
A Parsing Algorithm That Extends Phrases
D a n i e l C h e s t e r

D e p a r t m e n t of C o m p u t e r S c i e n c e s
T h e U n i v e r s i t y of T e x a s at A u s t i n

A u s t i n , T e x a s 7 8 7 1 2

It is desirable for a parser to be able to extend a phrase even after it has been
combined into a larger syntactic unit. This paper presents an algorithm that does this
in two ways, one dealing with "right extension" and the other with "left recursion".
A brief comparison with other parsing algorithms shows it to be related to the left -
corner parsing algorithm, but it is more flexible in the order that it permits phrases to
be combined. It has many of the properties of the sentence analyzers of Marcus and
Riesbeck, but is independent of the language theories on which those programs are
based.

1. Introduction

To analyze a sentence of a natural language, a
computer program recognizes the phrases within the
sentence, builds data structures, such as conceptual
representa t ions , for each of them and combines
those s t ructures into one that cor responds to the
entire sentence. The algorithm which recognizes the
phrases and invokes the s t ructure-bui lding proce-
dures is the parsing algorithm implemented by the
program. The parsing algorithm is combined with a
set of procedures for deciding be tween alternative
actions and for building the da tas t ruc tu res . Since it
is organized a round phrases , it is pr imari ly con-
cerned with syntax, while the procedures it calls
deal with non-syntact ic parts of the analysis. When
the program is run, there may be a complex inter-
play be tween the code segments that handle syntax
and those that handle semantics and pragmatics, but
the program organizat ion can still be abs t rac ted into
a (syntactic) parsing algorithm and a set of proce-
dures that are called to augment that algorithm.

By taking the view that the parsing algori thm
recognizes the phrases in a sentence, that is, the
componen t s of its surface s t ructure and how they
can be decomposed, it suffices to specify the syntax
of a natural language, at least approximately, with a
context- f ree phrase structure grammar, the rules of
which serve as phrase decompos i t ion rules. Al-
though linguists have developed more e labora te
grammars for this purpose, most computer programs
for sentence analysis, e.g., Heidorn (1972), Wino-

grad (1972) and Woods (1970), specify the syntax
with such a grammar, or something equivalent, and
then augment that g r ammar with procedures and
data structures to handle the non-contex t - f ree com-
ponents of the language. The not ion of parsing
algorithm is therefore restr icted in this paper to an
algorithm that recognizes phrases in accordance with
a context - f ree phrase structure grammar.

Since the parsing algorithm of a sentence analysis
p rogram determines when data structures get com-
bined, it seems reasonable to expect that the actions
of the parser should reflect the actions on the data
structures. In particular, the combinat ion of phrases
into larger phrases can be expected to coincide with
the combina t ion of cor responding data s t ructures
into larger data structures. This happens naturally
when the computer p rogram is such that it calls the
procedures for combining data s t ructures at the
same time the parsing algorithm indicates that the
corresponding phrases should be combined.

1.1 Other Parsing Algorithms

According to one classification of parsing algor-
i thms (Aho and Ullman 1972), most analysis pro-
grams are based on algorithms that are either " top-
down" , " b o t t o m - u p " or " l e f t - co rne r " , though ac-
cording to a recent study by Gr ishman (1975), the
top-down and bo t tom-up approaches are dominant .
The principle of top-down parsing is that the rules of
the controlling g rammar are used to generate a sen-
tence that matches the one being analyzed. A seri-

Copyright 1980 by the Association for Computational Linguistics. Permission to copy without fee all or part of this material is granted
provided that the copies are not made for direct commercial advantage and the Journal reference and this copyright notice are included
on the first page. To copy otherwise, or to republish, requires a fee and/or specific permission.

0 3 6 2 - 6 1 3 X / 8 0 / 0 2 0 0 8 7 - 1 0 5 0 1 . 0 0

American Journal of Computational Linguistics, Volume 6, Number 2, April-June 1980 87

Daniel Chester A Parsing Algorithm That Extends Phrases

ous problem with this approach, if computed phrases
are supposed to correspond to natural phrases in a
sentence, is that the parser cannot handle left-
branching phrases. But such phrases occur in Eng-
lish, Japanese, Turkish and other natural languages
(Chomsky 1965, Kimball 1973, Lyons 1970).

The principle of bottom-up parsing is that a se-
quence of phrases whose types match the right-hand
side of a grammar rule is reduced to a phrase of the
type on the left-hand side of the rule. None of the
matching is done until all the phrases are present;
this can be ensured by matching the phrase types in
the right-to-left order shown in the grammar rule.
The difficulty with this approach is that the analysis
of the first part of a sentence has no influence on
the analysis of latter parts until the results of the
analyses are finally combined. Efforts to overcome
this difficulty lead naturally to the third approach,
left-corner parsing.

Left-corner parsing, like bottom-up parsing, re-
duces phrases whose types match the right-hand side
of a grammar rule to a phrase of the type on the

- ~ left-hand side of the rule; the difference is that the
'< ~,types listed in the right-hand side of the rule are

/j0"x~matched from left to right for left-corner parsing
~. ~ instead of from right to left. This technique gets its

~ name from the fact that the first phrase found cor-
~ responds to the left-most symbol of the right-hand
b'~side of the grammar rule, and this symbol has been

called the left corner of the rule. (When a grammar
rule is drawn graphically with its left-hand side as
the parent node and the symbols of the right-hand
side as the daughters, forming a triangle, the left-
most symbol is the left corner of the triangle.) Once
the left-corner phrase has been found, the grammar
rule can be used to predict what kind of phrase will
come next. This is how the analysis of the first part
of a sentence can influence the analysis of later
parts.

Most programs based on augmented transition
networks employ a top-down parser to which regis-
ters and structure building routines have been add-
ed, e.g., Kaplan (1972) and Wanner and Maratsos
(1978). It is important to note, however, that the
concept of augmented transition networks is a par-
ticular way to represent linguistic knowledge; it does
not require that the program using the networks
operate in top-down fashion. In an early paper by
Woods (1970), alternative algorithms that can be
used with augmented transition networks are dis-
cussed, including the bottom-up and Earley algor-
ithms.

The procedure-based programs of Winograd
(1972) and Novak (1976) are basically top-down
parsers, too. The NLP program of Heidorn (1972)
employs an augmented phrase structure grammar to

combine phrases in a basically bottom-up fashion.
Likewise, PARRY, the program written by Colby
(Parkison, Colby and Faught 1977), uses a kind of
bottom-up method to drive a computer model of a
paranoid.

1.2 A N e w Parsing Algorithm

This paper presents a parsing algorithm that al-
lows data structures to be combined as soon as pos-
sible. The algorithm permits a structure A to be ~ . ~
combined with a structure B to form a structure C,
and then to enlarge B to form a new structure B , ~ _ . ~
This new structure is to be formed in such a wayA~L~A~ ~
that C is now composed of A and B' instead of A l ~ X O ~ y
and B. The algorithm permits these actions on data
structures because it permits similar actions on
phrases, namely, phrases are combined with other
phrases and afterward are extended to encompass
more words in the sentence being analyzed. This
behavior of combining phrases before all of their
components have been found is called closure by
Kimball (1973). It is desirable because it permits
the corresponding data structures to be combined
and to influence the construction of other data
structures sooner than they otherwise could.

In the next section of this paper the desired be-
havior for combining phrases is discussed in more
detail to show the two kinds of actions that are re-
quired. Then the algorithm itself is explained and
its operation illustrated by examples, with some
details of an experimental implementation being
given, also. Finally, this algorithm is compared to
those used in the sentence analysis programs of
Marcus and Riesbeck, and some concluding remarks
are made.

2. Phrase Extension

A parser that extends phrases combines phrases
before it has found all of their components. When
parsing the sentence

(1) This is the cat that caught the rat
that stole the cheese.

it combines the first
"this is the cat", in
phrase, then extends

four words into the phrase
which "the cat" is a noun

that noun phrase to "the cat
that caught the rat", in which "the rat" is a noun
phrase, and finally extends that noun phrase to "the
rat that stole the cheese." This is apparently how
people parse that sentence, because, as Chomsky
(1965) noted, it is natural to break up the sentence
into the fragments

this is the cat
that caught the rat
that stole the cheese

88 American Journal of Computational Linguistics, Volume 6, Number 2, April-June 1980

Daniel Chester A Parsing Algorithm That Extends Phrases

(by adding intonat ion, pauses or commas) ra ther
than at the boundar ies of the major noun phrases:

this is
the cat that caught
the rat that stole
the cheese

Likewise, when the parser parses the sentence

(2) The rat stole the cheese in the pant ry
by the bread.

it forms the phrase " the rat stole the cheese" , then
extends the noun phrase " the cheese" to " the
cheese in the pan t ry" and extends that phrase to
"the cheese in the pant ry by the bread" .

These two examples show the two kinds of ac-
tions needed by a parser in order to exhibit the be-
havior called closure. Each of these act ions will
now be described in more detail, using the following
grammar, G 1:

S -> NP VP

NP -> Pro

NP -> NPI

NP -> NPI RelPro VP

VP -> V NP

Pro -> this

NPI -> Det N

NPI -> NPI PP

RelPro -> that

V -> is

V -> caught

V -> stole

Det -> the

N -> cat

N -> rat

N -> cheese

N -> pantry

N -> bread

PP -> Prep NP

Prep -> in

Prep -> by

2.1 R i g h t E x t e n s i o n

The first kind of action needed by the parser is
to add more components to a phrase according to a
rule whose r ight-hand side extends the r ight -hand
side of another rule. This is illustrated by sentence
1. With g rammar G1, the phrase "this is the cat"

has the phrase structure

s

NP VP

i t \
Pro V NP

l I I
this is NPI

t \
Det N

l I
the cat

In order to extend the NP phrase " the ca t" , the
substructure

NP
I
NPI

I \
Det N

I I
the cat

must be changed to the substructure

NP

'

NP VP

i \ i ,
Det N that V

I I I
the cat caught

NP
I
NPI

i \
Det N

l I
the rat

The parser , in effect , must ex tend the NP phrase
according to the rule N P - - > NP1 RelPro VP,
whose r ight-hand side extends the r ight-hand side of
the rule NP - - > NP1.

There is a simple way to indicate in a g rammar
when a phrase can be extended in this way: when
two rules have the same le f t -hand side, and the
r ight-hand side of the first rule is an initial segment
of the r ight-hand side of the second rule, a special
mark can be placed af ter that initial segment in the
second rule and then the first rule can be discarded.
The special mark can be interpreted as saying that
the rest of the r ight-hand side of the rule is opt ion-
al. Using * as the special mark, the rule
NP - - > NP1 * RelPro VP can replace the rules
NP - - > NP1 and NP - - > NP1 RelPro VP in the
g rammar G1.

American Journal of Computational Linguistics, Volume 6, Number 2, April-June 1980 89

Daniel Chester A Parsing Algorithm That Extends Phrases

Our algori thm there fore requires a modified
grammar. For the general case, a g rammar is modi-

fied by execution of the following step:

1) For each rule of the fo rm X - - > Y1 ... Yk,

whenever there is another rule of the fo rm

X - - > Y1 ... Yk Y k + l ... Yn, replace this

other rule by X - - > Y1 ... Yk * Y k + l ...

Yn, provided Y k + 1 is not *

When no more rules can be produced by the above

step, the following step is executed:

2) Delete each rule of the fo rm X - - > Y1 ...

Yk for which there is another rule of the

fo rm X - - > Y1 ... Yk Y k + l ... Yn.

The mark * tells the parser to combine the phrases

that correspond to the symbols preceding * as if the

rule ended there. Af ter doing that, the parser tries

to extend the combinat ion by looking for phrases to

correspond to the symbols following *

2.2 Left Recursion

The second kind of action needed by the parser

is to extend a phrase according to a left-recursive
rule. A lef t - recurs ive rule is a rule of the fo rm

X - - > X Y1 ... Yn. The action based on a left-

recursive rule is i l lustrated by sentence 2 above.

The phrase " the rat stole the cheese" has the phrase

structure

s

NP VP

NPI V NP

f \ i i

Det N stole NPI

I I i \

the rat Det N

I I

the cheese

In order to extend the phrase " the cheese" , the sub-

structure

NPI

i \
Det N

I I

the cheese

must be changed to the substructure

NPI

,

NPI PP

l \ i \
Det N Prep

I I I
the cheese in

NP

i
NPI

I \
Det

I
the

N

i
pantry

The parser , in effect, must extend the NP1 phrase
according to the lef t - recurs ive rule NP1 - - > NP1
PP.

In the general case, af ter finding a phrase and
combining it with others, the parser must look for
more phrases to combine with it according to some
lef t-recursive rule in the grammar. Lef t - recurs ive
rules, therefore, play a special role in this algorithm.

It might be thought that lef t-recursive rules are
the only mechanism needed to extend phrases. This
is not t rue because phrases ex tended in this way
have a different p roper ty f rom those extended by
right extension. In part icular , le f t - recurs ive rules
can be applied several t imes to ex tend the same
phrase, which is not always the desired behavior for
a given language phenomenon . For instance, any
n u m b e r of PP phrases can fol low an NP1 phrase
without connect ing words or punctuat ion because of
the lef t-recursive rule NP1 - - > NP1 PP. If, on the
other hand, NP - - > NP RelPro VP were used in-
stead of NP - - > NP1 RelPro VP, any number of
relative clauses (RelPro and VP phrase pairs) could
follow an NP phrase, which is generally ungrammat -
ical in English unless the clauses are separa ted by
commas or connect ive words like " and" and "or" .

3. Detai ls of the Parsing Algor i thm

The parsing a lgor i thm tha t provides for bo th
right extension and left recursion will now be de-
scribed. I t works with structures called phrase sta-
tus e lements to keep t rack of the status of phrases
during the sentence analysis. In this section, af ter
these elements are defined, the algori thm is present -
ed as a set of operat ions to be pe r fo rmed on a list
of phrase status elements. Then the algori thm is
applied to sentences 1 and 2 to show how it works,
and some ref inements that were added in an experi-
menta l implementa t ion are discussed.

90 American Journal of Computational Linguistics, Volume 6, Number 2, April-June 1980

Daniel Chester A Parsing Algorithm That Extends Phrases

3.1 Phrase Sta tus E lements

In order to combine and extend phrases properly,
a pa r s e r must keep t rack of the status of each
phrase; in part icular , it must note what kind of
phrase will be formed, what componen t phrases are
still needed to complete the phrase, and whether the
phrase is a new one or an extension. This informa-
tion can be represented by a phrase status element.
A phrase status e lement is a triple of the fo rm
(Yk ... Yn,X,F) where, for some symbols Y1, ...,
Yk-1, there is a g rammar rule of the fo rm X - - > Y1
... Yk-1 Yk ... Yn, and F is a flag that has one of
the values n, e, or p, which s tand for "new" ,
"extendible" and "progress ing" , respectively. Intui-
tively, this triple means that the phrase in question
is an X phrase and that it will be comple ted when
phrases of types Yk through Yn are found. If F =
n, the phrase will be a new phrase. If F -- e, the
phrase is ready for extension into a longer X phrase,
but none of the extending phrase components have
been found yet. If F = p, however , some of the
extending phrase componen t s have been found al-
ready and the rest must be found to complete the
phrase. The status of being ready for extension has
to be dist inguished f rom the status of having the
extension in progress, because it is during the ready
status that the decision whether to try to extend the
phrase is made.

3.2 The Algorithm

The parsing algori thm for extending phrases is
embodied in a set of operat ions for manipulat ing a
list of phrase status elements, called the element list,
according to a given modified g rammar and a given
sentence to be analyzed. Beginning with an empty
element list, the procedure is applied by performing
the operat ions repeatedly until the list contains only
the element (,S,n), where S is the g rammar ' s start
symbol, and all of the words in the given sentence
have been processed.

The following are the six operat ions which are
applied to the element list:

1. Replace an e lement of the fo rm (* Y1 ...
Yn,X,F) with the pair (Y1 ... Yn,X,e) (,X,F).

2. Replace an e lement of the fo rm (,X,p) with
the element (Y1 ... Yn,X,e) if there is a left-
recursive rule of the form X - - > X Y1 ... Yn
in the grammar; if there is no such rule, de-
lete the element.

3. Replace adjacent phrase status elements of the
form (,X,n) (X Y1 ... Yn,Z,F) with the pair
(,X,p) (Y1 ... Yn,Z,F ') . If the flag F = e,
then F ' = p; otherwise, F ' -- F.

4. Replace an element of the form (,X,n) with
the pair (,X,p) (Y1 ... Yn,Z,n) if there is a
g rammar rule of the fo rm Z - - > X Y1 ... Yn
in the grammar , provided the rule is not left-
recursive.

5. Ge t the next word W f rom the sentence and
add the element (,W,n) to the front (left) end
of the element list.

6. Delete an element of the form (Y1 ... Yn,X,e) .

These operat ions are applied one at a time, in arbi-
t rary order. If more than one opera t ion can cause a
change in the e lement list at any given time, then
one of them is selected for actual application. The
manner of select ion is not specif ied here because
that is a function of the data structures and proce-
dures that would have to be added to incorporate
the algorithm into a complete sentence analysis pro-
gram.

These opera t ions have a fairly simple purpose:
the major goal is to find new phrases , which are
represented by phrase status elements of the fo rm
(,X,n). Initially, by applicat ion of operat ion 5, a
word of the sentence to be analyzed is made into a
new phrase. When a new phrase is found, whether
by opera t ion 5 or some other operat ion, there are
two ways that can be used to find a larger phrase.
One way is to a t tempt to find a new phrase that
begins with the jus t - found phrase; this is the pur-
pose of operat ion 4. Once an X phrase is found,
the e lement (,X,n) is replaced by (,X,p) (Y1 ...
Yn,Z,n) for some g rammar rule of the fo rm
Z - - > X Y1 ... Yn and some Z different f rom X.
The e lement (Y1 ... Yn,Z,n) represents an a t tempt
to find a Z phrase, of which the first component ,
the X phrase, has been found.

The second way that can be used to make a larg-
er phrase is to make the X phrase a componen t of a
phrase that has already been started. In opera t ion
3, the e lement (,X,n) represents a new X phrase
that can be used in this way. An immediately pre-
ceding phrase has been made part of some unfin-
ished Z phrase, represented by the element (X Y1 ...
Yn,Z,F). Since the symbol X is the first symbol in
the first part of this element, the Z phrase can con-
tain an X phrase at this point in the sentence, so the
X phrase is put in the Z phrase, and the result of
this action is indicated by the new elements (,X,p)
(Y1 ... Yn,Z,F ') .

In bo th operat ions 3 and 4, the element (,X,n)
itself is replaced by (,X,p). The flag value p indi-
cates, in this case, that the X phrase has a l ready
been added to some larger phrase. Opera t ion 2 tries
to extend the X phrase by creat ing the e lement
(Y1 ... Yn,X,e) for some lef t - recurs ive g rammar
rule X - - > X Y1 ... Yn, indicating that the X

American Journal of Computational Linguistics, Volume 6, Number 2, April-June 1980 91

Daniel Chester A Parsing Algorithm That Extends Phrases

phrase can be extended if it is followed by phrases
of types Y1 Yn, in that order. If a Y1 phrase
comes next in the sentence, the extension begins by
an application of operation 5, which changes the
flag from e to p to indicate that the extension is in
progress. If there is no Y1 phrase, however, the X
phrase cannot be extended, so the element is deleted

.by operation 6, allowing the parser to go on to the
next phrase.

In the event a phrase status element has the form
(* Y1 ... Yn,X,F), the X phrase can be considered
completed. It can also be extended, however, if it is
followed by phrases of types Y1 through Yn. Oper-
ation 1 creates the new element (,X,F) to indicate
the completion of the X phrase, and the new ele-
ment (Y1 ... Yn,X,e) to indicate its possible exten-
sion. Again, if extension turns out not to be possi-
ble, the element can be deleted by operation 6 so
that parsing can continue.

3.3 Examples

As examples of how the algorithm works, consid-
er how it applies to sentences 1 and 2. Grammar
G1 must be modified first, but this consists only of
substituting the rule NP --> NP1 * RelPro VP for
the two NP rules in the original grammar, as de-
scribed earlier. Starting with an empty element list,
the sentence "this is the cat that caught the rat that
stole the cheese" is processed as shown in Table 1.
By operation 5, the word "this" is removed from the
sentence and the element (,this,n) is added to the
list. By operation 4, this element is replaced by
(,this,p) (,Pro,n), which is shortened to (,Pro,n) by
operation 2. By two applications of operations 4
and 2, the element list becomes (,NP,n), then
(VP,S,n). The element (,is,n) is now added to the
front of the list. This element is changed, by opera-
tions 4 and 2 again, to (,V,n) and then to
(NP,VP,n). The words "the" and "cat" are proc-
essed similarly to produce the element list (,N,n)
(N,NPI,n) (NP,VP,n) (VP,S,n) at step 20.

At this point, operation 3 is applied to combine
(,N,n) with (N,NPI,n), yielding (,N,p) (,NPI,n) in
their place. By operation 2, element (,N,p) is re-
moved. The first element of the list is now
(,NPI,n) , which by operation 4 is changed to
(,NPI,p) (* RelPro VP,NP,n). When operation 2 is
applied this time, because there is a left-recursive
grammar rule for NP1 phrases, element (,NPI,p) is
replaced by (PP,NPI,e). Operation 1 is applied to
the next element to eliminate the special mark * that
appears in it, changing the element list to
(PP,NPI,e) (RelPro VP,NP,e) (,NP,n) (NP,VP,n)
(VP,S,n) at step 25.

At this point, the element (,NP,n) represents the
NP phrase "the cat". Operation 3 is applied to it

and the next element, and then operation 2 to the
result, reducing those two elements to (,VP,n). By
operations 3 and 2 again, this element is combined
with (VP,S,n) to produce (,S,n), which at this point
represents the phrase "this is the cat." If this
phrase were the whole sentence, operation 6 could
be applied, reducing the element list to (,S,n) and
the sentence would be successfully parsed. There
are more words in the sentence, however, so other
operations are tried.

The next word, " that" , is processed by opera-
tions 5, 4 and 2 to add (,RelPro,n) to the front of
the list. Since the grammar does not allow a PP
phrase to begin with the word "that", operation 6 is
applied to eliminate the element (PP,NPI,e), which
represents the possibility of an extension of an NP1
phrase by a PP phrase. The next element, (RelPro
VP,NP,e), represents the possibility of an extension
of an NP phrase when it is followed by a RelPro
phrase, however, so operations 3 and 2 are applied,
changing the element list to (VP,NP,p) (,S,n). Note
that the flag value e has changed to p; this means
that a VP phrase m u s t be found now to complete
the NP phrase extension or this sequence of opera-
tions will fail.

By. continuing in this fashion, the sentence is
parsed. Since no new details of how the algorithm
works would be illustrated by continuing the narra-
tion, the continuation is omitted.

The sentence "the rat stole the cheese in the
pantry by the bread" is parsed in a similar fashion.
The only detail that is significantly different from
the previous sentence is that after the element
(RelPro VP,NP,e) is deleted by operation 6, instead
of (PP,NPI,e), a new situation occurs, in which a
phrase can attach to one of several phrases waiting
to be extended. The situation occurs after the sen-
tence corresponding to the phrase "the rat stole the
cheese" is represented by the element (,S,n) when it
first appears on the element list. When the PP
phrase "in the pantry" is found, the element
(PP,NPI,e) changes to (,NPI,p), indicating that the
NP1 phrase "the cheese" has been extended to "the
cheese in the pantry". By operation 2, the element
(,NPI,p) is changed to (PP,NPI,e) so that the NP1
phrase can be extended again. But "the pantry" is
an NP1 phrase also, which means that an element of
the form (PP,NPI,e) has been created to extend it

as well. Thus, when the next PP phrase, "by the
bread" is found, it can attach to either of the earlier
NP1 phrases. The parser does not decide which
attachment to make, as that depends on non-syntax
related properties of the data structures that would
be associated with the phrases in a complete sen-
tence analyzer. In this example the PP phrase can
be attached to the NP1 phrase "the cheese", which

92 American Journal of Computational Linguistics, Volume 6, Number 2, April-June 1980

Daniel Chester A Parsing Algorithm That Extends Phrases

STEP

I

2

3

4

5

6

7

8

9

I0

11

12

13

14

15

16

17

18

19

2O

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

ELEMENT LIST OPERATION

(,the,n)

(,the,p) (,Det,n)

(,Det,n)

(,Det,p) (N,NPI,n)

(N,NPI,n)

(,cat,n) (N,NPI.,n)

(,cat,p) (,N,n) (N,NPI,n)

(,N,n) (N,NPI,n)

(,N,p) (,NPl,n)

(,NPl,n)

(,NPl,p) (* RelPro VP,NP,n)

(PP,NPI,e) (* RelPro VP,NP,n)

(PP,NPI,e) (RelPro VP,NP,e) (,NP,n) (NP,VP,n)

(PP,NPl,e) (RelPro VP,NP,e) (,NP,p) (,VP,n)

(,this,n) 5

(,this,p) (,Pro,n) 4

(,Pro,n) 2

(,Pro,p) (,NP,n) 4

(,NP,n) 2

(,NP,p) (VP, S,n) 4

(VP,S,n) 2

(,is,n) (VP,S,n) 5

(,is,p) (,V,n) (VP,S,n) 4

(,V,n) (VP, S,n) 2

(,V,p) (NP,VP,n) (VP,S,n) 4

(NP,VP, n) (VP, S,n) 2

(NP,VP,n) (VP,S,n) 4

(NP,VP,n) (VP,S,n) 2

(NP,VP,n) (VP,S,n) 4

(NP,VP,n) (VP,S,n) 4

(NP,VP,n) (VP,S,n) 2

(NP,VP,n) (VP,S,n) 5

(NP,VP,n) (VP,S,n) 4

(NP,VP,n) (VP,S,n) 2

(NP,VP,n) (VP,S,n) 3

(NP,VP,n) (VP,S,n) 2

(NP,VP,n) (VP,S,n) 4

(NP,VP,n) (VP,S,n) 2

(VP,S,n) I

(VP,S,n) 3

(PP,NPI,e) (RelPro VP,NP,e) (,VP,n) (VP,S,n)

(PP,NPI,e) (RelPro VP,NP,e) (,VP,p) (,S,n)

(PP,NPl,e) (RelPro VP,NP,e) (,S,n)

(,that,n) (PP,NPI,e) (RelPro VP,NP,e) (,S,n)

(,that,p) (,RelPro,n) (PP,NPI,.e) (RelPro VP,NP,e) (,S,n)

(,RelPro,n) (PP,NPI,e) (RelPro VP,NP,e) (,S,n)

(,RelPro,n) (RelPro VP,NP,e) (,S,n)

(,RelPro,p) (VP,NP,p) (,S,n)

(VP, NP,p)(,S,n)

etc.

2

3

2

5

4

2

6

3

2

Table 1. Trace of parsing algorithm on sentence 1.

means that the intervening e lement (PP ,NPI , e) at-
tempt ing to expand the NP1 phrase " the pan t ry"
has to be deleted.

3.4 Const ra in ts on the Opera t ions

The algorithms for top-down, bottom-up and
lef t -corner parsing are usually presented so that all
operat ions are pe r fo rmed on the top of a stack that
corresponds to our e lement list. We have not con-
strained our algorithm in this way because to do so
would prevent the desired closure behavior. In par-

ticular, in the sentence "this is the cat that caught
the rat that stole the cheese," the NP phrase "the
cat" would not combine into the phrase "this is the
cat" until the rest of the sentence was analyzed if
such a constraint were enforced. This is because
operat ion 1 would create an element for extending
the NP phrase that would have to be disposed of
first be fore the e lement (,NP,n) , c rea ted also by
that opera t ion , could combine with anything else.
Thus, constraining the operat ions to apply only to
the f ront end of the e lement list would nullify the
a lgori thm's purpose.

American Journal of Computational Linguistics, Volume 6, Number 2, April-June 1980 93 "

Daniel Chester A Parsing Algorithm That Extends Phrases

Our algorithm can be viewed as a modification of
the lef t-corner parser. In fact, if a grammar is not

modified before use with our algorithm, and if oper-
ation 4 is not restricted to non-left-recursive rules,
and if operat ion 2 is modified to delete all elements
of the form (,X,p), then our algorithm would actual-
ly be a lef t-corner parser.

3.5 Experimental Program

The algorithm has been presented here in a sim-
ple form to make its exposition easier and its oper-
ating principles clearer. When it was tried out in an
experimental program, several techniques were used
to make it work more efficiently. For example,
operations 1 and 2 were combined with the other
operations so that they were, in effect , applied as
soon as possible. Operat ion 3 was also applied as
soon as possible. The other operations cannot be
given a definite order for their application; that
must be determined by the non-syntact ic procedures
that are added to the parser.

Another technique increased efficiency by apply-
ing operat ion 4 only when the result is consistent
with the grammar. Suppose grammar G1 contained
the rule Det - -> that as well as the rule RelPro - ->
that. When the word " tha t" in the sentence "this is
the cat that caught the rat that stole the cheese" is
processed, the e lement list contains the triple
(, that ,n) (PP ,NPI , e) (RelPro VP,NP,e) at one
point. The grammar permits operat ion 4 to be ap-
plied to (, that ,n) to produce ei ther (,Det ,n) or
(,RelPro,n), but only the latter can lead to a suc-
cessful parse because the grammar does not allow

k 0 ~] o r either a PP phrase or a RelPro phrase to begin
V ~ , ~ ' x with a Det phrase. The technique for guiding oper-

.x' f f~\a t ion 4 so that it produces only useful elements con-
~ < ~ \ s i s t s of computing beforehand all the phrase types
\ < h ~ ~that can be-gin each phrase. T h e n - t h e - f o l l o w i n g
"~,,k v "operation is used ~n p~ace ~ opera t ion 4:

4'a. If an element of the form (,X,n) is at the
(right) end of the list, replace it with the
pair (,X,p) (Y1 ... Yn,Z,n) when there is a
grammar rule of the form Z - -> X Y1 ... Yn
in the grammar, provided the rule is not
left-recursive.

4'b. If an element of the form (,X,n) is followed
by an element of the form (U1 ... Um,V,F) ,
replace (,X,n) with the pair (,X,p) (Y1 ...
Yn,Z,n) when there is a grammar rule of the
form Z - -> X Y1 ... Yn in the grammar,
provided the rule is not left-recursive, and a
Z phrase can begin a U1 phrase or Z = U1.

It is sufficient to consider only the first e lement
after an element of the form (,X,n) because if oper-
ation 4 'b cannot be applied, either that first element

can be deleted by operat ion 6 or the parse is going
to fail anyway. Thus, in our example above, opera-
tion 6 can be used to delete the element (PP ,NPI ,e)
so that opera t ion 4 'b can be applied to (, that ,n)
(RelPro VP,NP,e) . This technique is essentially the
same as the selective filter techniqueo described by
Griffiths and Petrick (1965) for lef t -corner parsing
~ g o r i t h m , in their terminology).

Another technique increased eff ic iency fur ther
by postponing the decision about which of several
grammar rules to apply via operations 3 or 4' for as
long as possible. The grammar rules were stored in
Lisp list s tructures so that rules having the same
left-hand side and a common initial segment in their
right-hand side shared a common list structure, for
example, if the grammar consists of the rules

X->YZU

X->YZV

W->YZU

these rules are stored as the list structure

((x (z (u)

(v)))
(w (z (u))))

which is stored on the proper ty list for Y. The com-
mon initial segment shared by the first two rules is
represented by the same path to the atom Z in the
list structure. The component (X (Z (U) (V))) in
this list structure means that a Y phrase can be fol-
lowed by a Z phrase and then either a U phrase or a
V phrase to make an X phrase. When a Y phrase is
found, and it is decided to try to find an X phrase,
this component makes it possible to look for a Z
phrase, but it postpones the decision as to whether
the Z phrase should be followed by a U phrase or a
V phrase until after the Z phrase has been found.
The lef t -hand sides (X and W) of the rules are
listed first to facilitate operat ion 4'b. This techni-
que is similar to a technique used by Irons (1961)
and described by Griffi ths and Petrick (1965).

4. Related Work

There are two sentence analysis programs with
parsing algorithms that resemble ours in many ways,
though theirs have been described in terms that are
intimately tied to the particular semantic and syn-
tactic representat ions used by those programs. The
programs are PARSIFAL, by Marcus (1976,
1978a,b) and the analyser of Riesbeck (1975a,b) .

94 American Journal of Computational Linguistics, Volume 6, Number 2, April-June 1980

Daniel Chester A Parsing Algorithm That Extends Phrases

4.1 PARSIFAL (Marcus)

The basic s t ructural unit of P A R S I F A L is the
node, which cor responds approx imate ly to our
phrase status element. Nodes are kept in two data
structures, a pushdown stack called the active node
stack, and a th ree-p lace constituent buffer. (The
buffer actually has five places in it, but the proce-
dures that use it work with only three places at a
t ime.) The g rammar rules are encoded into rule
packets. Since the organizat ion of these packets has
to do with the eff icient select ion of appropr ia te
g rammar rules and the invocation of procedures for
adding structural details to nodes, the procedures we
want to ignore while looking at the parsing algor-
i thm of PARSIFAL, we will ignore the rule packets
in this comparison. The essential fact about rule
packets is that they examine only the top node of
the stack, the S or NP node nearest the top of the
stack, and up to three nodes in the buffer.

The basic operat ions that can be pe r fo rmed on
these structures inc lude attaching the first node in
the buffer to the top node of the stack, which corre-
sponds to operat ion 3 in our algorithm, creating a
new node that holds one or more of the nodes in the
buffer , which corresponds to operat ion 4, and reac-
tivating a node (pushing it onto the stack) that has
already been a t tached to another node so that more
nodes can be a t tached to it, which corresponds to
the phrase extending operat ions 1,2, and 6. PARSI-
F A L has one opera t ion that is not similar to the
opera t ions of our algori thm, which is that it can
create nodes for dummy NP phrases called traces.
These nodes are intended to provide a way to ac-
count for phenomena that would otherwise require
t rans format iona l g r am m ar rules to explain them.
Our algorithm does not allow such an operat ion; if
such an opera t ion should p rove to be necessary,
however, it would not be hard to add, or its effect
could be produced by the procedures called.

One of the benefi ts of having a buffer in PARSI-
F A L is that the buffer allows for a kind of look-
ahead based on phrases instead of just words. Thus
the decision about what g rammar rule to apply to
the first node in the buf fer can be based on the
phrases that follow a certain point in the sentence
under analysis instead of just the words. The system
can look f u r t h e r ahead this way and still keep a
strict limit on the amount of look-ahead available.
We can get a similar effect with our algorithm if we
restrict the application of its operat ions to the first
four or five phrase status elements in the element
list. In a sense, the first five elements of the list
correspond to the buffer in P A R S I F A L and the rest
of the list corresponds to the stack. In fact, in a
recent modif icat ion of P A R S I F A L (Shipman and
Marcus 1979) the buffer and stack were combined
into a single data structure closely resembling our
e lement list.

4.2 Riesbeck's Analyzer

The basic structural unit of Riesbeck 's analyzer
is the Conceptual Dependency structure as developed
by Schank (1973,1975) . A Conceptual Dependency
structure is intended to represent the meaning of a
word, phrase or sentence. The details of what a
Conceptual Dependency structure is will not be dis-
cussed here.

The moni tor in Riesbeck 's analyzer has no list or
stack on which operat ions are performed; instead, it
has some global variables that serve the same pur-
pose. Only a few of these var iables concern us
here. The variable W O R D holds the current word
being looked at and can be thought of as the front
e lement of our e lement list. The variable SENSE
holds the sense of W O R D or of the noun phrase of
which W O R D is the head. It is like the second ele-
ment in our list. The equivalent to the third ele-
ment in our list is the variable REQUESTS, which
holds a list of pa t te rn-ac t ion rules. There are some
other variables (such as A R T - I N T) that on occasion
serve as the fourth e lement of the list.

Unlike the control lers in many other analysis
programs, Riesbeck 's moni tor is not driven explicitly
by a grammar. Instead, the syntact ic informat ion it
uses is buried in the pa t te rn-ac t ion rules a t tached to
each word and word sense within his p rogram's lexi-
con. Take, for example, the common sense of the
verb "give": one pa t te rn-ac t ion rule says that if the
verb is fol lowed by a noun phrase denoting a per-
son, the sense of that phrase is put in the recipient
case slot of the verb. Another pa t tern-act ion rule
says that if a following noun phrase denotes an ob-
ject, the sense of the phrase is put in the object case
slot of the verb. These pa t te rn-ac t ion rules corre-
spond to having g rammar rules of the form VP - - >
give, and VP - - > VP NP, where the pa t te rn-ac t ion
rules describe two different ways that a VP phrase
and an NP phrase can combine into a VP phrase.
There is a third pa t te rn-ac t ion rule that changes the
current sense of the word " to" in case it is encoun-
tered later in the sentence, but that is one of the
actions that occurs below the syntactic level.

Noun phrases are t rea ted by Riesbeck ' s moni tor
in a special way. Unmodif ied nouns are considered
to be noun phrases directly, but phrases beginning
with an article or adjective are handled by a special
subroutine that collects the following adjectives and
nouns before building the corresponding Conceptual
Dependency structure. Once the whole noun phrase
is found, the moni tor examines the R E Q U E S T S list
to see if there are any pa t te rn-ac t ion rules that can
use the noun phrase. If so, the associated action is
taken and the rule is marked so that it will not be
used twice. The moni tor is s tar ted with a pa t te rn-
action rule on the R E Q U E S T S list that puts a be-
ginning noun phrase in the subject case slot of
whatever verb that follows. (There are provisions

American Journal of Computational Linguistics, Volume 6, Number 2, April-June 1980 95

Daniel Chester A Parsing Algorithm That Extends Phrases

to reassign structures to different slots if later words
of the sentence require it.)

I t can be seen that Riesbeck 's analysis p rogram
works essential ly by put t ing noun phrases in the
ca se slots of verbs as the phrases are encountered in
the sentence under analysis. In a syntactic sense, it
builds a phrase of type sentence (first noun phrase
plus verb) and then extends that phrase as far as
possible, much as our a lgori thm does using left-
recursive g rammar rules. Preposi t ions and connec-
tives be tween simple sentences complicate the proc-
ess somewhat , but the process is still similar to ours
at the highest level of p rogram control.

5. Concluding Remarks

Since our parsing algori thm deals only with syn-
tax, it is not complete in itself, but can be combined
with a variety of conceptual representa t ions to make
a sentence analyzer. Whenever an opera t ion that
combines phrases is per formed, procedures to com-
bine data structures can be called as well. When
there is a choice of operat ions to be performed, pro-
cedures to make the choice by examining the data
structures involved can be called, too. Because our
a lgori thm combines phrases sooner than others ,
there is greater oppor tuni ty for the data structures
to influence the progress of the parsing process.
This makes the resulting sentence analyzer behave
not only in a more human- l ike way (the closure
proper ty) , but also in a more efficient way because
it is less likely to have to back up.

Although the programs of Marcus and Riesbeck
share many of these same propert ies, the syntactic
processing aspects of those programs are not clearly
separa ted f rom the particular conceptual representa-
tions on which they are based. We believe that the
parsing algorithm presented here captures many of
the impor tant propert ies of those programs so that
they may be applied to conceptual representa t ions
based on other theories of natural language.

References

Aho, A. and UUman J., 1972. The Theory of Parsing, Translation
and Compiling, Vol. 1, Prentice-Hall Inc., New Jersey.

Chomsky, N. 1965. Aspects of the Theory of Syntax, MIT Press,
Cambridge, Mass.

Griffiths, T. and Petrick S., 1965. On the relative efficiencies of
context-free grammar recognizers. CACM 8, May, 289-300.

Grishman, R., 1975. A Survey of Syntactic Analysis Procedures
for Natural Language. Courant Computer Science Report
#8, Courant Institute of Mathematical Sciences, New York
University, August. Also appears on AJCL Microfiche 47,
1976.

Heidorn, G., 1972. Natural language inputs to a simulation
programming system. Report No. NPS-55HD72101A, Naval
Postgraduate School, Monterey, Calif., October.

Irons, E., 1961. A syntax directed compiler for ALGOL 60.
CACM 4, January, 51-55.

Kaplan, R., 1972. Augmented transition networks as psycholog-
ical models of sentence comprehension. Artificial Intelligence
3, 77-100.

Kimball, J., 1973. Seven principles of surface structure parsing
in natural language. Cognition 2, 15-47.

Lyons, J., 1970. Chomsky. Fontana/Collins, London.
Marcus, M., 1976. A design for a parser for English. ACM '76

Proceedings, Houston, Texas, Oct 20-22, 62-68.
Marcus, M., 1978a. Capturing linguistic generalizations in a

parser for English. Proceedings of the Second National Con-
ference of the Canadian Society for Computational Studies of
Intelligence, University of Toronto, Toronto, Ontario, July
19-21, 64-73.

Marcus, M., 1978b. A computational account of some const-
raints on language. Theoretical Issues in Natural Language
Processing-2, D. WaitS, general chairman, University of Illi-
nois at Urbana-Champaign, July 25-27,236-246.

Novak, G., 1976. Computer understanding of physics problems
stated in natural language. AJCL microfiche 53.

Parkison, R., Colby, K. and Faught, W., 1977. Conversational
language comprehension using integrated pattern-matching
and parsing. Artificial Intelligence 9, October, 111-134.

Riesbeck, C., 1975a. Computational understanding. Theoretical
Issues in Natural Language Processing, R. Schank and B.
Nash-Webber, eds., Cambridge, Mass., June 10-13, 11-16.

Riesbeck, C., 1975b. Conceptual analysis. In Schank (1975),
83-156.

Sehank, R., 1973. Identification of conceptualizations underly-
ing natural language. In Schank R. and Colby, K., eds.,
Computer Models of Thought and Language, W. H. Freeman
and Company, San Francisco.

Schank, R., 1975. Conceptual Information Processing. American
Elsevier, New York.

Shipman, D., and Marcus, M., 1979. Towards minimal data
structures for deterministic parsing. IJCAI-79, Tokyo, Aug
20-23, 815-817.

Wanner, IE., and Maratsos, M., 1978. Linguistic Theory and
Psychological Reality, M. Halle, J. Bresnan, G. Miller, eds.,
MIT Press, Cambridge, Mass., 119-161.

Winograd, T., 1972. Understanding Natural Language. Academic
Press, New York.

Woods, W., 1970. Transition network grammars for natural
language analysis. CACM 13, October, 591-606.

Daniel Chester is an assistant professor in the De-
partment o f Computer Sciences of the University of
Texas at Austin. He received his Ph.D. in mathemat-
ics from the University of California at Berkeley in
1973.

96 American Journal of Computational Linguistics, Volume 6, Number 2, April-June 1980

