
Flex ib le Pars ing i

Philip J. Hayes
George V. Mouradian

C o m p u t e r S c i e n c e D e p a r t m e n t
C a r n e g i e - M e l l o n U n i v e r s i t y

P i t t sburgh , P e n n s y l v a n i a 15213

When people use natural language in natural settings, they often use it ungrammatical-
ly, leaving out or repeating words, breaking o f f and restarting, speaking in fragments, etc.
Their human listeners are usually able to cope with these deviations with little difficulty. If
a computer system is to accept natural language input from its users on a routine basis, it
should be similarly robust. In this paper, we outline a set o f parsing flexibilities that such a
system should provide. We go on to describe FlexP, a bottom-up pattern matching parser
that we have designed and implemented to provide many of these flexibilities for restricted
natural language input to a limited-domain computer system.

1. The Importance of Flexible Parsing

When people use natural language in natural con-
versation, they often do not respect grammatical nice-
ties. Instead of speaking sequences of grammatically
well-formed and complete sentences, people often
leave out or repeat words or phrases, break off what
they are saying and rephrase or replace it, speak in
fragments, or use otherwise incorrect grammar. The
following example conversation involves a number of
these grammatical deviations:

A: I want ... can you send a memo a message
to to Smith

B: Is that John or John Smith or Jim Smith

A: Jim

Instead of being unable or refusing to parse such un-
grammatical utterances, human listeners are generally
unperturbed by them. Neither participant in the above
dialogue, for instance, would have any difficulty.

When computers at tempt to interact with people
using natural language, they face a very similar situa-
tion; the people will still tend to deviate from whatev-
er grammar the computer system is using. The fact
that the input is typed rather than spoken makes little
difference; grammatical deviations seem to be inherent
in spontaneous human use of language whatever the
modality. So, if computers are ever to converse natu-
rally with humans, they must be able to parse their

1 This research was sponsored by the Air Force Office of
Scientific Research under Contract F49620-79-C-0143.

inputs as flexibly and robustly as humans do. While

considerable advances have been made in recent years

in applied natural language processing, few of the sys-

tems that have been constructed have paid sufficient

attention to the kinds of deviation that will inevitably
occur in their input if they are used in a natural envi-

ronment. In many cases, if the user's input does not

conform to the system's grammar, an indication of

incomprehension followed by a request to rephrase
may be the best he can expect. We believe that such
inflexibility in parsing severely limits the practicality of
natural language computer interfaces, and is a major

reason why natural language has yet to find wide ac-
ceptance in such applications as database retrieval or
interactive command languages.

In this paper, we report on a flexible parser, called
FlexP, suitable for use with a restricted natural lan-

guage interface to a limited-domain computer system.

We describe first the kinds of grammatical deviations

we are trying to deal with, then the basic design char-

acteristics of FlexP with justification for them based

on the kinds of problem to be solved, and finally more
details of our parsing system with worked examples of

its operation. These examples, and most of the others
in the paper, represent natural language input to an
electronic mail system that we and others [2] are con-

structing as part of our research on user interfaces.
This system employs FlexP to parse its input.

Copyright 1981 by the Association for Computational Linguistics. Permission to copy without fee all or part of this material is granted
provided that the copies are not made for direct commercial advantage and the Journal reference and this copyright notice are included on
the first page. To copy otherwise, or to republish, requires a fee and/or specific permission.

0 3 6 2 - 6 1 3 X / 8 1 / 0 4 0 2 3 2 - 1 1 5 0 1 . 0 0

232 American Journal of Computational Linguistics, Volume 7, Number 4, October-December 1981

Philip J. Hayes and George V. Mouradian Flexible Parsing

2. Types of Grammatical Deviation

There are a number of distinct types of grammati -
cal deviation, and not all types are found in all types
of communicat ion situation. In this section, we first
define the restricted type of communicat ion situation
that we will be concerned with, that of a l imited-
domain computer system and its user communicat ing
via a keyboard and display screen. We then present a
t axonomy of grammat ica l deviat ions com m on in this
context, and by implication a set of parsing flexibilities
needed to deal with them.

2.1 C o m m u n i c a t i o n w i th a L imi ted -Domain System

In the remainder of this paper, we will focus on a
restr icted type of communica t ion situation, that be-
tween a l imited-domain system and its user, and on
the parsing flexibilities needed by such a sys tem to
cope with the user 's inevitable grammatical deviations.
Examples of the type of system we have in mind are
da tabase retrieval systems, e lectronic mail systems,
medical diagnosis systems, or any systems operat ing in
a domain so restricted that they can completely under-
stand any relevant input a user might provide. There
are several points to be made.

First, a l though such systems can be expec ted to
parse and unders tand anything re levant to their do-
main, their users cannot be expected to confine them-
selves to relevant input. As Bobrow et. al. [3] note,
users of ten explain their underlying mot ivat ions or
otherwise justify their requests in terms quite irrele-
vant to the domain of the system. The result is that
such systems cannot expect to parse all their inputs
even with the use of flexible parsing techniques.

Secondly, a flexible parser is just part of the con-
versational component of such a system, and cannot
solve all parsing problems by itself. For example, if a
parser can extract two coheren t f ragments f rom an
otherwise incomprehensible input, the decisions about
what the system should do next must be made by an-
other component of the system. A decision on wheth-
er to jump to a conclusion about what the user intend-
ed, to present him with a set of alternative interpreta-
tions, or to profess total confusion, can only be made
with information about the history of the conversation,
beliefs about the user 's goals, and measures of plausi-
bility for any given action by the user. (See [10] for
more discussion of this broader view of graceful inter-
action in man-machine communicat ion.) Suffice it to
say that we assume a flexible parser is just one compo-
nent of a larger system, and that any incomprehen-
sions or ambiguities that it finds are passed on to an-
other componen t of the system with access to higher-
level informat ion, putt ing it in a be t te r posi t ion to
decide what to do next.

Finally, we assume that, as is usual for such sys-
tems, input is typed, ra ther than spoken as is normal in
human conversations. This simplifies low-level proc-
essing t remendous ly because key-s t rokes , unlike
speech wave-forms, are unambiguous. On the other
hand, p rob lems like misspelling arise, and a flexible
parser cannot even assume that segmenta t ion into
words by spaces and carriage returns will always be
correct. However , such input is still one side of a
conversat ion, ra ther than a polished text in the manner
of most writ ten material. As such, it is likely to con-
tain many of the same type of errors normally found
in spoken conversations.

2.2 Misspelling

Misspelling is perhaps the most common class of
error in writ ten language. Accordingly, it is the form
of ungrammatical i ty that has been dealt with the most
by language processing systems. P A R R Y [14], L I F E R
[11], and numerous other systems have tried to correct
misspelt input f rom their users.

An ability to correct spelling implies the existence
of a dict ionary of correct ly spelled words (possibly
augmented by a set of morphological rules to produce
derived forms). An input word not found in or deriva-
ble f rom the dictionary is assumed tO be misspelt and
is compared against each of the dict ionary words and
their derivations. If one of these words comes close
enough to the input word according to some criteria of
lexical matching, it is used in place of the input word.

Spelling correct ion may be a t tempted in or out of
context. For instance, there is only one reasonable
correct ion for " re l aven t " or for " sepe ra te" , but for an
input like " u n " some kind of context is typically nec-
essary as in "I'11 see you un Apri l" or "he was shot
with the stolen un." In effect, context can be used to
reduce the size of the dictionary to be searched for
correct words. This both makes the search more effi-
cient and reduces the possibility of multiple matches of
the input against the dict ionary. The L I F E R [11]
system uses the strong constraints typically provided
by its semant ic g rammar in this way to reduce the
range of possibilities for spelling correction.

A part icularly t roublesome kind of spelling error
results in a valid word different f rom the one intended,
as in " show me on of the messages" . Clearly, such an
error can only be corrected through compar i son
against a contextually restricted subset of a sys tem's
vocabulary.

2.3 Novel W o r d s

Even accomplished users of a language will some-
times encounter words they do not know. Such situa-
tions are a test of their language learning skills. If one
did not know the word " f a w n " , one could at least

American Journal of Computational Linguistics, Volume 7, Number 4, October-December 1981 233

Philip J. Hayes and George V. Mouradian Flexible Parsing

decide it was a colour from "a fawn coloured
sweater". If one just knew the word as referring to a
young deer, one might conclude that it was being used
to mean the colour of a young deer. In general, be-
yond making direct inferences about the role of un-
known words from their immediate context, vocabu-
lary learning can require arbitrary amounts of real-
world knowledge and inference, and this is certainly
beyond the capabilities of present day artificial intelli-
gence techniques (though see Carbonell [5] for work
in this direction).

There is, however, a very common special subclass
of novel words that is well within the capabilities of
present day systems: unknown proper names. Given
an appropriate context, either sentential or discourse,
it is relatively straightforward to classify unknown
words as the names of people, places, etc.. Thus in
"send copies to Moledeski Chiselov" it is reasonable
to conclude from the local context that "Moledeski" is
a first name, "Chiselov" is a surname, and together
they identify a person (the intended recipient of the
copies). Strategies like this were used in the POLITI-
CS [6], FRUMP [8], and PARRY [14] systems.

Since novel words are by definition not in the
known vocabulary, how can a parsing system distin-
guish them from misspellings? In most cases, the nov-
el words will not be close enough to known words to
allow successful correction, as in the above example,
but this is not always true; an unknown first name of
"AI" could easily be corrected to "all". Conversely, it
is not safe to assume that unknown words in contexts
which allow proper names are really proper names as
in: "send copies to al managers". In this example,
"a l" probably should be corrected to "all". In order
to resolve such cases it may be necessary to check
against a list of referents for proper names, if this is
known, or otherwise to consider such factors as
whether the initial letters of the words are capitalized.

As far as we know, no systems yet constructed
have integrated their handling of misspelt words and
unknown proper names to the degree outlined above.
However, several applied natural language processing
systems, including the COOP [12] system, allow sys-
tematic access to a database containing proper names
without the need for inclusion of the words in the
system's parsing vocabulary.

2.4 Erroneous segment ing markers

Written text is segmented into words by spaces and
new lines, and into higher level units by commas, peri-
ods and other punctuation marks. Both classes, espe-
cially the second, may be omitted or inserted specious-
ly. Spoken language is also segmented, but by the
quite different markers of stress, intonation and noise
words and phrases, which we will not consider here.

Incorrect segmentation at the lexical level results in
two or more words being run together, as in
" runtogether" , or a single word being split up into two
or more segments, as in " tog e ther" or
(inconveniently) " to get her" , or combinat ions of
these effects as in "runto geth er". In all cases, it
seems natural to deal with such errors by extending
the spelling correction mechanism to be able to recog-
nize target words as initial segments of unknown
words, and vice-versa. As far as we know, no current
systems deal with incorrect segmentation into words.

The other type of segmenting error, incorrect punc-
tuation, has a much broader impact on parsing metho-
dology. Current parsers typically work one sentence
at a time, and assume that each sentence is terminated
by an explicit end-of-sentence marker. A flexible
parser must be able to deal with the potential absence
of such a marker, and recognize that the sentence is
being terminated implicitly by the start of the next
sentence. In general, a flexible parser should be able
to take advantage of the information provided by
punctuation if it is used correctly, and ignore it if it is
used incorrectly.

Instead of punctuat ion, many interactive systems
use carriage-return to indicate sentence termination.
Missing sentence terminators in this case correspond
to two sentences on one line, or to the typing of a
sentence without the terminating return, while spe-
cious terminators correspond to typing a sentence on
more than one line.

2.5 Broken -Of f and Restar ted U t te rances

In spoken language, it is very common to break off
and restart all or part of an utterance:

I want to - - Could you tell me the name?

Was the man - e r - the official here yesterday?

Usually, such restarts are signalled in some way, by
" u m " or "er" , or more explicitly by "let 's back up" or
some similar phrase.

In written language, such restarts do not normally
occur because they are erased by the writer before the
reader sees them. Interactive computer systems typi-
cally provide facilities for their users to delete the last
character, word, or current line as though it had never
been typed, for the very purpose of allowing such
restarts. Given these signals, the restarts are easy to
detect and interpret. However, users sometimes fail to
make use of these signals. Input not containing a
carriage-return can be spread over several lines by
intermixing of input and output, or a user may simply
fail to type the "kill" character that deletes the input
line he has typed so far, as in:

delete the show me all the messages from Smith

234 American Journal of Computational Linguistics, Volume 7, Number 4, October-December 1981

Philip J. Hayes and George V. Mouradian Flexible Parsing

where the user p robably intended to erase the first two
words and start over. A flexible parser should be able
to deal with such non-signalled restarts.

2.6 Fragmentary and Otherwise Elliptical Input

Naturally occurring language of ten involves utter-
ances that are not complete sentences. Of ten the ap-
propriateness of such f ragmentary ut terances depends
on conversat ional or physical context as in:

A: Do you mean Jim Smith or Fred Smith?

B: Jim

A: Send a message to Smith

B: OK

A: with copies to Jones

A flexible parser must be able to parse such f ragments
given the appropr ia te context.

There is a question here of what such f ragments
should be parsed into. Parsing systems that have dealt
with the p rob lem have typically assumed that such
inputs are ellipses of comple te sentences, and that
their parsing involves finding that complete sentence,
and parsing it. Thus the sentence corresponding to
" J i m " in the example above would be " I mean J im".
Essential ly this view has been taken by the L I F E R
[11] and GUS [3] systems. An alternative view is that
such fragments are not ellipses of more complete sen-
tences, but are themselves complete ut terances given
the context in which they occur, and should be parsed
as such. Cer ta in speech parsers, including H E A R -
SAY-II [9] and H W I M [20], are oriented towards this
more bo t tom-up view of fragments, and this view is
also the basis of our approach to f ragmentary input, as
we will explain more fully below. Carbonell [personal
communicat ion] suggests a third view appropriate for
some fragments: that of an extended case frame. In
the second example above, for instance, A 's "wi th
copies to Jone s " forms a natural part of the case
f rame established by "send a message to Smith". Yet
another approach to f ragment parsing is taken in the
PLANES system [15] which always parses in terms of
major f ragments rather than complete utterances. This
technique relies on there being only one way to com-
bine the f ragments thus obtained, which may be a
reasonable assumption for many limited domain sys-
tems.

Ellipses can also occur without regard to context.
A type that interactive systems are particularly likely
to face is crypticness in which articles and other non-
essential words are omit ted as in " show messages after
June 17" instead of the more complete " show me all
messages dated af ter June 17". Again, there is a
question of whether to consider the cryptic input com-
plete, which would mean modifying the sys tem's gram-
mar, or to consider it elliptical, and comple te it by

using flexible techniques to parse it against the com-
plete version as it exists in the s tandard grammar.

Other common forms of ellipsis are associated with
conjunction as in:

John got up and [John] brushed his teeth.

Mary saw Bill and Bill [saw] Mary.

Fred recognized [the building] and [Fred] walked
towards the building.

I
Since conjunctions can support such a wide range of
ellipsis, it is general ly impract ical to recognize such
u t terances by appropr ia te g rammar extensions. Ef-
forts to deal with conjunct ion have therefore depended
on general mechanisms that supplement the basic pars-
ing strategy, as in the L U N A R system [19], or that
modi fy the g rammar temporar i ly , as in the work of
Kwasny and Sondheimer [13]. We have not a t tempted
to deal with this type of ellipsis in our parsing system,
and will not discuss further the type of flexibility it
requires.

2.7 Inter jected Phrases, Omission, and Subst i tut ion

Sometimes people interject noise or other qualify-
ing phrases into what is otherwise a normal grammati -
cal flow as in:

I want the message dated I th ink June 17

Such interjections can be inserted at almost any point
in an ut terance, and so must be dealt with as they
arise by flexible techniques.

It is relatively s t raightforward for a system of limit-
ed comprehension to screen out and ignore s tandard
noise phrases such as " I th ink" or "as far as I can
tell". More t roublesome are interjections that cannot
be recognized by the system, as might for instance be
the case in

Display [just to refresh my memory] the message
dated June 17.

I want to see the message [as I forgot what it
said] dated June 17.

where the unrecognized interjections are bracketed. A
flexible parser should be able to ignore such interjec-
tions. There is always the chance that the unrecog-
nized part was an important part of what the user was
trying to say, but clearly, the problems that arise f rom
this cannot be handled by a parser.

Omissions of words (or phrases) f rom the input are
closely related to cryptic input as discussed above, and
one way of dealing with cryptic input is to treat it as a
set of omissions. However , in cryptic input only ines-
sential information is left out, while it is conceivable
that one could also omit essential information as in:

Display the message June 17

Here it is unclear whether the speaker means a mes-
sage dated on June 17 or before June 17 or af ter June

American Journal of Computational Linguistics, Volume 7, Number 4, October-December 1981 235

Philip J. Hayes and George V. Mouradian Flexible Parsing

17. (We assume that the system addressed can display
things immediately, or not at all.) If an omission can
be narrowed down in this way, the parser should be
able to generate all the al ternat ives (for contextual
resolution of the ambiguity or for the basis of a ques-
tion to the user). If the omission can be narrowed to
one alternative then the input was merely cryptic.

Besides omitting words and phrases, people some-
times substitute incorrect or unintended ones. Of ten
such subst i tut ions are spelling errors and should be
caught by the spelling correct ion mechanism, but
sometimes they are inadvertent substitutions or uses of
equivalent vocabulary not known to the system. This
type of substitution is just like an omission except that
there is an unrecognized word or phrase in the place
where the omit ted input should have been. For in-
stance, in " the message over June 17", " o v e r " takes
the place of "d a t ed" or "sen t a f te r" or whatever else
is appropriate at that point. If the substi tution is of
vocabula ry that is appropr ia te but unknown to the
system, parsing of substi tuted words can provide the
basis of vocabulary extension. Wilks [17] has devel-
oped techniques for relaxing semant ic constra ints
when they are apparent ly violated by relations implied
by the input, as in the previous example, where " June
17" and " the message" do not fit the normal semantic
constraints of the " o v e r " relation.

2.8 Agreement Failure

It is not uncommon for people to fail to make the
appropr ia te agreement be tween the various parts of a
noun or verb phrase as in :

I wants to send a messages to Jim Smith.

The appropriate action is to ignore the lack of agree-
ment , and Weischedel and Black [16] describe a me-
thod for relaxing the predicates in an A T N grammar
which typically check for such agreements. However ,
it is generally not possible to conclude locally which
value of the marker (number or person) for which the
clash occurs is actually intended.

2.9 Id ioms

Idioms are phrases whose interpretat ion is not what
would be obtained by parsing and interpreting them
construct ively in the normal way. They may also not
adhere to the s tandard syntactic rules. Idioms must
thus be parsed as a whole in a pa t tern matching kind
of mode. Parsers based purely on pat tern matching,
like that of P A R R Y [14], are able to parse idioms
naturally, while others must either add a preprocessing
phase of pat tern matching as in the L U N A R system
[19], or mix specific pa t te rns in with more general
rules, as in the work of Kwasny and Sondheimer [13].
Semantic grammars [4, 11] provide a relatively natural
way of mixing idiomatic and more general patterns.

2.10 User-Supplied Changes

In normal human conversat ion, once something is
said, it cannot be changed, except indirectly by more
words that refer back to the original ones. In interac-
tively typed input, there is always the possibility that a
user may notice an error he has made and go back and
correct it himself, without waiting for the system to
pursue its own, possibly slow and ineffective, methods
of correction. With appropr ia te editing facilities, the
user may do this wi thout erasing intervening words,
and, if the system is processing his input on a word-
by-word basis, may thus alter a word that the system
has already processed. A flexible parser must be able
to take advantage of such user-provided correct ions to
unknown words, and to prefer them over its own cor-
rections. It must also be prepared to change its parse
if the user changes a valid word to another different
but equally valid word.

3. A n A p p r o a c h to Flexible Parsing

Most current parsing systems are unable to cope
with most of the kinds of grammatical deviation out-
lined above. This is because typical parsing systems
a t tempt to apply their grammars to their inputs in a
rigid way, and since deviant input, by definition, does
not conform to the grammar, they are unable to prod-
uce any kind of parse for it at all. At tempts to parse
more flexibly have typically involved parsing strategies
to be used af ter a top-down parse using an A T N [18]
or similar transit ion net has failed. Such efforts in-
elude the ellipsis and pa raphrase mechanisms of LI-
F E R [11], the predicate relaxation techniques of Weis-
chedel and Black [16], and several of the devices for
extending A T N ' s proposed by K w a s n y and Sondheim-
er [13]. An important exception to this observat ion is
the case of parsers , including H E A R S A Y - I I [9] and
H W I M [20], designed for spoken input with its inher-
ent low-level uncertainty. HWIM, in particular, incor-
porates techniques to apply an A T N in a bo t tom-up
style, and thus can capitalize on whatever points of
certainty it can find in the input. F ragmenta ry input,
however, is typically the only type of ungrammatical i ty
dealt with by speech parsers.

In the remainder of this paper, we outline an ap-
proach to parsing that was designed with ungrammat i -
cal input specifically in mind. We have embodied this
approach in a working parser, called FlexP, which can
apply its g rammar to its input flexibly enough to deal
with most of the grammatical deviations discussed in
the previous section. We should emphasize, however ,
that FlexP is designed to be used in the interface to a
res t r ic ted-domain system. As such, it is intended to
work f rom a domain-specif ic semantic grammar, ra ther
than one suitable for broader classes of input. FlexP
thus does not embody a solution for flexible parsing of
natural language in general. In describing FlexP, we

236 American Journal of Computational Linguistics, Volume 7, Number 4, October-December 1981

Philip J. Hayes and George V. Mouradian Flexible Parsing

will note those of its techniques that seem unlikely to
scale up to use with more complex g rammars with
wider coverage.

We have adopted in FlexP an approach to flexible
parsing based not on ATN's , but closer to the pat tern
matching techniques used in the P A R R Y system [14],
possibly the most robust natural language processing
system yet constructed. At the highest level, the de-
sign of FlexP can be characterized by the following
three features:

• pattern matching: This provides a conven-
ient way to recognize idioms, and also
aids in the detect ion of omissions and
substitutions in non-idiomatic phrases.

• bottom-up rather than top-down parsing:

This aids in the parsing of f r agmenta ry
utterances, and in the recognit ion of in-
terjections and restarts.

• parse suspension and continuation: This is
impor tan t for dealing with interject ions,
restarts, and implicit terminations.

In the rest of this section, we examine and justify
these design characteristics in more detail, and in the
process, give an outline of FlexP's parsing algorithm.

3.1 Pat tern M a t c h i n g

We have chosen to use a grammar of linear pat-
terns rather than a transition network because pat tern
matching meshes well with bo t tom-up parsing, because
it facilitates recognition of ut terances with omissions
and substitutions, and because it is ideal for the recog-
nition of idiomatic phrases.

The grammar of the parser is a set of rewrite or
product ion rules; the lef t -hand side of one of these
rules is a linear pat tern of consti tuents (lexical or high-
er level) and the r ight-hand side defines a result con-
stituent. Elements of the pat tern may be labelled op-
tional or allow for repeated matches. We make the
assumption, certainly true for the g rammar we are
presently working with, that the grammar will be se-
mantic rather than syntactic, with pat terns correspond-
ing to idiomatic phrases or to objec t and event de-
scriptions meaningful in some limited domain, rather
than to general syntactic structures.

Linear pa t terns fit well with b o t t o m - u p parsing
because they can be indexed by any of their compo-
nents, and because, once indexed, it is s t raightforward
to conf i rm whether a pa t te rn matches input already
processed in a way consistent with the way the pat tern
was indexed.

Pat terns help with the detect ion of omissions and
substitutions because in either case the relevant pat-
tern can still be indexed by the remaining e lements
that appear correctly in the input, and thus the pat tern

as a whole can be recognized even if some of its ele-
ments are missing or incorrect. In the case of substi-
tutions, such a technique can actually help focus the
spel l ing-correct ion, p roper -name- recogn i t ion , or vo-
cabulary-learning techniques, whichever is appropriate ,
by isolating the substi tuted input and the pat tern con-
stituent that it should have matched. The (of ten high-
ly selective) restrictions on what can match the con-
st i tuent can then be used to reduce the number of
possibilities considered by these relat ively expensive
lexical correct ion techniques.

3.2 B o t t o m - U p Parsing

Our choice of a bo t tom-up strategy is based on our
need to recognize isolated sentence fragments. If an
u t te rance that would normal ly be considered only a
f ragment of a complete sentence is to be recognized
top-down, there are two s traightforward approaches to
take. First, the grammar can be al tered so that the
f ragment is recognized as a complete ut terance in its
own right. This is undesirable because it can cause
enormous expansion of the grammar, and because it
becomes difficult to decide whether a f ragment ap-
pears in isolation or as part of a larger ut terance, espe-
cially if there is the possibil i ty of missing end-of -
sentence markers. The second option is for the parser
to infer f rom the conversat ional context what gram-
matical category (or sequence of sub-categories) the
f ragment might fit into, and then to do a top-down
parse f rom that sub-category. This essentially is the
tactic used in the GUS [3] and L I F E R [11] systems.
This s trategy is clearly bet ter than the first one, but
has two problems: first, of predicting all possible sub-
categories which might come next, and secondly, of
inefficiency if a large number are predicted. Kwasny
and Sondheimer [13] use a combina t ion of the two
strategies by temporar i ly modifying an ATN grammar
to accept f ragment categories as complete ut terances
at the times they are contextually predicted.

Bot tom-up parsing avoids the problem of trying to
predict what grammat ica l sub-ca tegory a sentence
f ragment should be parsed into. The data-dr iven na-
ture of b o t t o m - u p parsing means that any sub-
category can be parsed as an isolated unit in exactly
the same way as a complete sentence, so that no pre-
diction about what sub-ca tegory to expect is neces-
sary. On the other hand, if a given input can be
parsed as more than one sub-ca tegory , a b o t t o m - u p
approach has no good way of distinguishing be tween
them, even if only one would be predicted top-down.

In a system of limited comprehension, f ragmentary
recognition is sometimes necessary because not all of
an input can be recognized, ra ther than because of
intentional ellipsis. Here , it may not be possible to
make predictions, and bo t tom-up parsing has a clear
advantage. As described below, bo t tom-up strategies,

American Journal of Computational Linguistics, Volume 7, Number 4, October-December 1981 237

Philip J. Hayes and George V. Mouradian Flexible Parsing

coupled with suspended parses, are also helpful in
recognizing interjections and restarts.

While well suited to parsing f r agmen ta ry input,
pure bo t tom-up parsing (as, for instance, described by
Chester [7]) can result in the generat ion of an unnec-
essarily large num ber of in termedia te s t ructures that
cannot form part of a completed parse. To reduce
these inefficiencies, FlexP does not require all ele-
ments of a pa t tern to be present before including the
pat tern in the parse structure, and is thus similar to the
lef t -corner algorithm also described by Chester. (For
greater detail see Aho and Ullman [1].) In fact, FlexP
is more restrictive than the lef t -corner algorithm. In
normal lef t- to-r ight processing, if a new word is ac-
counted for by a pat tern that has already been partial-
ly matched by previous input, other pat terns indexed
by the new word are not considered as possible
matches for that word. This is a heuristic designed to
limit the number of partial parses that need to be in-
vest igated, and could lead to missed parses, but in
practical experience, we have not found this to be a
problem. Exact ly how this heuristic operates will be
made clear by the description of the parsing algorithm
in the following section.

3.3 Parse Suspens ion and Continuation

FlexP employs the technique of suspending a parse
with the possibility of later continuation to help with
the recognit ion of interjections, restarts, and implicit
terminations. To make clear what this means, it is
first necessary to sketch the operat ion of the parsing
algorithm as a whole. This will also serve to clarify
the discussion of b o t t o m - u p parsing in the previous
section. Examples of the algorithm in action are given
in Section 4.

FlexP 's parsing algorithm maintains a set of partial
parses, each of which accounts for the input already
processed but not yet accounted for by a completed
parse. The parser a t tempts to incorporate each new
input word into each of the partial parses by one of
the following methods:

1. fitting the word directly into one of the
pat tern slots available for matching at the
r ight-hand edge of the partial parse;

2. finding a chain of non-terminal g rammar
sub-categories that allow the word to fit
indirectly at the r ight -hand edge of the
partial parse;

3. finding a c o m m o n super -ca tegory of the
input word and the sub-ca tegory at the
top of the partial parse, so that the partial
parse can be extended upwards and the
input word will then fit into it by either
method 1 or 2 above;

4. same as 1, but based on flexible pat tern
matching;

5. same as 2, but based on flexible pat tern
matching;

6. same as 3, but based on flexible pat tern
matching.

Flexible pa t te rn matching is explained in Section 4.
As the description of method 3 implies, FlexP does not
build the partial parses any higher than is necessary to
account for the input already processed. In particular,
FlexP does not try to build each partial parse up to a
comple te u t te rance unless a comple te u t te rance is
needed to account for the input seen so far.

Which of the six methods is used to incorporate the
new word into the existing set of partial parses is de-
termined in the following way. The parser first tries
method 1 on each of the partial parses. For each of
them, it may succeed in one or more than one way or
it may fail. If it succeeds on any of them, the ones on
which it fails are discarded, the ones on which it suc-
ceeds are extended in all the ways that are possible,
the extensions become the new set of partial parses for
possible extension by the next input word, and the
other five methods are not tried. If method 1 fails for
all partial parses, the same procedure is repeated for
method 2, and so on. If no partial parse can be ex-
tended by any of the six methods, the entire set of
partial parses is saved as a suspended parse, and the
input is used either to start a complete ly new set of
part ial parses, or to extend a previously suspended
parse. Clearly, the policy of not a t tempting the more
complicated methods if the simpler methods succeed
can result in some parses being missed. However , in
practice, we have found it heuristically adequate for
the small domain-specif ic g rammar we have been us-
ing, and much more efficient than trying all methods
regardless of the outcomes of the others. On the other
hand, if completeness became important , it would be
simple to change FlexP always to try all methods.

There are several possible explanat ions for input
mismatch, i.e. the failure of an input to ex tend the
currently active set of partial parses.

• The input could be an implicit te rmina-
tion, i.e. the start of a new top-level ut-
terance, in which case the previous ut ter-
ance should be assumed complete,

• The input could be a restar t , in which
case the active parse should be abandoned
and a new parse s tar ted f rom that point.

• The input could be the start of an inter-
jection, in which case the active parse
should be temporar i ly suspended, and a
new parse s tar ted for the interjection.

238 American Journal of Computational Linguistics, Volume 7, Number 4, October-December 1981

Philip J. Hayes and George V. Mouradian Flexible Parsing

It is not possible, in general, to distinguish be tween
these cases at the time the mismatch occurs. If the
active parse is not at a possible terminat ion point, then
input mismatch cannot indicate implicit terminat ion,
but may indicate either restart or interjection. It is
necessary to suspend the active parse and wait to see
if it is continued at the next input mismatch. On the
other hand, if the active parse is at a possible termina-
tion point, input mismatch does not rule out interjec-
tion or even restart. In this situation, our algorithm
tenta t ively assumes that there has been an implicit
termination, but suspends the active parse anyway for
subsequent potential continuation.

Finally, it may be worthwhile to note why we im-
plemented FlexP to operate in a breadth-f i rs t mode,
carrying ambiguous alternative parses along in parallel,
rather than investigating them individually depth-first .
This choice follows naturally f rom a decision to parse
each input token immediately after it is typed, which
in turn follows f rom our desire to deal with implicit
te rminat ion of input strings (see Section 2.4). A
breadth-f i rs t approach allows the parser to make best
use of the time during which the user is typing. A
depth-first implementat ion could pos tpone considera-
tion of some alternatives until the input had been ter-
minated by the user. In such cases, unacceptably long
delays might result. Note that the possibility of im-
plicit te rminat ion also provides just if ication for the
strategy of parsing each input word immediately af ter
it is typed. If the input signals an implicit termination,
then the user may well expect the system to respond
immediately to the input thus terminated.

4. FlexP in Operation

This section describes through a series of examples
of gradually increasing complexity how FlexP's parsing
algorithm operates, and how it achieves the flexibilities
discussed earlier. The implementat ion used to run the
examples has been used as the parser for an intelligent
interface to an electronic mail system [2]. The intelli-
gence in this interface is concentra ted in a User Agent
that mediates be tween the user and the underlying
mail sys tem to ensure that the in teract ion goes
smoothly. The Agent does this by, among other
things, checking that the user specifies the operat ions
he wants per formed and their parameters correctly and
unambiguously, conducting a dialogue with the user if
errors or ambiguities arise. The role of FlexP as the
Agent ' s parser is to t ransform the user 's input into the
internal representa t ions employed by the Agent , re-
solving as many of the errors or potential ambiguities
that it can, so as to minimize the amount of interac-
tion between Agent and user necessary to arrive at a
correct and unambiguous version of the input. Usually
the user ' s input is a request for act ion by the mail

system or a description of objects known to the mail
system. Our examples are drawn f rom that context.

4.1 Pre l iminary Example

Suppose the user types

display new messages

Parsing begins as soon as any input is available. The
first word is used as an index into the store of rewrite
rules. Each rule gives a pa t te rn and a structure to be
produced when the pat tern is matched. The compo-
nents of the structure are built f rom the structures or
words that match the elements of the pattern. The
word "d isp lay" indexes the rule:

(pattern: (Display MessageDescription)
result: (StructureType: OperationRequest

Operation: Display
Message: (Fil ler MessageDescription)))

Note that the non-terminals in the pat tern of this and
subsequent rules are specific to the message sys tem
domain, so that. the g rammar being used is semantic
rather than syntactic. Using this rule the parser con-
structs the partial parse tree

(Display MessageDescription)
I
I

di splay

We call the part ial ly ins tant ia ted pa t te rn that labels
the upper node a hypothesis. It represents a possible
interpretat ion for a segment of input.

The next word " n e w " does not directly match the
hypothesis, but since " n e w " is a MsgAdj (an adjective
that can modify a description of a message) , it indexes
the rule:

(pattern: (?Det *MsgAdj MsgHead *MsgCase)
result: (StructureType: MessageDescription

Components :))

Here, " ? " means optional, and " * " means repeatable.
For the sake of clarity, we have omit ted other prefixes
that distinguish be tween terminal and non- te rmina l
pa t tern elements. The result of this rule is a structure
of type MessageDescr ipt ion that fits the current hy-
pothesis, and so extends the parse as follows:

(Display MessageO~scription)

i l
1 (?Det *MsgAdj MsgHead *MsgCase)
f I

I
di splay new

The top- level hypothesis is not yet fully conf i rmed
even though all of its own elements are matched. Its
second element matches another lower level hypothesis
that is only incompletely matched. This lower pa t te rn
becomes the current hypothesis because it predicts what
should come next in the input stream.

American Journal of Computational Linguistics, Volume 7, Number 4, October-December 1981 239

Phil ip J. Hayes and George V. Mouradian Flexible Parsing

The third input matches the ca tegory MsgHead
(head noun of a message description) and so fits the
current hypothesis . This match fills the last non-
optional slot in that pattern. By doing so it makes the
current hypothesis and its parent pa t te rn potentially
complete. When the parser finds a potentially com-
plete phrase whose result is of interest to the Agent
(and the parent phrase in this example is in that cate-
gory), the result is constructed and sent to the Agent. 2
However , since the parser has not seen a terminat ion
signal, this parse is kept active. The input seen so far
may be only a prefix for some longer ut terance such as
"d isp lay new messages about A D A " . In this case
" a b o u t A D A " would be recognized as a match for
MsgCase (a preposit ional phrase that can be part of a
message descr ipt ion) , the parse would be extended,
and a revision of the previous s tructure sent to the
Agent.

4.2 Unrecognized Words

When an input word cannot be found in the dic-
t ionary, FlexP tries to spelling-correct the input word
against a list of possibilities derived f rom the current
hypothesis. For example:

display the new messaegs

produces the partial parse

(DisplaYl MessageD~scription)

I I
l (?Det *MsgAdj MsgHead *MsgCase)
I I I
I I I

display the new

The lower pat tern is the current hypothesis and has
two elements eligible to match the next input. Anoth-
er MsgAdj could be matched. A match for MsgHead
would also fit. Both elements have associated lists of
words that match them or occur in phrases that match
them. The one for MsgHead includes the word
"messages" , and the spelling corrector passes this back
to the main part of the parser as the most likely inter-
pretation.

In some cases the spelling corrector produces sever-
al likely alternatives. The parser handles such ambigu-
ous words using the same mechanisms that accommo-
date phrases with ambiguous in terpreta t ions; that is,
al ternative interpretat ions are carried along until there
is enough input to discriminate those that are plausible
f rom those that are not. The details are given in the
next section.

2 What happens to the result when the Agent receives it is
beyond the scope of this paper. However, we should note that the
Agent is not obliged to act on the result right away. One strategy
is for the Agent to perform immediately "safe" actions, such as the
identification or display of a set of messages, but to wait for explicit
termination of "unsafe" commands, such as those to send or delete
messages.

The user may also correct the input text himself.
These changes are handled in much the same way as
those proposed by the spelling corrector. Of course,
these user-suppl ied changes are given priority, and
parses built using the former version must be modif ied
or discarded.

4.3 Ambiguous Input

In the first example there was only one hypothesis
about the structure of the input. More generally, there
may be several hypotheses that provide compet ing
interpretat ions about what has already been seen and
what will appear next. Until these partial parses are
found to be inconsistent with the actual input, they are
carried along as part of the active parse. Therefore
the active parse is a set of partial parse trees each with
a top- level hypothes is abou t the overall s t ructure of
the input so far and a current hypothesis concerning
the next input. The actual implementa t ion allows
sharing of c o m m o n structure among compet ing hy-
potheses and so is more efficient than this description
suggests.

The input

were there any messages on

could be completed by giving a date (" . . .on Tuesday")
or a topic (" . . .on A D A ") . Consequent ly , the sub-
phrase " any messages on" results in two partial pars-

(?Detl *MsgAdj MsgHead *MsgCase)
I I I

any messages (On Date)
I
I

o n

es :

(?Detl *MsgAdj MsgHead *Msg~ase)
I I I

any messages (On Topic)
I
I

on

If the next input were " T u e s d a y " it would be consist-
ent with the first parse, but not the second. "Since one
of the alternatives does account for the input, those
that do not may be discarded. On the other hand, if
all the partial parses fail to match the input, o ther
action is taken. We consider such situations in the
section on suspended parses.

4.4 Flexible Matching

The only flexibility described so far is that allowed
by the optional elements of pat terns. If omissions can
be anticipated, al lowances may be built into the gram-
mar. In this section we show how other omissions
may be handled and other flexibilities achieved by
allowing additional f reedom in the way an i tem is al-
lowed to match a pat tern . There are two ways in
which the matching criteria may be relaxed, namely

240 Amer ican Journal of Computational Linguistics, Volume 7, Number 4, Oc tober -December 1981

Phil ip J. Hayes and George V. M o u r a d i a n Flexib le Parsing

• relax consistency constraints, e.g. number
agreement

• allow out -of -order matches

Consis tency constraints are predicates that are
a t tached to rules. They assert relationships that must
hold among the items which fill the pattern, e.g. num-
ber agreement. Although such relationships can usual-
ly (it depends on the particular relation) also be ex-
pressed through context- f ree rewrite rules, they can be
expressed much more compact ly through consistency
constraints. The compactness that can be achieved in
this way has of ten been exploited by augment ing
contex t - f ree parsers to deal with consis tency con-
straints on their con tex t - f ree rules. The flexibility
achieved by relaxing such constraints in ATN parsers
[18] has been explored by Weischedel and Black [16]
and by Kwasny and Sondheimer [13]. This technique
would fit smoothly into FlexP but has not actually
been needed or used in our current application.

On the other hand, out -of -order matching is essen-
tial for the parser ' s approach to errors of omission,
t ransposi t ion, and substi tution. Even when strictly
interpreted, several elements of a pat tern may be eligi-
ble to match the next input item. For example, in the
pat tern for a MessageDescript ion

(?Det *MsgAdj MsgHead *MsgCase)

each of the first three elements is initially eligible but
the last is not. On the other hand, once MsgHead has
been matched, only the last element is eligible under
the strict interpretat ion of the pattern.

Consider the input

display new about A D A

The first two words parse normally to produce

(DisplaYl MessageDesc~iption)
I I
I (?Det *MsgAdj MsgHead *MsgCase)
I I
I L

display new

The next word does not fit that hypothesis. The two
eligible elements predict either another message adjec-
tive or a MsgHead. The word " a b o u t " does not match
either of these, nor can the parser construct any path
to them using intermediate hypotheses. Since there
are no other partial parses available to account for this
input, and since normal matching fails, flexible match-
ing is tried.

First, previously skipped elements are compared to
the input. In this example, the element ?Det is consid-
ered but does not match. Next, elements to the right
of the eligible elements are considered. Thus MsgCase
is considered even though the non-opt iona l e lement
MsgHead has not been matched. This succeeds and
allows the partial parse to be extended to

(Display

I
(?Det *MsgAdj

I
I
I

display new

MessageDesc~iption)

MsgHead *Msg~ase)

I
(About topic)

I
about

which correct ly predicts the final input item. 3 As al-
ready described, flexible matching is applied using the
same three methods used for the initial non-f lexible
matching, i.e. first for direct matches with pa t te rn
elements in the current partial parses, then for indirect
matches, and then for matches that involve extending
the partial parses upwards.

Unrecognizable subst i tut ions are also handled by
this flexible matching mechanism. In the phrase

display the new stuff about A D A

the word " s t u f f " is not found in the dict ionary, so
spelling correct ion is tried but does not produce any
plausible alternatives. However , the remaining inputs
can be parsed by simply omitt ing " s tu f f " and using the
flexible matching procedure. Transposi t ions are han-
dled through one appl icat ion of flexible matching if
the first e lement of the t ransposed pair is opt ional ,
two applications if not.

4.5 S u s p e n d e d P a r s e s

Interject ions are more common in spoken than in
wri t ten language but do occur in typed input some-
times. To deal with such input, our design allows for
b locked parses to be suspended ra ther than merely
discarded.

Users, especially novices, may embellish their input
with words and phrases that do not provide essential
in format ion and cannot be specifically anticipated.
Consider two examples:

display please messages dated June 17

display for me messages dated June 17

In the first case, the interjected word "p lease" could
be recognized as a common noise phrase that means
nothing to the Agent except possibly to suggest that
the user is a novice. The second example is more
difficult. Both words of the inter jected phrase can
appear in a number of legitimate and meaningful con-
structions; they cannot be ignored so easily.

3 This technique can, of course, produce parses in which
required pattern elements have no match. Whether these match
failures are important enough to warrant interrogation of the user is
determined in our example system by the intelligent User Agent
which interprets the input. In the case above, failure to match the
MsgHead element would not require further interaction because the
meaning is completely determined by the non-terminal element, but
interaction would be required if, for instance, the topic element
failed to match.

A m e r i c a n Journa l of C o m p u t a t i o n a l L inguist ics , V o l u m e 7, N u m b e r 4, O c t o b e r - D e c e m b e r 1981 241

Philip J. Hayes and George V. Mouradian Flexible Parsing

For the la t ter example , parse suspens ion works as
follows. Af te r the first word, the active parse con ta ins
a single part ial parse:

(Display
l

display

MessageDescription)

The nex t word does no t fit this hypo thes i s , so it is
suspended . In its place, a new active parse is con-

s tructed. It con ta ins several par t ia l parses inc lud ing

(For Person) and (For Timelnterval)
I I
I I

for for

The next word conf i rms the first of these, bu t the

four th word " m e s s a g e s " does not . W h e n the parser
f inds tha t it c a n n o t ex tend the act ive parse, it cons id-

ers the suspended parse. Since "messages" fits, the
act ive and s u s p e n d e d parses are e x c h a n g e d and the
r ema inde r of the inpu t processed normal ly , so tha t the

parser recognizes "d isp lay messages da ted June 17" as
if it did no t con t a in " fo r me" .

5. Conclus ion

W h e n people use l anguage na tu ra l ly , they make
mis takes and e m p l o y e c o n o m i e s of exp res s ion tha t
o f t en resul t in language that is ung rammat i ca l by str ict

s tandards . In par t icular , such grammat ica l dev ia t ions

will inev i t ab ly occur in the inpu t of a c o m p u t e r sys tem
tha t al lows its users to employ na tu ra l language. Such

a c o m p u t e r sys tem must , the re fo re , be p r epa red to
parse its inpu t f lexibly, if it is to avoid f rus t r a t ion for
its users.

In this paper , we have ou t l ined the ma in k inds of
f lexibi l i ty tha t should be p rov ided by a n a t u r a l l an -

guage parser i n t e n d e d for na tu ra l use. We have also
descr ibed a b o t t o m - u p pa t t e rn ma tch ing parser , F lexP,
which exhibi ts m a n y of these flexibil i t ies, and which is
su i t ab le for res t r ic ted na tu r a l l anguage i n p u t to a
l im i t ed -doma in system.

A c k n o w l e d g e m e n t s

The authors t hank the referees for their ex t remely
deta i led c o m m e n t s and Michael M c C o r d and George
H e i d o r n for their helpful ed i t ing suggest ions.

References

1. Aho, A. V. and Ullman, J. D. The Theory of Parsing, Transla-
tion, and Compiling. Prentice-Hall, Englewood Cliffs, 1972.

2. Ball, J. E. and Hayes, P. J. Representation of Task-
Independent Knowledge in a Gracefully Interacting User Inter-
face. Proc. 1st Ann. Mtg. of the AAAI, Stanford University,
August, 1980, pp. 116-120.

3. Bobrow, D. G., Kaplan, R. M., Kay, M., Norman D. A.,
Thompson, H., and Winograd, T. "GUS: a Frame-Driven
Dialogue System." Artif. Intell. 8 (1977), 155-173.

4. Burton, R. R. Semantic Grammar: An Engineering Technique
for Constructing Natural Language Understanding Systems. TR
3453, Bolt Beranek and Newman, Inc., Cambridge, Mass.,
December, 1976.

5. Carbonell, J. G. Towards a Self-Extending Parser. Proc. 17th
Ann. Mtg. of the ACL, La Jolla, Ca., August, 1979, pp. 3-7.

6. Carbonell, J. G. Subjective Understanding: Computer Models of
Belief Systems. Ph.D. Thesis., Yale University, 1979.

7. Chester, D. "A Parsing Algorithm That Extends Phrases."
Am. J. Comp. Ling. 6, 2 (1980), 87-96.

8. DeJong, G. Skimming Stories in Real-Time. Ph.D. Thesis.,
Computer Science Dept., Yale University, 1979.

9. Erman, L. D., and Lesser, V. R. HEARSAY-II: Tutorial Intro-
duction and Retrospective View. Tech. Report, Computer
Science Department, Carnegie-Mellon University, 1978.

10. Hayes, P. J., and Reddy, R. Graceful Interaction in Man-
Machine Communication. Proc. 6th IJCAI, Tokyo, 1979, pp.
372-374.

11. Hendrix, G. G. Human Engineering for Applied Natural Lan-
guage Processing. Proc. 5th IJCAI, MIT, 1977, pp. 183-191.

12. Kaplan, S. J. Cooperative Responses from a Portable Natural
Language Data Base Query System. Ph.D. Thesis, Dept. of
Comp. and Inform. Science, University of Pennsylvania, 1979.

13. Kwasny, S. C. and Sondheimer, N. K. "Relaxation Techniques
for Parsing Grammatically Ill-Formed Input in Natural Lan-
guage Understanding Systems." Am. J. Comp. Ling. 7, 2 (1981),
99-108.

14. Parkison, R. C., Colby, K. M., and Faught, W. S.
"Conversational Language Comprehension Using Integrated
Pattern-Matching and Parsing." Artif. Intell. 9 (1977), 111-
134.

15. Waltz, D. L. "An English Language Question Answering
System for a Large Relational Data Base." Comm. ACM 21, 7
(1978), 526-539.

16. Weischedel, R. M. and Black, J. "Responding Intelligently to
Unparsable Inputs." Am. J. Comp. Ling. 6, 2, (1980), 97-109.

17. Wilks, Y. A. Preference Semantics. In Formal Semantics of
Natural Language, Keenan, Ed., Cambridge Univ. Press, 1975.

18. Woods, W. A. "Transition Network Grammars for Natural
Language Analysis." Comm. ACM 13, 10 (Oct. 1970), 591-
606.

19. Woods, W. A., Kaplan, R. M., and Nash-Webber, B. The
Lunar Sciences Language System: Final Report. TR 2378, Bolt
Beranek and Newman, Inc., Cambridge, Mass., 1972.

20. Woods, W. A., Bates, M., Brown, G., Bruce, B., Cook, C.,
Klovstad, J., Makhoul, J., Nash-Webber, B., Schwartz, R.,
Wolf, J., and Zue, V. Speech Understanding Systems - Final
Technical Report. TR 3438, Bolt Beranek and Newman, Inc.,
Cambridge, Mass., 1976.

Phil ip J. Hayes is a research computer scientist in
the Depar tment o f Computer Science at Carnegie-Mel lon
University. H e received the D .Sc . degree in computer
science f r o m the Ecole poly technique f edera le de Lau-
sanne in 1977.

George V. Mouradian is a research p rogrammer in
the Depar tment o f Computer Science at Carnegie-Mel lon
University. H e received the M . P h . degree in computer
science f r o m Syracuse University in 1978.

242 American Journal of Computational Linguistics, Volume 7, Number 4, October-December 1981

