
Computational Complexity and
LexicaI-Functional Grammar

Robert C. Berwick

Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

1. I n t r o d u c t i o n

An important goal of modern linguistic theory is to
characterize as narrowly as possible the class of natu-
ral languages. One classical approach to this charac-
terization has been to investigate the generative capac-
ity of grammatical systems specifiable within particular
linguistic theories. Formal results along these lines
have already been obtained for certain kinds of Trans-
formational Generat ive Grammars: for example, Peters
and Ritchie 1973a showed that the theory of Transfor-
mational Grammar presented in Chomsky's Aspects of
the Theory of Syntax 1965 is powerful enough to allow
the specification of grammars for generating any re-
cursively enumerable language, while Rounds
1973,1975 extended this work by demonstrating that
moderate ly restricted Transformat ional Grammars
(TGs) can generate languages whose recognition time
is provably exponential. 1

These moderate ly restr icted theories of Transfor-
mational Grammar generate languages whose recogni-
tion is widely considered to be computat ional ly in-
tractable. Whether this "worst case" complexity anal-
ysis has any real import for actual linguistic study has
been the subject of some debate (for discussion, see
Chomsky 1980, Berwick and Weinberg 1982). Re-
suits on generative capacity provide only a worst-case
bound on the computat ional resources required to

l In R o u n d s ' s proof , t r ans fo rma t ions are sub jec t to a
" terminal length non-dec reas ing" condit ion, as suggested by Peters
and Myhill (cited in Rounds 1975). A similar " t e rmina l length
increas ing" constra int (to the au thor ' s knowledge first proposed by
Petrick 1965) when coupled with a condit ion on recoverabil i ty of
dele t ions , yields l anguages that are recurs ive but not necessa ry
recognizable in exponent ial time.

2 Usually, the recognit ion procedures presented actually re-
cover the s tructural descript ion of sen tences in the process of rec-
ognit ion, so that in fact they actually parse sentences , rather than
simply recognize them.

recognize the sentences specified by a linguistic theo-
ry. 2 But a sentence processor might not have to ex-
plicitly reconst ruct deep structures in an exact (but
inverse) mimicry of a t ransformat ion derivation, or
even recognize every sentence generable by a particu-
lar transformational theory. For example, as suggested
by Fodor , Bever and Garre t t 1974, the human sen-
tence processor could simply obey a set of heuristic
principles and recover the right representat ions speci-
fied by a linguistic theory, but not according to the
rules of that theory. To say this much is to simply
restate a long-standing view that a theory of linguistic
performance could well differ from a theory of linguis-
tic competence - and that the relation between the
two could vary from one of near isomorphism to the
much weaker inpu t /ou tpu t equivalence implied by the
Fodor, Bever, and Garre t t position. 3

In short, the study of generative capacity furnishes
a mathematical characterization of the computational
complexity of a linguistic system. Whether this mathe-
matical character izat ion is cognitively relevant is a
related, but distinct, question. Still, the determination
of the computational complexity of a linguistic system
is an important undertaking. For one thing, it gives a
precise description of the class of languages that the

3 The phrase " i n p u t / o u t p u t equiva lence" simply means that
the two sys tems - the linguistic g rammar and the heurist ic princi-
ples - produce the same (surface string, underlying s t ructure) pairs.
Note that the " in ternal cons t i tu t ion" of the two sys tems could be
wildly different. The intuitive not ion of " embedd ing a linguistic
theory into a model of language use" as it is generally cons t rued is
much s t ronger than this, since it implies that the parsing sys tem
follows some (perhaps all) of the same operat ing principles as the
linguistic sys tem, and makes reference in its operat ion to the same
sys tem of rules. This intuitive descript ion can be sha rpened consid-
erably. See Berwick and Weinberg 1983 for a more detailed discus-
sion of " t r an spa rency" as it relates to the embeddabi l i ty of a lin-
guistic theory in a model of language use, in this case, a model of
parsing.

Copyright 1982 by the Associat ion for Computa t iona l Linguistics. Permission to copy without fee all or part of this material is granted
provided that the copies are not made for direct commercial advantage and the Journal reference and this copyright notice are included on
the first page. To copy otherwise, or to republish, requires a fee a n d / o r specific permission.

0 3 6 2 - 6 1 3 X / 8 2 / 0 3 0 0 9 7 - 1 3 $03.00

American Journal of Computational Linguistics, Volume 8, Number 3-4, Ju ly-December 1982 97

Robert C. Berwick Computational Complexity and LexicaI-Functional Grammar

system can generate, and so can tell us whether the
linguistic system is in principle descriptively adequate.
This method of argument was used in Chomsky ' s orig-
inal rejection of f inite-state languages as an adequate
character izat ion of human linguistic competence. Sec-
ond, as ment ioned, the resource bound on recognit ion
given by a complexi ty- theoret ic analysis tells us how
long recognit ion will take in the worst possible case.

Since unrestr icted TGs can generate computat ional -
ly " h a r d " languages, then plainly, in order to make
TGs eff icient ly parsable , one must supply addit ional
restrictions. These could be either modificat ions to
the theory of TG itself, or constraints on the parsing
mechanism. For example, the current theory of TG
(see Chomsky 1981) contains several restrictions on
the way in which displaced const i tuents such as
wh-phrases may be linked to their "canonica l" posi-
t ion in predica te-argument structure. (E.g., Who in
Who did Bill kiss is assumed to be linked to a canoni-
cal a rgument posit ion after the verb kiss.) As an ex-
ample of a constraint on the parsing mechanism, one
could proceed as did Marcus 1980, and posit const-
raints dictating that TG-genera ted languages must have
parsers that mee t cer tain " local i ty condi t ions" . 4 For
instance, the Marcus constraints amount to an exten-
sion of Knu th ' s 1965 LR(k) locality condi t ion to a
(restricted) version of a two-s tack determinist ic push-
down automaton. 5

Recently, a new theory of g rammar has been ad-
vanced with the explicitly stated aim of meet ing the
dual demands of learnabil i ty and parsabi l i ty - the
Lexica l -Funct iona l G r a m m a r s (LFGs) of Kaplan and
Bresnan 1981. The theory of Lexica l -Funct ional
G r a m m a r is claimed to be at least as descr ipt ively
adequate as Trans fo rma t iona l G r a m m a r , if not more
so. Moreover , it is claimed to have none of TG's com-

4 It is important not to confuse the requirement that TG-
generated languages have parsers that meet certain constraints with
the claim that such parsers transparently embed TGs. As stated,
the only requirement is one of weak inpu t /ou tpu t equivalence - i.e.,
that the parser construct the same (surface string, underlying repre-
sentation) pairs as the TG. Actually, one can show that a modified
Marcus parsing system goes beyond this requirement and operates
according to the same principles as the recent t ransformational
theory of Chomsky. That is, such a modified Marcus parser makes
reference to the same base constraints and representational units as
the linguistic theory. Since it abides by the same rules and repre-
sentations as TG, one is justified in claiming that the model embeds
a TG. Note that the Marcus parser does not mimic earlier theories
of TG (as presented in Aspects o f the Theory o f Syntax); there is no
rule-for-rule correspondence between an Aspects grammar and the
rules of the Marcus parser. But neither is there a rule-for-rule
correspondence between modern theories of TG and the Aspects
theory. For example, there is no longer a distinct rule of "pass ive"
or "dative movement" . A detailed demonst ra t ion of this claim
would go far beyond the purpose of this paper. See Berwick and
Weinberg forthcoming.

5 The possible need for LR(k)- l ike restrictions in order to
ensure efficient processability was also suggested by Rounds 1973.

puta t ional unruliness, in the sense that it is c la imed
that there is a "na tu ra l " embedding of an LFG into a
parsing mechan i sm (a pe r fo rmance model) that ac-
counts for human sentence processing behavior. In
LFG, there are no t ransformat ions (as classically de-
scr ibed); the work former ly ascr ibed to t r ans fo rma-
tions such as "pass ive" is shouldered by informat ion
stored in lexical entries associated with lexical items.
The underlying representa t ion of surface strings that is
built is also different f rom the deep structures of clas-
sical t ransformat ional theory; the representa t ion makes
reference to functionally defined notions of grammati -
cal te rms like " S u b j e c t " , ra ther than defining them
structural ly, as was done in classical t r ans fo rma t ion
theory. The el iminat ion of t r ans fo rmat iona l power
and the use of a different kind of underlying repre-
sentat ion for sentences natural ly gives rise to the hope
that a lexical-functional system would be computa t ion-
ally simpler than a t ransformat ional one.

An interesting question then is to determine, as has
already been done for the case of certain brands of
T rans fo rma t iona l G r a m m a r , just what the " w o r s t
case" computa t ional complexi ty for the recognit ion of
LFG languages is. If the recognit ion time complexi ty
for languages genera ted by the basic LFG theory can
be as complex as that for languages genera ted by a
modera te ly res t r ic ted t r ans fo rmat iona l system, then
presumably LFG will also have to add additional const-
raints, beyond those provided in its basic theory, in
order to ensure eff icient parsabil i ty. Just as with
t r ans fo rmat iona l theories, these could be cons t ra in ts
on either the theory or its pe r fo rmance model realiza-
tion.

The main result of this paper is to show that cer-
tain Lexica l -Func t iona l G r a m m a r s can genera te lan-
guages whose recognit ion time is very likely computa -
tionally intractable, at least according to our current
understanding of algorithmic complexity. Briefly, the
demons t ra t ion proceeds by showing how a p rob lem
that is widely conjectured to be computa t ional ly diffi-
cult - namely, whether there exists an assignment of
l ' s and O's (or " T ' " s and " F ' " s) to the a toms of a
Boolean formula in conjunct ive normal fo rm that
makes the formula evaluate to " 1 " (or " t r u e ") - can
be re-expressed as the prob lem of recognizing whether
a particular string is or is not a memb er of the lan-
guage genera ted by a cer ta in Lexica l -Func t iona l
Grammar . This " reduc t ion" shows that in the worst
case the recognit ion of LFG languages can be just as
hard as the original Boolean satisfiabil i ty problem.
Since it is widely conjectured that there cannot be a
polynomial - t ime algorithm for satisfiability (the prob-
lem is NP-comple te) , there cannot be a polynomial-
t ime recognit ion algorithm for LFGs in general either.
Note that this results sharpens that in Kaplan and
Bresnan 1981; there it is shown only that LFGs

98 American Journal of Computat ional Linguistics, Volume 8, Number 3-4, Ju ly-December 1982

Robert C. Berwick Computational Complexity and LexicaI-Functional Grammar

(weakly) generate some subset of the class of context-
sensitive languages, and, therefore, in the worst case,
exponential time is known to be sufficient (though not
necessary) to recognize any LFG language. The result
in Kaplan and Bresnan 1981 therefore does not ad-
dress the quest ion of how much time, in the worst
case, is necessary to recognize LFG languages. 6 The
result of this paper indicates that in the worst case
more than polynomial t ime will probably be necessary.
(The reason for the hedge " p r o b a b l y " will become
apparent below; it hinges upon the central unsolved
conjecture of current complexi ty theory.) In short
then, this result places the LFG languages more pre-
cisely in the complexi ty hierarchy of languages.

It also turns out to be instructive to inquire into
just why a lexical-functional approach can turn out to
be computa t ional ly difficult, and how computa t iona l
tractabil i ty may be guaranteed. Advocates of lexical-
functional theories may have thought (and some have
explicitly stated) that the banishment of t ransforma-
tions is a computat ional ly wise move because t ransfor-
mat ions are computa t ional ly costly. El iminate the
t ransformations, so this causal argument goes, and one
has eliminated all computat ional problems. Intriguing-
ly though, when one examines the proof to be given
below, the ability to express co-occurrence constraints
over arbi t rary distances across terminal tokens in a
string (as in Subject -Verb number agreement) , when
coupled with the possibility of alternative lexical en-
tries, seems to be all that is required to make the rec-
ognition of LFG languages intractable.

This leaves the question posed in the opening para-
graph: just what sorts of constraints on natural lan-
guages are required in order to ensure efficient parsa-
bility? As i t turns out, even though general LFGs may
well be computat ional ly intractable, it is easy to imag-
ine a variety of additional constraints for LFG theory
that provide a way to avoid this problem. All of these
additional restrictions amount to making the LFG the-
ory more restricted, in such a way that the reduction
argument cannot be made to work. For example, one
effective restriction is to stipulate that there can only
be a finite stock of features with which to label lexical
items. In any case, the moral of the story is an unsur-
prising one: specificity and constraints can absolve a
theory of grammar f rom computat ional intractability.
What may be more surprising is that the requisite
locality constraints seem to be useful for a variety of
theories of grammar, f rom Transformat ional G r a m m a r
to Lexical-Funct ional Grammar .

2. A R e v i e w of Reduct ion A r g u m e n t s

The demonst ra t ion of the computa t ional complexi ty
of LFGs relies upon the s tandard complexi ty- theoret ic
technique of reduction. Because this method may be
unfamiliar to many readers, a short review is presented
immediately below; this is fol lowed by a sketch of the
reduction proper.

The idea behind the reduction technique is to take
a difficult problem, in this case the problem of deter-
mining the satisfiability of Boolean formulas in con-
junctive normal form (CNF), and show that the prob-
lem can be quickly t r ans fo rmed into the p rob lem
whose complexi ty remains to be de termined, in this
case the problem of deciding whether a given string is
in the language genera ted by a given Lexical-
Funct ional Grammar . Before the reduction proper is
reviewed, some definitional groundwork must be pres-
ented. A Boolean formula in conjunctive normal form
is a conjunct ion or disjunction of literals, where a
literal is just an a tom (like Xi) or the negat ion of an
a tom (Xi). A formula is satisfiable just in case there
exists some assignment of T 's and F ' s (or l ' s and O's)
to the atoms of a formula that forces the evaluation of
the entire formula to be T (true); otherwise, the for-
mula is said to be unsatisfiable. For example, the fol-
lowing formula is satisfiable:

(X2VX3VX7)A(X1VX2VX4)A(X3VX1VX7)

since the assignment of X 2 = T , X 3 = F , X 7 = F , X I = T ,
and X 4 = F makes the whole formula evaluate to " T " .
The reduct ion in the proof be low uses a somewhat
more restricted fo rmat where every term comprises the
disjunction of exact ly three literals, so-cal led 3-CNF
(or "3-SAT") . 7

H o w does a reduction show that the LFG recogni-
tion problem must be at least as hard (computat ional ly
speaking) as the original problem of Boolean satisfia-
bility? The answer is that any decision procedure for
LFG recognit ion could be used as a correspondingly
fast decision procedure for 3-CNF, as follows:
(1) Given an instance of a 3-CNF problem (the ques-

t ion of whether there exists a satisfying assignment
for a given formula in 3-CNF), apply the t ransfor-
mat ional algorithm provided by the reduction; this
algorithm is itself assumed to execute quickly, in
polynomial time or less. The algorithm outputs a
corresponding LFG decision problem, namely: (i)
a Lexical-Funct ional G r a m m a r and (ii) a string to
be tested for membersh ip in the language generat-
ed by the LFG. The LFG recognit ion problem
represents or mimics the decision p rob lem for
3-CNF in the sense that the " y e s " and " n o " an-
swers to both satisfiability problem and member -

6 This result can also be established by showing that LFGs
can generate at least all the indexed languages as defined by Aho
1968. See Berwick 1981 for details.

7 This restriction entails no loss of generality (see Hopcroft
and Ullman 1979, Chapter 12), since this restricted format can be
easily shown to have the power to express any CNF formula.

American Journal of Computational Linguistics, Volume 8, Number 3-4, July-December 1982 99

Robert C. Berwick Computational Complexity and LexicaI-Functional Grammar

ship problem must coincide (if there is a satisfy-
ing assignment, then the corresponding LFG deci-
sion problem should give a " y e s " answer, etc.).

(2) Solve the LFG decision problem - the str ing-LFG
pair - output by Step 1. If the string is in the
LFG language, the original formula is satisfiable;
if not, it is unsatisfiable. 8

To see how a reduction can tell us something about
the "wors t case" t ime or space complexi ty required to
recognize whether a string is or is not in an LFG lan-
guage, suppose for example that the decision proce-
dure for determining whether a string is in an LFG
language took only polynomial t ime (that is, takes t ime
n k on a determinist ic Turing machine, for some integer
k, where n is the length of the input string). Then,
since the compos i t ion of two polynomia l algori thms
can be readily shown to take only polynomia l t ime
(see H o p c r o f t and Ul lman 1979, Chap te r 12), the
entire process sketched above, f rom input of the CNF
formula to the decision about its satisfiability, will take
only polynomial time.

However , CNF (or 3-CNF) has no known polynomi-
al t ime algori thm, and indeed, it is considered
exceedingly unlikely that one could exist. Therefore , it
is just as unlikely that LFG recognit ion could be done
(in general) in polynomial time. What the reduct ion
shows is that LFG recognit ion is at least as hard as the
problem of CNF. Since the latter p rob lem is widely
considered to be difficult, the fo rmer inherits the diffi-
culty.

The theory of computa t iona l complexi ty has a
much more compact t e rm for problems like CNF: CNF
is NP-comple te . This label is easily deciphered:
(1) CNF satisfiability is in the class NP. That is, the

problem of determining whether an arbi t rary CNF
formula is satisfiable can be compu ted by a
non-de termin i s t i c Turing machine in polynomial
time. (Hence the abbrevia t ion " N P " , for "non -
determinist ic polynomial" . To see that CNF is
indeed in the class NP, note that one can simply
guess all possible combina t ions of t ruth assign-
ments to literals, and check each guess in polyno-
mial time.)

(2) CNF is complete. That is, all other problems in the
class NP can be quickly reduced to some CNF
formula. (Roughly, one shows that Boolean for-

8 Note that the grammar and string so constructed depend
upon just what formula is under analysis; that is, for each different
CNF formula, the procedure presented above outputs a different
LFG grammar and string combination. In the LFG case it is
important to remember that "grammar" really means "grammar plus
lexicon" - as one might expect in a lexically-based theory. S.
Peters has observed that a slightly different reduction allows one to
keep most of the grammar fixed across' all possible input formulas,
constructing only different-sized lexicons for each different CNF
formula. Details are provided below.

mulas can be used to " s imula te" any valid compu-
tat ion of a non-determinis t ic Turning machine.)

Since the class of problems solvable in polynomial
time on a determinist ic Turing machine (convent ional-
ly nota ted , P) is trivially conta ined in the class so
solved by a non-de terminis t ic Turing machine, the
class P must be a subset of the class NP. A well-
known, well-studied, and still open question is whether
the class P is a proper subset of the class NP. In other
words, are there p rob lems solvable in non-
determinist ic polynomial t ime that cannot be solved in
determinis t ic po lynomia l t ime? Because all of the
several thousand N P - c o m p l e t e p rob lems now cata-
logued have so far proved recalci trant to determinist ic
polynomial t ime solution, it is widely held that P must
indeed be a proper subset of NP, and therefore that
the best possible algorithms for solving NP-comple te
problems must take more than polynomial time. (In
general, the algorithms now known for such problems
involve exponential combinator ia l search, in one fash-
ion or another; these are essentially methods that do
no bet ter than to brutal ly simulate - deterministically,
of course - a non-de te rminis t ic machine that
"guesses" possible answers.)

To repeat the force of the reduct ion argument then,
if all LFG recognit ion problems were solvable in po-
lynomial time, then the ability to quickly reduce CNF
formulas to LFG recogni t ion p rob lems would imply
that all N P - c o m p l e t e p rob lems would be solvable in
polynomial time, and that the class P = the class NP.
This possibility seems extremely remote. Hence , our
assumption that there is a fast (general) procedure for
recognizing whether a string is or is not in the lan-
guage genera ted by an arbi t rary LFG must be false. In
the terminology of complexi ty theory, LFG recognit ion
must be NP-ha rd - "as hard as" any other NP prob-
lem, including the NP-comple te problems. This means
only that LFG recognit ion is at least as hard as other
NP-comple te problems - it could still be more difficult
(lie in some class that contains the class NP). If one
could also show that the languages genera ted by LFGs
are in the class NP, then LFGs would be shown to be
NP-comple te . This paper stops short of proving this
last claim, but simply conjectures that LFGs are in the
class NP.

3. A S k e t c h of the Reduct ion

To carry out this demonst ra t ion in detail one must
explicitly describe the t r ans fo rma t ion p rocedure that
takes as input a formula in CNF and outputs a corre-
sponding LFG decision problem - a string to be tes ted
for membersh ip in a LFG language and the LFG itself.
One must also show that this can be done quickly, in a
number of steps propor t ional to (at most) the length
of the original formula to some polynomial power.

100 American Journal of Computational Linguistics, Volume 8, Number 3-4, July-December 1982

Robert C. Berwick Computat ional Complexity and LexicaI-Functional G r a m m a r

One caveat is in order before embarking on a proof
sketch of this reduction. The g rammar that is output
by the reduct ion procedure will not look very much
like a g rammar for a natural language, al though the
grammatical devices that will be employed will in ev-
ery way be those that are an essential part of the LFG
theory.9 In other words, al though it is most unlikely
that any natural language would encode the satisfiabil-
ity p rob lem (and hence be in t ractable) in just the
manner outlined below, no "exo t i c" LFG machinery is
used in the reduction. Indeed, some of the more pow-
erful LFG notational formalisms - long-distance bind-
ing, existential and negative feature o p e r a t o r s - have
not been exploited. (An earlier proof made use of an
existential opera tor in the feature machinery of LFG,
but the reduction presented here does not.)

To make good this demonst ra t ion one must set out
just what the satisfiabili ty p rob lem is and what the
decision problem for membersh ip in an LFG language
is. Recall that a formula in conjunctive normal form is
satisfiable just in case every conjunctive term evalu-
ates to true, that is, at least one literal in each term is
true. The satisfiability problem is to find an assign-
ment of T 's and F ' s to the atoms at the bo t tom (note
that complements of a toms are also permit ted) such
that the root node at the top gets the value " T " (for
true). How can we get a Lexical-Funct ional G r a m m a r
to represent this p roblem? What we want is for
satisfying assignments to cor respond to well-formed
sentences of some corresponding Lexica l -Funct ional
Grammar , and non-satisfying ass ignments to corre-
spond to sentences that are not well-formed, according
to the LFG, as indicated in Figure 1. Since one wants
the sa t is fying/non-sat is fying assignments of ahay par-
ticular formula to map over into wel l - fo rmed/ i l l -
formed sentences, one must obviously exploit the LFG
machinery for capturing well-formedness conditions on
sentences. To make the discussion clear to the reader
will require a brief account of the LFG theory itself.

satisfiable non-satisfiable
formula formula

sentence w IS sentence w IS NOT
in LFG language L(G) in LFG language L(G)

Figure 1. A reduction preserves solutions to the original problem.

Just as in a t ransformat iona l theory, a Lexical-
Funct ional G r a m m a r associates with each generable
surface string (sentence) a number of distinct repre-

9 These include feature agreement , the lexical analog of Sub-
ject or Object "cont ro l" , lexical ambiguity, and a garden variety
context - f ree base grammar .

sentations. For our purposes here we need to focus on
just two of these: the const i tuent structure of a sen-
tence (its "c - s t ruc ture" , roughly, a labeled bracket ing
of the surface string, anno ta ted with certain fea ture
complexes); and the functional structure of a sentence
(its " f - s t r uc tu r e " , roughly, a represen ta t ion of the
underlying predica te-argument structure of a sentence,
descr ibed in te rms of grammat ica l relat ions such as
Subject and Object .) Unlike a Trans fo rmat iona l
G r a m m a r , however , a Lexica l -Funct iona l G r a m m a r
does not generate surface sentences by first specifying
an explicit, context - f ree deep structure fol lowed by a
series of ca tegor ia l ly-based t ransformat ions . " C a -
t egor ia l ly -based" simply means that the t r ans fo rma-
tions move const i tuents defined in terms of categories,
like NP or PP.) Rather , predica te-argument structure
is mapped directly into c-s t ructure , on the basis of
predicates that are grounded upon grammat ica l rela-
tions (like Subject and Object) . The conditions for
this mapping are provided by a set of so-called func-
tional equations associated with the context - f ree rules
for generat ing permissible c-s t ructures , along with a
set of convent ions that in effect convert the functional
equat ions into wel l - formedness predicates for c-
structures.

In more detail, an LFG c-structure is genera ted by
a base context - f ree ~rammar. A necessary condition
for a sentence (considered as a string) to be in the
language generated by a Lexical-Funct ional G r a m m a r
is that it can be generated by this base grammar; such
a sentence is then said to have a wel l - formed consti tu-
ent structure. For example, if the base rules included
S = > N P VP; V P = > V NP, then (glossing over details
of Noun Phrase rules) the sentence John kissed the
baby would be wel l - formed but John the baby kissed
would not. Note that this assumes, as usual, the exist-
ence of a lexicon that provides a ca tegor iza t ion for
each terminal item, e.g., that baby is of the category
N, kissed is a V, etc. Impor tan t ly then, this well-
fo rmedness condit ion requires us to provide at least
one legit imate parse tree for the candidate sentence
that shows how it may be derived f rom the underlying
LFG base con tex t - f ree grammar . (There could be
more than one legitimate tree if the underlying gram-
mar is ambiguous.) Note further that the choice of
categorizat ion for a lexical i tem may be crucial. If
b a b y was assumed to be of ca tegory V, then both
sentences above would be ill-formed.

Since the base grammar is context-free , there are
wel l -known algori thms for checking the well-
formedness of the strings it can generate in polynomial
time. Intractabil i ty cannot arise on this score, then.

A Lexica l -Funct i0nal G r a m m a r consists of more
than just a base context- f ree grammar, however. As
ment ioned , a second major c o m p o n e n t of the LFG
theory is the provision for adding a set of so-called

American Journal of Computational Linguistics, Volume 8, Number 3-4, July-December 1982 101

Robert C. Berwick Computational Complexity and LexicaI-Functional Grammar

funct ional equat ions to the base con tex t - f ree rules.
The functional equations define an implicit f -s tructure
associated with every c-structure, and this f-s tructure
must itself be well-formed. Part of the linguistic role
of f -s t ructures is to account for the co-occur rence
restr ict ions that are an obvious par t of natural lan-
guages (e.g., Subjec t -Verb agreement) .

H o w exactly do the funct ional equat ions work?
Their job is to specify how the f-s t ructure of a sen-
tence gets built. This is done by associating possibly
complex features with lexical entries and with the non-
terminals of specified context - f ree rules; these features
have values. The features are pasted together under
the direct ion of the funct ional equat ions to fo rm f-
structures associated with the sub-consI i tuents of the
sentence; these (now possibly complex) f - s t ruc tures
are in turn assembled to fo rm a mas te r f -s t ruc ture
associated with the root node of the sentence.

Note then that in this theory a " f e a t u r e " can be
something as simple as an atomic object that is binary
valued; for example, a Subiect feature could be either
plural or singular in value. But denominators can also
have a range of values, and - more crucial for the
purposes of the demons t ra t ion here - a fea ture can
itself be a complex, hierarchical ly s t ructured objec t
that contains other features as sub-const i tuents . For
example, the " f e a t u r e " that eventually becomes associ-
ated with the root node of a sentence is in fact an
f-s t ructure that represents the full proposi t ional struc-
ture of the sentence. Thus if the surface string was
the sentence, The girl promised to kiss the baby, then
the f -s t ructure associa ted with the root node of the
sentence is a complex " f e a t u r e " that itself contains an
embedded f-s t ructure corresponding to the embedded
proposi t ion the girl to kiss the baby.

As ment ioned, wel l - formedness is also determined
by functional equations, dictating (according to certain
conventions) how feature complexes are to be assem-
bled. By and large the f-s t ructure complex at a node
X is assembled composi t ional ly in terms of the f-
structure complexes of the nodes below it in the con-
stituent structure tree. For example, the root node of
a sentence will have an associa ted f -s t ruc ture with
Subject and Predicate sub-features. These structures
are themselves complex - the entire Subject NP and
Verb-Verb Complement structures, respectively. For
instance, the Subject NP in turn has a sub- fea tu re
Number ; the Predicate contains complex sub-features
cor responding to the Verb and Verb Complements .
The basic assembly directive is the notat ion (4 = 4) . 1°
When at tached to a particular node X, it s tates that
the f-s tructure of the node a b o v e X is to share all the
f -s t ructure of the nodes b e l o w X . The ef fec t is to
merge and "pass up" all the f-s t ructure values of the
nodes below X to the node above X. One can also
pass along just part icular subfields of the f-s t ructure

be low X by specifying a subfield on the r ight -hand
side of the expansion rule. As an example, the notion
(+ = + N u m b e r) a t tached to a node X states that the
f-s t ructure of the node above X is to contain at least
the value of the Number feature. (This "va lue" may
itself be an f-s tructure.) Similarly, a particular sub-
field of the f-s t ructure above a node X may be speci-
fied by providing a subfield label on the lef t -hand side
of the ar row notat ion. Fo r example , the nota t ion,
(+ S u b j e c t = 4) means that the Subject subfield of the
f-s t ructure built at the node above X must contain the
f-s tructure built below X.

A basic const ra in t on f - s t ruc tures is that the f-
structure assembled at X must be uniquely determined;
that is, it cannot contain a feature F 1 with conflicting
values. This entails, for example , that the Subject
sub-f-s t ructure that is built at a root-S node cannot
have a N u m b e r sub-f ie ld that is filled in f rom one
place benea th with the value Singular and f rom anoth-
er place with the value Plural. More generally, this
res t r ic t ion means that two or more f -s t ruc tures that
are "passed up" f rom below according to the dictates
of an arrow notat ion at a single node above must be
u n i f i a b l e - any c o m m o n sub-fields, no ma t t e r how
hierarchical ly complex, must be mergeab le wi thout
conflict.

For example, consider Subjec t -Verb agreement and
the sentence the baby is kissin~ John. The lexical
entry for baby (considered as a Noun) might have the
Number feature, with the value singular. The lexical
entry for is might assert that the number feature of the
Subiect above it in the parse tree m u s t have the value
singular, via the annota t ion (+Subjec t=s ingu la r) a t ta-
ched to the verb. Meanwhile , the feature values for
Subject are automat ica l ly found by the annota t ion
(+ S u b j e c t = 4) associated with the Noun Phrase por-
t ion of S = > N P VP) that grabs whatever features it
finds below the NP node and copies them up above to
the S node. Thus the S node gets the Subject feature
with whatever value it has passed f rom baby below -
namely, the value singular; this accords with the dic-
tates of the verb is___z, and all is well. In contrast , in the
sentence, th_.__~e boys in the band is kissin~ John, boys
passes up the number value plural, and this clashes
with the verb ' s constraint; as a result this sentence is
judged ill-formed, as Figure 2 shows.

10 More generally, the assembly directive is specified via the
notat ion (+featl=Sfeat2), where feat1 and feat2 are meta-
variables specifying a subfield of the f-structure immediately above
or below the node to which the the annotat ion is attached. If no
field is given, then the entire f-structure is assumed. For example,
the notation (+ Subject Number = 4) attached to a node X means
that the Number subfield of the Subject subfield of the f-structure
associated with the node above X is to be filled in with the value of
the entire f-structure below X.

102 American Journal of Computational Linguistics, Volume 8, Number 3-4, Ju ly -December 1982

Robert C. Berwick Computational Complexity and LexicaI-Functional Grammar

S Subject [Number:Singular or Plural?] / \ =
NP VP

[Number:plural] [Number: singular]

L- /
the boys in the band is kissing John

Figure 2. Co-occurrence restrictions are enforced by feature checking in a Lexical-Functional Grammar.

It is important to note that the feature compatibili-
ty check requires (1) a particular consti tuent structure
tree (a parse tree); and (2) an assignment of terminal
items (words) to lexical categories - e.g., in the first
Subject -Verb agreement example above, baby was
assigned to the category N, a Noun. The tree is obvi-
ously required because the feature-checking machinery
propagates values according to the links specified by
the derivation tree; the assignment of terminal items to
categories is crucial because in most cases the values
of features are derived from those listed in the lexical
entry for an item (as the value of the number feature
was derived from the lexical entry for the Noun form
of baby). One and the same terminal item can have
two distinct lexical entries, corresponding to distinct
lexical categorizations; for example, baby can be both
a Noun and a Verb. If we had picked baby to be a
Verb, and hence had adopted whatever features are
associated with the Verb entry for baby to be propa-
gated up the tree, then the string that was previously
well-formed, th.__~e baby is kissin 8 John, would now be
considered deviant. If a string is ill-formed under all
possible derivation trees and assignments of features
from possible lexical categorizations, than that string is
not in the language generated by the LFG. The ability
to have multiple derivation trees and lexical categori-
zations for one and the same terminal item plays a
crucial role in the reduction proof: it is intended to
capture the satisfiability problem of deciding whether
to given an atom X i a value of " T " or " F " .

Finally, LFG also provides a way to express the
familiar pat terning of grammatical relations (e.g.,
"Sub jec t " and " O b j e c t ") found in natural language.
For example, transitive verbs must have objects. This
fact of life (expressed in an Aspects-style Transforma-
tional Grammar by subcategorizat ion restrictions) is
captured in LFG by specifying a so-called PRED (for
predicate) feature with a Verb; the PRED can describe
what grammatical relations like "Sub jec t " and
" O b j ec t " must be filled in after feature passing has
taken place in order for the analysis to be well-
formed. For instance, a transitive verb like kiss might
have the pattern, k i s s<(Subjec t) (Obiec t)> , and thus
demand that the Subject and Object (now considered
to be " fea tu res") have some value in the final analysis.
The values for Subject and Object might of course be

provided from some other branch of the parse tree, as
provided by the feature propagat ion machinery; for
example, the Object feature could be filled in from the
Noun Phrase part of the VP expansion. See Figure 3.
But if the Object were not filled in, then the analysis is
declared functionally incomplete, and is ruled out. This
device is used to cast out sentences such as th._ee baby
kissed.

So much for the LFG machinery that is required for
the reduction proof. (There are additional capabilities
in the LFG theory, such as long-distance binding, but
these will not be called upon in the demonst ra t ion
below.)

What then does the LFG representat ion of the CNF
satisfiability problem look like? Basically, there are
three parts to the satisfiability problem that must be
mimicked by the LFG: (1) the assignment of values to
atoms, e.g., X 2 = > " T " ; X 4 = > " F " ; (2) the consisten-
cy of value assignments in the formula; e.g., the atom
X 2 can appear in several different terms, but one is
not allowed to assign it the value " T " in one term and
the value " F " in another; and (3) the preservation of
CNF satisfiability, in that a string will be in the LFG
language to be defined just in case its associated CNF
formula is satisfiable. Let us now go over how these
components may be reproduced in an LFG, one by
one.

(1) Assignments: The input string to be tested
for membership in the LFG will simply be the original
formula, sans parentheses and the operators A and V;
the terminal items are thus just a string of Xi's. Recall
that the job of checking the string for well-formedness
involves finding a derivation tree for the string, solving
the ancillary co-occurrence equations (by feature pro-
pagation), and checking for funct ional completeness.
Now, the context - f ree grammar const ructed by the
transformation procedure will be set up so as to gener-
ate a virtual copy of the associated formula, down to
the point where literals X i are assigned their value of
" T " or " F " . If the original 3-CNF form had n terms,
then denoting each by the symbol Ep, p = l , ..., n, this
part of the grammar would look like the following:U

S = > E 1 E 2 ... E n

E p = > Y i Y j Y k

American Journal of Computational Linguistics, Volume 8, Number 3-4, July-December 1982 103

Robert C. Berwiek Computational Complexity and LexicaI-Functional Grammar

S ~ features:

NP VP

I / N
Sue V NP

I I
kiss John

Subject : Sue
Pred • 'k i ss< (Subject) (Object) > '
Object : John

Figure 3. Predicate templates can demand that a subject or object be filled in.

(p = 1,2,...,n)

The subscripts i, j, and k correspond to the actual
subscripts in the original formula. Further , the Yi are
not terminal items, but are non- terminals that will be
expanded into one of the non-terminals T i o r Fi.12

Note that so far there are no rules to extend the
parse tree down to the level of terminal items, name
the X i. The next step does this and at the same t ime
adds the power to choose be tween " T " and " F " as-
s ignments to atoms. One adds to the con tex t - f ree
base grammar two product ions deriving each terminal
i tem X i, namely, T i = > X i and F i - ->Xi , corresponding
to an assignment of " T " or " F " to the a toms of the
formula (it is important not to get confused here be-
tween the a toms of the formula - these are terminal
elements in the Lexical-Funct ional G r a m m a r - and the
non-terminals of the grammar.) Plainly, one must also
add the rules Y i = > T i] Fi, for each i, and rules corre-
sponding to the assignment of t ruth-values to the neg-
at ions of literals, T i = > X i and Fi--->X i. No te that
these are not " e x o t i c " LFG rules: exact ly the same
sort of rule is required in the baby case, i.e.,
N = > b a b y or V = > b a b y , cor responding to whether
baby is a Noun or a Verb. Now, the lexical entries for
the "T i " categorizat ion of X i will look very different
f rom the "F i " categorizat ion of Xi, just as one might
expect the N and V forms for baby to be different.
Here is what the entries for the two categorizat ions of
X i look like:

Xi: T i (+Tru th-ass ignment) = T
(+Assign X i) = T

11 The context-free base that is built depends upon the origi-
nal C N F formula that is input, since the number of terms, n, varies
from formula to formula. In Stanley Peters 's improved version of
the reduction proof [personal communication], the context-free base
is fixed for all formulas with the rules:

S = > S S"
S ' = > T T T or T T F or T F F or T F T or ...
(remaining twelve triples containing at least one " T ")

The Peters grammar works by recursing until the right number of
terms is generated (any sentences that are too long or too short
cannot be matched to the input formula). Thus, the number of
terms in the original C N F formula need not be explicitly encoded
into the base grammar.

Xi: F i (+Assign Xi) = F

Putting aside for the momen t the "Tru th -a s s ignmen t "
feature in this entry, the feature assignments for the
negat ion of the literal X i must be the complement of
this entry:

Xi: T i (+Tru th-ass ignment) = T
(+Assign X i) = F

Xi: F i (+Assign X i) = T

The upward-d i rec ted ar rows in the entr ies ref lect
the LFG feature propagat ion machine. R e m e m b e r that
T i and F i are just non- terminal categories, like Noun
and Verb. For example, if the T i categorizat ion for X i
is selected, the ent ry says to " m a k e the
Tru th -ass ignment fea ture of the node above T i have
the value T, and make the X i por t ion of the Assign
fea ture of the node above have the value T . " This
feature propagat ion device reproduces the assignment
of T ' s and F ' s to the CNF literals. If we have a triple
of such elements, and at least one of them is expanded
out to Ti, then the feature p ropaga t ion machinery of
LFG will merge the common feature names into one
large structure for the node above, reflecting the as-
signments made; moreover , the term will get a filled-in
truth assignment value just in case at least one of the
expansions selected a T i path. This is depicted in Fig-
ure 4. Features are passed t ransparent ly through the
in tervening Yi nodes via the LFG " c o p y " device,
(+ = +); this simply means that all the features of the
node below the node to which the " c o p y " up-and-
down arrows are a t tached are to be the same as those
of the node above the up -and-down arrows.

It should be plain that this mechanism mimics the
assignment of values to literals required by the satisfi-
ability problem.

(2) Coordinat ion of assignments: One must also
guarantee that the X i value assigned at one place in
the tree is not contradic ted by the value of an X i or X i
elsewhere. To ensure this, we use the LFG co-

12 This grammar will have to be slightly modified in order for
the reduction to work, as will become apparent shortly

104 American Journal of Computational Linguistics, Volume 8, Number 3-4, July-December 1982

Robert C. Berwick Computat ional Complexi ty and LexicaI-Functional Grammar

terminal
string:

ures:

Yi

i i ~J ~ k

X i Xj X k

ITruth-Assignment _=T [Xi=T] l]

[Xj=F1 II
l Assign

[Xg=F]JJ

Figure 4. The LFG feature propagation machinery is used to percolate feature assignments from the lexicon.

occurrence agreement machinery: the Assign feature-
bundle is passed up from each term to the highest
node in the parse tree (one simply adds the (+=4,)
notation to each E i rule in order to indicate this). The
Assign feature at this node will contain the union of all
assign feature bundles passed up by all terms. If any
X i values conflict, then the resulting structure is
judged ill-formed. Thus, only compatible X i assign-
ments are well-formed. Figure 5 depicts this situation.

(3) Preservation of satisfying assignments: Final-
ly, one has to reproduce the conjunctive character of
the 3-CNF problem - that is, a sentence is satisfiable
(well-formed) if and only if each term has at least one
literal assigned the value "T" . Part of the disjunctive
character of the problem has already been encoded in
the feature propagation machinery presented so far; if
at least one X i in a term E 1 expands to the lexical
categorizat ion Ti, then the Truth-ass ignment feature
gets the value T. This is just as desired. If one, two,
or three of the literals X i in a term select Ti, then El 'S
Truth-assignment feature is T, and the analysis is well-
formed. But how do we rule out the case where all

three Xi's in a term select the " F " path, Fi? And how
do we ensure that all terms have at least one T below
them?

Both of these problems can be solved by resorting
to the LFG functional completeness constraint. The
trick is to add a Pred feature to a " d u m m y " node atta-
ched to each term; the sole purpose of this feature will
be to refer to the feature Truth-assisnment , just as the
predicate template for the transitive verb kiss mentions
the feature Obiect. Since an analysis is not well-
formed if the "grammatical relat ions" a Pred mentions
are not filled in from somewhere, this will have the
effect of forcing the Truth-assignment feature to get
filled in every term. Since the " F " lexical entry does
not have a Truth-assignment value, if all the Xi's in a
term triple select the F i path (all the literals are " F ") ,
then no Truth-ass ignment feature is ever picked up
from the lexical entries, and that term never gets a
value for the Truth-assignment feature. This violates
what the predicate template demands, and so the
whole analysis is thrown out. (The ill-formedness is
exactly analogous to the case where a transitive verb
never gets an Object.) Since this condition is applied
to each term, we have now guaranteed that each term
must have at least one literal below it that selects the
" T " path - just as desired. To actually add the new
predicate template, one simply adds a new (but dum-
my) branch to each term El, with the appropriate
predicate constraint at tached to it. See Figure 6.

S features:

/ \
~1 Ejk

~7 ~7

7 F7
\

X7 X7

~Axssign 1
7=T or F? d

Clash!

(+Assign XT=T) (+Assign XT=F)

Figure 5. The feature compatibility machinery of LFG can force assignments to be co-ordinated across terms.

American Journal of Computational Linguistics, Volume 8, Number 3-4, Ju ly-December 1982 105

Robert C. Berwick Computational Complexity and LexicaI-Functional Grammar

lexical entry
for ' dummy2 ' :
(÷ Pred) =
' d u m m y 2 < (÷ T r u t h - a s s i g n m e n t) > '

E l

Dummy2 y, y~ y<
~ i Fj F k

Xi

features: [P r e d = ' d u m m y 2 < (÷ Truth-ass ignment) > ']"

[Truth-ass ignment = T]

(+ Truth-ass ignment) = T

Figure 6. Predicates can be used to force at least one "T" per term.

There is one final subtle point here: one must also
prevent the Pred and Tru th -ass ignment fea tures for
each term f rom being passed up to the head " S " node.
The reason is that if these features were passed up,
then, since the LFG machinery automat ica l ly merges
the values of any features with the same name at the
topmost node of the parse tree, the LFG machinery
would force the union of the feature values for Pred
and Tru th -ass ignment over all terms in the analysis
tree. The result would be that if any term had at least
one " T " (hence satisfying the Truth-ass ignment predi-
cate template in at least one term), then the Pred and
Tru th -ass ignment fea tures would get filled in at the
topmos t node as well. The string below would be
wel l - formed if at least one term were " T " , and this
would amount to a disjunction of disjunctions (an
" O R " of " O R ' s) , not quite what is sought. To elimi-
nate this possibility, one must add a final trick: each
term E 1 is given separate Pred, Truth-ass ignment , and
Assign features, but only the Assign feature is propa-
gated to the highest node in the parse tree as such. In
contrast , the Pred and Truth-ass ignment features for
each term are kept " p r o t e c t e d " f rom merger by storing
them under separate feature headings labeled E 1 E n.
The means by which just the Assign feature bundle is
lifted out is the LFG analogue of the natural language
phenomenon of Subject or Object "con t ro l " , whereby
just the features of the Subject or Object of a lower
clause are lifted out of the lower clause to become the
Subject of Object of a matrix sentence; the remaining
features stay unmergeable because they stay protected
behind the individually labeled terms.

To actually " imp lemen t " this in an LFG, one can
add two new branches to each term expansion in the
base context- f ree grammar, as well as two "con t ro l "
equat ion specifications that do the actual work of lift-
ing the features f rom a lower clause to the matrix sen-
tence. A natural language example of this phenome-
non is the following (f rom Kaplan and Bresnan 1981,
pp. 43-45):

The girl persuaded the baby to go.

(part of the)
lexical entry for
persuaded: V (÷ Vcomp Subject) = (÷ Object)

According to this lexical entry, the Objec t fea ture
s t ructure of a root sen tence containing a verb like
persuade is to be the same as the feature structure of
the Subject of the C o m p l e m e n t of persuade - a
" con t ro l " equation. Since this Subject is the baby,
this means that the features associated with the NP the
baby are shared with the features of the Objec t of the
matrix sentence.

The satisfiabil i ty analogue of this machinery is
quite similar to this; see Figure 7.

As Figure 7 shows, a "con t ro l equat ion" should be
a t tached to the A i node that forces the Assign feature
bundle f rom the C i side to be lifted up and ult imately
merged into the Assign feature bundle of the E 1 node
(and then, in turn, to become merged at the topmos t
node of the tree by the usual full copy up-and-down
arrows):

(+ CiAssign) = ÷ Assign)

The satisfiability analogue is just like the sharing of
the Subject features of a Verb Complemen t with the
Objec t posit ion of a matrix clause.

To finish off the reduct ion argument , it must be
shown that, given any 3-CNF formula, the cor respond-
ing LFG grammar and string as just described can be
constructed in a t ime that is a polynomial funct ion of
the length of the original input formula. This is not a
difficult task, and only an informal sketch of how it
can be done will be given. All one has to do is scan
the original formula f rom left to right, output t ing an
appropr ia te cluster of base rules as each triple of liter-
als is scanned: E i = > A i C i ; C i = > D u m m y 2 YiYjYk;
Y i = > T i l F i (similarly for Yj and Yk); T i = > X i ,
F i = > X i (similarly for Tj and Tk). Note that for each
triple of literals in the original input formula the ap-
propriate g rammar rules can be output in an amount of
t ime that is just a constant times n. In addition, one
must also mainta in a counte r to keep t rack of the

106 American Journal of Computational Linguistics, Volume 8, Number 3-4, July-December 1982

Robert C. Berwick Computational Complexity and LexicaI-Functional Grammar

Phrase structure tree:

Dum m y2 Yi Y j Y k

Figure 7. Phrase s t ructure tree required to implement control .

equat ions in C N F analogue of natural language case.

number of triples so far encountered. This adds at
most a logarithmic factor, to do the actual counting.
At the end of processing the input formula, one must
also output the rule S=>E1E2, . . . ,Em, where m is the
number of triples in the CNF formula. Since rn is less
than n, this procedure too is easily seen to take time
that is a polynomial function of the length of the origi-
nal input formula. Finally, one must also construct the
lexical entry for each X i and X i. This too can be done
as the input formula is scanned left to right. The only
difficulty here is that one must check to see if the
entry for each X i has been previously constructed. In
the worst case, this involves rescanning the list of lexi-
cal entries built so far. Since there are at most n such
entries, and since the time to actually output a single
entry is constant, at worst the time spent construct ing
a single lexical entry could be proport ional to n. Thus
for n entries the total time spent in construct ion could
be at most of order n 2. Since the time to construct the
entire g rammar is just the sum of the times spent in
constructing its product ion rules and its lexicon, the
total time to t ransform the input formula is bounded
above by some constant times n 2.

4. Relevance of Complexity Results and Conclusions

The demons t ra t ion of the previous section shows
that LFGs have enough power to "s imula te" a proba-
bly computat ional ly intractable problem. But what are
we to make of this result? On the positive side, a
complexity result such as this one places the LFG the-
ory more precisely in the complexi ty hierarchy. If one
conjectures, as seems reasonable, that LFG language
recognition is actually in the class NP (that is, LFG
recognit ion can be done by a non-determinist ic Turing
machine in polynomial t ime), then the LFG languages
are NP-complete . This is a plausible conjecture be-
cause a non-determinis t ic Turing machine should be
able to "guess" all candidate feature propagat ion solu-
tions using its non-determinist ic power, including any
" long-d is tance" binding solutions (an LFG device not
discussed in this paper) . Since checking candidate
solutions is quite rapid - it can be done in n 2 t ime or
less, as described by Kaplan and Bresnan 1981 - rec-

ognition should be possible in polynomial t ime on such
a machine. Compar ing this result to other known
language classes, note that context-sensi t ive language
recogni t ion is in the class of polynomial space
("PSPACE") , since (non-determinis t ic) l inear space
bounded au tomata genera te exact ly the class of
context-sensi t ive languages. (As is well known, for
polynomial space the determinis t ic and non-
determinis t ic classes collapse together because of
Savitch's results (see Hopcro f t and Ullman 1979) that
any funct ion computable in non-determinist ic space N
can be computed in deterministic space N2.) Fur ther-
more, the class NP is clearly a subset of PSPACE
(since if a function uses space N it must use at least
time N) and it is suspected, but not known for certain,
that NP is a proper subset of PSPACE (this being the
P = N P question once again). Our conclusion is that it
is likely that LFGs can generate only a proper subset of
the context -sens i t ive languages. This speculat ion is
highly suggestive, in that several other "na tu ra l " ex-
tensions of the context - f ree languages - notably the
class of languages genera ted by the so-called " indexed
g r a m m a r s " - also genera te strict subsets of the
context -sens i t ive languages, including those strictly
context-sensi t ive languages shown to be generable by
LFGs by Kaplan and Bresnan 1981. The class of in-
dexed languages is also known to be NP-comple te (see
Rounds 1973). Indeed, a cursory look at the power of
indexed g rammars suggests that they might subsume
the machinery of the LFG theory, t3 On the other side
of the coin, how might one restr ict the LFG theory
further so as to avoid potential intractabili ty? Several
escape hatches come to mind; these will s imply be
listed here. Note that all of these " f ixes" have the
ef fec t of supplying addit ional const ra in ts to fur ther
restrict the LFG theory. In this respect, the LFG com-
plexity demonst ra t ion presented here plays the same
role as, say Peters and Ritchie 's earlier result about
Transformat ional Grammars : it shows that the theory

13 For a formal d i scuss ion of this possibi l i ty, see Berwick
1981. Note added in proof: This can be shown to be false, howev-
er; L F G s can genera te non- indexed languages.

American Journal of Computational Linguistics, Volume 8, Number 3-4, July-December 1982 107

Robert C. Berwick Computational Complexity and LexicaI-Functional Grammar

must be t ightened i f one wants to avoid computa t ional
intractability.

1. Rule out "worst case" languages as linguistically
(that is, empirically) irrelevant.

The probable computa t ional intractabili ty of LFG rec-
ognit ion arises because co-occur rence restr ict ions
(compatible X i assignments) can be expressed across
arbi t rary stretches of the terminal string in conjunction
with potent ia l categorial ambigui ty for each terminal
item. If some device can be found in natural lan-
guages that always filters out or removes such ambigu-
ity locally (so that the choice of whether an i tem is
" T " or " F " never depends on other items arbitrarily
far away in the terminal string), or if natural languages
never employ such kinds of co-occurrence restrictions,
then the reduction is theoretically valid but linguisti-
cally irrelevant. Note that such a finding would be a
positive result, since one would be able to fur ther nar-
row the LFG theory in its a t tempt to character ize all
and only the natural languages. This discovery would
be on a par with, for example, Peters and Ritchie 's
observat ion that al though the context-sensi t ive phrase
structure rules formally advanced in linguistic theory
have the power to genera te non-con tex t - f r ee lan-
guages, this power has apparent ly never been used in
the grammars that linguists have designed (see Peters
and Ritchie 1973b).

2. Add "locality principles" for recognition (or parsing).
One could simply stipulate that LFG languages must
meet additional conditions known to ensure efficient
parsabil i ty, e.g., Knu th ' s LR(k) restr ict ion, suitably
extended to handle the LFG case. This approach is
typified by Marcus ' s 1980 work, which hypothes ized
that people normally construct only a single derivat ion
for any given sentence, and proposed other conditions
that turn out to guarantee that Knuth ' s LR(k) restric-
tion will hold. (See Berwick 1982 for fur ther discus-
sion.)

3. Restrict the lexicon.

The reduction argument crucially depends upon having
an infinite stock of lexical i tems and an infinite num-
ber of features with which to label them. This is nec-
essary because as CNF formulas grow larger and larg-
er, the number of distinct literals can grow arbitrarily
large, and one requires an arbitrari ly large number of
distinct X i features to check for co-occurrence condi-
tions. If, for wha tever reason, the s tock of lexical
i tems or fea ture labels is finite, then the reduct ion
me thod works for only f ini te-sized problems. This
restriction seems ad hoc in the case of lexical i tems
(why can ' t there be an infinite number of words?) but
less so in the case of features. (If features required
"grounding" in terms of other sub-sys tems of knowl-
edge, e.g, if a feature had to be in the spanning set of
a finite number of some hypothe t ica l cognit ive or

sensory-motor basis elements, then the total number
of features would be finite.) t4

Of course, constraints may be drawn f rom all three
of these general classes in order to make the LFG the-
ory computat ional ly tractable. Even then, it remains
to be seen what additional constraints would be re-
quired in order to guaran tee that LFG recogni t ion
takes only a small amount of polynomial t ime - e.g,
cubic t ime or less, as for context - f ree language recog-
nition. Here it may well turn out to be the case that
something like the LR(k) restrictions suffice.

Acknowledgments

I would like to thank Ron Kaplan, Ray Perrault ,
Christos Papadimitr iou, and Stanley Peters for various
discussions about the contents of this paper.

This repor t describes research done at the Artificial
Intell igence Labo ra to ry of the Massachuset ts Inst i tute
of Technology. Support for the Labo ra to ry ' s artificial
intelligence research is provided in par t by the Office
of Naval Research under O N R contrac t N 0 0 0 1 4 - 8 0 C -
0505.

R e f e r e n c e s

Aho, A. 1968 Indexed grammars - an extension of context-free
grammars. Journal of the ACM 15:4 647-671.

Berwick, R. 1981 The formal language theory of Lexical-
Functional Grammar. Talk given at the Linguistic Society of
America Annual Meeting, December 1981.

Berwick, R. 1982 Locality Principles and the Acquisition of Syn-
tactic Knowledge. Ph.D. dissertation. Cambridge, MA: MIT
Department of Computer Science and Electrical Engineering.

Berwick, R. and Weinberg, A. 1982 Parsing efficiency, computa-
tional complexity, and the evaluation of grammatical theories.
Linguistic Inquiry 13:1 165-191.

Berwick R. and Weinberg A. 1983 The role of grammars in mod-
els of language use. Cognition, 13:1, 1-61.

Berwick, R. and Weinberg, A. forthcoming The Grammatical Basis
of Linguistic Performance: Language Use and Acquisition. Cam-
bridge, MA: MIT Press.

Chomsky, N. 1965 Aspects of the Theory of Syntax. Cambridge,
MA: MIT Press.

Chomsky, N. 1980 Rules and Representations. New York: Colum-
bia University Press.

Chomsky, N. 1981 Lectures on Government and Binding. Dor-
drecht: Foris Publications.

Fodor, J., Bever, T., and Garrett, M. 1974 The Psychology of
Language. New York: McGraw-Hill.

Hopcroft, J. and Ullman, J. 1979 Introduction to Automata Theory,
Languages, and Computation. Reading, MA: Addison-Wesley.

Kaplan, R. and Bresnan, J. 1981 Lexical-functional Grammar: A
Formal System for Grammatical Representation. Cambridge,
MA: MIT Center for Cognitive Science Occasional Paper #13.
(Also forthcoming in Bresnan, J., ed., The Mental Representation
of Grammatical Relations. Cambridge, MA: MIT Press.)

14 See for example Pinker 1980, where this claim is made for
Lexical-Functional Grammar. Still, it is most natural to assume that
there is a potentially unbounded number of lexical items - all that is
required for the reduction.

108 American Journal of Computational Linguistics, Volume 8, Number 3-4, July-December 1982

Robert C. Berwick Computat ional Complexi ty and LexicaI-Functional Grammar

Knuth, D. 1965 On the translation of languages from left to right.
Information and Control 8 607-639.

Marcus, M. 1980 A Theory of Syntactic Recognition for Natural
Language. Cambridge, MA: MIT Press.

Peters, S. and Ritchie, R. 1973a On the generative power of
transformational grammars. Information Sciences 6 49-83.

Peters, S. and Ritchie, R. 1973b Context-sensitive immediate
constituent analysis: context-free languages revisited. Mathemat-
ical Systems Theory 6:4 324-333.

Petrick, S. 1965 A Recognition Procedure for Transformational
Grammar. Ph.D. dissertation. Cambridge, MA: MIT Depart-
ment of Linguistics.

Pinker, S. 1980 A Theory of the Acquisition of Lexical-
Interpretive Grammars. Cambridge, MA: MIT Center for
Cognitive Science Occasional Paper #6. (Also forthcoming in
Bresnan, J., ed., The Mental Representation of Grammatical
Relations. Cambridge, MA: MIT Press.

Rounds, W. 1973 Complexity of recognition in intermediate-level
languages. Proceedings of the 14th Annual Symposium on Switch-
ing Theory and Automata. 145-158.

Rounds, W. 1975 A grammatical characterization of exponential-
time languages. Proceedings of the 16th Annual Symposium on
Switching Theory and Automata. 135-143.

American Journal of Computat ional Linguistics, Vo lume 8, Number 3-4, July-December 1982 109

