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A computer programming system called the "Natural Language Computer" (NLC) is 
described which allows a user to type English commands while watching them executed on 
sample data appearing on a display screen. Direct visual feedback enables the user to 
detect  most  misinterpretation errors as they are made so that incorrect or ambiguous 
commands can be retyped or clarified immediately. A sequence of  correctly executed 
commands may be given a name and used as a subroutine, thus extending the set of  
available operations and allowing larger English-language programs to be constructed 
hierarchically. In addition to discussing the transition network syntax and procedural 
semantics of  the system, special attention is devoted to the following topics: the nature of  
imperative sentences  in the matrix domain; the processing of  non-trivial noun phrases; 
conjunction; pronominals; and programming constructs such as "if", "repeat", and proce-  
dure definition. 

1. Introduction 

Natural  language programming has been proposed 
by many  authors (Balzer[2],  Green[13] ,  Heidorn[17] ,  
Petrick[25],  Sammet[27] ,  Woods[38])  as the best  way 
for  humans  to input their  commands  to computers .  
Humans  have developed exquisitely efficient abilities 
for  communica t ing  with each o ther  through natural  
language,  and the possibil i ty of similarly in teract ing 
with maclaines is worthy of investigation. The ability 
to program in natural  language instead of traditional 
p rogramming  languages would enable  people  to use 
familiar  constructs  in expressing their  requests ,  thus 
making machines  accessible to a wider user group. 
Automat ic  speech recogni t ion and synthesis  devices 
could eventually smooth  the communicat ion  even fur- 
ther. 

On the other  hand,  m a n y  prob lems  could arise 
when natural  language p rogramming  is a t t emp ted  
(Dijkstra[11],  Petr ick[25],  S immons[32]) ,  and any 
such research must  deal with them. For  example,  it 
has been  argued that  current  natural  language technol-  
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ogy is too primitive to handle a wide variety of syntac-  
tic and semantic  constructs so that  the user of such a 
system has the difficult task of learning what  consti-  
tutes an acceptable  input to the system. Ins tead of 
having to learn the relatively simple syntax of a clearly 
def ined p rogramming  language,  the user would be 
forced to learn a voluminous and very detailed set of 
rules giving what  words and phrases can be used and 
how they can be combined.  Thus the user would be 
taxed more  heavily with a natural  language sys tem 
than with a traditional system. A second argument  
against  natural  language p rogramming  relates  to its 
intrinsic vagueness  and ambiguity.  I t  is main ta ined  
that  if one wishes to manipulate  informat ion precisely 
and reliably within a machine,  a clearly defined and 
unambiguous language should be used. The p rogram-  
mer  should not have to wonder  about  the meaning of a 
particular input to the system; he or she should know 
the meaning or be able to look it up easily in a manu-  
al. A third argument  asserts that  no one would use a 
natural  language p rogramming  system, even if one 
existed, because it would be too verbose.  Why should 
one be willing to input long and wordy descriptions of 
a desired computa t ion  when there exist simple, easy-  
to- learn,  and concise nota t ions  for  doing the same 
thing? 
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1.1 A Natural Language Computer 

Formidable  as these criticisms may  seem, this paper  
will a t tempt  to show that  some of them can be over-  
come with a careful system design, while others may 
be simply wrong.  This pape r  descr ibes  a system, 
called the Natural  Language  Compute r  (NLC) ,  which 
makes  it possible to pe r fo rm a limited amount  of natu- 
ral language programming .  This sys tem enables  a 
person to sit at a computer  display terminal,  observe  
his or her data structures on the screen, and watch the 
computa t ion  proceed  as the individual commands  are 
typed.  The current  implementa t ion  is specifically de- 
signed for array and matrix computat ion.  In the ex- 
ample interact ion of Figure 1, the user is creating a 
subroutine to add up the rows and columns of an arbi- 
t rary matrix. Each i tem that  is modif ied by  a com- 
mand  is marked  with an asterisk and other  items used 
in the calculation are marked  with an apostrophe.  The 
first two commands  cause two matrices to appear  on 
the screen, one to be opera ted  on and the other  to 
receive the answer. The third command  provides some 
sample data for the calculation and the fourth com- 
mand  indicates that  the imperat ive verb  " sumcol row"  
is about  to be defined. Subsequent  inputs tell exactly 
what  operat ions  must  be done to sumcolrow a matrix 
into another  matrix. For  example,  if af ter  this dia- 
logue the system receives the input 

"Sumcolrow matr ix  A1 into matrix Z."  

where A1 and Z are matr ices of appropr ia te  dimen- 
sions, the procedure  body  following the define state-  
ment  will be executed. Thus the dialogue causes the 
system to create  a subroutine to be called by using the 
newly defined imperat ive verb "sumcol row" .  

This process is explained in greater  detail in later 
sections of the paper.  The impor tan t  point  to be no- 
ticed here is that  the user is able to watch the system 
respond to each com m and  as it is entered.  Whenever  
the sys tem yields an undesired action,  the user can 
back up and rephrase  his or her com m and  more  clear- 
ly. This fo rma t  for  natural  language p rogramming  
enables users to examine system per fo rmance  as each 
command  is typed and to detect  most  errors immedi-  
ately. 

1.2 Concerning the Objections 

Given this brief  introduction to the N L C  user inter-  
face, it is already possible to respond to the first criti- 
cism of natural  language p rog ramming  given above.  
Al though we feel that  present  day natural  language 
processors  tend to have very limited capabilities, it is 
quite possible within the N L C  envi ronment  to direct 
the user to restrict the inputs appropriately.  For  this 
reason,  the user is asked to follow two simple rules 
which are easily unders tood f rom the user ' s  point  of 
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Figure 1. Defining the verb "sumcolrow". 

view and which s imul taneously  ease the job of the 
system designers and implementers  considerably.  

The first rule concerns the semantics of inputs: 

(1) The user may  refer  only to the data struc- 
tures seen on the terminal  screen and specify 
simple operat ions  upon them. 

That  is, the user may  refer  to matrices,  rows, columns, 
entries,  labels, numbers ,  var iables ,  etc., and specify 
simple opera t ions  such as add,  subtract ,  move ,  ex- 
change, delete,  label, etc. The user may  not  use do- 
main specific vocabulary  or concepts  such as airplane 
flights, seats, passengers,  and reservations.  This rule is 
easily explained to a user and makes  it possible  to 
build a system without  gett ing into the peculiarities of 
any specific domain.  Al though it requires the user to 
translate his or her p rob lem into the vocabulary  of the 
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system, it also makes it possible to experiment with 
the system in many different domains. 

The second rule concerns the syntax of the inputs: 

(2) The user must begin each sentence with an 
imperative verb. 

This rule is also easy to explain to the user and it also 
greatly restricts the variety of sentences to be proc- 
essed. If this rule is followed, the system can find out 
much about each clause from its first word, including 
what words or concepts may occur later in the clause. 

In summary, the strategy for achieving person-to- 
machine language compatibility taken here is (1) to 
find a small number of simple rules which a person can 
easily follow to restrict the set of inputs; and then (2) 
to stretch the language processing technology to the 
point where it can reasonably cover that set. When 
this is done, the first criticism of natural language 
programming stated earlier is overcome. 

The other major objections to natural language 
programming relate to its vagueness, ambiguity, and 
alleged verbosity. Perspectives on these issues can be 
achieved by examining some examples of natural lan- 
guage and the corresponding programs in traditional 
programming languages. Consider for example the 
command 

"Square the sixth positive entry in matrix M." 

Vagueness does not appear to be a problem with the 
English of this example. In fact, the sentence is prob- 
ably shorter than most equivalent formulations written 
in traditional programming languages. The corre- 
sponding code in almost  any programming language 
will require some declarations and a nesting of looping 
and branching constructs. As an additional example, 
the reader should examine the English language pro- 
gram and its corresponding PL / I  counterpart which is 
included in the Appendix. Our experience so far with 
English language programming seems to indicate that 
the language is as precise as its user wants it to be. 
Concerning the length of English language programs, 
they seem to be comparable to the length of ordinary 
programs in the domains we have examined. Of 
course, one could write down a complicated arithmetic 
expression from some standard programming language 
and note that its English equivalent is relatively long, 
unreadable, and unwieldy. The solution to this prob- 
lem is to include in the natural language processor the 
ability to handle such arithmetic expressions. Consid- 
ering the complexity of any reasonable natural lan- 
guage processor, the cost of adding something like an 
arithmetic expression handler is modest. Other con- 
structs from programming languages which are shown 
to be convenient could also be  considered for inclu- 
sion. 

1.3 Background 

The NLC system has grown out of an earlier series 
of studies on the "autoprogrammer" (Biermann[6]) 
and bears much resemblance to it. Program synthesis 
in both the current and the previous systems is based 
upon example calculations done by the user on dis- 
played data structures. In the current system, the 
example is done in restricted English with all its pow- 
er, which is a dramatic departure from the earlier ap- 
proach, which simply involved pointing with a light 
pen. However, it is expected that many of the fea- 
tures from the autoprogrammer, such as "continue" 
and "automatic indexing", will transfer quite naturally 
into NLC. This paper emphasizes the natural lan- 
guage aspects of the system, while other reports deal 
with some of the additional automatic programming 
features. The relationship of NLC to other research in 
natural language processing is discussed in a later sec- 
tion. 

The next section presents an overview of NLC, 
after which subsequent sections discuss scanning, syn- 
tactic and semantic processing, and interpretation of 
commands in the "matrix computer". The next two 
sections discuss the processing of flow-of-control com- 
mands and the level of behavior achieved by the sys- 
tem. The final sections include a discussion of related 
research and conclusions. 

2. Sys tem O v e r v i e w  

The NLC system is organized as shown in Figure 2, 
with the user input passing through the conventional 
sequence of stages: lexical, syntactic, and semantic 
processing. The scanner finds the tokens in the input 
sentence and looks them up in the dictionary. It per- 
forms some morphological processing and spelling 
correction for items not appearing in the dictionary. 
Additionally, abbreviations (such as "col" for 
"column") and spelled-out numbers and ordinals 
("twenty-two",  "seventh", etc.) are recognized. The 
identified words with their meanings are passed on to 
the parser, which is programmed with nondeterministic 
transition nets similar to the augmented transition 
networks of Woods[40]. The parser has the ability to 
screen out many syntactically correct but semantically 
meaningless structures so that the first parse it finds is 
usually correct. The parser output goes to the flow- 
of-control semantics routines which make decisions 
about the nature of the input command and then prop- 
erly guide it through subsequent processing. 

The input sentence may be a simple request for a 
system defined computation or it may be a flow-of- 
control command such as a user-defined subroutine 
call. An example of the first case is "Add row 1 to 
row 2." Here flow-of-control processing sends the 
sentence directly to the sentence semantics routines 
which resolve the noun groups and invoke the matrix 
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Figure 2. The NLC system modules (upper case) and their associated data structures (lower case). 

compute r  to pe r fo rm  the indicated opera t ion.  An 
example of the second case is a com m and  beginning 
with a user-def ined verb  such as "sumcol row" .  Here  
f low-of-cont ro l  processing brings in f rom a file the set 
of commands  for  the subrout ine  which defines the 
word "sumcol row" .  Then  those commands ,  with par-  
ameters  proper ly  ins t an t i a t ed ,  are sequential ly t rans-  
ferred to sentence semantics for  execution. 

The major  task of the sentence semantics  routines 
is the processing of noun groups. They  begin with the 
head noun in any part icular  noun group and build a 
representa t ion  for  the meaning of the noun group by 
sequentially processing whatever  modifying words and 
phrases there may  be. These routines are concerned 
with qualifying relative clauses, preposi t ional  phrases,  
adject ive s , ordinals,  p ronouns ,  and numerous  o ther  
construct ions appear ing in noun groups. The result of 
noun group processing is usually a designation of an 
i tem or set of items in the displayed data structures to 
be manipulated by  the matrix computer .  

Most  imperat ive verbs such as "doub le"  or ! 'add" 
pass through the sys tem wi thout  change until they 
reach  the matr ix  computer .  This rout ine  then  per -  
forms the indicated opera t ion on the data specified by 
the processed noun groups. All changes in the data 
s t ructures  are immedia te ly  upda ted  on the display 
screen, along with markers  to show the user where the 

changes have been  made.  A few imperat ive verbs are 
not processed by  the matrix computer .  Some examples  
are " f ind"  or "choose" ,  which are processed  by  the 
sentence  semant ics  module ,  and " r e p e a t "  or user-  
defined imperat ives,  which are processed by  f low-of-  
control  semantics.  

Every  ef for t  has been  made to modular ize  the sys- 
tem for  unders tandabi l i ty  and easy modification.  In 
addition, the design a t tempts  to use limited compute r  
resources economically.  I t  is wri t ten in the C language 
and runs on a P D P - 1 1 / 7 0  under  the U N I X  operat ing 
system. 

3. T h e  S c a n n e r  

The scanner  collects the string of tokens  f rom the 
input and identifies them as well as possible.  These 
tokens  may  be numbers  or ordinals in various forms,  
names  known to the system, punctuat ion,  or dict ionary 
words  which may  be abbrev ia ted  or misspel led in a 
minor  way. The scanner  outputs  a set of al ternative 
defini t ions for  each incoming token,  and the syntax  
stage a t tempts  to select the in tended meaning for  each 
one. 

Each  dict ionary entry  consists of  a set of pairs of 
features.  Two examples  appear  in Figure 3, the defi- 
nitions of the word "ze ro"  as an imperat ive verb  and 
as an adjective. " Z e r o "  as a verb takes one argument  
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and no particle ( type OPS1).  The meaning of an im- 
perat ive verb is built into the execution code of the 
matr ix  compute r  as explained in Sect ion 6. As an 
adjective, the meaning of "ze ro"  is embedded  in the 
semantics code described in Section 5. That  code will 
execute  a routine associa ted  with the name in the 
A M E A N S  field, zero. 

I. (QUOTE zero) 

(PART IMPERATIVE) 

(IMPERTYPE OPSl) 

2. (QUOTE zero) 

(PART ADJ) 

(AMEANS zero) 

Figure 3. Two sample dictionary entries. 

Figure 4 shows the output  f rom the scanner  for  an 
example input sentence. Associated with each token  is 
the set of al ternate definitions proposed  by  the system 
and the syntax stage will a t tempt  to make appropr ia te  
choices such that  the sentence is meaningful.  Most  
tokens  are found in the dict ionary,  but  the string 
" thee"  is not. So dict ionary entries are selected by 
the spelling cor rec tor  which are similar to the un- 
known. The token "y"  is also not found in the dic- 
t ionary but  is recognized as the name of an existing 
matrix entity. The words "ze ro"  and " to"  appear  in 
the dict ionary with mul t ip le  meanings.  

WORD 

Add 

Y 

to 

thee 

zero 

entries 

Figure 4. 

INTERPRETATION ( S ) 

add - verb 

y - propname 

to - verbicle 

to - prep 

thee - propname 

the - art 

them - pron 

then - etc 

there - etc 

these - pron 

these - art 

three - num 

zero - verb 

zero - adj 

zero - num 

entries - noun 

- punctuation 

"Add y to thee zero entries." 

Scanner output for a sample sentence giving alternate 
interpretations for each word. 

4. Syntax 

Most  of the sentences processed by the sys tem can 
be thought  of as imperat ive verbs with their associated 
operands.  For  example,  the sentence 

"Add  the first and last posit ive entries in 
row 1 and the second to smallest entry  in 
the matrix to each entry in the last row."  

exhibits the overall  form 

(add x to y) 

where x is the noun group "the first and last ... in the 
matr ix"  and y is "each  entry in the last row".  The 
sys tem separa te ly  processes  const ruct ions  re la ted to 
the imperat ive verbs and those related to noun groups. 
The following two sections discuss these types of con- 
structions. Then,  Section 4.3 describes a method  for  
rejecting certain kinds of syntactically correct  but se- 
mantically unacceptable  parses,  Section 4.4 describes 
our approach  to hand.ling syntact ic  ambigui ty ,  and 
Section 4.5 gives the fo rm of the output  for  the parser.  

4.1 Imperat ives And Their  Operands 

A transition net for processing the above impera- 
tive fo rm for "add"  is shown in Figure 5. The word 
PARSE means to call routines appropr ia te  for  parsing 
the indicated construct.  I M P E R A T I V E  refers to the 
imperat ive  verb,  and N G  refers  to the noun group. 
V E R B I C L E  refers  to a particular type of preposi t ion 
which is of ten associated with an imperat ive verb to 
distinguish its operands.  Thus in the sentences 

"Mult iply x by  y."  
"Store x in y."  

the words " b y "  and "in" are verbicles. Of  course, any 
given imperat ive will have only a few acceptable  verbi-  
cles, so the parser  checks that  a suitable one is found. 

START 

PARSE IMPERATIVE 

PARSE NG 

PARSE VERBICLE 

PARSE NG 

PARSE " " 

SUCCEED 

Figure 5. A top-level parser for sentences of the form 
"add X to Y". 
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4.1.1 Conjunction Handling 

Although the routine of Figure 5 might be adequate  
for a large fract ion of the sentences received by  NLC,  
we decided to formulate  a facility for handling a wide 
variety of conjunctions [33]. Toward  this goal, a rou- 
tine called MIX was designed as shown in Figure 6. 

START 

I 
v 

PARSE 

I 

I 

I 

I 
v 

--->PARSE 

I I 

I v 

PARSE A 

I 
v 

..... > SUCCEED 

A ..... > PARSE "," 

^ l 
I I 

PARSE A 

I 
v 

"and" <--PARSE ", " 

Figure 6. A simplified t ransi t ion ne twork  for MIX A. 

Suppose A is a given construct  and suppose x l ,  x2, 
and x3 are instances of that  construct .  Then M I X  A 
will process forms such as 

x l  
x l  and x2 
x l ,  x2, and x3 
x l  and x2 and x3 

and others. If, for example,  A represents  the impera-  
tive clause construct ,  then MIX A will process 

"Add y l  to y2, add y3 to y4, and add y5 to y6."  

If  A is the unconjoined noun group, then M I X  A will 
process 

" row 1, row 2, and row 3." 

Figure 7 shows how a series of calls of the M I X  rou- 
tine can be used to process reasonably  complex nest-  
ings of conjunctions.  For  example,  these routines will 
parse the sentence 

"Add y l  to y2, to y3, and to y4 
and y5 to y6 

and add y7 to y8."  

4.1.2 Other Sentence Forms 

Of course, not  all verbs take two operands  and a 
verbicle as in the examples  above.  Indeed,  verbs such  
as "call"  have two operands  without  a verbicle: 

"Cal l  the matrix x." (Call y l  y2.) 

There  are also one-operand  verbs which take a parti-  
cle, such as "add  up" .  Part icles present  a special  
problem since they can appear  in various posit ions in 
the sentence;  N L C  handles  mos t  of the c o m m o n  
placements.  Many  one-operand  verbs appear  without  
particles as in 

"Double  row 1." (Double y l . )  

and there are verbs that  take no operand:  either with 
a particle, as in 

"Back  up." 
or without  a particle, as in 

"Qui t . "  

Most  of the imperat ives handled by N L C  fall into 
one or more of the six categories listed above:  zero,  
one,  or two operands ,  with or wi thout  a 
verbic le /par t ic le .  The conjunct ion handling described 
above extends to all of these types o f  imperat ives in a 
natural  way. Although N L C  has facilities for accept-  
ing imperat ives with more  than two operands  or with 
formats  other  than those given here, a large propor t ion  
of all imperat ives in our domain do fit into the simple 
scheme given here. 

4.2 Noun Group Syntax 

Four  types of noun groups appear  in the sentences 
processed by NLC.  The most  common  type refers  to 
the entit ies on the N L C  display screen: numbers ,  
entries, rows, matr ices and so forth.  These are the 
noun groups that  appear  as operands  for the impera-  
tive verbs.  Many  examples  appear  in previous sec- 
tions. The second type of noun group is the noun 

START START 

I I 
MIX $I PARSE IMPERATIVE 

I I 
PARSE ". " MIX NGVNG 

I I 
SUCCEED SUCCEED 

(a) Top level (b) Clause level 

routine S routine $I. 

START START 

I I 
PARSE NG PARSE VERBICLE 

I i 
MIX VNG PARSE NG 

I I 
SUCCEED SUCCEED 

(C) Noun-verbicle- (d) Verbicle-noun 

noun level level routine VNG 

routine NGVNG 

Figure 7. A sen tence  parser  allowing nes ted  conjunct ions .  
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result group, which refers to the result of a computa-  
tion. Some examples are "the sum of rows 1 and 2" 
and " the absolute value of x"  where in each case the 
object  being referred to appears not  on the screen but 
is found by manipulating displayed objects. The third 
type of noun group is the noun place group, as illus- 
trated by "bo t tom"  in 

"Add the second from bot tom row to row 3." 

"Bot tom"  in this example is the place from which the 
ordinal processor begins counting. Some other  words 
that can fit into this slot are "r ight",  " lef t" ,  " top" ,  
and "last".  The fourth type of noun group is the noun 
procedure group, which refers to a procedure,  a com- 
mand, or a set of commands in the NLC input. This 
type is illustrated in 

"Repeat  the last three commands ten times." 
"Double the entries the third command 

incremented."  

Only the operand noun groups will be discussed in 
detail here. 

Operand level noun groups follow a format  similar 
to the one given by Winograd[37].  Let  OPT be a 
routine which optionally calls a set of routines. As an 
illustration, OPT D E T E R M I N E R  calls routines to 
parse a determiner. If those routines fail, however,  
OPT succeeds anyway, assuming that the noun group 
exists without a determiner. The basic format  for the 
operand level noun group parser, given in Figure 8, is 
completely exercised by the noun group 

"the first three positive matrix 1 entries 
which are odd"  

DETERMINER:  the 
ORDINAL:  first 
NUMBER: three 
ADJECTIVE:  positive 
CLASSIFIER: matrix 1 
NOUN: entries 
QUALIFIER:  which are odd 

Since OPT is used to look for most of the constituents, 
the parser analyzes noun groups with those elements 
missing. (Examples: " the positive entries",  "seven 
numbers greater than 10", " the smallest ent ry" ,  etc.) 
Constructs of the form "row 1", "columns 2 and 3", 
or "the constant 4.5" require separate recognition. 

The D E T E R M I N E R  routine parses not  only the 
simple determiners " the"  and " a / a n "  but  also a varie- 
ty of quantifiers such as "all",  "all of  the" ,  "bo th" ,  
"no more than six of the" ,  " e x a c t l y  two of the" ,  and 
many others. The ORDINAL routine processes the 
common ordinals "f i rs t" ,  " second" ,  "nex t " ,  and 
" las t" ,  which can also appear  with superlatives 
("second greates t")  or with modifiers ( "second  from 
right",  "second from last").  

START 

v 

OPT DETERMINER 

V 

OPT ORDINAL 

V 

OPT NUMBER 

V 

.... > OPT ADJECTIVE 

I 

V 

.... > OPT CLASSIFIER 

I I 

V 

PARSE NOUN 

I 

V 

.... > OPT QUALIFIER 

I I 

V 

SUCCEED 

Figure 8. A Winograd-style noun phrase parser. 

Six types of qualifiers are handled by NLC: 

1. Preposit ion groups: 
" the rows IN MATRIX 2" 

2. Adjective groups: 
" the numbers L A R G E R  T H A N  6" 

3. Relative clauses: 
" the rows W H I C H  CO N T AIN 

N E G A T I V E  NUMBERS"  

4. ED groups: 
"the entries A D D E D "  
"the entries A D D ED  TO "  
"the entries ADDED TO ROW 4" 
"the entries ADDED BY T H E  LAST 

C O M M A N D "  

5. ING groups: 
"the columns C O N T A I N I N G  5.5" 

6. Rank-shif ted clauses: 
" the entries C O L U M N  2 CONTAINS"  

Many types of conjoined phrases are processed 
using the MIX routine as in " the  first and last en- 
tries",  " the first two and last three entr ies",  " the first 
two and the last three entr ies" ,  and others.  Noun 
groups may be nested within other  noun groups as 
illustrated in 
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"the largest entry 
in the first row 

of the matrix 
containing the column 

that was doubled by the second to last 
command"  

4.3 Semantic Checking During Syntactic Processing 

If the parser is provided with some informat ion 
about  the types of nouns and the relationships they 
may have with each other,  it can reject inappropriate 
parses. As an illustration, in the following phrase a 
possible parse of the qualifiers is as indicated by the 
parentheses. 

the entry (in row 2 (in column 3) ) 

That  is, row 2 is " in"  column 3 and the entry being 
referred to is in that row 2. However ,  in an ordinary 
matrix it is not  possible for  a row to be contained in a 
column and so it is desirable that this parse be reject- 
ed. The correct  parse will be found if it is known that 
row-in-column is a disallowed pattern,  forcing " row 2" 
to stand alone as a noun group: 

the entry (in row 2) (in column 3) 

Thus both  the qualifiers "in row 2" and "in column 3" 
modify  the noun "en t ry" .  Since ent ry- in- row and 
entry-in-column are semantically acceptable patterns,  
this parse  can be passed to the semantics processor.  

Observat ions  of this type lead to the concept  of 
semantically acceptable patterns and a mechanism for 
checking for them. A hash-coded table was added to 
NLC which contains the set of all semantically accept-  
able pat terns for  certain construct ions.  At various 
times during the processing, checks are made to see 
that a sensible parse is being assembled. Besides 
checking for compatibility in preposit ional modifiers as 
indicated above,  the system tests relationships given 
by relative clauses and adjective groups. It also 
checks that the operands of imperative verbs are legiti- 
mate. 

4.4 Syntactic Ambiguity 

The strategy for dealing with syntactic ambiguity is 
to at tempt to anticipate the situations in which it is 
most likely to arise and to decide, whenever  possible, 
which alternative is most reasonable. Having made 
such decisions, it is usually possible to order  the gram- 
mar rules in such a way that the preferred parse is the 
one arrived at first, thus combining the efficiency of a 
blind search with the accuracy of a more extensive 
one. Perhaps surprisingly, the method  has proven 
quite successful in meeting the stated objectives. (See 
[5].) This is due in part  to the formulat ion of several 
general principles stemming from our observations of 
how natural language is employed in the NLC domain. 
The most important  of these are: 

1. Deep parses are generally preferred.  Thus, 

"x in y in z" 

more of ten  attaches the qualifier "in z" with y 
than with x when both  readings are meaningful. 

2. When ambiguity arises because of a conjunction,  
the intended conjuncts are likely to have similar 
type. This contrasts sharply with conventional  
programming languages, where operators  rather  
than operands determine the "binding" in arith- 
metic expressions such as "a + b * c".  The 
preference for conjoining similar units is auto- 
matically supplied by using the MIX rout ine 
described earlier. 

3. Compatibil i ty checks based on semantic relation- 
ships should be checked during the parse as de- 
scribed in Section 4.3. This offers the benefi t  
of suspending parsing to obtain semantic infor- 
mation without incurring the inefficiency of such 
action. 

4. Special cases exist and should be introduced as 
such, rather  than erroneously generalized to the 
point  of introducing t h e  possibility for  parses 
which users would find ungrammatical.  

4.5 Syntactic Processor Output 

The output of the syntax processor is a template 
for each clause giving the imperative verb and pointers 
to structures which represent  the operands.  Figure 9 
gives an example of such an output.  

Imperative Verb Template 

OPERATOR add 

OPERAND I 

ARTICLE DETERMINED 

ARTSP SING-PLUR 

NOUN entry 

NOUNSP PLUR 

Modifier I 

PREP IN 

NOUN row 

NOUNSP SING 

WHICH I 

Modifier 2 

COMP GREATER 

NOUN CONSTANT 

WHICH 6.0 

VERBICLE to 

OPERAND 2 

NOUN PROPNAME 

QUOTE X 

Figure 9. Output of the syntax processor for the sentence "add the 
entries in row 1 greater than 6.0 to X.". 
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5. Sentence Semant ics 

The primary responsibility of the semantics module 
of NLC is the processing of noun groups to determine 
their referents. Input to semantics consists of the 
parse trees constructed by the syntactic processor. 
The imperative, along with its verbicle/particle, is 
saved for later context references, but not operated 
upon at this time. The principal role of semantics is to 
produce a precise internal representation that can be 
used by the matrix computer in carrying out the re- 
quested command. 

A secondary role of semantics is t oupda te  context 
as a consequence of resolving noun phrases. In this 
way, one may refer to previous actions of the system. 
Thus: 

"Clear the column that was added to column 2." 
"Increment by 5 the row which the last 

command squared." 

Context is also utilized in the location of referents for 
pronouns and other words requiring pronominal proc- 
essing. Some examples are: 

"Multiply the smallest entry by IT." 
"Replace THAT ENTRY by ITS reciprocal." 
"Subtract the NEXT 2 entries from each 

member of row 2." 
"Sum up the OTHER entries in those rows." 

The following sections describe briefly the repre- 
sentations used in the system, noun group resolution, 
and the processing of pronominal structures. 

5.1 Internal Data Structures 

For the matrix computer to carry out users' com- 
mands, physical addresses of the operands must be 
available. The resolved nouns must also be stored at a 
conceptual level so that later sentences may refer to 
the objects operated upon. For these reasons, the 
basic internal representation of the domain entities 
consists of a collection of intermediate structures from 
which hardware addresses are computed. Since the 
syntax parse trees are available, this intermediate no- 
tation does not refer to the natural language input. 

Most of the internal structures, denoted 
"datareps", refer to a singular domain entity and have 
a fixed number of parameters. These "primitives" are: 
entry, row, column, matrix, domain, float constant, int 
constant, name, noun result, result, and command. As 
an example, the datarep for the noun group "row 2" is 
(ROW 1 2) which fills 5 bytes in memory and gives 
the name of the entity, the matrix number, and the 
item designation. 

Plurals may arise in a variety of ways, some of 
which are presented here. In the simplest case, a plu- 
ral datarep is the direct result of the resolution of a 
plural noun, as in 

"rows 3, 4 and 5" 
"the entries in rows 1 and 2" 

Word-meaning routines such as adjective, ordinal, and 
superlative may produce a plural output, as in 

"the positive entries in row 2" 
"the last 3 entries that were doubled" 
"the smallest 3 numbers in the last column" 

In addition, plurals may result from the conjoining of 
singular datareps 

"row 4 and column 5" 
"row 2 and the last row" 

or from conjunctions in which one or more of the 
conjuncts is itself plural 

"row 3 and the rows containing positive entries" 
"the first 3 and the last 2 rows in matrix 1" 

An important feature common to all the types of con- 
junctions mentioned above is that the members of the 
"set" which represents the resulting plural datarep are 
themselves singular. Thus, for the noun phrase 

"row 6 and the first 2 rows" 

the resolution will be 

SET of size 3: 
ROW 6 
ROW 1 
ROW 2 

Because of the manner of manipulating the internal 
structures and passing them between modules of the 
NLC system, an array-like data structure was chosen 
for sets instead of a LISP-like representation. A de- 
tailed description of the precise mechanism for repre- 
senting sets, beyond the scope of the present paper, 
may be found in Ballard[1]. 

5.2 Noun Group Resolut ion 

The discovery of the meaning of a particular noun 
group begins with the head noun and any "in" qualifi- 
er which may be found. Thus in the phrase 

"the smallest entry in row 2 greater than 10," 

the meaning of the words "entry in row 2" is initially 
represented as the set {(ENTRY 2 1), (ENTRY 2 2), 
. . . .  (ENTRY 2 N)}. Then processing of other 
qualifiers and lastly prenominal modifiers has the ef- 
fect of removing entries from the initial set. In this 
case, processing of "greater than 10" causes the sys- 
tem to reference the values of the listed entries and 
remove from the set those entries not meeting the 
specified criterion, "greater than 10". Processing of 
"smallest" results in all but the appropriate smallest 
entry being removed, and processing of "the" involves 
checking that the resulting set has only one member 
since the head noun is singular. The final meaning of 
the noun group is thus the set {(ENTRY 2 i)} for 

American Journal of Computational Linguistics, Volume 6, Number 2, April-June 1980 79 



Alan W.  Biermann and Bruce W.  Ballard Toward Natural Language Computation 

some i and this representation is passed to the matrix 
computer as an operand for some computation. 

5.3 Pronominal izat ion  

The basic syntactic types of the pronouns within 
the matrix domain are the following: 

1. pure pronoun 
"it" / "them" 
"itself" / "themselves" 

2. pronominal determiner 
"THAT entry" / "THOSE columns" 

3. possessive determiner 
"ITS rows" / "THEIR columns" 

4. pronominal ordinal 
"NEXT row" 
"OTHER entries" 

The fourth category is included among the listing of 
pronouns because the semantics involve most of the 
same principles. For instance, "the other entries" 
demands the semantics that would occur for "the en- 
tries other than ?", where "?" represents the most 
general possible pronoun, having no type or number 
constraints. 

Pronoun reference is done by considering previous 
• datareps rather than by traversing trees as described 
by Hobbs [22]. Specific guidelines for posing the 
eligible referents to pronouns in a reasonable order 
include, in order of importance: 

1. In all cases, require type, number, and semantic 
constraints of the pronoun to agree with the 
datarep being examined. 

2. Prefer more recently created datareps. 

3. For case-level (operand) pronouns, try to match 
source with an old datarep source, destination 
with an old destination. 

4. "Fuse", or conjoin, singular data/eps to produce 
a plural referent if necessary. Thus 

"Add row 1 to row 2." 
"Double those rows." 

entails creating the set consisting of rows 1 and 
2 at the time pronoun referent location occurs. 

5. Consult more distant sentences only after trying 
all possibilities on an intervening sentence. 
Thus, 

"Clear rows 1 and 2." 
"Triple column 4." 
"Add row 3 to row 4." 
"Double those rows." 

will prefer the complicated but recent fusion in 
the immediately preceding command over the 
exact but less immediate plural three sentences 
earlier. 

6. The Matrix Computer  

The "matrix computer" of NLC is assigned two 
major tasks: (1) carrying out the computations which 
the user has requested and (2) displaying on the termi- 
nal the resulting data world. Since the latter function 
is conceptually simple (although tedious to code effec- 
tively) and since sample system outputs are provided 
in Figure 1, this section will concentrate only upon the 
techniques which the matrix computer uses to perform 
the desired computations. 

As discussed in the previous section, essentially all 
processing of noun phrases is completed by the seman- 
tics module. What is made available then to the ma- 
trix computer is a collection of templates, similar to 
the ones generated as the parser output, as shown 
earlier in Figure 9, but with the noun arguments fully 
"resolved" into datareps as already described. As an 
example of the templates received by the matrix com- 
puter, consider the English input 

"Add up the first row, double row 2, and 
subtract row 4 from row 5." 

The semantics output for this input is 

Template 1 : 
Verb: "add" 
Verbicle/Particle: "up" 
Operand: (ROW 1) 

Template 2: 
Verb: "double" 
Verbicle/Particle: -- 
Operand: (ROW 2) 

Template 3: 
Verb: "subtract" 
Verbicle/Particle: "from" 
Operand 1: (ROW 4) 
Operand 2: (ROW 5) 

The task of the matrix computer is to decide upon the 
appropriate operations and to apply them to the ope- 
rands. 

It was mentioned earlier that the imperatives, parti- 
cles, and verbicles recognized at parse time pass 
through semantics without alteration. When the out- 

p u t  from semantics becomes available to the matrix 
computer, the imperative verb and the associated 
verbicle/particle (if there is one) are looked up in a 
table to determine the appropriate action. In most 
cases, it has not been necessary to write a separate 
procedure for each imperative. Specifically, "double" 
is treated as a special case of "multiply". Thus the 
user input 

"Double the first 2 entries in column 1." 

entails the matrix computer operations 

Arith-op(*, 2.0, (ENTRY 1 1)) 
Arith-op(*, 2.0, (ENTRY 2 1)) 
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where "Ari th:op" is the general coding capable of 
performing the basic arithmetic operations. In this 
way, the matrix computer has accommodated a large 
number of arithmetic commands by the mere addition 
of one table entry (8 bytes). Further instances of 
arithmetic verbs which make use of the arithmetie-op 
code are clear, copy, decrease, decrement, divide, 
halve, and many others. 

In general, operating with a scalar (element, varia- 
ble, or constant) upon an aggregate (row, column or 
matrix) means to operate independently on each mem- 
ber. The knowledge of how to perform the intended 
operations for all meaningful source-destination pairs 
must be coded into the system. This means specifying 
for each X-Y pair exactly what is required by 

Arith-op(op, X, Y) 
for datareps 'X' and 'Y' 
and 'op' a member of { +, * . . . .  } 

The remaining type of matrix computer operation 
deals with the noun result such as in 

"Add the PRODUCT of the positive entries 
to row 1." 

"Add the SUM of rows 3, 4 and 5 to row 6." 

Notice that a noun result may yield a scalar as in the 
first example or a vector as in the second. The noun 
result is evaluated similarly to imperative verb opera- 
tions, and the result of the calculation is inserted into 
the appropriate higher level structure for further proc- 
essing. 

7. F low-of -Contro l  S e m a n t i c s  

Thus far, this paper has discussed sentence by sen- 
tence processing, where system actions occur one at a 
time, determined directly from keyboard inputs. Most 
means of enhancing the usefulness of the system fall 
into one of two categories: (1) the introduction of 
programming-language type control structures and (2) 
the ability to define and execute self-contained por- 
tions of natural language "coding". These topics are 
addressed separately here. 

7.1 Condi t iona l  Execut ion  

To specify conditional execution of a command or 
a group of commands in English, one uses such words 
as "if", "when", "unless", "otherwise", etc. Follow- 
ing are some sentences typical of inputs that NLC-like 
systems will likely be called upon to process. 

"IF row 3 contains a positive entry ..." 
"IF the largest entry occurs in the last row ..." 

Implementation of this facility is not complete on 
the NLC system. When it becomes totally operative, 
users will be told that they may begin sentences with 
the word "if" as well as with imperative verbs. The 

characteristic language feature appearing in each of 
the above sentences is the independent clause: decla- 
rative (rather than imperative) in nature, and requiring 
the evaluation of a Boolean (i.e., a condition whose 
truth or falsity is to be determined). Fortunately, the 
conjugated verbs are typically either "be" or one of 
the verbs which have already occurred in relative 
clauses, and so an appreciable degree of different syn- 
tactic processing is not required. Thus, 

"if row 3 contains a positive entry ..." 

relates directly to 

"the rows which contain a positive entry" 

The semantic routines originally written for qualifier 
verbs can, therefore, with a slight modification be used 
in handling these constructs. 

7.2 Looping 
NLC provides several ways of creating loops using 

the verb "repeat ."  In the typical situation, the user 
supplies and observes the execution of a sequence of 
commands on particular members of the data world. 
The system is then capable of abstracting, from the 
specific instructions, general code to operate on other 
entities. Frequently, an algorithm requires the applica- 
tion of a sequence of commands to several members of 
the domain. One way of accomplishing this is to make 
use of the following pattern. 

"Choose an entry which ... and call it x." 
" . . .  to x." 
" x by " 

"Repeat for the other entries." 

When such a sequence is recognized, the "repeat"  
processor finds the set given to the most recent un- 
matched "choose" (or "pick", etc.) and thereby knows 
what "other"  members are to have the intervening 
commands applied to them. In instances where there 
is no non-deterministic "choose"- type operation to 
delineate the statements to be repeated or to make 
explicit the set to which previous commands are to be 
applied, alternate versions of "repeat"  are provided. 
Examples include 

"Repeat the last 3 commands." 
"Repeat the last command 5 times." 
"Repeat the last 3 commands for all 

other odd entries." 
"Repeat those commands twice on row 3." 

7.3 Procedures 

Another way of extending sentence by sentence 
processing is the facility for defining procedures, ena- 
bling the user to describe operations in terms of exist- 
ing commands. Subsequent inputs may access the 
newly-created imperatives as though they had been 
previously defined, including their use in further pro- 
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cedure definitions. Programmers will recognize the 
following illustration as an instance of the "called- 
procedure" type of subroutine. There is no reason, 
however, for not providing the "function" procedure 
as well. Interestingly, the "noun result" discussed 
earlier corresponds to this value-returning subroutine. 
In addition, the NLC design includes the creation of 
new adjectives. The correspondences between natural 
language words and conventional programming lan- 
guage procedures are roughly as follows. 

Natural Language Programming Language 

imperative verb "called" subroutine 
noun result * "function" subroutine 
adjective * "predicate" 

(* - not yet operative on NLC) 

Both the noun result and the adjective routines require 
an explicit "return" command. Methods of incorpo- 
rating them into the present system, as well as ways of 
relaxing the restrictions for the imperative verb proce- 
dures discussed below, are being developed. 

In order to assure correct re-execution of the com- 
mands within a procedure, it is necessary to detect 
occurrences of the parameters among the nouns of the 
procedure body. To accomplish this, the system re- 
quires that the arguments at the time of procedure 
definition be names. When a user input indicates that 
a procedure is about to be defined, names are saved so 
that their re-occurrence can be recognized as denoting 
a parameter rather than simply the current argument. 
While the procedure definition is in progress, appropri- 
ate changes are made in the syntax trees, which are 
then saved on disc. As an example, suppose the user 
types 

"Define a procedure to zap z into w." 
"Double w." 
"Add z to w." 
"Negate z." 
"End." 

At this point, there will be four new files contain- 
ing parse trees which can be informally represented as 
follows. 

filename contents 

Zap.0001 double param-2 
Zap.0002 add param-1 to param-2 
Zap.0003 negate param-1 
Zap.0004 end 

This enables flow-of-control semantics processing, 
when an invocation of the new "zap...into" imperative 
is detected, to evaluate the arguments and substitute 
them appropriately into the procedure's syntax trees 
wherever param-i is present. 

Syntax for user-created imperatives parallels that 
for the system-provided routines of corresponding 

type. For instance, the same type of verbicle/particle 
compatibility checking (where applicable) takes place. 
Thus some acceptable inputs are 

"Zap row 3 into row 6." 
"Zap into column 4 the second column." 

and some intentionally rejected inputs are 

"Zap row 5." [missing operand] 
"Zap row 5 from row 6 . "  [wrong verbicle] 

8. S y s t e m  Behavior  

The sentence processing capabilities of the system 
will be indicated in this section by demonstrating its 
ability to handle paraphrases and by describing an 
experiment in which it was used by paid subjects to 
solve problems. 

8.1 Syntac t ic  Breadth  

To demonstrate the variety of the syntax handled 
by the system, fifty-five paraphrases are given below 
for the sentence 

"Double the first row in matrix 1." 

These paraphrases are not all exact in that some of 
them omit reference to matrix 1, assuming context 
makes it clear, others entail side effects, such as the 
creation of a label, etc. This set gives only a small 
fraction of all the possible paraphrases that can be 
processed, but it is representative. The typical time 
required for complete processing of each sentence is 
two seconds on the PDP-11/70.  

The first set of paraphrases demonstrates some 
variations on the qualifier. 

1. "Double the first row of matrix 1." 
2. "Double the first row which is in matrix 1." 
3. "Double the first row that appears in matrix 1." 
4. "Double the first tow that matrix 1 contains." 
5. "Double the first row matrix 1 contains." 

The matrix reference can also appear as a classifier 

6. "Double the first matrix 1 row." 

or if context indicates the matrix reference, it can be 
omitted. 

7. "Double the first row." 
8. "Double row 1." 

A row may be referred to by the values it contains. 

9. "Double the first row that contains a positive or 
a nonpositive number." 

10. "Double the row that contains the first entry of 
matrix 1." 

11. "Double the row in which 
the first entry of matrix 1 appears." 

12. "Double the first row in which there is 
a positive or a nonpositive number." 
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13. "Double  the row containing the first entry 
of column 1." 

14. "Cons ider  column 2. 
Consider  the first entry  in it. 
Double the row which contains that  entry ."  

Rows may  be thought  of  as sets of entries. 

15. "Double  the entries of  row 1." 
16. "Double  the elements  in row 1." 
17. "Double  the row 1 entries."  
18. "Double  the row 1 numbers ."  

The next several sentences illustrate some quantifiers. 

19. "Double  all the entries of row 1." 
20. "Double  each entry in row 1." 
21. "Double  every entry in row 1." 
22. "Double  each one of the entries in row 1." 

Assume the row has 5 members .  

23. "Double  the first five entries of matrix 1." 

Some rows may be located poSitionally. 

24. "Double  the top row."  

Suppose there are four rows in the matrix. The first 
row can be found by counting up f rom the bot tom.  

25. "Double  the fourth row f rom the bo t tom."  
26. "Double  the fourth f rom the bo t t om  row."  
27. "Double  the fourth f r o m  bo t tom row."  
28. "Double  the fourth f rom the last row."  

General i ty  of ordinal processing allows for some rather  
strange sentences.  

29. "Double  the first one row."  
30. "Double  the first row f rom the top ."  

Row 1 can be located with respect  to other  rows. 

31. "Double  the row in matrix 1 corresponding to 
row 1 in matrix 2." 

32. "Double  the row in matrix 1 which corresponds 
to row 1 of matrix 2." 

One can use multiple clauses by labelling or focusing 
at tent ion in one clause and then using it in the second 
clause. 

33. "Consider  row 1 and double it." 
34. "Cons ider  row 1. Double  it." 
35. "Consider  row 1. Double  that  row."  
36. ~ "Consider  and double row 1." 
37. "Cons ider  row 1. 

Double  the row considered by  the 
last command ."  

38. "Cons ider  row 1. 
Double  the row the last command  considered."  

39. "Cons ider  matrix 1 and double its first row."  
40. "Cons ider  rows 2, 3 and 4. 

Double  the other  row."  

41. "Cons ider  row 1 of matrix 2. 
Double  the row in matrix 1 corresponding to it." 

Users may access entities by naming them. 

42. "Call  row 1 x. Double  x." 
43. "Call  row 1 x. Double  row x." 
44. "Call  row 1 x. Double  it." 
45. "Call  row 1 x. Double  the x row."  
46. "Call  the first entry  x. Double  the x row."  

The "backup"  command  will undo the calculation of 
previous commands.  

47. "Double  row 1. Clear  it. Backup."  

Other  imperat ives can be used to achieve the result of  
"double" .  

48. "Add  row 1 to itself." 
49. "Add  row 1 to row 1." 
50. "Mult iply row 1 by  2." 
51. "Divide row 1 by 0.5."  
52. "Divide 0.5 into' the first row."  
53. "Add the entries in row 1 to themselves ."  

Finally, noun result groups may  be used. 

54. "Put  the product  of  2 and row 1 into row 1." 
55. "Subtract  the negative of  row 1 f rom 

that  row."  

There  are, of course, many  paraphrases  which are 
not  current ly  recognized by  N L C .  Some examples  
include sentences with superfluous words or phrases: 

1. " P L E A S E  double row 1." 
2. "Double  the V E R Y  first row of matrix 1." 
3. "Double  the first BUT N O T  T H E  

S E C O N D  row."  

certain unimplemented  noun-resul t  formats:  

4. "Put  twice row 1 into row 1." 
5. "Put  row 1 times 2 into row 1." 

and verbs taking more  than 2 operands:  

6. "Add  row 1 to itself, putt ing the result 
into row 1." 

8.2 Some Observat ions of Performance 

In April  of  1979, twenty- three  students in a first 
course in programming at Duke were paid to be sub- 
jects in an exper iment  on the system. Each subject  
was left  alone in a room with the display terminal  and 
given a short  tutorial to read, a few simple practice 
exercises to do, and a problem to solve. No verbal  
in teract ions  were  al lowed be tween  exper imente r  and 
subject except  those related to the administrat ion of 
the test. Typical  times required to complete  the tuto-  
rial, the exercises, and the prob lem were 35, 15, and 
50 minutes,  respectively. In the prob lem solving ses- 
sions, the subjects typed a total  of  1581 sentences,  81 
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percent of which were processed immediately and 
correctly. Approximately half of the remaining 19 
percent were rejected because of system inadequacies, 
and the other half were rejected because of errors in 
user inputs. This experiment is described in [5] by 
Biermann, Ballard, and Holler, with an analysis of the 
types of errors that were made. Also included in the 
experiment was a test of the subjects' ability to do the 
same problems in the programming language from 
their course, PL/C.  These results are discussed in [5], 
too. 

Some specific observations that have come out of 
the experiment and other usages of the system are as 
follows: 

1. The vocabulary of over 300 words is nearly ade- 
quate for a reasonable class of problems. Only 
eight words were typed during the experiment 
which were not available in the system. Howev- 
er, any casual user who attempts to push the 
system capabilities significantly will quickly find 
many unimplemented words. 

2. Some of the implemented words have inade- 
quate definitions. For example, NLC will proc- 
ess "the entry corresponding to x" but not "the 
corresponding entry". The latter form is more 
difficult because the item to be corresponded to 
is not explicit. 

3. The variety of the syntactic structures which are 
processed is approximately as good as indicated 
by the experiment: About 70 to 90 percent of a 
typical user's inputs will be handled by the par- 
ser. 

4. The error messages for the system are inade- 
quate. 

5. The processor for quantification needs to be 
redesigned. We notice for example that NLC 
processes "Double EACH entry in the first col- 
umn" but not "Double the first entry in EACH 
column." In the former case, the first column is 
found and the matrix computer doubles its en- 
tries in one operation. In the later case, the 
definitions of "entry 't , "first",  " the" ,  and 
"double" must be invoked in that order for ev- 
ery column. 

9. Compar i son  With Other W o r k  

A number of projects in automatic programming 
propose to have a user converse about a problem in a 
completely natural manner, using problem dependent 
vocabulary, and largely omitting discussion of data 
structures and coding details. Examples of such work 
have been described by Balzer[2,3], Biermann[4], 
Green[13,14], Heidorn[16,17,18,19], and Martin et 
a1.[23]. Inputs to these systems typically include a 

collection of fragments about the program to be gener- 
ated, in which case the system must perform consider- 
able induction and synthesis to produce an output. 
While the long term goals of the NLC project are sim- 
ilar to those of these other projects, the method of 
research is somewhat different. Whereas many pro- 
jeets attempt to tackle problems associated with sever- 
al levels of cognition at once, NLC attempts to begin 
with a reliable sentence-by-sentence processor and to 
add facilities slowly while reducing demands on the 
u s e r .  

Many of the research efforts in natural language 
processing have been associated with information re- 
trieval from data base systems (Codd[9], Harris[15], 
Hendrix et a1.[20,21], Petrick[25], Plath[26], Sim- 
mons[31], Thompson & Thompson[34], Waltz[35,36], 
and Woc~ds[39]). Most of the inputs for these systems 
are questions or simple imperatives such as "list all of 
the ..." Top level sentence syntax for these systems 
may have more variety than NLC. At the noun group 
level, however, NLC appears to have more extensive 
capabilities. This is due to the need in the NLC envi- 
ronment to conveniently refer to objects or sets of 
objects on the basis of their properties, geometrical 
location, operations performed upon them, etc. 

Concerning world modelling, a system which bears 
some resemblance to NLC is SOPHIE by Brown and 
Burton[8]. Their system allows natural language inter- 
action with a simulator for an electric circuit. 

In the artificial intelligence literature, there is much 
emphasis on (1) artificial cognitive abilities, (2) induc- 
tion mechanisms, (3) problem solving facilities, and 
(4) mechanisms for dealing with context and sequence. 
Future work on NLC will move in the direction of 
adding such facilities, but in its current state the sys- 
tem works more like an interpreter for English in the 
style of programming language interpreters than like a 
"thinking" machine. Thus the mechanisms described 
in Bobrow & Collins[7], Cullingford[10], Minsky[24], 
Schank[2g,29,30], Winograd[37], and others for vari- 
ous kinds of cognition and problem solving are, for the 
time being, largely without counterpart in NLC. The 
philosophy of this project has been to build from the 
bottom, attempting to solve the least difficult, though 
still challenging, problems first. 

10. Conclusion 

Natural language programming has seemed in re- 
cent years to be a rather remote possibility because of 
the slow progress in representation theory, inference 
theory, and computational linguistics. The NLC sys- 
tem is designed to compensate partially for the weak- 
ness of current technology in these areas by presenting 
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the user with.a good envi ronment  and with some well- 

designed linguistic facilities. All of the quoted phrases 

and sentences  in this paper  and the Append ix  have 

been run on the system except  for the " i f"  construc-  

tions in Section 7. Current  efforts  are aimed at the 

development  of a number  of f low-of-control  semantics 

facilities for handling various types of control  struc- 

tures and definitions of new vocabulary  items. 

Appendix:  A Natural Language Program and Its 

PL/ I  Equivalent 

The following "p ivot"  routine uses a computat ional  

technique described in Gallie and Ramm[12]  and gives 

an example of a nontrivial  usage of the system. 

"Display a 4 by 5 matrix and call it tes tmat ."  

"Fill the matrix with random values."  

"Choose  an entry and call it p ."  

"Def ine  a method to pivot  tes tmat  about  p."  

"Choose  an entry not in the p row and not in 

the p column and call it q." 

"Compu te  the product  of  the entry which cor- 

responds to q in the p row and the entry 

which corresponds to q in the p column."  

"Divide the result by  p and subtract  this result 

f rom q." 

"Repea t  for  all other  entries not in the p row 

and not in the p column."  

"Divide each entry except  p in the p row by p 

and negate those entries,"  

"Divide each entry except  p in the p column 

by p."  

"Put  the reciprocal of p in*o p."  

"End  the definit ion." 

The P L / I  equivalent program as given in [12] is as 

follows: 

EXCHANGE: 

PROCEDURE(MATRIX,PIVROW,PIVCOL); 

DECLARE (MATRIX(*,*),PIVOT) FLOAT, 

(PIVROW,PIVCOL,ROWS,COLMNS,I,J) 

FIXED BINARY; 

/* DETERMINE NUMBER OF ROWS 

AND COLUMNS */ 

ROWS = HBOUND(MATRIX,I); 

COLMNS = HBOUND(MATRIX,2); 

/* NAME THE PIVOT ELEMENT */ 

PIVOT = MATRIX(PIVROW,PIVCOL) ; 

/* APPLY THE "RECTANGLE RULE" */ 

DO I = I to PIVROW-I, 

PIVROW+I TO ROWS; 

DO J = I TO PIVCOL-I, 

PIVCOL+I TO COLMNS; 

MATRIX(I,J) = MATRIX(I,J) 

- MATRIX(I,PIVCOL) * 

MATRIX(PIVROW,J) / PIVOT; 

END; 

END; 

/* CHANGE THE OLD PIVOT ROW */ 

DO J = I TO PIVCOL-I, 

PIVCOL+I TO COLMNS; 

MATRIX(PIVROW,J) = 

- MATRIX(PIVROW,J) / PIVOT; 

END; 

/* CHANGE THE OLD PIVOT COLUMN */ 

DO.I = I TO PIVROW-I, 

PIVROW+I TO ROWS; 

MATRIX(I,PIVCOL) = 

MATRIX(I,PIVCOL) / PIVOT; 
END; 

/* CHANGE THE PIVOT */ 

MATRIX(PIVROW,PIVCOL) = I / PIVOT; 

END, EXCHANGE; 
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