
Denotational Semantics for "'Natural'"
Language Question-Answering Programs 1

M i c h a e l G. M a i n 2
D a v i d B. B e n s o n

D e p a r t m e n t of C o m p u t e r S c i e n c e
W a s h i n g t o n S t a t e U n i v e r s i t y

P u l l m a n , W A 9 9 1 6 4 - 1 2 1 0

Scott -Strachey style denotational semantics is proposed as a suitable means of commu-
nicating the specification of "natural" language question answerers to computer program-
mers and software engineers. The method is exemplified by a simple question answerer
communicating with a small data base. This example is partly based on treatment of
fragments of English by Montague. Emphasis is placed on the semantic interpretation of
questions. The "meaning" of a question is taken as a function from the set of universes to
a set of possible answers.

1. Introduction

We advocate the use of Scot t-Strachey denotat ional
semantics for "na tura l" language quest ion-answering
programs. The majority of this paper demonstrates
the use of denotational semantics for a small question
answerer. The types of questions possible are similar
to those in Harris (1979), Winograd (1972), and
Woods (1972). The analysis is not as deep as in Kart-
tunen (1977) or similar studies, as it is oriented to the
specification of useful, but linguistically modest, capa-
bilities.

Before the demonstration, we discuss the benefits
of formal semantics and why denotational semantics is
an appropriate formalization. The semantics of a
question answerer is given by defining the action of
the program for each possible input. An informal
semantic description, perhaps in narrative form, is
necessary for a potential user who wants to know what
questions he may ask and what sort of answers the
program will provide. Informal meanings are also
valuable to the designer and implementer of a question
answerer. However, the designer and implementer
must understand all aspects of a proposed question
answerer in a precise unambiguous way that informal

1 This research was supported in part by NSF grants
MCS7708486 and MCS8003433.

2 Current Address: Department of Computer Science, Uni-
versity of Colorado, Boulder, CO 80309.

methods do not provide. In short, a formal method of
specifying the semantics is needed at the design and
implementation stage (see Ashcroft and Wadge 1982).

Once a formal semantics has been given, it can be
put to other uses as well. It can provide the basis for
a rigorous proof of correctness of an implementation.
Furthermore, formal specifications might allow partial
automation of the implementation process in the same
way that automatic compiler-writers produce parts of a
compiler from a formal specification of a programming
language (see Johnson 1975). With the advent of at
least one commercially available "na tura l" language
question-answering program (Harris 1979), these ad-
vantages become even more concrete.

If there is a familiarity to these arguments, it is
because the same reasoning is used to justify formal
semantics for programming languages. The problems
of design and analysis of question answerers are much
the same for programming languages - Benson (1975)
argues this point at length. An obvious approach is to
apply a programming language technique - denotation-
al semantics - to the problem of formally specifying a
question answerer. As a bonus, the method is under-
stood by many programmers and software engineers
through introductory textbooks such as Stoy (1977),
Gordon (1979), McGet t r ick (1980), Pagan (1981),
and Tennent (1981). Additionally, linguistic treat-
ments of natural language, such as Montague (1973),
are basically denotat ional and we can modify such

Copyright 1983 by the Association for Computational Linguistics. Permission to copy without fee all or part of this material is granted
provided that the copies are not made for direct commercial advantage and the Journal reference and this copyright notice are included on
the first page. To copy otherwise, or to republish, requires a fee and/or specific permission.

03 6 2 - 6 1 3 X / 8 3 / 0 1 0 0 1 1 - 1 1 $03.00

American Journal of Computational Linguistics, Volume 9, Number 1, January-March 1983 11

Michael G. Main and David B. Benson Denotational Semantics for 'Natural ' Language Q-A Programs

t reatments to meet our needs.
In denota t ional semant ics for p rogramming lan-

guages, evaluat ion funct ions map program segments
into objects in various semantic domains. These ob-
jects are taken as the meanings of the program seg-
ments, and determine the output of a program. Simi-
larly, in the semantics of a question answerer, evalua-
tion functions map input (questions) into objects that
determine the output (answers).

Deciding what objects are in the semantic domains
has a fundamenta l e f fec t on the capabili t ies of the
overlying question answerer, as well as an effect on
the usefulness and clarity of the semantic descriptions.
Lewis (1972) discusses these considerat ions for natu-
ral language sentences and the domains described in
section 2 are based on his, al though the t rea tment of
questions is closer to Ajdukiewicz (1926). Also intro-
duced in sect ion 2 are the lambda expressions that
denote individual semantic objects. Such expressions
have been used in denotat ional semantics of program-
ming languages (see Scott 1970, Milne and Strachey
1976, Stoy 1977) and in t rea tments of f ragments of
English by Montague (1973).

In section 3, evaluation functions mapping inputs
for a small question answerer to objects in the seman-
tic domain are given. The allowable quest ions are
defined by a category grammar as has been done by
Ajdukiewicz (1935) , Carnap (1937) , Lewis (1972) ,
Montague (1973) , and others. An account of the
answer relationship is given in section 4.

In the final section, we briefly describe an imple-
menta t ion of the question answerer and suggest some
broad principles for designing question answerers.

2. Semantic Domains for Natural Language

2.1 The Domains

A semantic domain is a set of objects. The objects are
meanings of syntactic constructs; in our case the syn-
tactic constructs are natural language phrases. In de-
nota t ional semantics for p rogramming languages, the
semantic domains of ten have some order imposed on
the objects to treat recursively defined functions. The
specification of a question answerer may also involve
explicit recursively defined questions, al though in this
demonst ra t ion only quantif icat ion is used and not re-
cursion. This does not prevent an implementa t ion
f rom using recursion - almost surely it will, to handle
the quantification. But lack of recursion does allow us
to use unordered semantic domains, as described be-
low.

One domain is the set of objects about which ques-
tions will be asked, e.g., moon rocks, toy blocks, or
whatever . We are not concerned with the internal
structure of these objects; hence they are called atoms
and the domain is designated A. Two other domains

are the set of natural numbers , designated N, and the
set of truth values {true, false}, designated T.

A fourth domain is the set of possible universes,
designated U. Intuitively, a universe is a description
of propert ies of atoms, the relationships be tween at-
oms, the relationships be tween relationships, etc A
universe is usually a partial descript ion including only
the propert ies and relationships of interest. For exam-
ple, in the toy blocks world (Winograd 1972) a uni-
verse is the specification of the size, shape, color, and
posit ion of all the blocks in the scene. A toy blocks
universe does not include a descript ion of the density,
mass, or material composi t ion of the various blocks.
In applicat ion, the set of possible universes may be
called a " d a t a base" , and each actual universe is a
specific state or configurat ion of the data base. The
internal structure of such a data base is left unspeci-
fied in this paper.

Other semant ic domains are built f rom the four
basic domains. For example, the set of functions f rom
universes to truth values, designated [U--T}, is a new
domain. In general, if X and Y designate sets, then
[X--Y} designates the set of functions f rom X to Y.
Other semant ic domains could be conceived (e.g.,
product or sum domains) , but funct ion domains will be
adequate for our examples.

2.2 Assigning domains to syntactic categories

Natural language phrases have been divided into many
different categories (see Kahn 1978). Exact ly which
categories are used depends upon syntax. In the cate-
gory g rammar of section 3, the categories include sen-
tence, intransit ive verb, c o m m o n noun, noun group,
noun modifier, numeral, and so on. There are also
separate interrogative categories for phrases that ask a
question, such as how many stones.

To each syntactic category, a semantic domain is
assigned. The meaning of a phrase is an object in the
assigned domain. Ultimately, f rom the meaning of a
question, we will derive its answer. But first we assign
domains to non- in te r roga t ive categories , beginning
with the category of sentences.

A declarat ive sentence is a proposi t ion - that is,
something to which a truth value can be assigned. The
meaning of a sentence somehow determines what that
truth value is in any possible universe. So, an appro-
priate semant ic ob jec t for a sentence is a funct ion
f rom possible universes to truth values. The domain
assigned to the ca tegory of sentences is the re fore
[U--T}, which we will designate S. If a declarat ive
sentence has a meaning a E S, and/3 is a universe, then
a/3 is true just if the sentence is true in the universe/3.3

3 Lower case Greek letters are semantic objects. Juxtaposi-
tion indicates functional application and associates left-to-right.
Thus, a/3 means the function a applied to the argument /3, and a/37
means (a(/3))(),).

12 A m e r i c a n Jou rna l of Computational Linguistics, Volume 9, Number 1, January-March 1983

Michael G. Main and David B. Benson Denotational Semantics for "Natural" Language Q-A Programs

If there is a single fixed universe, then sentences could
be assigned meanings in T alone. However , question
answerers are general ly based on a changeable uni-
verse or data base. Hence, the [U- -T] approach is
needed to give a fixed meaning to a sentence whose
truth value may vary f rom universe to universe.

Both common nouns and intransitive verbs define
subsets of A. The subset of stone (a common noun) is
the set of a toms that are stones. The subset for the
intransitive verb phrase belong to Preston is the set of
a toms that belong to Preston. The meaning of such a
phrase determines what that subset is for any possible
universe. This can be done by an object in
[U-~[A-~T]] (i.e., functions f rom U to [A--T]) . This
domain is assigned to both common noun and intransi-
tive verb categories, and is designated by C. If a com-
mon noun has a meaning a e C, and/3 is a universe and
3' an atom, then a/33' is true just if ~, is in the subset
defined by the common noun in the universe /3 - and
similarly for intransitive verbs.

For most o ther syntact ic categories, the semant ic
domain is determined by how phrases in that category
combine with sentences, com m on nouns, intransit ive
verbs, and other phrases to form new phrases. For
example, a noun group combines with an intransitive
verb to form a sentence. Therefore , a semantic object
for a noun group should take a semantic object f rom C
(the domain for intransitive verbs) and yield a seman-
tic object f rom S (the domain for sentences). Thus,
the semantic domain for noun groups is [C-~S]. 4

Similarly, a noun modifier, such as black, combines
with a common noun, such as stone, to form a new
common noun - black stone. So, the semantic domain
for noun modifiers is [C--C] . By examining the syn-
tactic rules, this method can be applied to most cate-
gories. 5 Occasional except ions can be made - for
example, numerals are assigned the domain, N, of
natural numbers.

2.3 Interrogative categories

So far, the categories include only non- in te r roga t ive
phrases. Syntactically, the interrogative phrases paral-
lel the non-interrogatives, but semantically an interro-
gative lacks something. For example , Ajdukiewicz
(1926) would represent the meaning of the interroga-

4 A name, such as John, is one type of noun group that de-
notes a particular atom which does not change from universe to
universe Therefore, it might be better to have names in a separate
syntactic category with assigned semantic domain A. But, doing
this would not do away with the category noun group, since some
noun phrases are not names (e.g., every stone). But, having two
categories unduly complicates the syntax, so we lump names togeth-
er with other noun groups, and treat them as Montague (1973) has.

5 This method of assigning semantic domains is an application
of Frege's rule of compositionality, which says that the meaning of
a compound phrase is composed from the meaning of its parts•
(Frege 1892, van Emde Boas and Janssen 1979)

tive sentence what is black and white and read all over
as: ?x(x is black and white and read all over). Here, x
is a variable and " ? " a quantif ier indicating the lack.
In this case, the range of the variable is the set of
noun group phrases that could answer the question.

There are also interrogative phrases in other cate-
gories, such as the intransitive verb phrase owns what.
And it is not always a noun group that is missing; for

• example, the noun group how many stones lacks a nu-
meral. In general, any non-interrogat ive category is
made into an interrogative category by indicating what
is lacking. Hence, if X and Y are non-interrogat ive
categories, then X?Y designates the category of inter-
rogative phrases that are syntactically like X-phrases
but semantically lack a Y-phrase. 6 If Y has semantic
domain Y and X has semantic domain X, then X?Y will
have semant ic domain [Y--X]. Fur the rmore , if an
interrogative phrase in X?Y has a meaning aE[Y-~X],
then a/3 is that object of X that results when /3eY an-
swers the interrogative.

For example, the interrogative sentence who killed
cock robin will have a meaning a E [[C - ~ S] - - S] , since it
is a sentence (domain S) lacking a noun group
(domain [C- -S]) . If the sparrow has a meaning
/ 3 t I C - - S] , and the sparrow killed cock robin has a
meaning 7ES, then a/3=~,.

A similar idea can be applied to one other catego-
ry: y e s - n o questions. Such an interrogative lacks a
truth value, so the semantic domain assigned to y e s - n o
questions is [T - - S] . If a t [T - - S] is the meaning of a
y e s - n o question, then a (t rue)£ S is the meaning of the
sentence when it is answered by yes, and similarly for
an a(false) .

2.4 Lambda expressions

Up to this point, semantic objects have been described
in English. In order to be more precise, a formal no-
tat ion is needed. We use a typed lambda expression
for denoting functions, similar to the lambda calculi of
Church (1951).

Every lambda expression has a type that indicates
the semant ic domain of the objec t denoted by the
expression. These types are in one- to-one correspon-
dence with the semantic domains (A, U, T, N, [U-~T],
etc), so we will use the same letters in ordinary
typescr ip t for the express ion types (A, U, T, N,
[U-~T], etc).

The expressions of each type include a set of con-
stants and a denumerable set of variables. A function
that maps the constants into semant ic objects is an
interpretat ion, and generally remains fixed. A func-
tion that maps variables into semant ic objects is a
var iable ass ignment and, as its name suggests, will

6 This could be extended to include phrases, like who does
what, which question more than one thing at a time.

American Journal of Computational Linguistics, Volume 9, Number 1, January-March 1983 13

Michael G. Main and David B. Benson Denotational Semantics for "Natural' Language Q-A Programs

change. If q, is a variable assignment, x is a variable
of any type, and a is an object f rom the semantic do-
main of x, then ~p[a/x] is a changed variable assign-
ment that is like ~ except that q~[a/x] assigns a to the
variable x. In this way, new variable assignments are
fo rmed f rom old. Finally, each lambda expression
denotes one semantic object, but which object this is
varies as the variable assignment changes. So, for an
expression b the notat ion [[bll ~ is to denote the se-
mantic object for the expression b, with variable as-
signment ~p.7

Table 1 gives recursive rules defining lambda ex-
pressions and the semantic objects they denote. We
take as given a set of constants and a denumerable set
of variables for each type, and a fixed interpretat ion,
q0. X and Y are arbi trary types, with corresponding
semantic domains X and Y.

Some lambda expressions can be derived more than
one way. Any such ambiguities are resolved as fol-
lows:
a. The expression following a lambda abstract ion (i.e.,

),x) or a quantifier (i.e., 3x, ¥x, 3nx,) will be as
long as possible - that is, to the first unmatched
right parenthesis or to the end of the entire expres-
sion.

b. The unary opera tor -, has higher priority than any
of the binary opera tors (A, V, =, =>, .-, >, and
functional application, which is indicated by juxta-
position). Funct ional application has the highest
priority of the binary opera tors and associates left-
to-right, e.g., b c d = (b c) d . The other binary opera-
tors have equal precedence and also associate left-
to-right, e.g., bcAdcVc = ((bc)A(dc))Vc .

3. S y n t a x and S e m a n t i c s of a Smal l Q u e s t i o n
A n s w e r e r

3.1 Syntact ic categor ies

To illustrate the mechanics of the previous section, we
give the syntax and semantics of a small question an-
swerer. The quest ion answerer accepts quest ions
about conf igurat ions of pieces in the game of Go.
Briefly, a configuration consists of a 19 by 19 grid of
points, labeled A-1 through S-19. Each point may
contain a black or a white stone. Like-colored stones,
connec ted hor izontal ly or vertically, fo rm blocks.
Empty points adjacent to a block are that block 's lib-
erties. Each configurat ion is a universe in the seman-
tic domain U.

The syntax for a quest ion answerer must answer
the question: what phrases are grammatical ly correct
input to the question answerer? Our approach uses
various syntactic categories, in the style of Montague

(1973). A syntactic category is a set of phrases, in-
cluding basic phrases and derived phrases. The de-
rived phrases are specified by recursive syntactic rules
that describe how phrases f rom various categor ies
combine to form new phrases.

The syntax presented here has two kinds of cate-
gories. First, non- in te r roga t ive categories , whose
phrases do not ask questions. These categories are
listed in Table 2, along with an abbrevia t ion for each,
the lists of basic expressions, and the associated se-
mantic domains f rom section 2. In the table, A - I ,
A-2, and so on are names of points on the Go board.
The basic phrases heo, he 1, they o, they 1, and so on are
used as variables in a manner made precise by syntac-
tic rules given later.

The second kind of ca tegory is the in ter rogat ive
category. Syntactically, an interrogative ca tegory be-
haves like some non- interrogat ive category, but it also
asks a question whose answer is f rom some other non-
interrogative category. If a phrase is syntactically like
a phrase f rom category X, and asks a quest ion whose
answer is in category Y, then that phrase is in a cate-
gory X?Y. This separat ion of interrogatives is needed
because the semantic domain for interrogatives differs
f rom that for non- in te r roga t ives (see sect ion 2.3).
One additional interrogative ca tegory does not follow
the X ? Y pat tern - the y e s - n o questions. We designate
this category YN and list it in Table 3 with the other
interrogative categories.

3.2 Syntact ic and semant ic rules

We now give syntactic rules that define the phrases of
each category. With each syntact ic rule is a semantic
rule. For each phrase that a syntactic rule creates, the
cor responding semant ic rule tells precisely how to
translate that phrase into a lambda expression denot-
ing the meaning of the phrase. In these rules, italic
let ters (u, v, w, ...) are a rb i t ra ry phrases f rom any
ca tegory and F1, F2, ..., are funct ions that combine
phrases to yield new phrases. Var iables in l ambda
expressions are of the following types.

• m ,m ' , . . . o f type N.
• t , t ' , . . , of type T.
• u,u ' , . . , of type U.
• x,x~,.., of type C.
• y ,y ' of type [C-~S].
• qi is the (2 i+3) th variable of type A.
• Pi is the (2 i+4) th variable of type A.
• z is the first variable of type A.
• z ' is the second variable of type A.

7 The semantic object associated with a lambda expression
also depends on the interpretation function, but we assume this is
fixed.

14 American Journal of Computational Linguistics, Volume 9, Number 1, January-March 1983

Michael G. Main and David B. Benson Denotat ional Semantics for "Natural" Language Q-A Programs

LAMBDA EXPRESSION SEMANTIC O B J E C T

1. If b is a constant of type X, then b is an expression
of type X.

2. If x is a variable of type X, then x is an expression
of type X.

3. If b is an expression of type X, then (b) is also an
expression of type X.

4. If b is an expression of type Y and x is a variable
of type X, then ~x.b is an expression of type [X--Y] .

5. If b is an expression of type [X - , Y] and c is an
expression of type X, then bc is an expression of type
Y.

6. If b and c are expressions of type X, then b = c is
an expression of type T.

7. If b and c are expressions of type T, then -, b, bAc,
bVc, b~,c, and b<==>c are expressions of type T.

8. If n is an expression of type N, then n + l is an
expression of type N.

9. If b is an expression of type T and x is a variable
of type X, then 3x.b and Vx.b are expressions of type
T.

10. If b is an expression of type T, x is a variable of
type X and n is an expression of type N, then 3nx.b is
an expression of type T.

[lbll ~ is q0b (i.e., the interpretat ion ~ applied to the
constant b).

II x II q~ is ~x (i.e., the variable assignment ~b applied to
the variable x).

II (b) II q~ is 11 b II ~.

II ?,x.b II ~ is that function a : X - , Y , such that for every

~ x , ~/~ --- Ilbllq~[/3/x].

II bc II ff is the function II b [1 ~k applied to the argument

II c II q~.

II b = c II ~ is true iff [[b II ~ is the same semantic ob-

ject as II c II ~.

II-,b II q~ is true iff II b II q~ is false, and similarly for /X
(and), V (or), ~ (implication), and <==> (coincidence).

II n + 1 II q~ is the natural number successor of II n II q~.

113x.bll~ is true iff there exists an aEX, such that

Ilbllq~[~/x] is true. IlVx.bllq~ is 11-,3x.-,bll~.

Let n = II n II ~k. Then II 3nx.b II ~ is true iff there exist
,/ distinct objects in X, so that for any of these ,/ ob-

jects, say a, II b II q~[~/x] is true.

Table 1. Lambda expressions and their semantic objects.

American Journal of Computational Linguistics, Volume 9, Number 1, January-March 1983 15

Michael G. Main and David B. Benson Denotational Semantics for 'Natural Language Q-A Programs

SYNTACTIC CATEGORY SEMANTIC D O M A I N & BASIC PHRASES

SE (sentence)

CN (common noun)

I V (intransitive verb)

NG (noun group)

TV (transitive verb)

N M (noun modifier)

MG (modifying group)

PP (preposition or participial)

NU (numerals)

S = [U-*T].
No basic phrases.

C = [U~[A---T]].
player, block, stone, liberty, point

C.

exist

[c--s].
Black, White, he o, he 1 they o, they 1 A - l , A-2

[[C--S]--C].
own, belong to

[C-~C].
black, white

[C-~C].
No basic phrases.

[[C-- S]-- [C-- C]].
at, with, owning, belonging to

N

0 , 1 , 2

Table 2. Syntactic categories (non-interrogative).

SYNTACTIC CATEGORY SEMANTIC D O M A I N & BASIC PHRASES

YN (yes-no question)

NG?NG (noun group questioning a noun group)

For any two non-interrogative categories, X and Y,
X?Y is an interrogative category.

[T-~S].
No basic phrases.

[[C--S]-- [C-~S]].
who, what

[Y-~X], where X is X's domain and Y is Y's domain.
None of these categories, except NG?NG, have basic
phrases.

Table 3. Syntactic categories (interrogative).

16 American Journal of Computational Linguistics, Volume 9, Number 1, January-March 1983

Michael G. Main and David B. Benson Denotational Semantics for "Natural" Language Q-A Programs

3.2.1 The basic rule

Syntactic Rule:

RI . For each category, its basic phrases are phrases.

Semantics:

We give a translation of each basic phrase, according
to which category it is in:

CN, IV: player translates to a constant of type C,
denoted player; and similarly for any other basic
phrase of category CN or IV.

NG: Black translates to ~xAu.xu(Black), where
Black is a constant of type A. Having Black be a
constant of type A emphasizes the point that
Black is a name, associated with some particular
object in A. The translation of other basic phras-
es of NG will be similar, except for he i and they i (i
= 0 , 1). In particular, he i translates to
~x.~u.xuqi and they i translates to ~x.~u.xuPi.

TV: own translates to XyAuAz.y(~ut.(own)uWz)u,
where own is a constant of type [U -* [A -* [A
-- T]]]; and similarly for any other basic phrase
of category TV. This emphasizes that a transitive
verb is a relation between two objects in A. In
particular, if own interprets to a • [U -- [A -* [A
-~ T]]], f leU, and 7, 8 •A, then afl3,d if true is the
object 3' owns the object d in the universe ft.8

NM: black translates to ~x.AuAz.xuz A (black)uz,
where black is a constant of type C; and similarly
for other basic phrases of category NM.

PP: at translates to ~y.~x.Xu.Xz.xuz A
y(XuV.(at)utz)u, where at is a constant of type
[U -* [A -- [A -* T]]]; and so on.

NU: 0 translates to 0, a constant of type N, which
interprets to the natural number 0 in N; and simi-
larly for other numerals.

NG?NG: what translates to ~,y.y and who translates
to ~yAx.~u.y(player)u/x yxu.

3.2.2 The combinative rules

These rules use a set of syntactic functions, F 1
through F4, which combine phrases in various ways
involving person, plurality, and so on. We give these
functions first.

Ft(u,v) is uv', where v' is v (if the first noun in u is
plural) or the result of replacing the first verb in v
by its third person singular form (if the first noun

8 However, this scheme will not work with all transitive verbs,
for example, alleged to be. Such verbs, called intensional verbs,
require more complex translations, but the end result will still be of
type [[C --,- S] ~ CI. The same complexities arise for N M and PP.
Our example contains none of these intensional words.

in u is singular).

F2(u,v) is uv t, where v' is the result of replacing the
first noun in v by its objective form.

F3(u,v) = uv.

F4(u,v) = vu.

Syntactic Rules:

R2. If u is a phrase from NG and v is a phrase from
IV, then Fl(U,V) is a phrase from SE.

R3. If u is a phrase from TV and v is a phrase from
NG, then F2(u,v) is a phrase from IF.

R4. If u is a phrase from PP and v is a phrase from
NG, then F2(u, v) is a phrase from MG.

R5. If u is a phrase from N M and v is a phrase from
CN, then F3(u,v) is a phrase from CN.

R6. If u is a phrase from M G and v is a phrase from
CN, then F4(u,v) is a phrase from CN.

Interrogative Variants of Syntactic Rules:

In any of the rules R2 through R6, exactly one of the
arguments, u or v, may be a phrase from category X?Y,
where X is the original category specified for the argu-
ment and Y is any non-interrogative category. If the
original result was to be from category Z, then the
new result is in category Z?Y. For example, from R2,
if u is a phrase from NG?NG and v is a phrase from
IV, then Fl(U,v) is a phrase from SE?NG.

Semantics:

Let w = Fi(u,v), f o r i = 1, 2, 3, or 4. Let u translate
to b and v translate to c. Then there are three cases
for the translation of w"

Case (i): If neither u nor v is from an interrogative
category, then w translates to bc.

Case (ii): If u is from an interrogative category X?Y,
then w translates to ~s.bsc, where s is a variable
of type assigned to the category Y.

Case (iii): If v is from an interrogative category X?Y,
then w translates to ~s.b(cs), where s is a varia-
ble of type assigned to the category Y.

3.2.3 Extracategorical rules

These rules combine phrases with words from outside
the categories to form new phrases. The rules use two
syntactic functions given here:

Fs(u,v) is vu v, where u t is u (if v = 1), or the result of
replacing the first noun in u by its plural form (if
v ~ 1).

F6(u) is the result of replacing the first noun in u with
its plural form.

Syntactic Rules and Semantics:

R7. Let u be a phrase from CN, translating to b.

American Journal of Computat ional Linguistics, Volume 9, Number 1, January-March 1983 17

Michael G. Main and David B. Benson Denotat ional Semantics for "Natural" Language Q-A Programs

Then:
(i)

(ii)

(iii)

(iv)

every u is a phrase f rom NG, translating to
Xx.Xu.Vz.buz => xuz.
some u is a phrase f rom NG, translating to
Xx,Xu.3z.buz A xuz.
the u is a phrase f rom NG, translating to
Xx.Xu.3z.xuz A ¥ z ' . (buz ' < ;. (z = z ')) .
no u is a phrase f rom NG, translating to
kx.Xu.-~3z.buz A xuz.

R8. Le t u be a phrase f rom CN, t ranslat ing to b.
Also let v be a phrase f rom NU, which translates
to n. Then:
(i) exactly Fs(u,v) is a phrase f rom NG, t rans-

lating to Xx.Xu.(3nz.buz A xuz) A
- , (3 (n + l) z . b u z A xuz).

(ii) at least Fs(u,v) is a phrase f rom NG,
translating to Xx.Xu.3nz.buz A xuz.

(iii) less than F5(u,v) is a phrase f rom NG,
translating to Xx.Xu.-, (3nz.buz A xuz).

R9. Let u be a phrase f rom SE, t ranslat ing to b.
Then is it the case that u is a phrase f rom YN,
translating to M.Xu.bu<==>t.

R10. Let u be a phrase f rom CN, t ranslat ing to b.
Then:
(i) what F6(u) is a phrase f rom NG?NG,

translating to ?~y.Xx.Xu.ybu A yxu.
(ii) how many F6(u) is a phrase f rom NG?NU,

translating to Xm.Xx.Xu.(3mz.buz A xuz)
A -, (] (m + 1)z.buz A xuz.

3.2.4 The abstract ion rule

This rule is to replace the variables he i and they i by
other noun phrases. The necessity for abstract ion is
discussed in Lewis (1972). The syntactic functions F 7
and Fs, defined below, are used. In these definitions,
let u ' be the result of replacing the first noun in u with
its object ive form, let up be the result of replacing the
first noun in u with its plural form, and let u 'p be the
result of replacing the first noun in u with its plural
object ive form.

FT(U,v,i) is the result of replacing, in v, all occurrences
of he i by u and all occurrences of him i by u ' .

F8(u,v,i) is the result of replacing in v, all occurrences
of they i by Up and all occurrences of them i by U'p.

Syntactic Rule:

R l l . Let u be a phrase f rom NG, v be a phrase f rom
SE, IV, or CN, and i be a variable index (e.g.,
0, 1, 2). Then FT(U,v,i) and Fs(u,v,i) are
phrases f rom the same category as v.

Interrogat ive Variant of Syntactic Rule:

Either u may be f rom NG?Y or v may be f rom SE?Y,
IV?Y, or CN?Y (but not both) , where Y is any non-

interrogative category. In all cases, the result is f rom
X?Y, where X is the first port ion of the category of v.

Semantics:

Le t b be the translat ion of u and c be the translat ion
of v. The translat ion of FT(U,v,i) is given in the fol-
lowing table, where s is a variable of type Y:

Case 1: v f rom S E and u f rom NG: b(Xu.Xqi.cu)
Case 2: v f rom S E and u f rom NG?Y:

Xs.bx(Xu.Xqi.cu)
Case 3: v f rom I V or CN and u f rom NG:

?~u.Xz.b(Xu' .Xqi.culz)u
Case 4: v f rom I V or CN and u f rom NG?Y:

Xs.Xu.Xz.bs(Xu' .Xqi.cu'z)u
Case 5: v f rom S E ? Y and u f rom NG:

Xs.b(Xu.Xqi.csu)
Case 6: v f rom I V ? Y or CN?Y and u f rom NG:

?~s.Xu.Xz.b(?~u' .hqi .csu 'z)u

The t ranslat ion is identical for F8, except that qi is
replaced by Pi-

Some of the notions in the syntact ic rules must still
be formalized. We must define the plural, objective,
and plural object ive forms of each basic phrase in CN,
NG, and NG?NG. A noun is then any such basic
phrase or one of these forms. A verb is any basic
phrase in I V or TV. For each verb we must define its
third person singular form.

A brief discussion of the abst ract ion rules can clari-
fy their usage and purpose. A sentence such as every
player owns some stone has two possible meanings. It
can mean: there is some par t icular s tone owned by
every player; or al ternately, every player owns at least
one stone, but not necessarily the same stone for each
player. These two meanings will be achieved by intro-
ducing the NG some stone at different times. The ab-
straction rules allow this by delaying the introduct ion
of a noun phrase. Initially, a variable (perhaps he o) is
put in the sentence as a place holder. The abst ract ion
rules allow an NG to later replace the variable.

4. Quest ions and Answers

4.1 Quest ions

A question is any phrase f rom category YN, SE?NG, or
SE?NU, along with its syntact ic derivation. The syn-
tactic derivat ion is needed because some phrases can
be derived in more than one way (e.g., is it the case
that every player owns some stone).

Derivat ions are represented by trees. Each leaf in
a derivat ion tree is labeled with a basic phrase. Each
internal node is labeled with a derived phrase, plus the
number of the syntactic rule that is used to derive it
f rom its daughter leaves.

From the semantic rules, every question translates
to exactly one lambda expression.

18 American Journal of Computational Linguistics, Volume 9, Number 1, January-March 1983

Michael G. Main and David B. Benson Denotational Semantics for "Natural" Language Q-A Programs

4.2 A n s w e r s

L e t Q be a ques t i on tha t t r ans l a t e s to a l a m b d a ex-
p ress ion , b, of t ype [X ~ S]. A l so let :

• q, be a va r i ab l e a s s ignmen t ,
• g be a c o n s t a n t of t ype U and II g II 4~ = ~',
• d be a c o n s t a n t of t ype X and II d II q~ = ,~.
T h e n 6 is an answer to Q, in the un ive r se 3' wi th va r i a -
ble a s s ignmen t ~b iff II b d g II ~k is t rue.

If b is an exp re s s ion of t ype [X - - S], t hen the
a n s w e r s to i ts c o r r e s p o n d i n g q u e s t i o n a re s e m a n t i c
ob j ec t s in X. In genera l , these o b j e c t s d e p e n d on the
choice of the un ive r se and also on the va r i ab le ass ign-
ment . H o w e v e r , if the ques t i on does no t c o n t a i n any
va r i ab le s (he i or theYi), t hen the set of answer s is the
same for any va r i ab le a s s ignmen t . Such a ques t i on is
ca l led invariable, and we m a y speak of an a n s w e r wi th -
ou t r e spec t to a va r i ab le a s s ignmen t .

4.3 Examples

All of these examples are i nva r i ab le ques t ions , so we
m a y choose a va r i ab le a s s ignmen t , ~p, a t r a n d o m . The
types of va r i ab les are as in s ec t ion 3.2, and we also
use a l a m b d a c o n s t a n t g, of t ype U. As a lways , t he re
is a f ixed i n t e r p r e t a t i o n ass igning the l a m b d a c o n s t a n t s
to s e m a n t i c ob jec t s .

In t r ans l a t ing the e x a m p l e s to l a m b d a expres s ions ,
we use the s e m a n t i c rules of sec t ion 3.2. H o w e v e r ,
a f t e r t r ans l a t i ng a ph ra se , we will s o m e t i m e s a l t e r the
l a m b d a e x p r e s s i o n in w a y s tha t c a n n o t c h a n g e the
s eman t i c ob jec t . 9

Example 1. One d e r i v a t i o n of the ph ra se is it the case

that every p layer owns s o m e s tone is:

(R9) is it the case that every p layer owns s o m e s tone

I
(R2) every p layer owns s o m e s tone

o (R7) every p layer wn s o m e s tone

I . / \
player own (R7) s o m e s tone

s tone

W e have these t r ans l a t ions :

own s o m e stone:
Xu.Xz.=lz ' . (s tone)uz ' A (o w n) u z z '

9 In particular, we use logical conversion (such as b A b
converts to b) and the a- and /3-conversions of lambda calculus.
a-conversion involves changing the name of a bound variable (e.g.,
?,x.x A y converts to),z.z A y). /3-conversion corresponds to func-
tional application (e.g., (~,x.x A y)z converts to z A y). Details can
be found in Stoy (1977).

every p layer:

?,x.? ,u .Vz.(player)uz ~ xuz

every p layer owns s o m e stone:
~u .Vz . (p l aye r)uz => (3z~ . (s toue)uz t A (own)uzz t)

is it the case that every p layer owns s o m e stone:

Xt.?~u.(Vz.(player)uz => (3zV.(s tone)uz ' A
(o w n) u z z ')) < ;. t

L e t t rue be a c o n s t a n t o f t y p e T t ha t i n t e r p r e t s to
' t r u e ' ~ T . F r o m the de f in i t i on of an answer , ' t r u e ' is
an a n s w e r to this ques t i on in the un ive r se II g II ~ iff:

II (M A u . (V z . (p l a y e r) u z A (3z t . (s t o n e) u z t A

(o w n) u z z ')) 4=0, t) (t r u e) g II

H e r e , ~p can be p i c k e d at r a n d o m . T h e a b o v e e x p r e s -
s ion c o n v e r t s to

II ¥ z . (p l a y e r) g z => (3 z t . (s t o n e) g z w A (own)gzz t) II 4~

This is a r e a s o n a b l e c o n d i t i o n for ' t r u e ' to a n s w e r the
ques t ion .

Example 2. A n a l t e rna t i ve d e r i v a t i o n for the p rev ious
ph ra se is:

(R9) is it the case that every p layer owns s o m e s tone

I
(R 1 1) every p layer owns s o m e s tone

\ ,
s o m e (R) every p ayer owns h i m o

(R7) every p layer (R3) own h i m 0 s tone

I / \
p layer own he o

In this case, the t r a n s l a t i o n s are:

own himo:

~u.Xz . (own)uzq 0

every p layer owns himo:

Xu.Vz. (p layer)uz =~ (own)uzq 0

every p layer owns s o m e stone:
~ u . 3 z ' . (s t o n e) u z ' A (Vz . (p laye r)uz ~ (own)uzz v)

is it the case that every p layer owns s o m e stone:
k t . k u . (3 z ~ . (s t o n e) u z t /k (Vz . (p l aye r)uz
(o w n) u z z ')) < > t

In the un ive r se II g II ~, ' t r u e ' is an a n s w e r to this ques -
t ion iff:

II 3 z ' . (s t o n e) g z ' A (Vz . (p laye r)gz => (own)gzz ') l imb

This c o n t r a s t s wi th e x a m p l e 1.

American Journal of Computational Linguistics, Volume 9, Number 1, January-March 1983 19

Michael G. Main and David B. Benson Denotational Semantics for 'Natural" Language Q-A Programs

Example 3. Here is a derivation of a phrase from
SE?NU: [

(R2) h o w m a n ~ t o n e ~ l o n g to Black

(RI0) how many stones (R3) belong to B lack

/ / \
stone belong to Black

The semantic rules give these translations:

belong to Black:

Xu.Xz.(belong to)uz(Black)

how many stones:

km.kxAu.(3mz.(s tone)uz A xuz) A
-~ (3 (m+l)z . (s tone)uz A xuz)

how many stones belong to Black:

km.ku.(3mz.(stone)uz A (belong to)uz(Black)) A
-, (3(m+ 1)z. (stone)uz A (belong to)uz(Black))

Let 7/ = II n II ff be a natural number. Then 7/ answers
this question in the universe II g [1 if, iff:

II (3nz.(stone)gz A (belong to)gz(Black)) A
-, (] (n+ 1)z. (stone)gz A (belong to)gz(Black)) II

That is, there exists ~/ stones (but not , /+1) that be-
long to Black in the universe II g II ft.

Example 4. This question is from SE?NG.

(R2) what owns no black stone

what (R2) own no black stone

own (R7) no black stone

I
(R5) black stone

/ \
black stone

Here are the translations to lambda expressions:

black stone:

Xu.Xz.(stone)uz A (black)uz

no black stone:
Xx.hu.-,3z.(stone)uz A (black)uz A xuz

own no black stone:

~u.~z' .- , 3z.(stone)uz A (black)uz A (own)uz' z

what owns no black stone:

ky.y(ku.kz' .-~ 3z . (s tone)uz A (black)uz A
(own)uz'z)

The semantic object corresponding to White (namely,
II ~x.hu.xu(White)II ~) answers this question in a uni-

verse, H g II ~, iff:

II- ,]z.(stone)gz A (black)gz A (own)g(White)z II q~

Any realistic in terpreta t ion interprets the constants
black, own, and White so that H (black)gzllff and
It (own)g(White)z II q~ are mutually exclusive for any g,
z, and ~k, so that the semantic object for White does
answer this question.

The difficulty with examples such as these is that
even when the translations of individual constructions
are fairly simple the translation of a complex construc-
tion inevitably appears cryptic and the translat ion
process is tedious. However , the formal translations
are amenable to mechanical manipulat ions and the
translating process is also easily mechanized. Hence,
we leave it as an exerciue in the manipulations to show
that the translation of what blocks own at least 3 stones

with less than 2 liberties is as follows:

Xy.ku.y(bloek)u A y(Xu.Xz"33zL(s tone)uz ' A
-,(32z.(liberty)uz A (with)uz 'z) A (own)uz"z ')u

The first part of the translation guarantees that a
possible answer, y, is indeed a block. The second part
checks that y owns at least 3 stones with less than 2
liberties. Note that, although there may be other pars-
ings of this sentence in a complete English grammar,
our simple syntactic rules have forced this particular
translation upon us.

Answers to S E ? N G questions are objects from [C
-~ S]. However , it might be more convenient to have
these answers be objects from A. A modification to
the definition of an answer could allow this. In partic-
ular, let b be a lambda constant of type A, which in-
terprets to flEA. Then /3 could answer a question in
the universe II g II ~, with variable assignment ~b, iff
II XxAu.xuh II ~ E [C -~ S], does.

5. D iscuss ion

We have used denota t ional techniques to define the
semantics of a "na tura l" language question answerer.
The questions are defined by syntactic rules - a cate-
gory grammar. Associated with each syntactic rule is
a semantic rule, giving a semantic object for each
phrase the syntactic rule produces. The semantic ob-
jects for questions are functions, f rom possible an-
swers to propositions, where a proposit ion is an object
that takes on a truth value. Thus, if a question, Q, has
a semantic object that maps an answer, A, to a true
proposition, then A answers Q. In this way, the rela-
tion between questions and answers is formalized.

While it is not our intent to give implementat ion
details for the quest ion answerer, an outline of the
program's organizat ion will lead to some concluding
remarks. The program was writ ten as a class project
by the first author and four other students. The logi-
cal divisions of the program were as follows:

20 American Journal of Computational Linguistics, Volume 9, Number 1, January-March 1983

Michael G. Main and David B. Benson Denotational Semantics for "Natural" Language Q-A Programs

• Lex ica l analysis. The input is broken into basic
c o m p o n e n t words, or "tokens", using finite auto-
mata techniques as in Johnson et al. (1968) .

• Syntactic parser. An augmented transition network
(Woods 1970) parses the input according to the
category grammar with heuristic rules and interac-
tive query to solve ambiguities. The output is a
single derivation tree.

• Semantic interpretation. The "meaning" of the sen-
tence is computed according to the semantic rules.
The output of this phase can be thought of as
"machine code" for finding answers. At this stage,
the "code" is independent of the actual structure of
the implementat ion of the underlying data base.

• Deductive components. The "code" from the previ-
ous stage is improved based on convers ion rules of
logic, such as x or x = x. It is also modif ied ac-
cording to the specific structure of the data base.
The latter modi f icat ions are implementat ion de-
pendent.

• Answerer. This corresponds to a database query-
retrieval program. The "code" from the previous
step is executed to produce an answer.

In the actual implementat ion, the above stages are
not strictly separate; still, the model is useful. There
is a direct correspondence b e t w e e n the first four
stages of the implementat ion and the initial four stages
of a typical compiler (Aho and Ul lman 1977). Hobbs
and Rosensche in (1977) indicate h o w these last three
stages could be developed using an augmented LISP as
"code".

In this paper, we have recommended using denota-
t ional semantics as a speci f icat ion technique for
quest ion-answer ing programs. The implementat ion
suggests that principles of compiler design can be used
as principles of question answerer design by the soft-
ware engineer.

R e f e r e n c e s

Aho, A.V. and Ullman, J.D. 1977 Principles of Compiler Design.
Addison-Wesley, Reading, Massachusetts.

Ajdukiewicz, K. 1926 The Semantic Analysis of Interrogative
Sentences, Ruth Filozoficzny X.

Ajdukiewicz, K. 1935 Syntactic Connexion. In McCall, S., Ed.,
Polish Logic, 1920-1939. Clarendon, Oxford (1967).

Ashcroft, E.A. and Wadge, W.W. 1982 R~ for Semantics. ACM
Trans. Prog. Lang. and Sys. 4: 283-294.

Benson, D.B. 1975 Formal Languages vis-a-vis 'Natural ' Lan-
guages. In Sedelow, W. and Sedelow, S., Ed., Computers in
Language Research: Trends in Linguistics. Mouton, the Hague

(1979).
Carnap, R. 1937 The Logical Syntax of Language. Smeaton, A.,

Trans. Kegan Paul, Trench, Trubner and Son, Ltd., London.
Church, A. 1951 The Calculi of Lambda-Conversion. Princeton

University Press, Princeton, New Jersey.
Frege, G. 1892 On Sense and Reference. In Geach, P. and Black,

M., Ed., Translations from the Philosophical Writings of Gottlob
Frege. Basil Blackwell, Oxford (1952).

Gordon, M.J.C. 1979 The Denotational Description of Programming
Languages. Springer-Verlag, New York.

Harris, L.R. 1979 Experience with ROBOT in 12 Commercial
Natural Language Data Base Query Applications, Proc. 6th
International Joint Conference on Artificial Intelligence. Tokyo:
365-368.

Hobbs, J.R. and Rosenschein, S.J. 1977 Making Computation
Sense of Montagae's Intensional Logic, Artificial Intelligence 9:
287-306.

Johnson, S.C. 1975 YACC - Yet Another Compiler Compiler.
CSTR 32. Bell Laboratories, Murray Hill, New Jersey.

Johnson, W.L.; Porter, J.H.; Ackley, S.I.; and Ross, D.T. 1968
Automatic Generat ion of Efficient Lexical Analyzers Using
Finite State Techniques, Communications of the ACM 11(12):
805-813.

Kahn, C. 1978 Questions and Categories. In Hiz, H., Ed.,
Questions. D. Reidel Publishing Co., Dordrecht, Holland.

Karttunen, L. 1977 Syntax and Semantics of Questions, Linguistics
and Philosophy 1 : 3-44.

Lewis, D. 1972 General semantics. In Davidson, D. and Harman,
G., Ed., Semantics of Natural Language. D. Reidel Publishing
Co., Dordreeht, Holland.

McGettrick, A.D. 1980. The Definition of Programming Languages.
(Cambridge Computer Science Texts t 1.) Cambridge University
Press, Cambridge.

Milne, R. and Strachey, C. 1976 A Theory of Programming Lan-
guage Semantics. Chapman and Hall, London.

Montague, R. 1973 The Proper Treatment of Quantification in
Ordinary English. In Thomasen, R., Ed., Formal Philosophy.
Selected Papers of Richard Montague. Yale University Press, New
Haven, Connecticut (1974).

Pagen, F.G. 1981 Formal Specification of Programming Languages:
A Panoramic Primer. Prentice-Hall, Inc., Englewood Cliffs, New
Jersey.

Scott, D. 1976 Data Types as Lattices, SIAM Journal of Computing
5: 522-587.

Stoy, J. 1977 Denotational Semantics: The Scott-Strachey Approach
to Programming Language Theory. M1T Press, Cambridge, Mas-
sachusetts.

Tennent, R.D. 1981 Principles of Programming Languages. Prentice-
Hall, Inc., Englewood Cliffs, New Jersey.

van Emde Boas, P. and Janssen, T. 1979 The Impact of Frege's
Prineiple of Compositionality for the Semantics of Programming
and Natural Languages. Report 79-07, University of Amster-
dam.

Winograd, T. 1972 Understanding Natural Language. Academic
Press, New York, New York.

Woods, W.A. 1970 Transition Network Grammars for Natural
Language Analysis, Communications of the ACM 13(10): 591-
602.

Woods, W.A. 1972 The Lunar Sciences Natural Language Informa-
tion System. Report 2378, Bolt Beranek and Newman.

American Journal of Computational Linguistics, Volume 9, Number 1, January-March 1983 21

