 
assigned to the ca tegory  of sentences  is the re fore  
[U--T},  which we will designate S. If  a declarat ive 
sentence has a meaning a E S, and/3 is a universe, then 
a/3 is true just if the sentence is true in the universe/3.3 

3 Lower case Greek letters are semantic objects. Juxtaposi- 
tion indicates functional application and associates left-to-right.  
Thus, a/3 means the function a applied to the argument /3, and a/37 
means (a(/3))(),). 
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If  there is a single fixed universe, then sentences could 
be assigned meanings in T alone. However ,  question 
answerers  are general ly based  on a changeable  uni- 
verse or data base. Hence,  the [U- -T ]  approach  is 
needed to give a fixed meaning to a sentence whose 
truth value may vary f rom universe to universe. 

Both common nouns and intransitive verbs define 
subsets of A. The subset  of stone (a common  noun) is 
the set of a toms that  are stones. The subset for the 
intransitive verb phrase belong to Preston is the set of 
a toms that belong to Preston. The meaning of such a 
phrase determines what  that subset  is for any possible 
universe.  This can be done by an object  in 
[U-~[A-~T]] (i.e., functions f rom U to [A--T]) .  This 
domain is assigned to both common noun and intransi- 
tive verb categories, and is designated by C. If  a com- 
mon noun has a meaning a e C, and/3 is a universe and 
3' an atom, then a/33' is true just if ~, is in the subset  
defined by the common noun in the universe /3 - and 
similarly for intransitive verbs. 

For  most  o ther  syntact ic  categories,  the semant ic  
domain is determined by how phrases in that category 
combine  with sentences,  com m on  nouns,  intransit ive 
verbs,  and other phrases to form new phrases. For  
example,  a noun group combines with an intransitive 
verb to form a sentence. Therefore ,  a semantic object  
for a noun group should take a semantic  object  f rom C 
(the domain for intransitive verbs)  and yield a seman-  
tic object  f rom S (the domain for sentences).  Thus, 
the semantic domain for noun groups is [C-~S]. 4 

Similarly, a noun modifier,  such as black, combines 
with a common noun, such as stone, to form a new 
common noun - black stone. So, the semantic domain 
for noun modifiers is [C--C] .  By examining the syn- 
tactic rules, this method can be applied to most  cate-  
gories. 5 Occasional  except ions  can be made - for  
example,  numerals  are assigned the domain,  N, of 
natural numbers.  

2.3 Interrogative categories 

So far, the categories  include only non- in te r roga t ive  
phrases. Syntactically, the interrogative phrases paral-  
lel the non-interrogatives,  but semantically an interro- 
gative lacks something.  For  example ,  Ajdukiewicz 
(1926) would represent  the meaning of the interroga- 

4 A name, such as John, is one type of noun group that de- 
notes a particular atom which does not change from universe to 
universe Therefore, it might be better to have names in a separate 
syntactic category with assigned semantic domain A. But, doing 
this would not do away with the category noun group, since some 
noun phrases are not names (e.g., every stone). But, having two 
categories unduly complicates the syntax, so we lump names togeth- 
er with other noun groups, and treat them as Montague (1973) has. 

5 This method of assigning semantic domains is an application 
of Frege's rule of compositionality, which says that the meaning of 
a compound phrase is composed from the meaning of its parts• 
(Frege 1892, van Emde Boas and Janssen 1979) 

tive sentence what is black and white and read all over 
as: ?x(x is black and white and read all over). Here,  x 
is a variable and " ? "  a quantif ier  indicating the lack. 
In this case, the range of the variable is the set of  
noun group phrases that  could answer the question. 

There  are also interrogative phrases in other  cate-  
gories, such as the intransitive verb phrase owns what. 
And it is not always a noun group that  is missing; for 

• example,  the noun group how many stones lacks a nu- 
meral. In general, any non-interrogat ive category is 
made into an interrogative category by indicating what  
is lacking. Hence,  if X and Y are non-interrogat ive 
categories, then X?Y designates the category of inter- 
rogative phrases that  are syntactically like X-phrases  
but semantically lack a Y-phrase. 6 If Y has semantic  
domain Y and X has semantic  domain X, then X?Y will 
have semant ic  domain  [Y--X].  Fur the rmore ,  if an 
interrogative phrase in X?Y has a meaning aE[Y-~X],  
then a/3 is that  object  of X that  results when /3eY an- 
swers the interrogative.  

For  example,  the interrogative sentence who killed 
cock robin will have a meaning a E [ [ C - ~ S ] - - S ] ,  since it 
is a sentence  (domain  S) lacking a noun group 
(domain  [C- -S ] ) .  If  the sparrow has a meaning 
/ 3 t I C - - S ] ,  and the sparrow killed cock robin has a 
meaning 7ES, then a/3=~,. 

A similar idea can be applied to one other catego- 
ry: y e s - n o  questions. Such an interrogative lacks a 
truth value, so the semantic domain assigned to y e s - n o  
questions is [ T - - S ] .  If a t [ T - - S ]  is the meaning of a 
y e s - n o  question, then a ( t rue )£  S is the meaning of the 
sentence when it is answered by yes, and similarly for 
an a(false) .  

2.4 Lambda expressions 

Up to this point, semantic  objects  have been described 
in English. In order to be more precise, a formal  no- 
tat ion is needed. We use a typed lambda expression 
for denoting functions, similar to the lambda calculi of 
Church (1951).  

Every  lambda expression has a type that  indicates 
the semant ic  domain of the objec t  denoted  by the 
expression. These types are in one- to-one  correspon-  
dence with the semantic  domains (A, U, T, N, [U-~T],  
etc .... ), so we will use the same letters in ordinary  
typescr ip t  for  the express ion types (A, U, T, N, 
[U-~T],  etc .... ). 

The expressions of each type include a set of con- 
stants and a denumerable  set of variables. A function 
that  maps  the constants  into semant ic  objects  is an 
interpretat ion,  and generally remains fixed. A func- 
tion that  maps  variables  into semant ic  objects  is a 
var iable  ass ignment  and, as its name suggests,  will 

6 This could be extended to include phrases, like who does 
what, which question more than one thing at a time. 
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change. If q, is a variable assignment,  x is a variable 
of any type, and a is an object  f rom the semantic do- 
main of x, then ~p[a/x] is a changed variable assign- 
ment  that  is like ~ except  that q~[a/x] assigns a to the 
variable x. In this way, new variable assignments are 
fo rmed  f rom old. Finally, each lambda  expression 
denotes one semantic object,  but which object  this is 
varies as the variable assignment changes. So, for an 
expression b the notat ion [[bll ~ is to denote  the se- 
mantic object  for the expression b, with variable as- 
signment ~p.7 

Table 1 gives recursive rules defining lambda ex- 
pressions and the semantic  objects  they denote.  We 
take as given a set of constants  and a denumerable  set 
of variables for each type, and a fixed interpretat ion,  
q0. X and Y are arbi trary types, with corresponding 
semantic  domains X and Y. 

Some lambda expressions can be derived more than 
one way. Any such ambiguities are resolved as fol- 
lows: 
a. The expression following a lambda abstract ion (i.e., 

),x) or a quantifier  (i.e., 3x, ¥x, 3nx,) will be as 
long as possible - that  is, to the first unmatched 
right parenthesis  or to the end of the entire expres-  
sion. 

b. The unary opera tor  -, has higher priority than any 
of the binary opera tors  (A, V, =,  =>, .-, >, and 
functional application, which is indicated by juxta- 
position).  Funct ional  application has the highest 
priority of the binary opera tors  and associates left- 
to-right,  e.g., b c d = ( b c ) d .  The other  binary opera-  
tors have equal precedence and also associate left- 
to-right,  e.g., bcAdcVc = ( (bc)A(dc) )Vc .  

3. S y n t a x  and S e m a n t i c s  of a Smal l  Q u e s t i o n  
A n s w e r e r  

3.1 Syntact ic  categor ies  

To illustrate the mechanics of the previous section, we 
give the syntax and semantics of a small question an- 
swerer.  The quest ion answerer  accepts  quest ions 
about  conf igurat ions  of pieces in the game of Go.  
Briefly, a configuration consists of a 19 by 19 grid of 
points,  labeled A-1 through S-19. Each point  may  
contain a black or a white stone. Like-colored stones, 
connec ted  hor izontal ly  or vertically,  fo rm blocks. 
Empty  points adjacent  to a block are that block 's  lib- 
erties. Each configurat ion is a universe in the seman-  
tic domain U. 

The syntax for  a quest ion answerer  must  answer  
the question: what  phrases are grammatical ly  correct  
input to the question answerer? Our approach uses 
various syntactic categories, in the style of Montague 

(1973).  A syntactic category is a set of phrases,  in- 
cluding basic phrases and derived phrases. The de- 
rived phrases are specified by recursive syntactic rules 
that  describe how phrases  f rom various categor ies  
combine to form new phrases. 

The syntax presented here has two kinds of cate-  
gories. First,  non- in te r roga t ive  categories ,  whose 
phrases do not ask questions. These categories are 
listed in Table  2, along with an abbrevia t ion  for each, 
the lists of basic expressions,  and the associated se- 
mantic domains f rom section 2. In the table,  A - I ,  
A-2,  and so on are names of points on the Go board.  
The basic phrases heo, he 1, they o, they 1, and so on are 
used as variables in a manner  made precise by syntac-  
tic rules given later. 

The  second kind of ca tegory  is the in ter rogat ive  
category.  Syntactically, an interrogative ca tegory  be-  
haves like some non- interrogat ive  category,  but it also 
asks a question whose answer  is f rom some other  non-  
interrogative category.  If  a phrase is syntactically like 
a phrase f rom category X, and asks a quest ion whose 
answer is in category Y, then that  phrase is in a cate-  
gory X?Y. This separat ion of interrogatives is needed 
because the semantic  domain for interrogatives differs 
f rom that  for  non- in te r roga t ives  (see sect ion 2.3).  
One additional interrogative ca tegory  does not follow 
the X ? Y  pat tern  - the y e s - n o  questions. We designate 
this category YN and list it in Table  3 with the other  
interrogative categories. 

3.2 Syntact ic  and semant ic  rules 

We now give syntactic rules that define the phrases of 
each category.  With each syntact ic  rule is a semantic  
rule. For  each phrase that  a syntactic rule creates,  the 
cor responding  semant ic  rule tells precisely how to 
translate that  phrase into a lambda expression denot-  
ing the meaning of the phrase. In these rules, italic 
let ters (u, v, w, ...) are a rb i t ra ry  phrases  f rom any 
ca tegory  and F1, F2, ..., are funct ions  that  combine  
phrases  to yield new phrases.  Var iables  in l ambda  
expressions are of the following types. 

• m ,m ' , . . . o f  type N. 
• t , t ' , . . ,  of type T. 
• u,u ' , . . ,  of type U. 
• x,x~,.., of type C. 
• y ,y '  .... of type [C-~S]. 
• qi is the (2 i+3) th  variable of type A. 
• Pi is the (2 i+4 ) th  variable of type A. 
• z is the first variable of type A. 
• z '  is the second variable of type A. 

7 The semantic object associated with a lambda expression 
also depends on the interpretation function, but we assume this is 
fixed. 
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LAMBDA EXPRESSION SEMANTIC O B J E C T  

1. If b is a constant  of type X, then b is an expression 
of type X. 

2. If  x is a variable of type X, then x is an expression 
of type X. 

3. If  b is an expression of type X, then (b) is also an 
expression of type X. 

4. If b is an expression of type Y and x is a variable 
of type X, then ~x.b is an expression of type [X--Y] .  

5. If b is an expression of type [ X - , Y ]  and c is an 
expression of type X, then bc is an expression of type 
Y. 

6. If b and c are expressions of type X, then b = c is 
an expression of type T. 

7. If b and c are expressions of type T, then -, b, bAc, 
bVc, b~,c,  and b<==>c are expressions of type T. 

8. If n is an expression of type N, then n + l  is an 
expression of type N. 

9. If  b is an expression of type T and x is a variable 
of type X, then 3x.b and Vx.b are expressions of type 
T. 

10. If b is an expression of type T, x is a variable of 
type X and n is an expression of type N, then 3nx.b is 
an expression of type T. 

[lbll ~ is q0b (i.e., the interpretat ion ~ applied to the 
constant  b). 

II x II q~ is ~x (i.e., the variable assignment ~b applied to 
the variable x). 

II (b) II q~ is 11 b II ~. 

II ?,x.b II ~ is that  function a : X - , Y ,  such that for every 

~ x ,  ~/~ --- Ilbllq~[/3/x]. 

II bc II ff is the function II b [1 ~k applied to the argument  

II c II q~. 

II b = c II ~ is true iff [[ b II ~ is the same semantic ob- 

ject as II c II ~. 

II-,b II q~ is true iff II b II q~ is false, and similarly for /X 
(and),  V (or),  ~ (implication),  and <==> (coincidence).  

II n +  1 II q~ is the natural  number  successor of II n II q~. 

113x.bll~ is true iff there exists an aEX,  such that  

Ilbllq~[~/x] is true. IlVx.bllq~ is 11-,3x.-,bll~. 

Let  n = II n II ~k. Then II 3nx.b II ~ is true iff there exist 
,/ distinct objects in X, so that  for any of these ,/ ob-  

jects, say a, II b II q~[~/x] is true. 

Table 1. Lambda expressions and their semantic objects. 
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SYNTACTIC CATEGORY SEMANTIC D O M A I N  & BASIC PHRASES 

SE (sentence) 

CN (common noun) 

I V  (intransitive verb) 

NG (noun group) 

TV (transitive verb) 

N M  (noun modifier) 

MG (modifying group) 

PP (preposition or participial) 

NU (numerals) 

S = [U-*T]. 
No basic phrases. 

C = [U~[A---T]]. 
player, block, stone, liberty, point 

C. 

exist 

[c--s]. 
Black, White, he o, he 1 ..... they o, they 1 ..... A - l ,  A-2 . . . .  

[[C--S]--C]. 
own, belong to 

[C-~C]. 
black, white 

[C-~C]. 
No basic phrases. 

[[C-- S]-- [C-- C]]. 
at, with, owning, belonging to 

N 

0 , 1 , 2  . . . .  

Table 2. Syntactic categories (non-interrogative). 

SYNTACTIC CATEGORY SEMANTIC D O M A I N  & BASIC PHRASES 

YN (yes-no question) 

NG?NG (noun group questioning a noun group) 

For any two non-interrogative categories, X and Y, 
X?Y is an interrogative category. 

[T-~S]. 
No basic phrases. 

[[C--S]-- [C-~S]]. 
who, what 

[Y-~X], where X is X's domain and Y is Y's domain. 
None of these categories, except NG?NG, have basic 
phrases. 

Table 3. Syntactic categories (interrogative). 
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3.2.1 The basic rule 

Syntactic Rule: 

RI .  For each category, its basic phrases are phrases. 

Semantics: 

We give a translation of each basic phrase, according 
to which category it is in: 

CN, IV: player translates to a constant of type C, 
denoted player; and similarly for any other basic 
phrase of category CN or IV. 

NG: Black translates to ~xAu.xu(Black), where 
Black is a constant of type A. Having Black be a 
constant of type A emphasizes the point that 
Black is a name, associated with some particular 
object in A. The translation of other basic phras- 
es of NG will be similar, except for he i and they i (i 
= 0 ,  1 . . . .  ). In particular, he i translates to 
~x.~u.xuqi and they i translates to ~x.~u.xuPi. 

TV: own translates to XyAuAz.y(~ut.(own)uWz)u, 
where own is a constant of type [U -* [A -* [A 
-- T]]]; and similarly for any other basic phrase 
of category TV. This emphasizes that a transitive 
verb is a relation between two objects in A. In 
particular, if own interprets to a •  [U -- [A -* [A 
-~ T]]], f leU, and 7, 8 •A,  then afl3,d if true is the 
object 3' owns the object d in the universe ft.8 

NM: black translates to ~x.AuAz.xuz A (black)uz, 
where black is a constant of type C; and similarly 
for other basic phrases of category NM. 

PP: at translates to ~y.~x.Xu.Xz.xuz A 
y(XuV.(at)utz)u, where at is a constant of type 
[U -* [A -- [A -* T]]]; and so on. 

NU: 0 translates to 0, a constant of type N, which 
interprets to the natural number 0 in N; and simi- 
larly for other numerals. 

NG?NG: what translates to ~,y.y and who translates 
to ~yAx.~u.y(player)u/x yxu. 

3.2.2 The combinative rules 

These rules use a set of syntactic functions, F 1 
through F4, which combine phrases in various ways 
involving person, plurality, and so on. We give these 
functions first. 

Ft(u,v) is uv', where v' is v (if the first noun in u is 
plural) or the result of replacing the first verb in v 
by its third person singular form (if the first noun 

8 However, this scheme will not work with all transitive verbs, 
for example, alleged to be. Such verbs, called intensional verbs, 
require more complex translations, but the end result will still be of 
type [[C --,- S] ~ CI. The same complexities arise for N M  and PP. 
Our example contains none of these intensional words. 

in u is singular). 

F2(u,v) is uv t, where v' is the result of replacing the 
first noun in v by its objective form. 

F3(u,v) = uv. 

F4(u,v) = vu. 

Syntactic Rules: 

R2. If u is a phrase from NG and v is a phrase from 
IV, then Fl(U,V) is a phrase from SE. 

R3. If u is a phrase from TV and v is a phrase from 
NG, then F2(u,v) is a phrase from IF.  

R4. If u is a phrase from PP and v is a phrase from 
NG, then F2(u, v) is a phrase from MG. 

R5. If u is a phrase from N M  and v is a phrase from 
CN, then F3(u,v) is a phrase from CN. 

R6. If u is a phrase from M G  and v is a phrase from 
CN, then F4(u,v) is a phrase from CN. 

Interrogative Variants of Syntactic Rules: 

In any of the rules R2 through R6, exactly one of the 
arguments, u or v, may be a phrase from category X?Y, 
where X is the original category specified for the argu- 
ment and Y is any non-interrogative category. If the 
original result was to be from category Z, then the 
new result is in category Z?Y. For  example, from R2, 
if u is a phrase from NG?NG and v is a phrase from 
IV, then Fl(U,v) is a phrase from SE?NG. 

Semantics: 

Let w = Fi(u,v), f o r i  = 1, 2, 3, or 4. Let u translate 
to b and v translate to c. Then there are three cases 
for the translation of w" 

Case (i): If neither u nor v is from an interrogative 
category, then w translates to bc. 

Case (ii): If u is from an interrogative category X?Y, 
then w translates to ~s.bsc, where s is a variable 
of type assigned to the category Y. 

Case (iii): If v is from an interrogative category X?Y, 
then w translates to ~s.b(cs), where s is a varia- 
ble of type assigned to the category Y. 

3.2.3 Extracategorical rules 

These rules combine phrases with words from outside 
the categories to form new phrases. The rules use two 
syntactic functions given here: 

Fs(u,v) is vu v, where u t is u (if v = 1), or the result of 
replacing the first noun in u by its plural form (if 
v ~  1). 

F6(u ) is the result of replacing the first noun in u with 
its plural form. 

Syntactic Rules and Semantics: 

R7. Let u be a phrase from CN, translating to b. 

American Journal of Computat ional  Linguistics, Volume 9, Number 1, January-March 1983 17 



Michael G. Main and David B. Benson Denotat ional Semantics for "Natural" Language Q-A Programs 

Then: 
(i) 

(ii) 

(iii) 

(iv) 

every u is a phrase f rom NG, translating to 
Xx.Xu.Vz.buz => xuz. 
some u is a phrase f rom NG, translating to 
Xx,Xu.3z.buz A xuz. 
the u is a phrase f rom NG, translating to 
Xx.Xu.3z.xuz A ¥ z ' .  (buz '  < ;. ( z = z ' ) ) .  
no u is a phrase f rom NG, translating to 
kx.Xu.-~3z.buz A xuz. 

R8. Le t  u be a phrase  f rom CN, t ranslat ing to b. 
Also let v be a phrase f rom NU, which translates 
to n. Then: 
(i) exactly Fs(u,v) is a phrase f rom NG, t rans-  

lating to Xx.Xu.(3nz.buz A xuz) A 
- , ( 3 ( n + l ) z . b u z  A xuz). 

(ii) at least Fs(u,v) is a phrase f rom NG, 
translating to Xx.Xu.3nz.buz A xuz. 

(iii) less than F5(u,v) is a phrase f rom NG, 
translating to Xx.Xu.-, (3nz.buz A xuz). 

R9. Let  u be a phrase  f rom SE,  t ranslat ing to b. 
Then is it the case that u is a phrase f rom YN, 
translating to M.Xu.bu<==>t. 

R10. Let  u be a phrase  f rom CN, t ranslat ing to b. 
Then: 
(i) what F6(u) is a phrase f rom NG?NG, 

translating to ?~y.Xx.Xu.ybu A yxu. 
(ii) how many F6(u ) is a phrase f rom NG?NU, 

translating to Xm.Xx.Xu.(3mz.buz A xuz) 
A -, ( ] ( m +  1)z.buz A xuz. 

3.2.4 The abstract ion rule 

This rule is to replace the variables he i and they i by 
other  noun phrases. The necessity for abstract ion is 
discussed in Lewis (1972).  The syntactic functions F 7 
and Fs, defined below, are used. In these definitions, 
let u '  be the result of replacing the first noun in u with 
its object ive form, let up be the result of replacing the 
first noun in u with its plural form, and let u 'p  be the 
result of replacing the first noun in u with its plural 
object ive form. 

FT(U,v,i) is the result of replacing, in v, all occurrences  
of he i by u and all occurrences of him i by u ' .  

F8(u,v,i) is the result of replacing in v, all occurrences 
of they i by Up and all occurrences of them i by U'p. 

Syntactic Rule: 

R l l .  Let  u be a phrase f rom NG, v be a phrase f rom 
SE,  IV,  or CN, and i be a variable index (e.g., 
0, 1, 2 . . . .  ). Then FT(U,v,i) and Fs(u,v,i) are 
phrases f rom the same category as v. 

Interrogat ive Variant  of Syntactic Rule: 

Either u may be f rom NG?Y or v may be f rom SE?Y,  
IV?Y, or CN?Y (but not both) ,  where Y is any non- 

interrogative category.  In all cases, the result is f rom 
X?Y, where X is the first port ion of the category of v. 

Semantics: 

Le t  b be the translat ion of u and c be the translat ion 
of v. The translat ion of FT(U,v,i) is given in the fol- 
lowing table, where s is a variable of type Y: 

Case 1: v f rom S E  and u f rom NG: b(Xu.Xqi.cu) 
Case 2: v f rom S E  and u f rom NG?Y: 

Xs.bx(Xu.Xqi.cu) 
Case 3: v f rom I V  or CN and u f rom NG: 

?~u.Xz.b(Xu' .Xqi.culz)u 
Case 4: v f rom I V  or CN and u f rom NG?Y: 

Xs.Xu.Xz.bs(Xu' .Xqi.cu'z)u 
Case 5: v f rom S E ? Y  and u f rom NG: 

Xs.b(Xu.Xqi.csu) 
Case 6: v f rom I V ? Y  or CN?Y and u f rom NG: 

?~s.Xu.Xz.b(?~u' .hqi .csu 'z )u  

The  t ranslat ion is identical  for  F8, except  that  qi is 
replaced by Pi- 

Some of the notions in the syntact ic  rules must  still 
be formalized.  We must define the plural, objective,  
and plural object ive forms of each basic phrase in CN, 
NG, and NG?NG. A noun is then any such basic 
phrase or one of these forms. A verb is any basic 
phrase in I V  or TV. For  each verb we must  define its 
third person singular form. 

A brief discussion of the abst ract ion rules can clari- 
fy their usage and purpose.  A sentence such as every 
player owns some stone has two possible meanings.  It  
can mean:  there is some par t icular  s tone owned  by 
every player; or al ternately,  every player owns at least 
one stone, but not necessarily the same stone for  each 
player. These two meanings will be achieved by intro- 
ducing the NG some stone at different  times. The ab- 
straction rules allow this by delaying the introduct ion 
of a noun phrase. Initially, a variable (perhaps he o) is 
put in the sentence as a place holder. The abst ract ion 
rules allow an NG to later replace the variable.  

4. Quest ions and Answers  

4.1 Quest ions 

A question is any phrase f rom category  YN, SE?NG, or 
SE?NU, along with its syntact ic  derivation. The syn- 
tactic derivat ion is needed because some phrases can 
be derived in more than one way (e.g., is it the case 
that every player owns some stone). 

Derivat ions are represented by  trees. Each leaf in 
a derivat ion tree is labeled with a basic phrase. Each 
internal node is labeled with a derived phrase,  plus the 
number  of the syntactic rule that  is used to derive it 
f rom its daughter  leaves. 

From the semantic  rules, every question translates 
to exactly one lambda expression. 
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4.2 A n s w e r s  

L e t  Q be  a ques t i on  tha t  t r ans l a t e s  to a l a m b d a  ex-  
p ress ion ,  b, of  t ype  [X ~ S]. A l so  let :  

• q, be  a va r i ab l e  a s s ignmen t ,  
• g be  a c o n s t a n t  of  t ype  U and  II g II 4~ = ~', 
• d be a c o n s t a n t  of  t ype  X and  II d II q~ = ,~. 
T h e n  6 is an  answer  to Q, in the  un ive r se  3' wi th  va r i a -  
ble  a s s ignmen t  ~b iff  II b d g  II ~k is t rue.  

If  b is an exp re s s ion  of  t ype  [X - -  S], t hen  the  
a n s w e r s  to i ts c o r r e s p o n d i n g  q u e s t i o n  a re  s e m a n t i c  
ob j ec t s  in X. In genera l ,  these  o b j e c t s  d e p e n d  on  the 
choice  of  the  un ive r se  and  also on  the va r i ab le  ass ign-  
ment .  H o w e v e r ,  if the  ques t i on  does  no t  c o n t a i n  any  
va r i ab le s  (he i or  theYi), t hen  the  set  of  answer s  is the  
same  for  any  va r i ab le  a s s ignmen t .  Such a ques t i on  is 
ca l led  invariable,  and  we m a y  speak  of  an a n s w e r  wi th -  
ou t  r e spec t  to a va r i ab le  a s s ignmen t .  

4.3 Examples  

All  of these  examples  are  i nva r i ab le  ques t ions ,  so we 
m a y  choose  a va r i ab le  a s s ignmen t ,  ~p, a t  r a n d o m .  The  
types  of  va r i ab les  are  as in s ec t ion  3.2, and  we also  
use a l a m b d a  c o n s t a n t  g, of  t ype  U. As  a lways ,  t he re  
is a f ixed  i n t e r p r e t a t i o n  ass igning  the l a m b d a  c o n s t a n t s  
to s e m a n t i c  ob jec t s .  

In t r ans l a t ing  the  e x a m p l e s  to  l a m b d a  expres s ions ,  
we use the  s e m a n t i c  rules  of  sec t ion  3.2. H o w e v e r ,  
a f t e r  t r ans l a t i ng  a ph ra se ,  we will s o m e t i m e s  a l t e r  the  
l a m b d a  e x p r e s s i o n  in w a y s  tha t  c a n n o t  c h a n g e  the  
s eman t i c  ob jec t .  9 

Example  1. One  d e r i v a t i o n  of  the  ph ra se  is it the case 

that  every p layer  owns  s o m e  s tone is: 

(R9)  is it the case that  every p layer  owns  s o m e  s tone 

I 
(R2)  every p layer  owns  s o m e  s tone 

o (R7)  every p layer  wn s o m e  s tone 

I . / \  
player  own (R7)  s o m e  s tone 

s tone 

W e  have  these  t r ans l a t ions :  

own s o m e  stone: 
Xu.Xz.=lz ' . ( s tone)uz '  A ( o w n ) u z z '  

9 In particular, we use logical conversion (such as b A b 
converts to b) and the a- and /3-conversions of lambda calculus. 
a-conversion involves changing the name of a bound variable (e.g., 
?,x.x A y converts to ),z.z A y). /3-conversion corresponds to func- 
tional application (e.g., (~,x.x A y)z converts to z A y). Details can 
be found in Stoy (1977). 

every p layer:  

?,x.? ,u .Vz.(player)uz ~ xuz 

every p layer  owns  s o m e  stone:  
~u .Vz . (p l aye r )uz  => (3z~ . ( s toue)uz  t A (own)uzz  t) 

is it the case that  every p layer  owns  s o m e  stone:  

Xt.?~u.(Vz.(player)uz => (3zV.(s tone)uz ' A 
( o w n ) u z z ' ) )  < ;. t 

L e t  t rue  be  a c o n s t a n t  o f  t y p e  T t ha t  i n t e r p r e t s  to  
' t r u e ' ~ T .  F r o m  the  de f in i t i on  of  an  answer ,  ' t r u e '  is 
an a n s w e r  to  this  ques t i on  in the  un ive r se  II g II ~ iff: 

II ( M A u . ( V z . ( p l a y e r ) u z  A (3z t . ( s t o n e ) u z  t A 

( o w n ) u z z ' ) )  4=0, t ) ( t r u e ) g  II 

H e r e ,  ~p can  be  p i c k e d  at  r a n d o m .  T h e  a b o v e  e x p r e s -  
s ion c o n v e r t s  to  

II ¥ z . ( p l a y e r ) g z  => ( 3 z t . ( s t o n e ) g z  w A (own)gzz  t) II 4~ 

This  is a r e a s o n a b l e  c o n d i t i o n  for  ' t r u e '  to  a n s w e r  the  
ques t ion .  

Example  2. A n  a l t e rna t i ve  d e r i v a t i o n  for  the  p rev ious  
ph ra se  is: 

(R9)  is it the case that  every p layer  owns  s o m e  s tone 

I 
( R 1 1 )  every p layer  owns  s o m e  s tone 

\ , 
s o m e  ( R )  every p ayer  owns  h i m  o 

(R7)  every p layer  (R3)  own h i m  0 s tone 

I / \  
p layer  own he o 

In this  case,  the  t r a n s l a t i o n s  are:  

own himo: 

~u.Xz . (own)uzq  0 

every p layer  owns  himo: 

Xu.Vz. (p layer)uz  =~ (own)uzq  0 

every p layer  owns  s o m e  stone:  
~ u . 3 z ' . ( s t o n e ) u z '  A (Vz . (p laye r )uz  ~ (own)uzz  v) 

is it the  case that  every p layer  owns  s o m e  stone:  
k t . k u . ( 3 z ~ . ( s t o n e ) u z  t /k (Vz . (p l aye r )uz  
( o w n ) u z z ' ) )  < > t 

In  the  un ive r se  II g II ~, ' t r u e '  is an a n s w e r  to  this  ques -  
t ion  iff: 

II 3 z ' . ( s t o n e ) g z '  A (Vz . (p laye r )gz  => (own)gzz ' ) l imb 

This  c o n t r a s t s  wi th  e x a m p l e  1. 
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Example 3. Here  is a derivation of a phrase from 
SE?NU: [ 

(R2) h o w m a n ~ t o n e ~ l o n g  to Black  

(RI0)  how many  stones (R3) belong to B lack  

/ / \  
stone belong to Black  

The semantic rules give these translations: 

belong to Black:  

Xu.Xz.(belong to)uz(Black) 

how many stones: 

km.kxAu.(3mz.(s tone)uz A xuz) A 
-~ (3 (m+l )z . ( s tone )uz  A xuz) 

how many stones belong to Black:  

km.ku.(3mz.(stone)uz A (belong to)uz(Black))  A 
-, (3(m+ 1)z. (stone)uz A (belong to)uz(Black))  

Let  7/ = II n II ff be a natural number. Then 7/ answers 
this question in the universe II g [1 if, iff: 

II (3nz.(stone)gz A (belong to)gz(Black))  A 
-, ( ] ( n+  1)z. (stone)gz A (belong to)gz(Black))  II 

That  is, there exists ~/ stones (but not , /+1)  that be- 
long to Black in the universe II g II ft. 

Example 4. This question is from SE?NG.  

(R2) what owns no black stone 

what (R2) own no black stone 

own (R7) no black stone 

I 
(R5) black stone 

/ \  
black stone 

Here are the translations to lambda expressions: 

black stone: 

Xu.Xz.(stone)uz A (black)uz 

no black stone: 
Xx.hu.-,3z.(stone)uz A (black)uz A xuz 

own no black stone: 

~u.~z' .- ,  3z.(stone)uz A (black)uz A (own)uz'  z 

what owns no black stone: 

ky.y(ku.kz' .-~ 3z . ( s tone)uz  A (black)uz A 
(own)uz'z) 

The semantic object  corresponding to White (namely, 
II ~x.hu.xu(White)II ~) answers this question in a uni- 

verse, H g II ~, iff: 

II- ,]z.(stone)gz A (black)gz A (own)g(White)z II q~ 

Any realistic in terpreta t ion interprets  the constants  
black, own, and White so that  H (black)gzllff and 
It (own)g(White)z II q~ are mutually exclusive for any g, 
z, and ~k, so that the semantic object  for White does 
answer this question. 

The difficulty with examples such as these is that 
even when the translations of individual constructions 
are fairly simple the translation of a complex construc- 
tion inevitably appears cryptic and the translat ion 
process is tedious. However ,  the formal translations 
are amenable to mechanical  manipulat ions and the 
translating process is also easily mechanized. Hence,  
we leave it as an exerciue in the manipulations to show 
that the translation of what blocks own at least 3 stones 

with less than 2 liberties is as follows: 

Xy.ku.y(bloek)u A y(Xu.Xz"33zL(s tone)uz '  A 
-,(32z.(liberty)uz A (with)uz 'z)  A (own)uz"z ' )u  

The first part of the translation guarantees that a 
possible answer, y, is indeed a block. The second part 
checks that y owns at least 3 stones with less than 2 
liberties. Note that, although there may be other  pars- 
ings of this sentence in a complete English grammar, 
our simple syntactic rules have forced this particular 
translation upon us. 

Answers to S E ? N G  questions are objects from [C 
-~ S]. However ,  it might be more convenient  to have 
these answers be objects from A. A modification to 
the definition of an answer could allow this. In partic- 
ular, let b be a lambda constant  of type A, which in- 
terprets to flEA. Then /3 could answer a question in 
the universe II g II ~, with variable assignment ~b, iff 
II XxAu.xuh II ~ E [C -~ S], does. 

5. D iscuss ion  

We have used denota t ional  techniques to define the 
semantics of a "na tura l"  language question answerer. 
The questions are defined by syntactic rules - a cate- 
gory grammar. Associated with each syntactic rule is 
a semantic rule, giving a semantic object  for  each 
phrase the syntactic rule produces. The semantic ob- 
jects for  questions are functions,  f rom possible an- 
swers to propositions, where a proposit ion is an object  
that takes on a truth value. Thus, if a question, Q, has 
a semantic object  that maps an answer, A, to a true 
proposition, then A answers Q. In this way, the rela- 
tion between questions and answers is formalized. 

While it is not our intent to give implementat ion 
details for  the quest ion answerer,  an outline of the 
program's  organizat ion will lead to some concluding 
remarks. The program was writ ten as a class project  
by the first author and four other  students. The logi- 
cal divisions of the program were as follows: 
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• Lex ica l  analysis.  The input is broken into basic 
c o m p o n e n t  words,  or "tokens",  using finite auto-  
mata techniques as in Johnson  et al. (1968) .  

• Syntactic parser. An augmented transition network 
(Woods  1970)  parses the input according to the 
category grammar with heuristic rules and interac- 
tive query to solve ambiguities. The output is a 
single derivation tree. 

• Semantic  interpretation. The "meaning" of  the sen- 
tence is computed according to the semantic  rules. 
The output of  this phase can be thought  of  as 
"machine code" for finding answers.  At this stage, 
the "code" is independent  of  the actual structure of  
the implementat ion of  the underlying data base. 

• Deductive components. The "code" from the previ- 
ous stage is improved based on convers ion rules of  
logic, such as x or x = x. It is also modif ied ac- 
cording to the specific structure of  the data base. 
The latter modi f icat ions  are implementat ion  de- 
pendent.  

• Answerer.  This corresponds  to a database query- 
retrieval program. The "code" from the previous 
step is executed to produce an answer. 

In the actual implementat ion,  the above  stages are 
not  strictly separate; still, the model  is useful. There 
is a direct correspondence  b e t w e e n  the first four 
stages of  the implementat ion and the initial four stages 
of  a typical compiler (Aho  and Ul lman 1977).  Hobbs  
and Rosensche in  (1977)  indicate h o w  these last three 
stages could be developed using an augmented LISP as 
"code".  

In this paper, we have recommended  using denota-  
t ional semantics  as a speci f icat ion technique for 
quest ion-answer ing  programs. The implementat ion  
suggests that principles of  compiler design can be used 
as principles of  question answerer design by the soft-  
ware engineer. 
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