
General ized A u g m e n t e d Transi t ion N e t w o r k G r a m m a r s
For Genera t ion From S e m a n t i c N e t w o r k s 1

S t u a r t C. S h a p i r o

Depar tment of Computer Science
State University of N e w York at Buffalo

Amherst , N e w York 14226

The augmented transition network (ATN) is a formalism for writing parsing grammars
that has been much used in Artificial Intelligence and Computational Linguistics. A few
researchers have also used ATNs for writing grammars for generating sentences. Previous-
ly, however, either generation ATNs did not have the same semantics as parsing ATNs, or
they required an auxiliary mechanism to determine the syntactic structure of the sentence
to be generated. This paper reports a generalization of the ATN formalism that allows
ATN grammars to be written to parse labelled directed graphs. Specifically, an ATN
grammar can be written to parse a semantic network and generate a surface string as its
analysis. An example is given of a combined parsing-generating grammar that parses
surface sentences, builds and queries a semantic network knowledge representation, and
generates surface sentences in response.

1. Introduction

Augmented t ransi t ion ne twork (ATN) g rammars
have, since their development by Woods 1970,1973,
become the most used method of describing grammars
for natural language unders tanding and quest ion an-
swering systems. The advantages of the A T N notat ion
have been summarized as "1) perspicuity, 2) genera-
tive power , 3) eff ic iency of representa t ion , 4) the
ability to capture linguistic regularit ies and general i -
ties, and 5) efficiency of opera t ion" [Bates 1978, p.
191].

The usual method of utilizing an A T N grammar in
a natural language system is to provide an interpreter
that can take any A T N grammar , a lexicon, and a
sentence-as data, and produce either a parse of a sen-
tence or a message that the sentence does not conform
to the grammar. The input sentence is assumed to be
a linear sequence of symbols, while the parse is usually
a tree (of ten represented by a LISP S-expression) or
some "knowledge represen ta t ion" such as a semantic
network. Compilers have been writ ten [Burton 1976;
Burton and Woods 1976] that take an A T N grammar

1 This paper is a revised and expanded version of one given
at the 17th Annual Meeting of the Association for Computational
Linguistics. The work reported here was supported in part by the
National Science Foundat ion under Grants MCS78-02274 and
MCS80-06314.

as input and produce a special ized parser for that
grammar , but in this paper we assume that an inter-
preter is being used.

Several methods have been descr ibed for using
A T N grammars for sentence generat ion. One method
[Bates 1978, p. 235] is to replace the usual interpreter
by a genera t ion in te rpre ter that can take an A T N
g rammar wri t ten for pars ing and use it to p roduce
random sentences conforming to the grammar. This is
useful for testing and debugging the grammar.

Simmons 1973 uses a s tandard A T N interpreter to
generate sentences f rom a semantic network. In this
method, an A T N register is initialized to hold a node
of the semantic ne twork and the input to the g rammar
is a linear string of symbols providing a pa t te rn of the
sentence to be generated. For example , the input
string might be (C A 1 - L O C U S V A C T T H E M E) ,
where C A 1 - L O C U S and T H E M E are labels of arcs
emanat ing f rom the semantic node, and V A C T stands
for "ac t ive ve rb . " This pa t t e rn means that the sen-
tence to be genera ted is to begin with a string denot-
ing the C A 1 - L O C U S , then have the active fo rm of the
verb, and end with a string denot ing the T H E M E .
The method also assumes that semant ic nodes have
such syntactic informat ion stored with them as number
and definiteness of nominals, and tense, aspect, mood,
and voice of proposit ions.

Copyright 1982 by the Association for Computational Linguistics. Permission to copy without fee all or part of this material is granted
provided that the copies are not made for direct commercial advantage and the Journal reference and this copyright notice are included on
the first page. To copy otherwise, or to republish, requires a fee a n d / o r specific permission.

0 3 6 2 - 6 1 3 X / 8 2 / 0 1 0 0 1 2 - 1 4 5 0 1 . 0 0

12 American Journal of Computational Linguistics, Volume 8, Number 1, January -March 1982

Stuart C. Shapiro Generalized Augmented Transition Network Grammars

Shapiro 1979 also generates sentences f rom a se-
mantic network. In this method, input to the g rammar
is the semantic ne twork itself (starting at some node).
That is, instead of successive symbols of a linear sen-
tence pat tern being scanned as the ATN grammar is
t raversed by the in terpreter , d i f ferent nodes of the
semantic network are scanned. The grammar controls
the syntax of the generated sentence, but bases specif-
ic decisions on the structural propert ies of the seman-
tic network and on the information contained therein.

The original goal in Shapiro 1975 was that a single
ATN interpreter could be used both for s tandard A T N
parsing and for generation. However , a special inter-
pre ter was wri t ten for genera t ion grammars ; indeed,
the semantics of the A T N formal ism given in that
paper, though based on the s tandard ATN formalism,
were inconsistent enough with the s tandard notat ion
that a single interpreter could not be used. For exam-
ple, s tandard ATNs use a register named " * " to hold
the input symbol (word) currently being scanned. Un-
like other registers, whose values are set explicitly by
actions on the ATN arcs, the * register is manipulated
directly by the ATN interpreter. In Shapiro 1975 the *
register was used to hold the string being generated
rather than the input symbol being scanned. The in-
te rpre ter wri t ten for Shapiro 1975 also manipula ted
the * register directly, but in a manne r inconsis tent
with standard A T N interpreters.

This paper reports the results of work carried out
to remove the inconsistencies ment ioned above. A
general izat ion of the A T N formal ism has now been
derived that supplies consis tent semant ics (and so
allows a single interpreter to be used) for both parsing
and generating grammars. In fact, one grammar can
include both parsing and generating sub-networks that
can call each other. For example, an A T N grammar
can be constructed so that the " p a r s e " of a natural
language quest ion is the natural language s ta tement
that answers it, in teract ion with represen ta t ion and
inference routines being done on arcs along the way.
The new formal ism is a strict general izat ion in the
sense that it interprets all old A T N grammars as hav-
ing the same semantics (carrying out the same actions
and producing the same parses) as before.

The general ized A T N formal ism can be used to
write g rammars for parsing labelled directed graphs.
In this paper, however, we only discuss its use in pars-
ing two particular kinds of labelled di-graphs. One is
the kind that is generally called a semantic network.
We consider parsing a semant ic ne twork , as viewed
from some node, into a particular linear symbol struc-
ture that consti tutes a surface string of English. The
other kind of labelled di-graph is a linear graph all of
whose arcs have the same label and whose nodes are
successive words in a surface sentence. This kind of
di-graph is so special that a subset of the generalized

A T N formalism, namely the original formalism, has
built-in facilities for traversing its arcs.

Since many people have implemented their own
A T N interpreters, this paper is writ ten to describe the
extension to be made to any A T N interpreter to allow
it to interpret generat ion grammars as well as parsing
grammars. A key ingredient in such an extension is a
sys temat ic t r ea tmen t of the input buf fer and the *
register. This is explained in Section 4, which is essen-
tially a description of a set of p rogram assertions for
A T N interpreters.

2. G e n e r a t i o n f rom a S e m a n t i c N e t w o r k - Br ief Over -
v i e w

In our view, each node of a semantic ne twork rep-
resents a concept. The goal of the generator is, given
a node, to express the concept represen ted by that
node in a natural language surface string. The syntac-
tic category of the surface string is determined by the
grammar, which can analyze the structure of the se-
mantic ne twork connected to the node. In order to
express the concept, it is of ten necessary to include in
the string substrings that express the concepts repre-
sented by adjacent nodes. For example , if a node
represents a propos i t ion to be expressed as a s ta te-
ment , par t of the s t a tement may be a noun phrase
expressing the concept represented by the node con-
nected to the original node by an A G E N T case arc.
This can be done by a recursive call to a section of the
g rammar in charge of building noun phrases. This
sect ion will be passed the adjacent node. When it
finishes, the original s ta tement section of the g rammar
will continue adding additional substrings to the grow-
ing s tatement .

In A T N grammars writ ten for parsing, a recursive
push does not change the input symbol being exam-
ined, but when the original level continues, parsing
normally continues at a different symbol. In the gen-
era t ion approach we use, a recursive push normal ly
involves a change in the semantic node being exam-
ined, and the original level continues with the original
node. This difference is a major motivat ion of some
of the generalizations to the A T N formalism discussed
below. The other major mot ivat ion is that, in parsing
a string of symbols, the " n e x t " symbol is defined by
the system, but in "pars ing" a network, " n e x t " must
be specified in the grammar.

3. T h e Genera l i za t ion

The following sub-sect ions show the general ized
syntax of the A T N formalism, and assume a knowl-
edge of the s tandard formalism (Bates 1978 is an ex-
cellent in t roduct ion) . Syntact ic s t ructures already
familiar to A T N users but not discussed here remain
unchanged. Parentheses and terms in upper case let-
ters are terminal symbols. Lower case terms in angle

American Journal of Computational Linguistics, Volume 8, Number 1, January-March 1982 13

Stuar t C. Shapiro Generalized Augmented Transition Network Grammars

brackets are non-terminals. Terms enclosed in square
brackets are optional. Terms followed by ". . ." may
occur zero or more times in succession.

3.1 Termina l Ac t ions

Successful traversal of an ATN arc might or might
not consume an input symbol. When parsing, such
consumption normally occurs; when generating it nor-
mally does not, but if it does, the next symbol
(semantic node) must be specified. To allow for these
choices, we have returned to the technique of Woods
1970 of having two terminal actions, TO and JUMP,
and have added an optional second argument to TO.
The syntax is:

(TO <state> [<form>])

(JUMP <state>)

Both cause the parser to enter the given state. JUMP
never consumes the input symbol; TO always does. If
the < f o r m > is absent in the TO action, the next sym-
bol to be scanned will be the next one in the input
buffer. If < f o r m > is present, its value will be the
next symbol to be scanned. All traditional ATN arcs
except JUMP and POP end with a terminal action.

The explanation given in Burton 1976 for the re-
placement of the JUMP terminal action by the JUMP
arc was that, "since POP, PUSH and VIR arcs never
advance the input, to decide whether or not an arc
advanced the input required knowledge of both the arc
type and termination action. The introduction of the
JUMP arc ... means that the input advancement is a
function of the arc type alone." That our reintroduc-
tion of the JUMP terminal action does not bring back
the confusion is explained in Section 4.

3.2 Arcs

We retain a JUMP arc as well as a JUMP terminal
action. The JUMP arc provides a place to make an
arbitrary test and perform some actions without con-
suming an input symbol. For symmetry, we introduce
a TO arc:

(TO (<state> [<form>]) <test>

<action>...)

If < t e s t > is successful, the < a c t i o n > s are performed
and transfer is made to <s t a t e> . The input symbol is
consumed. The next symbol to be scanned is the val-
ue of < f o r m > if it is present, or the next symbol in
the input buffer if < f o r m > is missing.

Neither the JUMP arc nor the TO arc are really
required if the TST arc is retained (Bates 1978, how-
ever, does not mention it), since they are equivalent to
the TST arc with the JUMP or TO terminal action,
respectively. However, they require less typing and
provide clearer documentation. They are used in the
example in Section 6.

The PUSH arc makes two assumptions: 1) the first
symbol to be scanned in the subnetwork is the current
contents of the * register; 2) the current input symbol
will be consumed by the subnetwork, so the contents
of * can be replaced by the value returned by the sub-
network. We need an arc that causes a recursive call
to a subnetwork, but makes neither of these two as-
sumptions, so we introduce the C A L L arc:

(CALL <state> <form> <test>

<preaction or action>...

<register> <action>...

<terminal action>)

where <preac t ion or ac t ion> is < p r e a c t i o n > or
< a c t i o n > . If the < t e s t > is successful, all the
< a c t i o n > s of <preac t ion or ac t ion> are per formed
and a recursive push is made to the state < s t a t e >
where the next symbol to be scanned is the value of
< f o r m > and registers are initialized by the
<preac t ion>s . If the subnetwork succeeds, its value is
placed into <reg i s t e r> and the < a c t i o n > s and
<terminal ac t ion> are performed.

Just as the normal TO terminal action is the gener-
alized TO terminal action without the optional form,
the PUSH arc (which we retain) is equivalent to the
following C A L L arc:

(CALL <state> * <test> <preaction>...

• <action>... <terminal action>)

3.3 Forms

The generalized TO terminal action, the generalized
TO arc, and the C A L L arc all include a form whose
value is to be the next symbol to be scanned. If this
next symbol is a semantic network node, the primary
way of identifying it is as the node at the end of a
directed arc with a given label from a given node. This
identification mechanism requires a new form:

(GETA <arc> [<node form>])

where <node fo rm> is a form that evaluates to a se-
mantic node. If absent, <node fo rm> defaults to *
The value of G E T A is the node at the end of the arc
labelled < a r c > from the specified node, or a list of
such nodes if there are more than one.

3.4 Tests , Preact ions, and Ac t ions

The generalization of the ATN formalism to one
that allows for writing grammars which generate sur-
face strings from semantic networks, yet can be inter-
preted by the same interpreter which handles parsing
grammars, requires no changes other than the ones
described above. Specifically, no new tests, preac-
tions, or actions are required. Of course each imple-
mentation of an ATN interpreter contains slight differ-
ences in the set of tests and actions implemented be-
yond the basic ones.

14 Amer i can Journa l of Computational Linguistics, Vo lume 8, Number 1, January -March 1982

Stuar t C. Shapiro Generalized Augmented Transition Network Grammars

4. The Input Buffer

Input to the ATN parser can be thought of as being
the contents of a stack, called the input buffer. If the
input is a string of words, the first word will be at the
top of the input buffer and successive words will be in
successively deeper positions of the input buffer. If
the input is a graph, the input buffer might contain
only a single node of the graph.

Adequate treatment of the * register is crucial for
the correct operat ion of a grammar interpreter that
does both parsing and generation. This is dealt with in
the present section.

On entering an arc, the * register is set to the top
element of the input buffer, which must not be empty.
The only exceptions to this are the CAT, VIR, and
POP arcs. On a CAT arc, * is the root form of the
top element of the input buffer. (Since the CAT arc is
treated as a "bundle" of arcs, one for each sense of
the word being scanned, and is the only arc so treated,
it is the only arc on which (GETF <fea tu re> *) is
guaranteed to be well-defined.) VIR sets * to an ele-
ment of the H O L D register. POP leaves * undefined
since * is always the element to be accounted for by
the current arc, and a POP arc is not trying to account
for any element. The input buffer is not changed be-
tween the time a PUSH arc is entered and the time an
arc emanating from the state pushed to is entered, so
the contents of * on the latter arc will be the same as
on the former. A C A L L arc is allowed to specify the
contents of * on the arcs of the called state. This is
accomplished by replacing the top element of the input
buffer by that value before transfer to the called state.
If the value is a list of elements, we push each element
individually onto the input buffer. This makes it par-
ticularly easy to loop through a set of nodes, each of
which will contribute the same syntactic form to the
growing sentence (such as a string of adjectives).

While on an arc (except for POP), i.e. during eval-
uation of the test and the acts, the contents of * and
the top element of the input buffer remain the same.
This requires special processing for VIR, PUSH, and
C A L L arcs. Since a VIR arc gets the value of * from
HOLD, rather than from the input buffer, after setting
• the VIR arc pushes the contents of * onto the input
buffer. The net effect is to replace the held constitu-
ent in a new position in the string. When a PUSH arc
resumes, and the lower level has successfully returned
a value, the value is placed into * and also pushed
onto the input buffer. The net effect of this is to re-
place a sub-string by its analysis. When a C A L L re-
sumes, and the lower level has successfully returned a
value, the value is placed into the specified register,
and the contents of * is pushed onto the input buffer.
(Recall that it was replaced before the transfer. See
the previous paragraph.) The specified register might

or might not be *. In either case the contents of * and
the top of the input buffer are the same.

There are two possible terminal acts, JUMP and
TO. JUMP does not affect the input buffer, so the
contents of * will be the same on the successor arcs
(except for POP and VIR) as at the end of the current
arc. TO pops the input buffer, but if provided with an
optional form, also pushes the value of that form onto
the input buffer.

POPping from the top level is only legal if the in-
put buffer is empty. POPping from any level should
mean that a constituent has been accounted for. Ac-
counting for a consti tuent should entail removing it
from the input buffer. From this we conclude that
every path within a level from an initial state to a POP
arc must contain at least one TO transfer, and in most
cases, it is proper to transfer TO rather than to JUMP
to a state that has a POP arc emanating from it. TO
will be the terminal act for most VIR and PUSH arcs.

In any ATN interpreter having the operat ional
characteristics given in this section, advancement of
the input is a function of the terminal action alone, in
the sense that, at any state JUMPed to, the top of the
input buffer will be the last value of *, and, at any
state jumped TO, it will not be.

5. The Lexicon

Parsing and generating require a lexicon - a file of
words giving their syntactic categories and lexical fea-
tures, as well as the inflectional forms of irregularly
inflected words. Parsing and generating require differ-
ent information, yet we wish to avoid duplication as
much as possible. This section discusses how a lexicon
might be organized when it is to be used both for
parsing and for generation. Figure 1 shows the lexi-
con used for the example in Section 6.

During parsing, morphological analysis is per-
formed. The analyzer is given an inflected form and
must segment it, find the root in the lexicon, and mod-
ify the lexical entry of the root according to its analy-
sis of the original form. Irregularly inflected forms,
such as "seen" in Figure 1, must have their own en-
tries in the lexicon. An entry in the lexicon may be
lexically ambiguous, such as " s a w " in Figure 1, so
each entry must be associated with a list of one or
more lexical feature lists. Each such list, whether
stored in the lexicon or constructed by the morpholog-
ical analyzer, must include a syntactic category and a
root, as well as other features needed by the grammar.
The lexical routines we use supply certain default fea-
tures if they are not supplied explicitly. These are as
follows: the root is the lexeme itself; nouns have
(N U M . SING); verbs have (TENSE . PRES). In
Figure 1, BE and D O G get default features, while the
entries for SAW override several of them.

American Journal of Computational Linguistics, Volume 8, Number 1, January-March 1982 15

Stuar t C. Shapiro Generalized Augmented Transition Network Grammars

(A

(BE

(DOG

(IS
LUCY
SAW

SAWI

SEE

SEEN

SWEET

(WAS
(YOUNG

CTGY

CTGY

CTGY

CTGY

CTGY

CTGY

CTGY

CTGY

CTGY

CTGY

CTGY

CTGY

CTGY

DET

v))
N))
v)
NPR

N)
V)
N)
V)
V)
imJ

v)
ADJ

))

ROOT . BE)

))

ROOT . SAWI))

ROOT . SEE) (TENSE . PAST)

ROOT . SAW)))

PAST . SAW) (PASTP . SEEN)

ROOT . SEE) (TENSE . PASTP

))

ROOT . BE)

))

(NUM. SING) (TENSE . PRES)))

)

)

(PPRT . T)))

(NUM. SING) (TENSE . PAST)))

Figure 1. Example Lexicon.

In the semantic network, some nodes are associated
with lexical entries. In Figure 3, nodes SWEET,
Y O U N G , LUCY, BE, SEE, and SAWl are. During
generat ion, these entries, along with other informat ion
f rom the semantic network, are used by a morphologi-
cal synthesizer to construct an inflected word. We
assume that all such entries are unambiguous roots ,
and so contain only a single lexical feature list. This
fea ture list must contain any irregularly inf lected
forms. For example, the feature list for " s e e " in Fig-
ure 1 lists " s a w " as its past tense and " s e e n " as its
past participle. SAW1 represents the unambiguous
sense of " s a w " as a noun. It is used in that way in
Figure 3. In Figure 1, SAW1 is given as the R O O T of
the noun sense of SAW, but for purposes of morpho-
logical synthesis, the R O O T of SAW1 is given as
SAW.

In summary, a single lexicon may be used for both
parsing and generating under the following conditions.
The entry of an unambiguous root can be used for
both parsing and generat ing if its one lexical feature
list contains features required for both operat ions. An
ambiguous lexical entry (such as SAW) will only be
used during parsing. Each of its lexical feature lists
must contain a unique but arbi trary " r o o t " (SEE and
SAW1) for connect ion to the semantic ne twork and
for holding the lexical information required for genera-
tion. Eve ry lexical fea ture list used for generat ing
must contain the proper natural language spelling of its
root (SAW for SAW1) as well as any irregularly in-
flected forms. Lexical entries for irregularly inflected
forms will only be used during parsing. In the lexicon
of Figure 1, the entries for A, D O G , LUCY, SEE,
SWEET, and Y O U N G are used during both parsing
and generation. Those for BE, IS, SAW, SEEN, and
WAS are only used during parsing. The ent ry for
SAW1 is only used during generation. Our morpho-
logical synthesizer recognizes " b e " as a special case,

and computes its inflected forms without referr ing to
the lexicon.

For the purposes of this paper, it should be irrele-
vant whether the " r o o t " connec ted to the semant ic
ne twork is an actual surface word like "g ive" , a deep-
er sememe such as that under lying bo th " g i v e " and
" t a k e " , or a primitive such as " A T R A N S " .

6. Example

In this section, we discuss an example of natural
language interact ion (in a small f ragment of English)
using an A T N pars ing-generat ing g rammar and SNePS,
the Semant ic Ne twork Process ing System [Shapiro
1979]. The purpose of the example is to demons t ra te
the use of the general ized A T N formal ism for writing
a pars ing-generat ing g rammar for which the " p a r s e " of
an input sentence is a genera ted sentence response ,
using a knowledge representa t ion and reasoning sys-
tem as the sentence is processed. Both the f ragment
of English and the semant ic ne twork represen ta t ion
technique have been kept simple to avoid obscur ing
the use of the general ized A T N formalism.

Figure 2 shows an example interact ion using SNeP-
SUL, the SNePS User Language. The numbers in the
left margin are for re ference in this section. The
string " * * " is the SNePSUL prompt . The rest of each
line so marked is the user 's input. The following line
is the result re turned by SNePSUL. The last line of
each interact ion is the CPU time in milliseconds taken
by the interaction. (The system is running as compiled
LISP on a CDC C Y B E R 170/730 . The A T N gram-
mar is interpreted.) Figure 3 shows the semantic net-
work built as a result of the sentences in Figure 2.

The first in terac t ion crea tes a new semant ic net-
work node, shown as B1 in Figure 3, to represent the
instant of t ime " n o w " . The symbol " # " represents a
SNePSUL funct ion to create this node and make it the
value of the variable NOW. From then on, the ex-

16 Amer i can Journa l of Computational Linguistics, Vo lume 8, Number 1, January -March 1982

Stuart C. Shapiro Generalized Augmented Transition Network Grammars

(1)

(2)

(3)

(4)

** #NOW

(BI)

4 MSECS

** (: YOUNG LUCY SAW A SAW)

(I UNDERSTAND THAT YOUNG LUCY SAW A SAW)

2481MSECS

** (: WHO SAW A SAW)

(YOUNG LUCY SAW A SAW)

875 MSECS

** (: LUCY IS SWEET)

(I UNDERSTAND THAT YOUNG LUCY IS SWEET)

397 MSECS

** (: WHAT WAS SEEN BY LUCY)

(A SAW WAS SEEN BY SWEET YOUNG LUCY)

862 MSECS

Figure 2. Example interaction.

BEFORE

ETM
I

BEFORE

NOW
I
14

x

Figure 3. The semantic network built by the example interaction.

press ion * N O W evaluates to B1. W e wil l see * N O W

used on some arcs of the grammar.
The rest o f the user inputs are calls to the S NeP-

SU L funct ion ":". This func t ion passes its argument

list to the parser as the input buffer. The parser starts

in state S. The form popped b y the t o p leve l A T N
grammar is returned as the va lue of the cal l to :, and is

t hen printed as m e n t i o n e d above . Thus , the l ine fo l -
lowing the cal l to : m a y be v i e w e d as the " p a r s e " of

the sen tence passed to :.

American Journal of Computational Linguistics, Volume 8, Number 1, January-March 1982 17

Stuar t C. Shapiro Generalized Augmented Transition Network Grammars

We will trace the first example sentence through
the ATN grammar, referring to the other example
sentences at various points. The parse starts in state S
(Figure 4) with the input buffer being (Y O U N G
L U C Y SAW A SAW). The one arc out of state S
pushes to state SP, which is the beginning of a net-
work that parses a sentence. The first arc out of state
SP recognizes that inputs (2) and (4) are questions.
In these cases the register TYPE is set to Q both on
this level (by the SETR action) and on the top level
(by the L IFTR action). The register SUBJ is also set
to %X, which is a free variable in SNePSUL. In the
cases of sentences (1) and (3), however, the second
arc from SP is taken. This is a PUSH to the network
beginning at state NPP, which will parse a noun
phrase. Register TYPE is initialized to D (for
"declarat ive") at the lower level by SENDR. When
the noun phrase is parsed, the TYPE register is set to
D at this and the top level, and the SUBJ register is
set to the parse of the noun phrase.

At state NPP (Figure 5) the JUMP arc is followed
since the * register is Y O U N G rather than A. At state
NPDET, the CAT ADJ arc is followed and a semantic
node representing the concept of Y O U N G is put in
the H O L D register for later use. The SNePSUL form
(F I N D O R B U I L D LEX (^ (G E T R *))) finds in the
network a node with a LEX arc to Y O U N G (the con-
tents of the * register) or builds such a node if one
does not exist, and returns that node as the value of
the form. In this case, node M1 of Figure 3 is built
and placed in HOLD. The parser then loops TO
N P D E T with the input buffer being (LUCY SAW A
SAW). This time, the * register contains LUCY, so
the fourth arc is followed. This time the SNePSUL
form builds nodes M2, M3, and M4 of Figure 3, and
places M4 in the register NH. Node M4 represents
someone named LUCY. Node M3 represents the prop-
osition that this person is named LUCY. Node M2
represents the name LUCY. (When this arc is taken
while parsing LUCY in sentences (3) and (4), these
semantic nodes will be found.) The parser then trans-
fers TO state NPA at which the modifying properties
are removed from the H O L D register and asserted to

hold of the concept stored in NH. In this case, there
is only one property, and node M5 is built. Node M4,
representing someone who is named L U C Y and is
Y O U N G is popped to the PUSH arc emanating from
state SP, and is placed in the SUBJ register as men-
tioned earlier. The parser then transfers TO state V
with an input buffer of (SAW A SAW).

The CAT arc from state V (Figure 6) wants a word
of category V. The first word in the input buffer is
SAW, which is two-ways lexically ambiguous (see
Figure 1), so we can think of the CAT arc as being
two arcs, on one of which * contains the singular of
the Noun SAW1, and on the other of which * contains
the past tense of the Verb SEE. The second of these
arcs can be followed, setting the register VB to node
M6, and the register TNS to PAST. The parser than
goes TO state C O M P L with input buffer (A SAW).
At COMPL, neither CAT arc can be followed, so the
parser JUMPs to state SV. The first CAT arc is fol-
lowed in sentence 4, while the second CAT arc is fol-
lowed in sentence 3.

At state SV (Figure 7), a semantic network tempo-
ral structure is built for events. Each event is given a
starting time and an ending time. Present tense is
interpreted to mean that the present time, the value of
• NOW, is after the starting time and before the ending
time. Past tense is interpreted to mean that the ending
time is before *NOW. In this case, the tense is past,
so the third arc is taken and builds nodes M7 and M8.
M7 is made the SNePSUL value of *ETM, and M8 is
placed in the ATN register STM. For simplicity in this
example, the first arc ignores the tense of questions.
Control then passes to state O.

The first arc of state O (Figure 8) recognizes the
beginning of a " b y " prepositional phrase in a passive
sentence. This arc will be followed in the case of
sentence 4 to the state PAG where the object of BY
will replace the previous contents of the SUBJ register.
In the case of sentence (1), the second arc will be
taken, which is a PUSH to state NPP with input buff-
er, (A SAW).

(S ; Parse a sentence and generate a response.

(PUSH SP T (JUMP RESPOND)))

(SP ; Parse a sentence.

(WRD (WHO WHAT)

; If it starts with "Who" or "What", it's a question.

T (SETR TYPE 'Q) (LIFTR TYPE) (SETR SUBJ ZX) (TO V))

(PUSH NPP ; A statement starts with a Noun Phrase -- its subject.

T (SENDR TYPE 'm)(SETR TYPE 'D) (LIFTR TYPE) (SETR SUBJ *)

(TO V)))

Figure 4. A T N G r a m m a r .

18 Amer ican Journal of Computational Linguistics, Volume 8, Number 1, January -March 1982

Stuart C. Shapiro Generalized Augmented Transition Network Grammars

At state NPP (Figure 5), the first arc is taken, set-
ting register INDEF to T, and transferring TO state
N P D E T with input buffer (SAW). The second arc is
taken from NPDET interpreting SAW as a noun, the
singular form of SAW1. A semantic node is found or
built (in this case M9 is built) to represent the class of

S A W l s , M l l is built to represent a new SAW1, and
M10 is built to assert that M l l is a SAW1. In the case
of a question, such as sentence (2), the third arc finds
all known S A W l s using the SNePSUL function DE-
D U C E , so that whatever can be inferred to be a
SAW1 is found. In either case the S A W I (s) are

(NPP ; Parse a noun phrase.

(WRD A T (SETR INDEF T)

(JUMP NPDET T))

(TO NPDET

(NPDET ; Parse a NP after the determiner.

(CAT ADJ T ; Hold adjectives for later.

(HOLD 'ADJ (FINDORBUILD LEX (A(GETR *)))) (TO NPDET))

(CAT N (AND (GETR INDEF) (EQ (GETR TYPE) 'D))

; "a N" means some member of the class Noun,

(SETR NH ; but not necessarily any one already known.

(BUILD MEMBER-

(BUILD CLASS (FINDORBUILD LEX (A(GETR *))))))

(TO mPi))

(CAT m (AND (GETR INDEE) (EQ (GETR TYPE) 'Q))

; "a N" in a question refers to an already known Noun.

(SETR NH

(FIND MEMBER-

(DEDUCE MEMBER ZY CLASS (TBUILD LEX (A(GETR *))))))

(TO NPA))

(CAT NPR T ; A proper noun is someone's name.

(SETR NH (FINDORBUILD NAMED-

(FINDORBUILD NAME (FINDORBUILD LEX (A(GETR *))))))

(TO NPA))

(NPA ; Remove all held adjectives and build WHICH-ADJ propositions.

(VIR ADJ T

(FINDORBUILD WHICH (A (GETR NH)) ADJ (A (GETR *)))

(TO mmi))

(POP NH T))

Figure 5. ATN Grammar (continued).

(V (CAT V T ; The next word must be a verb.

(SETR VB (FINDORBUILD LEX (A(GETR *))))

(TO COMPL)))

(SETR TNS (GETF TENSE))

(COMPL ; Consider the word after the verb.

(CAT V (AND (GETF PPRT) (OVERLAP (GETR VB) (GETA LEX- 'BE)))

; It must be a passive sentence.

(SETR OBJ (GETR SUBJ)) (SETR SUBJ NIL) (SETR VC 'PASS)

(SETR VB (FINDORBUILD LEX (A(GETR *)))) (TO SV))

(CAT ADJ (OVERLAP (GETR VB) (GETA LEX- 'BE))

; a predicate adjective.

(SETR ADJ (FINDORBUILD LEX (A (GETR *)))) (TO SVC))

(JUMP SV T))

Figure 6. ATN Grammar (continued).

American Journal of Computational Linguistics, Volume 8, Number 1, January-March 1982 19

Stuart C. Shapiro Generalized Augmented Transition Network Grammars

placed in register NH, and the parser transfers TO
state N P A with an empty input buffer, and the value
of N H is popped back to the P U S H arc from state O
or PAG where it becomes the value of the * register
and the first (and only) item on the input buffer. Af-
ter setting the SUBJ or OBJ register, these P U S H arcs
LIFTR the proper voice to the VC register on the top
A T N level and transfer TO state SVO (Figure 9).

When dealing with sentence (1), the first POP arc
at state SVO builds node M12 and pops it to the top
level. The second POP arc finds M12 for both sen-
tences (2) and (4). In the case of sentence (3), the
CAT ADJ arc is fo l lowed from state C O M P L to state
SVC, on the first arc of which node M15 is built. The
second arc from SVC is not used in these examples.

The pop from state SVO or SVC returns to the
P U S H arc from state S which JUMPs to the state RE-
S P O N D with the input buffer conta in ing either the
node built to represent an input s tatement or the node
that represents the answer to an input question. In
our example, this is node M 1 2 for inputs (1) , (2) , and
(4) , and node M15 for input (3) . R e m e m b e r that
nodes M 1 4 and M15 do not exist until sentence (3) is
analyzed.

The state R E S P O N D (Figure 10) is the initial state
of the generat ion network. In this network the regis-
ter S T R I N G is used to col lect the surface sentence
being built. The only difference b e t w e e n the two arcs
in state R E S P O N D is that the first, responding to
input statements , starts the output sentence with the

(SV ; Start building the temporal structure.

JUMP O (EQ (GETR TYPE) 'Q)) ; Ignore the tense of a question.

JUMP O (EQ (GETR TNS) 'PRES)

; Present means starting before and ending after now.

(SETR STM (BUILD BEFORE *NOW BEFORE (BUILD AFTER *NOW) : ETM)))

JUMP O (EQ (GETR TNS) 'PAST)

; Past means starting and ending before now.

(SETR STM (BUILD BEFORE (BUILD BEFORE *NOW) = ETM))))

Figure 7. ATN Grammar (continued).

(O ; Parse what follows the verb group.

(WRD BY (EQ (GETR VC) 'PASS) ; Passive sentences have

(TO PAG))

(PUSH NPP T ; A<tive sentences have an object NP.

(SENDR TYPE) (SETR OBJ *) (LIFTR VC) (TO SVO)))

"by NP".

(PAG (PUSH NPP T ; Parse the subject NP of a passive sentence.

(SENDR TYPE) (SETR SUBJ *) (LIFTR VC) (TO SVO)))

Figure 8. ATN Grammar (continued).

(SVO ; Return a semantic node.

(POP (BUILD AGENT (^(GETR SUBJ)) VERB (A(GETR VB))

OBJECT (^(GETR OBJ)) STIME (A(GETR STM)) ETIME *ETM)

(EQ (GETR TYPE) 'D)) ; An Agent-Verb-Object statement.

(POP (DEDUCE AGENT (A(GETR SUBJ)) VERB (^(GETR VB))

OBJECT (^(GETR OBJ)))

(EQ (GETR TYPE) 'Q))) ; An Agent-Verb-Object question.

(SVC (POP (EVAL (BUILDQ (FINDORBUILD WHICH + ADJ +) SUBJ ADJ))

(EQ (GETR TYPE) 'D)) ; A Noun-be-Adj statement.

(POP (DEDUCE WHICH (A(GETR SUBJ)) ADJ (A(GETR ADJ)))

(EQ (GETR TYPE) 'Q))) ; A Noun-be-Adj question.

Figure 9. ATN Grammar (continued).

20 American Journal of Computational Linguistics, Volume 8, Number 1, January-March 1982

Stuart C. Shapiro Generalized Augmented Transition Network Grammars

(RESPOND

; Generate the response represented by the semantic node in * .

(JUMP G (EQ (GETR TYPE) 'D)

; The input was a statement represented by *.

(SETR STRING ' (I UNDERSTAND THAT)))

(JUMP G (EQ (GETR TYPE) 'Q)))

; The input was a question answered by *.

Figure 10. ATN Grammar (continued).

phrase I U N D E R S T A N D THAT. Then both arcs
JUMP to state G. We follow the generation process
assuming that the input buffer is now (M12).

In state G (Figure 11), the node representing the
statement to be generated is analyzed to decide what
kind of sentence will be produced. The first arc, for a
passive version of M12, sets the SUBJ register to M11
(the saw), the OBJ register to M4 (Lucy), and the
PREP register to the word BY. (Note the use of
GETA, defined in Section 3.3.) The second arc, for
an active version of M12, sets SUBJ to M4, OBJ to
M l l , and leaves PREP empty. It also makes sure VC
is set to ACT, since active voice is the default if VC is
empty. The third arc is for generating sentences for
nodes such as M15. In that case it sets SUBJ to M4,
OBJ to M14 (the property SWEET), VC to ACT, and
leaves PREP empty. All three arcs then JUMP to
state GS.

The C A L L arc at state GS (Figure 12) sets the
NUMBR register to SING or PL to determine whether
the subject and verb of the sentence will be singular or
plural, respectively. It does this by CALLing the net-
work beginning at state NUMBR, sending it the con-
tents of the SUBJ register, and placing the form re-
turned by the lower network into the NUMBR regis-
ter. Let us assume we are generating an active version
of M12. In that case when state NUMBR (Figure 12)
is reached, the input buffer will be (M4), and when

the parser returns to the C A L L arc the input buffer
will again be (M12).

At state NUMBR, the semantic network attached
to the node in the * register is examined to determine
if it represents a (singular) individual or a (plural)
class of individuals. The first arc decides on PL if the
node has a SUB-, SUP-, or CLASS- are emanating
from it. These arcs are the converses of SUB, SUP,
and CLASS arcs, respectively. The first would occur
if the node represented the subset of some class. The
second would occur if the node represented the super-
set of some class. The third would occur if the node
represented a class with at least one member. In our
example, the only semantic node that would be recog-
nized by this arc as representing a class would be M9.
The second arc from state NUMBR decides on SING
if none of the three mentioned arcs emanate from the
node in *, and in our case this is the successful arc.
The decision is made by placing SING or PL in the
NUMBR register, and transferring TO state NUMBR1.
There the input buffer is empty and the contents of
NUMBR is popped to the C A L L arc in the state GS
as discussed above. The last thing the C A L L arc in
state GS does is set the D O N E register to the node in
• This register is used to remember the node being
expressed in the main clause of the sentence so that it
is not also used to form a subordinate clause or de-
scription. For example, we would not want to gener-
ate "Lucy, who saw a saw, saw a saw." This is used

(G ; Generate a sentence to express the semantic node in * .

(JUMP GS (AND (GETA OBJECT) (OVERLAP (GETR VC) 'PASS))

; A passive sentence is "OBJECT VERB by AGENT".

(SETR SUBJ (GETA OBJECT)) (SETR OBJ (GETA AGENT))

(SETR PREP 'BY))

(JUMP GS (AND (GETA AGENT) (DISJOINT (GETR VC) 'PASS))

; An active sentence is "AGENT VERB OBJECT".

(SETR SUBJ (GETA AGENT)) (SETR OBJ (GETA OBJECT))

(SETR VC 'ACT))

(JUMP GS (GETA WHICH) (SETR SUBJ (GETA WHICH))

; A WHICH-ADJ sentence is "WHICH be ADJ".

(SETR OBJ (GETA ADJ)) (SETR VC 'ACT)))

Figure 1 h ATN Grammar (continued).

American Journal of Computat ional Linguistics, Volume 8, Number 1, January-March 1982 21

Stuart C. Shapiro Generalized Augmented Transition Ne twork Grammars

effectively in the response to statement 3 to prevent
the response from being "I U N D E R S T A N D T H A T
SWEET Y O U N G L U C Y IS SWEET". We will see
where D O N E is used in the A T N network shortly.
The parser then JUMPs to state GS1, where NP is
CALLed with input buffer (M4), D O N E set to M12,
and N U M B R set to SING.

State NP (Figure 13) is the beginning of a network
that generates a noun phrase to describe the concept
represented by the semantic node in the * register (in
this case, M4). The first arc just uses the node at the
end of the LEX arc if one exists, as it does for nodes
M1, M2, etc. WRDIZE is a LISP function that does

morphological synthesis for nouns. Its first argument
must be SING or PL, and its second argument must be
a non-ambiguous lexeme in the lexicon. Nouns whose
singular or plural forms are irregular must have them
explicitly noted in the lexical feature list. The regular
rule is to use the ROOT form as the singular, and to
pluralize according to rules built into WRDIZE that
operate on the ROOT form. For example, the singu-
lar of SAW1 is its ROOT, SAW, and its plural is
SAWS.

The second arc in the state NP uses a proper name
to describe *, if it has one, and if the proposition that
this name is *'s name is not the point of the main

(GS ; Set the NUMBR register to the number of the subject,

; and the DONE register to the proposition of the main clause.

(CALL NUMBR SUBJ T NUMBR (SETR DONE *) (JUMP GSl)))

(GSI (CALL NP SUBJ T ; Generate a NP to express the subject.

(SENDR DONE) (SENDR NUMBR) REG

(ADDR STRING REG) (JUMP SVB)))

(NUMBR

; The proper number is PL for a class, SING for an individual.

(TO (NUMBRI) (OR (GETA SUB-) (GETA SUP-) (GETA CLASS-))

(SETR NUMBR 'PL))

(TO (NUMBRI) (NOT (OR (GETA SUB-) (GETA SUP-) (GETA CLASS-)))

(SETR NUMBR 'SING)))

(NUMBRI (POP NUMBR T)) ; Return the number.

Figure 12. ATN Grammar (Continued).

(NP ; Generate a NP to express *.

(TO (END) (GETA LEX)

; Just use the word at the end of the LEX arc if present.

(SETR STRING (WRDIZE (GETR NUMBR) (GETA LEX))))

(CALL ADJS (GETA WHICH-) ; If it has a name,

(AND (GETA NAMED-) (DISJOINT (GETA NAMED-) DONE))

(SENDR DONE) REG

(ADDR STRING REG) ; add an adjective string,

(TO NPGA (GETA NAME (GETA NAMED-)))) ; and consider its name.

(CALL ADJS (GETA WHICH-) ; If it has a class,

(AND (GETA MEMBER-) (DISJOINT (GETA MEMBER-) DONE))

(SENDR DONE) REG ; add 'A and an adjective string,

(ADDR STRING 'A REG) ; and consider its class.

(TO NPGA (GETA CLASS (GETA MEMBER-)))))

(NPGA ; Generate a noun phrase for the name or class.

(PUSH NP T (SENDR DONE) (ADDR STRING *) (TO END)))

(END (POP STRING T)) ; Return the string that has been built.

Figure 13. ATN Grammar (continued).

22 American Journal of Computat ional Linguistics, Volume 8, Number 1, January-March 1982

Stuar t C. Shapiro Generalized Augmented Transition Network Grammars

clause. The third arc uses the phrase "a < c l a s s > " if *
is known to be a member of some class, and if that
fact is not the main clause of the sentence. Both arcs
first call ADJS to form an adjective string to be in-
cluded in the noun phrase.

The ne twork star t ing at ADJS (Figure 14) is
C A L L e d to generate a string of adjectives. For this
purpose, it is "pas sed" the set of proper ty assert ion
nodes, and its D O N E register is set. Let us consider
the four cases in which a noun phrase is being generat-
ed to describe M4. In sentences (1) and (2), the input
buf fer at state ADJS is (M5) and D O N E contains
(M12). In sentence (3), the input buffer is (M15 M5)
and D O N E is (M15). In sentence (4), the input buff-
er is (M15 M5) and D O N E contains (M12) . The
C A L L arc in state ADJS calls the NP network to gen-
erate a description of the proper ty at the end of the
ADJ arc f rom the node in * (the first node in the in-
put buffer) as long as the node in * is not also in
D O N E . It adds this descript ion to the register
S T R I N G and loops back T O ADJS, consuming the
node in * f rom the input buffer. We have already
seen how the NP network will generate SWEET for
M14 and Y O U N G for M1. The second arc in state
ADJS consumes the first node in the input buf fer
without generating a description for its property. The
third arc POPs back to the CALLing arc, returning the
constructed adjective string in STRING. If we view
the ATN as a non-determinist ic machine, the result of
the ADJS network is a string of zero or more of the
adject ives that describe the individual of the noun
phrase, but not the adjective, if any, in the predicate
of the higher clause. Viewed deterministically, since
most A T N interpreters try arcs in strict order, the
network will generate a string of all appropr ia te adjec-
tives.

Returning to our main example of sentence (1), the
string Y O U N G is POPped into the R E G register on
the first C A L L arc in state NP, where it is added to
the end of the register S T R I N G (previously empty) .
The parser then jumps TO state NPGA, and, because
of the form in the terminal action, the input buffer is
changed f rom (M4) to (M2). At state NPGA, the
parser PUSHes to state NP where, as we have seen,
L U C Y will be generated and POPped back into the *
register. This is added to STRING, forming (Y O U N G
LUCY) , and the parser goes TO state END, emptying

the input buffer. At END, the contents of STRING,
(Y O U N G L U C Y) is POPped to the register R E G in
the C A L L arc of state GS1 (Figure 12), and added to
the top level of STRING, which is now (I U N D E R -
STAND T H A T Y O U N G L U C Y) . The parser then
JUMPs to state SVB with the input buffer restored to
(M12).

At state SVB (Figure 15), the ne twork beginning at
state PRED is CALLed. At that level the input buffer
is (M12), * contains M12, N U M B R contains SING,
VC contains A C T (PASS in the case of sentence 4),
and VB contains SEE. Notice that if the main propo-
sition node has no VERB arc, BE is placed in VB.
This is the situation in the case of sentence (3), re-
flecting the theory that in copulative sentences BE is
only a dummy verb used to carry tense, mood, and
aspect.

The arcs at state PRED (Figure 15) determine and
place in the T E N S E register the tense of the sentence
being generated. For simplicity in this example, we
only consider simple present, past, and future. This is
one of the most interesting sections of this generat ion
grammar , because it is a g rammar that analyzes
(parses) a piece of the semantic network. The first
C A L L arc of state PRED calls a ne twork that recog-
nizes the temporal structure indicating past tense. The
second C A L L arc calls a ne twork that recognizes the
temporal structure indicating future tense. The third,
TO, arc chooses present tense as the default . The
C A L L arcs pass to the lower network the appropr ia te
semantic temporal nodes. Since past tense is indicated
by the action ending before *NOW, the first arc pas-
ses the node at the end of the E T I M E arc f rom the
proposi t ion node. Since future tense is indicated by
the action starting af ter *NOW, the second arc passes
the node at the end of the STIME arc. In our case,
the tense will be past, so we turn to the PAST sub-
network (Figure 16).

The first are in state PAST transfers TO state PAS-
TEND, which simply POPs the a tom PAST if the con-
tents of * O V E R L A P s the value of *NOW, that is, if
the * register contains the semantic node represent ing
now. If it doesn ' t , the second arc in PRED replaces
the first node in the input buffer by the node(s) repre-
senting times known to be after it, and loops back to
PRED. This sub-ne twork can only succeed, returning

(ADJS

; Generate a string of adjectives, one for each WHICH-ADJ node in *.

(CALL NP (GETA ADJ) (DISJOINT * DONE) (SENDR DONE) *

(ADDR STRING *) (TO ADJS))

(TO (ADJS) T)

(POP STRING T))

Figure 14. ATN Grammar (continued).

American Journal of Computational Linguistics, Vo lume 8, Number 1, January -March 1982 23

Stuart C. Shapiro Generalized Augmented Transition Network Grammars

(SVB (CALL PRED * T

; Generate a verb group. Use "be" if no other verb.

(SENDR NUMBR) (SENDR VC)

(SENDR VB (OR (GETA LEX (GETA VERB)) 'BE))

REG (ADDR STRING REG) (JUMP SUROBJ)))

(SUROBJ (CALL NP OBJ OBJ

; Generate a NP to express the OBJ if there is one.

(SENDR DONE) * (ADDR STRING PREP *) (TO END))

(TO (END) T))

(PRED ; Figure out the proper tense.

(CALL PAST (GETA ETIME) T TENSE (TO GENVB))

; Past tense depends on ending time.

(CALL FUTR (GETA STIME) T TENSE (TO GENVB))

; Future tense depends on starting time.

(TO (GENVB) T (SETR TENSE 'PRES))) ; Present tense is the default.

(GENVB ; Return the verb group.

(POP (VERBIZE (GETR NUMBR) (GETR TENSE) (GETR VC) (GETR VB)) T))

Figure 15. ATN Grammar (continued).

(PAST ; If we can get to *NOW by BEFORE arcs,

(TO (PASTEND) (OVERLAP * *NOW))

(TO (PAST (GETA BEFORE)) T))

(PASTEND (POP 'PAST T))

it is past tense.

(FUTR ; If we can get to *NOW by AFTER arcs,

(TO (FUTREND) (OVERLAP * *NOW))

(TO (FUTR (GETA AFTER)) T))

(FUTREND (POP 'FUTR T))

it is future tense.

Figure 16. ATN Grammar (continued).

PAST, if there is a path of B E F O R E arcs from the
node representing the ending time of the action to
*NOW. If there isn't, the sub-network will eventually
block, causing the C A L L PAST arc in state PRED to
fail. The F U T R sub-network works in a similar fash-
ion. Similar sub-networks can easily be written to
recognize the temporal structure of future perfect
("Lucy will have seen a saw."), which is a path of
B E F O R E arcs followed by a path of A F T E R arcs
from the ending time to now, and the temporal struc-
tures of other tenses.

In our example, the C A L L PAST arc succeeds,
TENSE is set to PAST, and the parser transfers TO
state GENVB (Figure 15), where the appropriate verb
group is generated and POPped to the C A L L arc in
state SVB. The verb group is constructed by VER-
BIZE, which is a LISP function that does morphologi-

cal synthesis on verbs. Its arguments are the number,
tense, voice, and verb to be used.

Back on the C A L L arc in state SVB (Figure 15),
the verb group POPped into the register REG is added
to the STRING, which is now (I U N D E R S T A N D
T H A T Y O U N G L U C Y SAW), and the parser JUMPs
to state SUROBJ. There, the NP sub-network (Figure
13) is C A L L e d to generate a noun phrase for the con-
tents of OBJ (M l l) . Since M l l has neither a L E X
arc nor a name, but does have a class, the third arc is
used, and (A SAW) is generated and POPped. This
noun phrase is added to STRING preceded by the
contents of PRED, which is empty in sentences (1),
(2), and (3), but which contains BY in sentence (4).
The C A L L arc then transfers TO state END, emptying
the input buffer at the top level. The POP arc at state
END POPs the contents of STRING, which is finally
printed by the system, and the interaction is complete.

24 American Journal of Computat ional Linguistics, Volume 8, Number 1, January-March 1982

Stuart C. Shapiro Generalized Augmented Transition Network Grammars

7. Conc lus ions

A generalization of the ATN formalism has been
presented which allows grammars to be writ ten for
generating surface sentences from semantic networks.
The generalization has involved: adding an optional
argument to the TO terminal act; reintroducing the
JUMP terminal act; introducing a TO arc similar to
the JUMP arc; introducing a CALL arc that is a gen-
eralization of the PUSH arc; introducing a G E T A
form; clarifying the management of the input buffer.
The benefits of these few changes are that parsing and
generating grammars may be written in the same fa-
miliar notation, may be interpreted (or compiled) by a
single program, and may use each other in the same
parser-generator network grammar.

A c k n o w l e d g m e n t s

The help provided by the following people with the
ATN parsing and generating interpreters and compiler,
the morphological analyzer and synthesizer, and mov-
ing the software across several LISP dialects is greatly
appreciated: Stan Kwasny, John Lowrance, Darrel
Joy, Don McKay, Chuck Arnold, Ritch Fritzson, Ger-
ard Donlon. Associate editor Michael McCord and
the reviewers provided valuable comments on earlier
drafts of this paper.

References

Bates, M. 1978 The theory and practice of augmented transition
network grammars. In Bole, L., Ed., Natural Language Commu-
nication with Computers. Springer Verlag, Berlin: 191-259.

Burton, R.R. 1976 Semantic grammar: an engineering technique
for constructing natural language understanding systems. BBN
Report No. 3453, Bolt Beranek and Newman, Inc., Cambridge,
MA., December.

Burton, R.R. and Woods, W.A. 1976 A compiling system for
augmented transition networks. Preprints of COLING 76: The
International Conference on Computational Linguistics, Ottawa
(June).

Shapiro, S.C. 1975 Generation as parsing from a network into a
linear string. AJCL Microfiche 33, 45-62.

Shapiro, S.C. 1979 The SNePS semantic network processing
system. In Findler, N.V., Ed., Associative Networks: Representa-
tion and Use of Knowledge by Computers. Academic Press, New
York, 179-203.

Simmons, R.F. 1973 Semantic networks: their computation and
use for understanding English sentences. In Schank, R.C. and
Colby, K.M., Ed., Computer Models of Thought and Language.
W. H. Freeman and Co., San Francisco: 63-113.

Woods, W.A. 1970 Transition network grammars for natural
language analysis. CACM 13, 10 (October) 591-606.

Woods, W.A. 1973 An experimental parsing system for transition
network grammars. In Rustin, R., Ed., Natural Language
Processing. Algorithmics Press, New York: 111-154.

Stuart C. Shapiro is an associate professor in the
Department of Computer Science at the State University
of New York at Buffalo. He received the Ph.D. degree
in computer sciences f r o m the University o f Wisconsin in
1971.

American Journal of Computational Linguistics, Volume 8, Number 1, January-March 1982 25

