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This paper gives an overall account of a prototype natural language question answering 
system, called Chat-80 .  Chat-80  has been designed to be both efficient and easily 
adaptable to a variety of applications. The system is implemented entirely in Prolog, a 
programming language based on logic. With the aid of a logic-based grammar formalism 
called extraposition grammars, Chat-80 translates English questions into the Prolog subset 
of logic. The resulting logical expression is then transformed by a planning algorithm into 
efficient Prolog, cf. "query optimisation" in a relational database. Finally, the Prolog 
form is executed to yield the answer. On a domain of world geography, most questions 
within the English subset are answered in well under one second, including relatively 
complex queries. 

1. Introduction 

This paper  descr ibes  the results of a th ree -yea r  
research project  carried out by the two of us. The 
projec t  was directed towards  the goal of providing 
practical  computer  systems that  will answer questions 
expressed in precisely defined subsets of natural  lan- 
guage. The results of our work are incorporated in a 
running pro to type  system, called " C h a t - 8 0 " .  

Two  issues have par t icular ly  inf luenced the ap-  
proach we have taken,  namely efficiency and portabil i-  
ty. Given  the pract ical  object ive,  we wanted  to 
achieve rapid, interactive question answering, and we 
wanted the techniques to be easily adaptable  to a vari- 
ety of applications, with as much of the implementa-  
t ion code as possible being appl icat ion independent  
(cf. Konolige 1979). 

There  has been  no intention to try to handle unres- 
tricted natural  language. Given the current  state of 
the art,  we accept  that  users of a pract ical  natural  
language question answering system will have to learn 
how to use a restr icted natural  language subset  rele- 

1 This work was carried out in the Department of Artificial 
Intelligence, University of Edinburgh, Scotland. 

vant  to the part icular  application. The impor tant  issue 
is whether  they will find this more  convenient  than a 
more  formal  query  language.  We bel ieve that ,  for  
many  purposes,  a suitable natural  language subset  will 
be much preferred,  on grounds of conciseness and ease 
of typing alone (see the examples  in Appendix  III,  for  
instance).  It  is fair to say that  our object ive is to so 
constrain natural  language that  it becomes  a formal,  
but  user-friendly,  query language. 

The star t ing point  for  our work  was a quest ion 
answering system for a small subset  of Spanish imple- 
men ted  by  Veronica  Dahl  1981,1979,  fol lowing the 
approach  advoca ted  by Colmerauer  1978. We were 
particularly a t t racted to Colmerauer ' s  approach  for the 
clear insight it gives into some of the essential  p rob-  
lems involved in construct ing a practical natural  lan- 
guage answering system, especial ly the p rob lem of 
correct ly  in terpret ing determiners .  In addit ion,  it 
proved very easy to adapt  Dahl ' s  p rogram to English 
(and to a different  domain) .  This was due in large 
par t  to the fact  that  the system is implemented  in Pro-  
log (Roussel  1975; Warren ,  Pereira ,  and Pere i ra  
1977),  a p rogramming  language based  on f i r s t -order  
logic. To be more specific, the system is largely made 
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up of rules of  the metamorphos is  g rammar  (MG) for-  
malism (Colmerauer  1978),  which map direct ly into 
the Prolog subset of logic. MGs are an extension of a 
simpler formalism to which we have given the name 
definite clause grammars  (DCGs) (Pereira and Warren 
1980). 

We called the adap ted  p rogram " C h a t " .  When 
running compiled under DEC-10 Prolog (Warren 1979; 
Pereira, Pereira, and Warren 1978), Chat ' s  speed at 
analysing English sentences  p roved  very sa t is fac tory  
(under a tenth of a second of CPU time per sentence).  
Therefore  this seemed a promising approach f rom the 
point of view of both  efficiency and portability.  How-  
ever, we found that Chat  has a number  of shor tcom- 
ings, the most  serious of which is that  the process of 
answering a question,  once it has been  analysed,  is 
much too inefficient for any significant application. 

We have therefore  wri t ten an entirely new pro-  
gram, Chat-80,  which, like the original Chat,  is imple- 
mented entirely in Prolog. The main ways in which 
Chat -80  differs f rom its forerunner  are: 

• the semantics given to determiners,  and the rules for  
determining their scopes, 

• the process of planning and executing a query, 
• the rather  wider coverage of English, 
• the use of extraposition grammars (XGs) in place of 

MGs to handle certain " t r a n s f o r m a t i o n a l "  aspects  
of English, 

• the way the natural language analysis is pe r formed 
in three separate  phases rather  than one. 

In order to test  the approach on a nontrivial do-  
main,  Cha t -80  includes a da tabase  of  facts  about  
world geography,  and a small vocabula ry  of English 
words sufficient for querying the database.  This do- 
main has the advantage,  for demonstra t ion purposes,  
that  the facts in the database  are generally common 
knowledge,  so it is easier to appreciate  what  is entailed 
in answering different queries. The database  contains 
basic facts about  the world 's  countries (over 150 of 
them),  oceans,  major  seas, major  rivers, and major  
cities. The largest relation, 'borders ' ,  represents  all 
pairs of countries, oceans, or major  seas that  are adja- 
cent, and contains therefore  over  850 tuples. It should 
be emphasised that the database  is itself implemented 
as ordinary Prolog; it therefore  resides within the nor- 
mal DEC-10 virtual memory.  

Chat -80  processes a question in three main stages: 

English 

translation 

logic 

planning 

Prolog 

execution 

answer 

cor responding  roughly to: " W h a t  does the quest ion 
mean?" ,  " H o w  shall I answer i t?",  "Wha t  is the an- 
swer?".  The planning and execution stages are dis- 
cussed in detail in a companion  paper  (Warren 1981), 
so here we will concentra te  on the translation stage, 
which is responsible for the natural  language analysis. 
We first describe the way we represent  the "mean ing"  
of an English sentence  as a logical expression,  and 
then outline how the translation process is formalised, 
in logic, as a practical Prolog program. Finally, we 
brief ly explain how the logical fo rm is t r ans fo rmed  
into a Prolog program by the planning phase and how 
it is then executed. 

2. A S impl i f ied  S e m a n t i c s  for a Basic English Subset  

To answer a question, one first has to unders tand 
what  it means.  If  question answering is to be done by 
computer ,  there needs to be some precise representa-  
tion for  the result of this first process,  what  one might 
call the " m e a n i n g "  of the quest ion,  and also some 
precise way of relating the question to its meaning. It  
is fur ther  necessary  that  the meaning represen ta t ion  
can in some way be given a precise interpretat ion (or 
" semant ics" )  so that,  in the case of questions for in- 
stance, one then knows precisely what  is or is not a 
correct  answer to the questions. It  is surprising that,  
even for such basic features  of English as the common  
determiners ,  and even within the di f ferent  language 
camps represented by linguistics, philosophy, and arti- 
ficial intelligence, there is as yet no established solu- 
tion to this problem. 

One way to try to articulate the meaning of a sen- 
tence is to paraphrase  it into some standard,  unambi-  
guous form of English. Since these s tandard forms are 
likely to be stilted and long-winded,  it will p robably  be 
convenient  to represent  them in a more concise nota-  
tion. This is essentially the logician's approach,  and 
we will call such meaning representa t ions  "logical  
forms" .  

Cha t -80  represents  the meaning of a question by a 
logical form. The approach is a development  of that  
p roposed  by Colmerauer  1978 and implemented  by  
Dahl 1981,1979. 

Words  approximat ing  to the status of " p r o p e r  
nouns"  are represented by logical constants, for  exam- 
ple: 

France france 
the Soviet Union soviet union 
wine wine 

Most  verbs,  nouns, and adjectives ( together  with any 
associated preposi t ions)  are represented by predicates, 
taking one or more  arguments (which for our purposes  
are called constants) .  A predicate with its arguments  
is called a predication (or sometimes a goal). Exam-  
ples are: 
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France exports wine to Britain. 
exports (france, wine, britain) 

France is a country, country(f rance)  
Paris is the capital of France.  capital(france,paris) 
France is European. european(france)  

Many kinds of more complex phrases or sentences 
can be represented by conjunctions of predications, for 
example: 

Paris is a European city. 
european(paris)  & city(paris).  

France is a country  that borders on Spain. 
country(f rance)  & borders(france,spain)  

The second of these conjunctions,  for example, can be 
read more literally as a shor thand for  "F ran ce  is a 
count ry  and France  borders  Spain",  which is just a 
paraphrase of the original sentence. 

The most important  class of words not covered so 
far are the determiners - words such as " a " ,  " the" ,  
" e v e r y " .  Determiners  play a particularly impor tant  
role in questions, since they enable relatively complex 
requests for information to be expressed very concise- 
ly. 

In Colmerauer 's  approach, each determiner  is rep- 
resented by what he called a " th ree -b ranched  
quantif ier"  (3BQ). For  example, the logical form that 
would be ascribed to the sentence "The  boy sleeps" 
would be: 

the(X,boy(X) ,s leeps(X))  

where the determiner  " t he"  is represented by the 3BQ 
' the(  , , )'. 3BQs are very close to the meaning 
representat 'ion for determiners used by Woods in the 
L U N A R  system (1977).  Colmerauer  gave 3BQs a 
precise semantics in terms of certain operations over 
sets. However ,  we have found that this way of inter- 
preting 3BQs fails to give a correct  model of natural 
language in certain cases, and, worse still, it does not 
appear to lend itself to efficient implementation. Cer- 
tainly this is the case with Dahl 's  program which, 
while being very efficient at understanding questions, is 
hopelessly inefficient at answering questions where the 
domain is of any significant size. 

In Chat-80,  we have addressed these problems by 
instead translating 3BQs directly into s tandard first- 
order logic, or rather into something as close to first- 
order  logic as is practical. To be more exact,  we 
translate into the Prolog subset of logic, which we 
have augmented with certain "meta- log ica l"  exten-  
sions. (A similar approach has been taken by McCord 
1982, who has independently been developing a sys- 
tem influenced by the Co lmeraue r /Dah l  approach.)  
The subset of first-order logic we have chosen has the 
great advantage as a meaning representa t ion  that it 
already has a well unders tood semantics which is 
amenable to very efficient implementation. Thus the 
meaning representa t ion can in principle be directly 

executed as a Prolog program (whereas 3BQs require a 
special-purpose interpreter) .  Fur thermore ,  the first- 
order  logic formulat ion lends itself to t ransformations 
which can greatly improve the efficiency of execution. 
This corresponds  to what  is known as " que ry  
optimisation" in relational database circles, and will be 
discussed in more detail later. 

Our t ranslat ion into logic complete ly  ignores the 
presuppositions which can be implicit in a natural lan- 
guage question, and which Colmerauer 's  3BQ seman- 
tics took pains to reflect. In most situations that we 
are concerned with, this simplification seems relatively 
harmless or even beneficial.  Fo r  example,  Chat -80  
ignores the presupposit ion that there is only one an- 
swer to the question "Which ocean borders  the United 
States?",  and simply gives all three answers without 
further  comment.  

The way we translate determiners  into logic is 
shown in Figure 1. Each determiner  is translated into 
a quantification, which introduces some logic variable 
(X, N, etc.),  and which links two predications involv- 
ing that variable, called the range and scope, indicated 
by R and S. 

The determiners "a" ,  " t h e "  (in a singular context) ,  
and " s o m e "  (whether  in a singular or plural context)  
are all translated in exactly the same way, by a stand- 
ard f i rs t -order  logic existential quantification. Read 
'exists(X,P) '  as " there  is some X such that P" .  The 
same translation is also normally used for the "empty  
plural" determiner,  for example: 

Zambia exports minerals. 
exists(X,mineral(X) & exports(zambia ,X)) .  

The determiner  " n o "  is translated with the aid of a 
kind of negation. Read ' \ + P '  as " i t  cannot  be shown 
that P".  Note  that this is not the standard negation of 
f i rs t -order  logic, which is outside the Prolog subset. 
Standard negat ion is problemat ic  to implement  and 
seems inappropriate for many purposes. Instead Pro- 
log systems provide (or can easily be extended with) a 
partial implementation of nonprovability. The predica- 
tion ' \ + P '  is considered true if P is not  deducible 
from the facts and rules which define a particular ap- 
plication domain. Note  that  nonprovabi l i ty  is also 
used in the translation of the determiners " eve ry"  and 
"all" .  

The determiner  " t h e "  in a plural context  presents a 
number of problems, for which we do not yet feel we 
have a completely adequate solution. In general, we 
consider a plural definite noun phrase to denote  a set. 
To cater for this, we have proposed and implemented 
a "meta- logical"  extension to Prolog, which has been 
described in detail elsewhere (Warren,  1982; Byrd,  
Pereira,  and Warren  1980). The extension allows 
predications of the form: 

setof(X,P,S) 
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a, some, the[singular] 
n o  

every, all 
the[plural] 
one, two, ... numeral(N) 
which, what 
how many 

exists(X,R & S) 
\+ex i s t s (X ,R  & S) 
\ +exists(X,R & \ +S)  
exis ts (X,se tof(X,R,X)  & S) 
numbero f (X ,R  & S,N) 
answer(X)  < =  R & S 
answer(N)  < =  numbero f (X ,R  & S,N) 

Some birds migrate. 
exis ts(X,bird(X) & migrates(X)) .  

The populat ion of Britain exceeds 50 million. 
exis ts(X,populat ion(br i ta in ,X) & X > 50000000) .  

There are no rivers in Antarct ica.  
\ +exists(X,r iver(X) & in(X,antarct ica)) .  

Man inhabits every continent.  
\ +exis ts(X,cont inent(X) & \ +inhabi ts(man,X)) .  

Jupiter  is the largest of the planets. 
ex is t s (X,se tof (X,p lane t (X) ,X)  & largest(X,jupi ter)) .  

The Rhine flows through three countries. 
numberof (X,coun t ry (X)  & flows through(rhine,X),3) .  

Which birds migrate? 
answer(X)  < =  bird(X) & migrates(X).  

How many countries export  oil? 
answer(N)  < =  numberof (X,coun t ry (X)  & exports(X,oi l ) ,N) .  

Figure 1. Translations of determiners. 

to be read as " the  set of Xs such that  P is provable  is 
S, where S is nonempty" .  Note  that this construct  
behaves  like a quant i f icat ion in that  it in t roduces a 
variable (or, more generally, a collection of variables) 
X which is purely local to P. Thus it is possible, as in 
the t ranslat ion of the plural defini te article given in 
Figure 1, to use the same variable name for a set and 
its " typ ica l"  element. 

Our translation entails t h a t  certain predicates can 
take sets as arguments.  At present,  we leave it up to 
the definition of each individual predicate to draw any 
necessary  cor respondence  be tween  predicat ions  over  
sets and predications over  individuals, since it is hard 
to fix a general rule. To see what  the problem is, 
compare  the sentences: 

The boys like the girls. 
The boys are married to the girls. 

In certain contexts,  such as: 

What  are the ages of the boys? 

plural definite noun phrases are translated somewhat  
differently, as indexed sets. More on this later. 

For  convenience in translating the numerals  "one" ,  
" t w o " ,  " t h r e e " ,  etc., we allow predicat ions  of  the 
form: 

numberof (X,P,N) 

meaning " the  number  of Xs such that  P is provable  is 
N" .  This predicate can easily be defined in terms of 
' se to f '  by the logical implication: 

numberof (X,P ,N)  < =  setof(X,P,S)  & sizeof(S,N) 

Read 'P  < =  Q '  as " P  if Q" .  The predicate ' s izeof '  
just gives the number  of e lements  in a set. 

Notice that  implications are also used in the trans-  
lation of questions. Read 'answer(X)  < =  P '  as "X is 
an answer if P "  or "I want to know X if P (is t rue)" .  
Variables in the ' answer '  predicate are not explicitly 
quantified. Such free variables are interpreted,  follow- 
ing normal  convent ions in logic, as though they were 
universally quantif ied;  that  is, one may  pref ix one ' s  
reading of the entire logical form with phrases " F o r  
any X, for any Y,"  etc. 

We have now seen how some c o m m o n  types  of 
English words are t ranslated into bits of logical struc- 
ture. It  remains to discuss how the bits fit together  to 
produce  the comple te  logical fo rm for  a whole sen- 
tence. For  example,  a sentence within the scope of 
our subset  is" 

Which European  country  exports  no arms to coun- 
tries in Africa? 

H o w  is it that  the bits of structure corresponding to 
each individual work in this sentence fit together  to 
produce the following logical form: 
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answer(C) < =  european(C)  & country(C)  & 
\ +exists(X, arm(X) & 

exists(C1, country(C1)  & in(Cl ,af r ica)  & 
expor ts(C,X,C1)  ) ) 

(One should realize that this is just a shorthand for 
" F o r  any C, C is an answer if C is European and C is 
a country and it cannot  be shown that there is some X 
such that X is an armament and there is some C1 such 
that C1 is a country and C1 is in Africa and C exports 
X to C I " . )  Hopefully,  the reader should already have 
a fair intuitive idea of what the "assembly process" 
must do. Basically, there are two main problems. 

First, how are the appropriate  variables or con- 
stants chosen to fill each predicate argument position? 
For  example, why is the last argument of 'exports '  the 
same variable C1 that  appears as arguments to 
'country '  and 'in'? This "slot  filling" is determined 
mainly by the grammatical structure of the sentence, 
but  the correct  a t tachment  of preposit ional  phrases 
of ten  cannot  be determined on purely syntactic 
grounds. 

Second, what determines the scope of the different  
quantifications? For  example, why is the existential 
quantification corresponding to the empty determiner 
governing "count r ies  in Afr ica"  nested inside the 
quantification corresponding to " n o " ?  This "scoping"  
is only weakly inf luenced by grammatical structure.  
Indeed, it is possible to give an alternative but  much 
less likely reading to our example sentence,  which 
corresponds to the same grammatical structure, but  to 
a different  logical form where the nesting of the two 
inner quantif icat ions is reversed. The more likely 
reading is that no arms are exported to any countries 
in Africa; the less likely reading is that no arms are 
exported to certain countries in Africa. 

The details of our mapping from English into logic 
are made precise in the program text corresponding to 
the first phase of Chat-80.  This text itself consists of 
clauses of the Prolog subset of logic. It serves both as 
a clear formal  definit ion of our mapping and, when 
executed by Prolog, as an efficient implementation of 
that mapping, which performs the translation of Eng- 
lish questions into their logical forms. A fuller discus- 
sion of this implementation will be given in the next 
section, and fur ther  details can be found in Pereira  
1982. 

3. Translat ing English into Logic, in Logic 

The translat ion f rom English sentence to logical 
form can be seen as involving three main functions - 
the slot filling and scope determination mentioned in 
the last section, and in addition the parsing function, 
which determines the grammatical structure of a sen- 
tence. In Chat-80,  in contrast  to Dahl 's s~stem, these 

three functions are separated into distinct program 
modules, which operate in sequence: 

English question 

parsing 

phrase  structure 

interpretat ion 

semantic structure 

scoping 

logical form 

The parsing module consists of a set of grammar 
rules of the XG formalism, which the Prolog system 
preprocesses into Prolog clauses. The interpretat ion 
and scoping modules consist of various translat ion 
rules, expressed directly as Prolog clauses. Executing 
the grammar rules with Prolog leads to a straightfor- 
ward top-down,  backtrack parsing strategy (Pereira  
and Warren  1980). Although the main concern  in 
writing the grammar was to produce a clear description 
of the language covered,  some concessions have had to 
be made to achieve a reasonably efficient behaviour  
with the above parsing strategy;  in particular,  left- 
recursive rules have been avoided.  It is somewhat  
contrary to current  opinion that such a grammar, not  
carefully designed for parsing, can also be the basis of 
an efficient parser. One of the reasons for the effi- 
ciency in this case may be that  the grammar itself 
makes no at tempt to give the " r igh t"  modifier at tach- 
ments, as discussed below. 

There has been some debate on whether  the differ- 
ent parts of language analysis, such as the three distin- 
guished above, should be done serially or concurrent ly 
(Burton 1976; Woods 1977). Some of the arguments 
for concurrent  operat ion are that early semantic inter- 
pretat ion limits search by bringing in relevant informa- 
tion at the earliest possible moment ,  and that piece- 
wise generation of the interpretat ion is psychologically 
more plausible. Given that we are not  proposing a 
model of language comprehension in people, the latter 
argument is not directly relevant. The other  argument 
is a two-edged one: by interweaving several opera-  
tions, one is multiplying together  their nondetermina-  
cies. There  are two main reasons why we have chosen 
serial operation. The first is that serial operat ion is 
much simpler both conceptually and in programming 
terms, particularly if one is trying to deal flexibly with 
global properties of the input, for  instance the relative 
scopes of determiners.  The other  reason is that the 
backtracking tradit ionally associated with modif ier  
a t tachment  can be avoided by a careful choice of the 
parse trees produced by the parsing module. 

In typical systems where syntact ic  and semantic 
funct ions operate  in sequence (Woods,  Kaplan,  and 
Nash-Webber  1972), choices are made in the syntactic 
analysis that may be found to be inadequate on se- 
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mantic grounds, as for example in prepositional phrase 
attachment.  In the present system, the syntactic com- 
ponent  of the grammar contains additional constraints 
which block all but one of the potential  at tachments of 
each postmodifier.  Thus, all analyses produces are in 
a kind of normal form with respect  to postmodif ier  
attachment.  From this normal form, subsequent oper- 
ations can reconstruct  other  al ternative analyses, if 
that is needed on semantic grounds. The use of nor- 
mal form analyses has the useful consequence of mak- 
ing apparent  other, significant, ambiguities in the in- 
put, which otherwise would be swamped by a large 
number  of alternative analyses differing only with 
respect to modifier attachment.  

A major limitation of the current  system is that 
pronouns (other  than interrogative and relative pro- 
nouns) are not covered at all by the translation phase. 
This makes the natural  language subset strictly less 
powerful than the underlying logic. For  example, the 
following sentence has a logical form which cannot  be 
rendered in our natural language subset: 

Which country contains a city bigger than its capital? 

answer(C) < =  country(C)  & 
exists(X, contains(C,X) & city(X) & 

exists(Y, bigger(X,Y) & capital(C,Y) ) ). 

To each of the three modules of the translat ion 
process there corresponds a separate dictionary. The 
grammar dict ionary contains definitions of the usual 
syntactic categories,  both  for general-purpose,  or 
"c losed-category" ,  words, such as determiners, and for 
application dependent ,  or " c o n t e n t " ,  words, such as 
the nouns and verbs corresponding to database predi- 
cates. The slot filling module has a dict ionary of 
templates, which define the translat ion of words to 
predicates and the argument patterns required for each 
such translation. Each application will require a dif- 
ferent  set of templates. Finally, the scope determina- 
tion module has a small dictionary defining the scope 
relationships for  determiners  and other  " o p e r a t o r "  
words, and their t ranslat ion as discussed in the last 
section. This dictionary is independent  of the applica- 
tion domain. The dictionaries are divided in this man- 
ner for conceptual  and programming reasons, but it 
would not be difficult to write a program to create the 
dictionary entries from a more user-oriented dictionary 
format. The complete dictionary definition for a sin- 
gle word is shown in Appendix II. 

3.1. Phrase St ructure  

A grammar for any substantial language fragment 
needs to define grammatical relationships which we 
may call " t rans format iona l" ,  that  is, relationships 
which cannot  be described directly by a small number  
of phrase structure (context - f ree)  rules. Both MGs 
(used in Dahl 's system) and DCGs have general pro- 

gramming power,  and so can describe any 
" t ransformat ional"  relationship, but they cannot  do so 
by specific, well motivated grammar rules. In particu- 
lar, this applies to "lef t  extraposi t ion",  the underlying 
concept  in most grammars for such important  con- 
structions as WH-questions, relative clauses, and auxil- 
iary fronting. Similar comments  apply to ATNs 
(Woods 1970), even those using the HOLD/VIR facili- 
ty. 

To handle " lef t  ext raposi t ion" ,  and some other  
" t ransformat ional"  concepts,  we have introduced the 
grammar formalism of extraposition grammars, which 
are described fully elsewhere (Pereira 1981). An XG, 
like a DCG, is no more than "syntac t ic  sugar"  for  
clauses of logic. 

As the Chat -80 grammar is in tended partly as a 
demonstrat ion of the power of XGs for treating left 
extraposit ion in English, the coverage of questions and 
relative clauses is fairly extensive. Of course, this 
wide coverage is essential if complex queries are to be 
formulated in a single sentence. 

A major limitation in the present coverage of Eng- 
lish syntax is that the only phrases that may be con- 
joined (with "and" ,  etc.) are noun postmodifiers and 
predications introduced by the verb ' to be'. To cover 
more general conjunct ions would require a minor 
change in the XG formalism, to cope with the interac- 
tion between left extraposit ion and conjoined phrases. 

The analysis of a sentence produced by the Chat-  
80 grammar is a fairly conventional  annotated surface 
structure, where in general the subtrees for all phrases 
appear in the same order  as in the input. This is es- 
sential for  the heuristics used in the scoping opera-  
tions, which rely on the lef t - to-r ight  order  of noun 
phrases. 

3.2. A t t a c h i n g  A r g u m e n t s  and Mod i f i e rs  

As we have seen, the translation of content  words 
into predicates is defined by dictionary templates. Of 
course, certain words, like "average" ,  "number  (o f ) "  
and superlative adjectives,  cannot  be translated as 
first-order predicates, but represent  some higher-order 
operation. Templates specify, for each argument posi- 
tion of a predicate which translates a word, the "case"  
(usually a preposition) and the most general enti ty type 
that can fill the position, or slot. Type matching helps 
the system to find a semantically sound argument 
placement,  and is also used to create additional predi- 
cations when attributes are referred to implicitly, as in 
comparatives. Templates are similar to the dictionary 
entries in Dahl 's  system, but  our a t tachment  proce-  
dure, by being separate from the syntax analysis, can 
be much more flexible in deciding how to fill slots. 

The following are typical applicat ion dependen t  
templates: 
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proper ty(area ,measure&area ,A,region&Type,R,  
a rea(R,A)) .  

t rans i t ive(exceed,measure&Type,X,measure&Type,Y,  
exceeds(X,Y)) .  

The first template  states that  ' a r ea '  is a " p r o p e r t y " ,  a 
subclass of nouns which require an argument  marked  
by the preposi t ion "o f " .  Variable A in this template  
corresponds to the " a r e a "  value, which belongs to the 
sub- type  ' a rea '  of the type 'measure ' .  Variable R cor- 
responds to the thing having an area, and belongs to 
some sub- type  of type ' region ' .  The predicat ion for  
this word is ' a r ea (R ,A) ' .  The second template  states 
that  " ( t o )  exceed"  is a transitive verb,  whose subject  
X and object  Y are both  measures  of some common  
type Type ,  and ' e x c e e d s ( X , Y ) '  is the cor responding  
predication. 

When  Prolog accesses such templa tes ,  unif icat ion 
automatical ly does most  of the work of "s lot  filling". 

The result of the slot filling process is a tree with 
three kinds of nodes,  quantif icat ion nodes (Quants) ,  
predicat ion nodes  (Preds)  and conjunct ion  nodes 
(Conjs) .  Quants  correspond to noun phrases,  Preds to 
verbs,  and Conjs to conjoined restrictive modifiers.  

As we have seen, quantifications play a crucial role 
in the translation of sentences into logics. The fields 
of a Quant  are: 

• the determiner, which can be an English determiner  
or one of the special determiners  described below; 

• the head, which is either the predicat ion translating 
the head noun of a noun phrase,  or a te rm denoting 
a higher-order  operat ion;  

• the predication, a tree describing restrictions on the 
head whose determiners  have narrower  scope than 
the determiner  on this Quant ;  

• the arguments, a list of the trees for the arguments  
of the noun, together  with the trees of those re- 
strictions whose determiners  may have wider scope 
than the present  one; 

• the bound variable for this quantification. 

The distinction be tween  the predicat ion and the argu- 
ment  list of a Quant  corresponds to one of the main 
scoping heuristics in the system: full relative clauses 
are the only subordinated phrases whose determiners  
cannot  " m o v e  up"  to dominate  determiners  in higher 
tree nodes. Thus, when a Quant  is mapped  into a 
logic quantification, the head, predication,  and some of 
the a rguments  will t ranslate  into the range of the 
quantification, whereas  the scope will be made f rom 
the rest  of the a rguments  and some quant i f icat ions 
which are higher in the tree but whose de terminers  
have a narrower  scope than the present  one. 

The determiner  of a Quant  may not be the original 
English determiner  of the corresponding noun phrase. 
In nested plural definite noun phrases,  only the highest 
determiner  gets t ranslated into a set expression follow- 

ing the translation table of  Figure 1; lower determiners  
are unders tood to index that  set, and are represented  
in Quants  by an index token.  For  example,  the noun 
phrase: 

the children of the employees  

t ranslates  into a set of sets of  children, indexed by 
employees:  

se tof(E-S,  employee(E)  & se tof (C,chi ld(E,C) ,S) ,  S1). 

3.3. Meaning and Scope of Quantifications 

Given the tree of Quants ,  Preds, and Conjs  pro-  
duced by slot filling, the final module  specif ies  the 
relat ive scopes  of de terminers ,  of negat ion,  and of 
question markers.  The main informat ion  for  this mo-  
dule is a set of rules of thumb about  what  determiners  
usually " g o v e r n "  other  determiners.  The relat ionship 
of "govern ing"  is not  a total  order,  or even a partial  
order: it is only meaningful  for pairs of operators ,  one 
in a subordinat ing  and the o ther  in a subord ina ted  
position. Relat ive scopes not decided by "gove rn ing"  
are decided by the lef t - to-r ight  order  of phrases in the 
input sentence.  

Our  scope rules are more  accurate  than those pro-  
posed by Colmerauer  1982 and used in Dahl ' s  system. 
Colmerauer ' s  rules determine relative scope strictly on 
the basis of predica te-argument  relationships def ined 
in syntact ic  terms. Our  rules are related to the ideas 
for improving LUNAR discussed by Woods  1977 and 
Vanlehn  1978. Unfor tuna te ly ,  except  for  set and 
higher-order  operat ions,  we have no means  of using 
the distinct roles of different  a rgument  places to help 
decide the scopes of their fillers. 

As an example of our scope rules, the de terminer  
' each '  is assumed to have a "d i s t r ibu t ive"  role, and 
governs  most  o ther  de terminers ,  and also quest ion 
markers ,  so the reply to a quest ion containing ' each '  
will be an indexed list of values, one for each enti ty 
satisfying the conditions in the noun phrase with that  
determiner.  A negated  verb,  however ,  will prevent  an 
' each '  in any of its arguments  f rom assuming its dis- 
tributive role. In fact,  no de terminer  governs a nega-  
tion except  ' any ' ,  which is seen as a universal  quantif i-  
cation of wide scope relative to negation. 

Apar t  f rom deciding on relative scopes, this module 
also specifies how set expressions are built f rom plural 
determiners  and index determiners ,  and what  are the 
f i rs t -order  predicat ions which make the arguments  of 
higher-order  functions like ' ave rage '  and ' n u mb e r  of ' .  

4. Query Planning and Execution 

We have now seen how an English question is map-  
ped into its logical form. Since the logical form has a 
precise semantics,  it is in principle possible to deter-  
mine the answer  to the question. However ,  there is a 
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big difference between principle and practice. Can the 
process of finding the answer really be made fast 
enough for this to be useful for practical question an- 
swering purposes? The evidence of Chat-80 is that it 
can. 

The key question here is how to avoid combinatori- 
al explosion. Naive question-answering strategies 
typically take a time that is exponential in the size of 
the query. Even for relatively small databases, such as 
that in Chat-80, exponential behaviour will be disas- 
trous for non-trivial queries (and non-trivial queries 
are what a natural language interface encourages). A 
query over a small database that can be answered 
almost instantaneously with the right question- 
answering strategy may easily take hours with a poor 
algorithm. We had actual experience of this phenome- 
non when we experimented with mounting the Chat 
database on the relational database system Ingres 
(Stonebraker, Wong, Kreps, and Held 1976). Simple 
queries Ingres handled easily, but on queries involving 
more than two relations, which were no problem for 
Chat, Ingres usually bogged down completely. We 
therefore think that the question-answering part of 
natural language question-answering is at least as wor- 
thy of attention as the natural language part, and the 
two should be studied hand in hand. 

A complete description of the way Chat-80 proc- 
esses logic queries, together with a fuller discussion of 
the efficiency issues, is given in a separate paper 
(Warren 1981), which we urge the interested reader to 
consult. Here we just give a brief summary, illustrated 
by one example. Basically, Chat-80 augments the 
logical form of a query with extra control information, 
to make it into an efficient piece of Prolog program, 
which can then be directly executed to produce the 
answer. The control information is computed by a 
general planning algorithm, applicable to any query in 
the logic subset, not just to those derivable from the 
present natural language subset. The planning process 
makes use of certain statistics about the size, etc., of 
the domain relations, and is analogous to "query 
optimisation" in a relational database system. 

The control information that is generated takes two 
forms: 

• the ordering of predications within a query, which 
will determine the order in which Prolog will at- 
tempt to satisfy them; 

• the marking of "independent subproblems" by en- 
closing them in braces, to limit (or "cu t" )  the 
amount of backtracking performed by Prolog. 

For example, here is an English question with the 
logical form produced by the natural language analysis 
phase of Chat-80: 

"Which countries bordering the Mediterranean border 
Asian countries?" 

answer(C) < =  country(C) & 
borders (C,mediterranean) & 
exists(Cl,country(C1) & asian(C1) & 
borders(C,C 1)) 

After planning, the logical form is transformed into: 

answer(C) < =  borders(C,mediterranean) & 
{country(C)} & {borders(C,C1) & 
{asian(C1) & {country(C1)}}} 

When executed by Prolog, this produces a behaviour 
equivalent to the following procedural interpretation: 

To generate an answer C: 
generate a C bordering the mediterranean, and then 
check that C is a country, and then 
check that it is possible to: 

generate a C1 bordered by C, and then 
check that C1 is asian, and then 
check that C1 is a country. 

Thus Prolog is led to answer the query in an obviously 
sensible way; it iterates through the countries border- 
ing the Mediterranean, and for each one, it iterates 
through the things bordering that country until it finds 
something that is an Asian country. In fact the 
DEC-10 Prolog compiler can in principle compile the 
transformed query into code which is comparable in 
efficiency with iterative loops in a conventional lan- 
guage (Warren 1977). However, in Chat-80 the 
transformed query is actually just interpreted. 

5. P e r f o r m a n c e  and Por tab i l i ty  

Chat-80 at its current stage of implementation, 
covers a limited but useful subset of English. A fair 
idea of the range of the present subset is given by the 
examples in Appendix I. It will be seen that the sub- 
set includes nouns, verbs, adjectives, prepositions, and 
determiners, with a fairly full coverage of interrogative 
and relative constructions. We have concentrated on 
features of English that seemed essential for simple 
question answering; there are many directions in which 
the subset could usefully be extended and which do 
not appear to pose any particular difficulties. 

At present, the system accepts a small vocabulary 
of about 100 domain dependent works (not counting 
proper nouns, but including alternative word forms 
such as plurals). This vocabulary can very easily be 
extended (as indicated below). In addition there are 
some 50 domain independent words. On the whole, 
any question that can be expressed using this vocabu- 
lary is correctly understood and answered by the sys- 
tem. 

The sizes of the different components of the system 
are indicated below in terms of the approximate num- 
ber of Prolog clauses comprised, and the approximate 
number of DEC-10 (36-bit) words occupied: 
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DEC-10 
clauses words 

NL analysis 580 24000 
Query planning and execution, etc. 290 8500 
Geographical vocabulary 180 4000 
Geographical  database 1590 22500 

The speed of Chat-80 on some sample queries rela- 
ting to the geographical database is shown in Appen-  
dix I. General ly speaking, any query in this domain 
that can comfortably be expressed in a single sentence 
of the English subset is answered in well under one 
second of CPU time. Note that the domain dependent  
vocabulary  could be much extended without  having 
any significant impact on these times (because of the 
way the dictionary is indexed).  

It is also worth noting that, for all but the simplest 
queries, natural  language analysis represents  only a 
small proport ion of the total time. This suggests that,  
as far as the efficiency of natural language question 
answering systems is concerned,  it is the answering 
process ra ther  than the natural  language analysis to 
which most effor t  needs to be directed. Certainly this 
has been our approach,  al though it appears to be 
somewhat contrary to the prevailing view in artificial 
intelligence. In particular, parsing does not seem to 
pose any major efficiency problem, provided one does 
not expect  the grammar to do too much. 

As regards portability, we think Chat-80 should be 
relatively easy to adapt to different  applications - for  
the same reasons that we found it easy to adapt Dahl 's 
program to English and to a different  domain. 

Partly this is due to the fact that (in both systems) 
the domain dependent  parts are clearly separated from 
the rest of the system, and are broken down into small 
units which can be added incrementally as "d a t a "  (see 
Appendix II). Thus our natural language analysis mo- 
dules deal exclusively with general features of English, 
in contrast  to the "semant ic  g rammar"  approach 
(Burton 1976). 

Now there are other  practical systems which have 
not taken the "semantic  grammar"  approach but  are, 
we feel, less easy to modify than Chat-80;  LUNAR 
(Woods, Kaplan, and Nash-Webber  1972) is a good 
example. The reason lies in the way "meanings"  are 
at tached to words. In LUNAR, a meaning is simply a 
procedure.  For  nouns it is a procedure to generate 
objects in a certain class; for most other  words it is a 
procedure  to test whether  some proper ty  is true of 
given objects. This entails that "meanings"  can be 
executed in only one way, and precludes the kind of 
query planning done in Chat-80.  But such a simple- 
minded approach to query execution is not viable in 
most practical situations, as Woods 1977 recognises 
with his " smar t  quantif iers" .  The only alternative,  
given the procedural  approach to meaning, is to repre- 

sent the meaning of a word by a set of al ternative 
procedures to be used in different  circumstances. But 
this makes life very difficult for someone wanting to 
introduce a new word or concept  into the system. 

In Chat-80,  the meaning of a new word is in princi- 
ple just a set of facts and general rules that define the 
predicate corresponding to that word. The procedural  
aspect is on the whole taken care of by the planning 
algorithm, and by Prolog's flexible handling of predi- 
cations in which only certain arguments are instantiat- 
ed. However ,  with the present system, the definer of 
a new word must be responsible for  ensuring that the 
predicate definition he supplies is not only correct,  but 
is also reasonably efficient when executed by Prolog. 

6. Conclus ion  

We have shown how questions within a limited 
subset of English can be translated into a certain sub- 
set of logic which, when suitably transformed,  is exec- 
utable as efficient Prolog code. Although this map- 
ping between English and logic may seem "obv ious"  
(since logic is, after  all, usually motivated in terms of 
its correspondence with natural language),  it is surpris- 
ing that a mapping like ours does not  appear  to have 
been implemented, or even precisely defined, before.  
Parts of the mapping overlap with Montague 's  1974 
formalisation of aspects of English, but many of the 
basics were not covered in his work (for instance, the 
t reatment  of questions, plurals, and determiner  prece- 
dence),  and of course he was not concerned to prod- 
uce a practical implementation. Among practical im- 
plementations,  the closest work is that of Woods 1977 
and that of Colmerauer  1982 as implemented by Dahl 
1981. Both these efforts are similar in that they map 
English into a nonstandard (and more elaborate)  logic, 
where the quantif iers are more direct ly modelled on 
the determiners of natural language. These nonstan-  
dard quantif iers are called "FOR express ions"  by 
Woods and " th ree-branched  quantif iers" by Colmer- 
auer. We have kept  much closer to standard predicate 
logic, for the very down-to-ear th  reason that the tradi- 
tional formalism seems to make "query  optimisat ion" 
much easier (see the companion paper, Warren 1981). 

Our mapping from English to logic, as well as the 
processes of query planning and answering, have all 
been implemented entirely in Prolog. The result is a 
prototype natural language question answering system, 
Chat-80,  which we think probably has the best combi- 
nation of efficiency and portabili ty of any comparable 
system at the present  time, due principally to the use 
of Prolog as the implementat ion language. 
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Appendix I. Sample Queries 

The Chat-80 examples below show the original 
English query, its logical form, the executable form 
after planning, and the actual answer. (The logical 
expressions have been "tidied", and superfluous quan- 
tifiers dropped, to make them easier to read.) Also 

Does Afghanistan border China? 
38 ms. ans(yes) < =  borders(afghanistan,china). 
12 ms. ans(yes) < =  {borders(afghanistan,china)}. 
0 ms. yes. 

Which country's capital is Ouagadougou? 

shown, preceding the corresponding output, are the 
separate times (in CPU milliseconds on a DEC KL-10) 
for natural language analysis, for planning, and for 
execution. Time spent in producing output to the user 
is excluded. 

41 ms. ans(C) < =  country(C) & capital(C,ouagadougou). 
15 ms. ans(C) < =  capital(C,ouagadougou) & {country(C)}. 
22 ms. upper volta. 

Which is the ocean that borders African countries and that borders Asisan countries? 
91 ms. ans(X) < =  ocean(X) & country(C) & african(C) & borders(X,C) & 

country(C 1) & asian(C 1) & borders(X,C 1). 
51 ms. ans(X) < =  ocean(X) & 

{borders(X,C) & {african(C)} & {country(C)}} & 
{borders(X,C1) & {asian(C1)} & {country(C1)}}. 

102 ms. indian ocean. 

What is the capital of each country bordering the Baltic? 
81 ms. ans(C-X) < =  country(C) & borders(C,baltic) & capital(C,X). 
12 ms. ans(C-X) < =  borders(C,baltic) & {country(C)} & capital(C,X). 
29 ms. denmark-copenhagen, e a s t g e r m a n y - e a s t b e r l i n ,  finland-helsinki, poland-warsaw, 

sovietunion-moscow, sweden-stockholm, westgermany-bonn.  

What are the lattitudes of the countries north of the United Kingdom? 
102 ms. ans(C-LL) < =  country(C) & northof(C,united kingdom) & 

setof (L,latitude (C,L),LL). 
26 ms. ans(C-LL) < =  northof(C,united kingdom) &{country(C)} & 

setof(L,latitude(C,L),LL). 
141 ms. canada-60 degrees, denmark-55 degrees, finland-65 degrees, iceland-65 degrees, 

norway-64 degrees, soviet union-57 degrees, sweden-63 degrees. 

Which country is bordered by two seas? 
42. ms. ans(C) < =  country(C) & numberof(X,sea(X) & borders(C,X),2). 
11 ms. ans(C) < =  numberof(X,sea(X) & borders(C,X),2) & {country(C)}. 

206 ms. egypt, iran, israel, saudi arabia, turkey. 

How many countries does the Danube flow through? 
48 ms. ans(N) < =  numberof(C,country(C) & flows(danube,C),N). 

3 ms. ans(N) < =  numberof(C,flows(danube,C) & {country(C)},N). 
21 ms. 6. 

From what country does a river flow into the Persian Gulf? 
69 ms. ans(C) < =  river(R) & country(C) & flows(R,C,persian gulf). 
12 ms. ans(C) < =  flows(R,C,persian gulf) & {river(R)} & {country(C)}. 
23 ms. iraq. 

What is the total area of countries south of the Equator not in Australasia? 
115 ms. ans(T) < =  setof(A-C,area(C,A) & country(C) & 

southof(C,equator) & \+in(C,australasia),S) & 
aggregate (total,S,T). 

23 ms. ans(T) < =  setof(A-C,southof(C,equator) & area(C,A) & 
{countryof(C)} & \+in(C,australasia),S) & 

aggregate(total,S,T). 
182 ms. 10228 ksqmiles. 
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What is the average area of  the countries in each continent? 
101 ms. ans(X-Av) < =  continent(X) & 

setof(A-C,area(C,A) & country(C) & in(C,X),S) & 
aggregate(average,S,Av). 

33 ms. ans(X-Av) < =  continent(X) & 
setof(A-C,in(C,X) & area(C,A) & {country(C)},S) & 
aggregate (average,S,Av). 

759 ms. africa-233 ksqmiles, america-496 ksqmiles, asia-485 ksqmiles, 
australasia-543 ksqmiles, europe-58 ksqmiles. 

How many countries are there in each continent? 
50 ms. ans(X-N) < =  continent(X) & numberof(C,country(C) & in(C,X),N). 
19 ms. ans(X-N) < =  continent(X) & numberof (C,in(C,X) & {country(C)},N). 

352 ms. africa-48, america-31, asia-39, australasia-6, europe-32. 

Is there some ocean that does not border any country? 
68 ms. ans(yes) < =  ocean(X) & \+exists(C,borders(X,C) & country(C)). 

9 ms. ans(yes) < =  {ocean(X) & \+exists(C,borders(X,C) & {country(C)})}. 
14 ms. yes. 

What does border the ocean that does not border any country? 
59 ms. ans(Y) < =  ocean(X) & \+exists(C,country(C) & borders(X,C)) & 

borders(Y,X). 
20 ms. ans(Y) < =  ocean(X) & \+exists(C,borders(X,C) & {country,(C)}) & 

borders(Y,X). 
24 ms. antarctica, atlantic, indianmocean,  pacific. 

Which are the continents no country in which contains more than two cities whose population exceeds  I million? 
160 ms. ans(X) < =  continent(X) & 

\ +exists(C,exists(N, 
country(C) & in(C,X) & 
numberof(Ci,exists(P, 

city(Ci) & population(Ci,P) & 
exceeds(P,1000000) & in(Ci,C)),N) & 

N > 2)). 
58 ms. ans(X) < =  continent(X) & 

\ +exists(C,exists(N, 
in(C,X) & {country(C)} & 
{ numberof(Ci,exists(P, 

in(Ci,C) & {city(Ci)} & 
{population(Ci,P) & {exceeds(P,1000000)}}),N) & 

iN > 2}})). 
754 ms. africa, antarctica, australasia. 

Which country bordering the Mediterranean borders a country that is bordered by a country whose  population 
exceeds  the population of  India? 

144 ms. arts(C) < =  country(C) & borders(C,mediterranean) & country(C1) & 

57 ms. 

204 ms. 

country(C2) & population(C2,X) & population(indea,Y) & 
exceeds(X,Y) & borders(C2,C 1) & borders(C,C 1). 

ans(C) < =  population(india,Y) & 
borders(C,mediterranean) & {country(C)} & 
{borders(C,C1) & {country(C1)} & 

{borders(C2,C1) & {country(C2)} & 
{population(C2,X) & {exceeds(X,Y)}}}}. 

turkey. 
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Appendix  II. Sample Word  Def ini t ion 

To il lustrate how a new word, and the concept 
associated with it, are added to the system, we show a 
slightly simplified version of the actual Prolog clauses 
defining the verb " to  drain in to ."  These clauses repre-  
sent e lementary  facts, giving the different forms of the 

verb,  its meaning  in te rms of the predicate  
' d ra ins (R ,X) '  (including the types of the arguments  R 
and X),  data about  the size of  the 'dra ins '  relation and 
of its a rgument  domains,  and finally the definit ion of 
the predicate  'dra ins '  itself. 

v e r b r o o t ( d r a i n )  
regular present(drain) .  
r e g u l a r n p a s t  (drained,drain).  
verb form(drains ,dra in ,present  + finite,3 +singular) .  
ve rbmform(dra in ing ,d ra in ,p resen t  + participle).  

intransit ive(drain,  dra ins(R,X),  river,R, [s lot (preposi t ion( into) , region,X)]) .  

predicate statistics (drains,41,41,12).  

drains(amazon,at lant ic) .  
dra ins(amu darya,aral  sea). 

etc.  

Appendix  II I .  Comparison wi th  a Formal Query Language 

It  is interesting to compare ,  f rom a user ' s  point of Quel,  the query  language of the relat ional  da tabase  
view, the Chat -80  subset  of English with current  rela- sys tem Ingres  (S tonebraker ,  Wong,  Kreps ,  and Held  
tional database  query languages. The examples below 1976). Quel is arguably one of the most  concise and 
show some Chat -80  queries with their equivalents in user-fr iendly of current  da tabase  query languages. 

Which countries bordering the Atlantic border countries bordering the Pacific? 
range of C I ,  C2 is countries 
range of B, BI ,  B2 is borders  
retr ieve (C l . name)  
where C 1. name = B 1.side 1 
and B 1.side2 = "At lan t i c"  
and C l . n a m e  = B.sidel  
and B.side2 = C2 .name 
and C2.name = B2.s idel  
and B2.side2 = "Pac i f ic"  

Hew many countries are there in each continent? 
range of C is countries 
range of Cont  is continents  
range of I is inclusions 
retr ieve (Cont .name,  coun t (C .name  where C.name = I.inside and I .outside = Cont .name) )  

Which are the continents no country in which contains more than two cities whose population exceeds  1 million? 

range of C is countries 
range of Cont  is continents  
range of City is cities 
range of I1, 12 is inclusions 
retr ieve (Cont .name)  
where 0 = coun t (C .name 
where C .name = I I . ins ide  
and I I .ou ts ide  = Cont .name 
and 2 < count (Ci ty .name 

where Ci ty .name = I2.inside 
and I2.outside = C.name 
and City .populat ion > 1000000))  
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