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A generalization of the notion of ATN grammar, called a cascaded ATN (CATN), 
is presented. CATN's permit a decomposition of complex language understanding 
behavior into a sequence of cooperating ATN's with separate domains of responsibility, 
where each stage (called an ATN transducer) takes its input from the output of the 
previous stage. The paper includes an extensive discussion of the principle of factoring 
- -  conceptual factoring reduces the number of places that a given fact needs to be 
represented in a grammar, and hypothesis factoring reduces the number of distinct 
hypotheses that have to be considered during parsing. 

1. Introduction 

ATN grammars,  as presented in Woods  (1970),  
are a fo rm of augmented  pushdown store automata ,  
augmented to carry a set of register contents  in ad- 
dition to state and stack information and to permit  
arbi trary computat ional  tests and actions associated 
with the state transitions. Conceptually,  an A T N  
consists of a ne twork of states with connecting arcs 
be tween them. Each arc indicates a kind of con- 
st i tuent that  can cause a t ransi t ion be tween  the 
states it connects.  The states in the ne twork  can be 
conceptually divided into "levels" corresponding to 
the different  const i tuents  that  can be recognized.  
Each such level has a start  state and one or more 
final states. Transit ions are of three basic types,  as 
indicated by three different types of arc. A W R D  
(or CAT)  transit ion corresponds to the consumption 
of a single word f rom the input string, a JUMP 
transit ion corresponds to a transit ion f rom one state 
to another  without  consuming any of the in.put 
string, and a PUSH transi t ion cor responds  to the 
consumpt ion  of a phrase  parsed by  a subordinate  
invocation of some level of the network to recognize 
a constituent.  

A T N ' s  have the advantage  of being a class of 
au tomata  into which ordinary contex t - f ree  phrase  
s tructure and "augmen ted"  phrase  s t ructure  gram- 
mars have a s t raightforward embedding,  but  which 
permit  various t ransformat ions  to be per formed to 
produce grammars  that  can be more efficient than 
the original. Such t ransformat ions  can reduce the 
number  of states or arcs in the grammar  or can re- 

duce the number  of alternative hypotheses  that  need 
to be explicitly considered during parsing. (Some 
t ransformat ions  tend to reduce both,  but  in general 
there is a t radeoff  be tween  the two).  Both kinds of 
efficiency result f rom a principle that  I have called 
" fac to r ing" ,  which amounts  to merging c o m m o n  
parts  of a l ternat ive paths in order  to reduce the 
number  of al ternat ive combinat ions  explicitly enu-  
merated.  The former  ("conceptua l  fac tor ing")  re- 
suits f rom factoring common  parts  of the grammar  
to make the grammar  as compact  as possible, while 
the latter ("hypothes is  fac tor ing")  results f rom ar- 
ranging the g rammar  so a s t o  factor  common  parts  
of the hypotheses  that  will be enumera ted  at parse 
time. 

Concep tua l  factor ing p romotes  ease of human  
comprehension of the g rammar  and should facilitate 
learning of grammars  by  machine. Hypothes is  fac- 
toring promotes  efficiency of run time execution. In 
this paper,  I will present  a generalization of the no- 
tion of A T N  grammar,  called a cascaded A T N  or 
CATN,  that  capitalizes fur ther  on the principle of 
factoring in a manner  similar to serial decomposi t ion 
of finite state machines.  A C A T N  consists of  a 
sequence of ATN transducers each of which takes its 
input f rom the output  of the previous. An A T N  
transducer  is an ATN that  includes among its ac- 
tions an output  opera t ion  ( " T R A N S M I T " )  which 
can be executed on arcs to generate  elements of an 
output  sequence.  Such an A T N  cascade gains a 
factoring advantage f rom merging common  compu-  
tations at early stages of the cascade. 
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Cascaded ATN's  are analogous to serial decom- 
position of finite state machines and carry many of 
the advantages of such decomposit ion into the do- 
main of more general recognit ion automata.  The 
normal decomposi t ion of natural  language descrip- 
tion into levels of  phonology,  lexicon, syntax, se- 
mantics, and pragmatics can be viewed as a cascade 
of ATN transducers - one for each of the individual 
levels. Viewing natural language understanding as 
parsing with such a cascade has computat ional  ad- 
vantages and also provides an efficient, systematic 
f ramework  for  character izing the relationships be- 
tween different levels of analysis due to conceptual  
factoring. The factoring advantages of cascade de- 
compositions can thus serve as a partial explanation 
of why such a componential  description of natural 
language understanding has arisen. 

2. Factoring in A T N ' s  and Phrase St ructure  
Grammars 

As discussed above,  the principle of factoring 
involves the merging of common parts of alternative 
paths through an ATN or similar structure in order  
to minimize the number of combinations. This can 
be done either to reduce the size of  the grammar or 
to reduce the number  of alternative hypotheses con- 
sidered at parse time. Conceptual factoring attempts 
to reduce the size of the grammar by minimizing the 
number  of places in the grammar where the same or 
similar consti tuents are recognized. Frequent ly  such 
factoring results from "hiding" some of the differ- 
ences be tween two paths in registers so that the 
paths are otherwise the same and can be merged. 
For  example, in order  to represent  number  agree- 
ment  between a subject and a verb, one could have 
two distinct paths through the grammar - one to 
pick up a singular subject and correspondingly in- 
fleeted verb, and one to pick up a plural subject and 
its verb. By keeping the number  of the subject in a 
register, however,  one can merge these two paths so 
there is only one push to pick up the subject noun 
phrase and one push to pick up the main verb. 

In other  cases, conceptual  factoring results f rom 
merging common initial, final, a n d / o r  medial se- 
quences of paths across a consti tuent  that are not  
the same, but which share subsequences. For  exam- 
ple, an interrogative sentence can start with an aux- 
iliary verb fol lowed by the subject  noun phrase, 
while a declarative can start with a noun phrase 
followed by the auxiliary. In either case, however,  
the subsequent  const i tuents  that can make up the 
sentence are the same and the grammar paths to 
recognize them can be merged. Moreover ,  in either 
case there can be initial prepositional phrases before  
either the subject or the auxiliary and again these 
can be merged. When one begins to represent  the 
details of supporting auxiliaries that are present in 

interrogatives but not  in declaratives, the commonal-  
ities these modalities have with imperatives, and the 
interaction of all three with the various possibilities 
following the verb (depending on whether  it is 
transitive or intransitive, takes an indirect object  or 
complement ,  etc.),  this kind of factoring becomes 
increasingly more important.  

In ordinary phrase structure grammars (PSG's) ,  
the only mechanism for capturing the kinds of merg- 
ing discussed above is the mechanism of recursion or 
"pushing" for consti tuent  phrases. In order  to cap- 
ture the equivalent of the above merging of com- 
monali ty be tween declaratives and interrogatives,  
one would have to treat  the subject-auxiliary pair as 
a consti tuent  of some kind (an organization that is 
linguistically counter-intuit ive).  Alternatively, one 
can capture such factoring in a PSG by emulating an 
ATN - e.g., by constructing a phrase structure rule 
for every arc in the A TN  and treating the states at 
the ends of the arc as constituents. Specifically, an 
arc f rom s l to s2 that picks up a phrase p can be 
represented by a phrase structure rule sl  - ->  p s2, 
and a final state s3 can be expressed by an "e rule" 
s3 - ->  e (where e represents the "empty  string").  
In either case, one is forced to introduce a "push" 
to a lower level of recursion where it is not neces- 
sary for  an ATN,  and to introduce a kind of 
"const i tuent"  that is motivated solely by  principles 
of factoring and not  necessarily by any linguistic 
criteria of const i tuenthood.  

A phrase structure grammar emulating an ATN 
as in the above construction will contain all of  the 
factoring that the ATN contains, but  will not make a 
distinction between the state name and the phrase 
name. Failure to make this distinction masks the 
intuitions of state transition that lead to some of the 
ATN optimization transformations and the concep-  
tual understanding of  the opera t ion of ATN's  as 
parsing automata.  The difference here is a lot like 
the dif ference be tween the way that LISP imple- 
ments list structure in terms of an underlying binary 
branching "cons"  cell and the way that it is appro- 
priate to view lists for  conceptual  reasons. For  ex- 
actly the same kinds of reasons, it is appropriate to 
think of certain sequences of consti tuents that make 
up a phrase as sequences of  immediate constituents 
ra ther  than as a r ight-recursive nest  of binary 
branching phrases. 

From the perspective of hypothesis factoring, the 
distinction made in an ATN between states that can 
be recursively pushed to and states that merely mark 
intermediate stages in the recognition of a constitu- 
ent sequence permits a distinction between that part  
of a grammar that  is essentially finite state (and 
hence amenable  to certain kinds of opt imizat ion)  
and that which is inherently recursive. This permits 
such operations as mechanically eliminating unneces- 
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sary recursion and performing finite-state optimiza- 
tions procedures on what remains - see Woods 
(1969). These transformations can result in signifi- 
cant gains in parsing efficiency by trading recursion 
for iteration wherever possible and by minimizing 
the non-determinism (by hypothesis factoring) in the 
resulting networks. 

The construction given above for emulating an 
ATN with a PSG can, of course, emulate the same 
hypothesis factoring optimization that an ATN per- 
mits, but its ability to do so depends critically on the 
use of e-rules for the final states. Most parsers for 
PSG's, on the other hand, do not permit e-rules, 
probably because they are highly non-deterministic 
when applied bottom-up. Unfortunately, the con- 
struction that transforms a PSG with e-rules into an 
equivalent PSG with no e-rules would give up some 
of the factoring achieved in the ATN emulation 
when applied to final states that are not obligatorily 
final (a common occurrence in natural language 
grammars). Every transition coming into such a 
state, would effectively be duplicated - once leading 
to an unambiguously final state (sl --> p), and 
once forcing subsequent consumption of additional 
input (sl --> p s2). It thus appears that as a class 
of formal automata, ATN's permit a greater flexibili- 
ty in capturing hypothesis factoring advantages than 
do conventional PSG's. 

As we have discussed them, the principles of 
conceptual factoring and hypothesis factoring have 
been motivated by different measures of cost. Nev- 
ertheless, many of the factoring transformations that 
can be applied to ATN's gain a simultaneous effi- 
ciency in both dimensions. This is not always the 
case however. In particular, the transformations 
that optimally minimize nondeterminism for left-to- 
right parsing tend to cause an increase in the num- 
ber of states and arcs in a grammar (unless fortui- 
tous regularity causes a collapsing). Since a major 
characteristic of the ATN grammar formalism is that 
it permits the expression of mechanical algorithms 
for performing hypothesis factoring transformations, 
it is probably appropriate for grammar writers to 
devote their attention to conceptual factoring as a 
grammar writing style, while leaving to various 
grammar compilation algorithms the task of trans- 
forming the grammar into an efficient parsing en- 
gine. However, in absence of such compilers, it is 
always possible within the ATN formalism for a 
grammar writer to incorporate explicit hypothesis 
factoring structure into his grammar and to make 
tradeoffs between the two factoring principles. 

3. N o t a t i o n  

ATN's are characterized as automata by specify- 
ing their computations in terms of instantaneous 
configurations and a transition function that com- 

putes possible successor configurations. As such, 
they can admit a variety of superficial syntaxes, 
without changing the essential nature of the automa- 
ton. In this paper, I will use a notation that is 
somewhat more concise and slightly more conven- 
ient than the original ATN syntax specified in 
Woods (1970). The major change will be a formal 
distinction between a phrase type and an initial state 
for recognizing a phrase. (The original ATN speci- 
fication used the initial state to serve double duty.) 
Moreover, I will permit a given phrase type to have 
several distinct initial states and several phrase types 
to share some initial states. This permits somewhat 
greater flexibility in factoring and sharing common 
parts of different phrase types. The pop arcs of 
these ATN's will indicate the phrase type being pop- 
ped, and a given state can be a final state for several 
phrase types. A BNF specification of the syntax I 
will use is given, in Figure 1 on the next page. 

A simple example, using the conventions given in 
the figure, is the following grammar: 

(m (accepts q) 
(sl (initial q) 

('a s2 (setr n 1))) 
(s2 

(q s3 (setr n !(1 + !c))) 
(J s3)) 

(s3 
('b s4)) 

(s4 
(pop q !n))) 

This grammar is equivalent (minus augmentation) to 
the phrase structure grammar: q--> 'a 'b ,  q-->'aq'b.  
It parses a string of n a's followed by n b ' s  and 
(through its augments) pops the number n. 

4. C a s c a d e d  A T N ' s  

The advantages of having semantic and pragmatic 
information available at early stages of parsing natu- 
ral language sentences have been demonstrated in a 
variety of systems, i Ways of achieving such close 
interaction between syntax and semantics have tra- 
ditionally involved writing semantic interpretation 
rules in 1-1 correspondence with phrase structure 
rules (e.g., Thompson, 1963), writing "semantic 
grammars" that integrate syntactic and semantic 
constraints in a single grammar (e.g., Burton, 1976), 
or writing ad hoe programs that combine such infor- 
mation in unformalized ways. The first approach 
requires as many syntactic rules as semantic rules, 
and hence is not really much different from the se- 

1 There are some compensating disadvantages if the 
semantic domain is more complex than the syntactic one, but 
we will assume here that immediate semantic feedback is 
desired. 
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<ATN> -> (<machinename> (accepts <phrasetype>*) <statespec>*) 

;an ATN is a list consisting of a machine name, a 

;specification of the phrasetypes which it will 

;accept, and a list of sta£e specifications. 

<statespec> -> (<statename> {optional <initialspec>} <arc>*) 

<initialspec> -> (initial <phrasetype>*) ;indicates that this state 

;is an initial state for the indicated phrgsetypes. 

<arc> -> (<phrasetype> <nextstate> <act>*) ;a transition that 

;consumes a phrase of indicated type. 

-> (<pattern> <nextstate> <act>*) ;a transition that consumes 

;an input element that matches a pattern. 

-> (J <nextstate> <act>*) ;a transition that jumps to a new 

;state without consuming any input. 

-> (POP <phrasetype> <form>) ;indicates a final state 

;for the indicated phrase type and specifies 

;a form to be returned as its structure. 

<nextstate> -> <statename> 

<pattern> -> ( <pattern>* ) 

-> <wordlist> 
-> & 

-> <form> 

-> <<classname>> 

;specifies next state for a transition. 

;matches a list whose elements match 

;the successive specified patterns. 

;matches any word in the list. 

;matches any element. 

;matches any subsequence. 

;matches value of <form>. 

;matches anything that has or inherits 

;the class name as a feature. 

<wordlist> -> {'<word> I '<word>, <wordlist>} 

<act> -> (transmit <form>) ;transmit value of form as an output. 

-> (setr <registername> <form>) ;set register to value of form. 

-> (addr <registername> <form>) ;add the value of form to the 

;end of the list in the indicated register (assumed 

;initially NIL when the register has not been set). 

-> (require <proposition>) ;abort path if proposition is false. 

-> (dec <flaglist>) ;set indicated flags. 

-> (req <flagproposition>) ;abort path if proposition is false. 

-> (once <flag>) ;equivalent to (req (not <flag>)) (dec <flag>). 

<flagproposition> -> <boolean combination of flag registers> 

<proposition> -> <form> ;the proposition is false if the value 

;of the form is NIL. 

<form> -> !<registername> ;returns contents of the register. 

-> '<liststructure> ;returns a copy of a list structure 

;except that any expressions preceded by ! are 

;replaced by their value and any preceded 

;by @ have their value inserted as a sublist. 

-> !c ;contents of the current constituent register. 

-> !<liststructure> ;returns value of list structure 

;interpreted as a functional expression. 

Figure 1. BNF specif icat ion of  A T N  syntax, 

mantic  grammar approach (this is the convent ional  
way  of  defining semant ics  of  programming lan- 
guages) .  The second  approach has the tendency  to 
miss generalities and its results do not  automatical ly  
extend to n e w  domains.  It misses  syntactic generali-  
ties, for example,  by having to duplicate the syntac-  
tic information necessary to characterize the deter- 
miner structures of  noun phrases for each of  the 
different semantic  kinds of  noun phrase that can be 

accepted.  Likewise ,  it tends to miss semantic  gener- 
a l izat ions  by repeating the same semant ic  tests in 
various places in the grammar w h e n  a given seman-  
tic const i tuent  can occur in various places in a sen- 
tence.  The third approach,  of  course,  may  yield 
some  level o f  operat ional  system, but does  not  usu- 
ally shed any light on  h o w  such interaction should 
be organized,  and is difficult to extend. 
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Rusty  Bobrow ' s  RUS parser  (Bobrow, 1978) is 
the first parser  to my knowledge to make a clean 
separat ion be tween  syntactic and semantic  specifica- 
tion while gaining the benefi t  of early and incremen- 
tal semantic filtering and maintaining the factoring 
advantages  of an ATN.  I t  can be character ized as a 
cascade of two ATN' s  - one doing syntactic analysis 
and one doing semantic  interpretat ion.  Such a cas- 
cade of A T N ' s  provides a way to reduce having to 
say the same thing multiple t imes or in multiple 
places,  while providing eff iciency comparab le  to a 
"semant ic"  g rammar  and at the same time maintain-  
ing a clean separat ion be tween  syntactic and seman- 
tic levels of description. I t  is essentially a mecha-  
nism for permitt ing decomposi t ion of an ATN gram- 
mar  into an assembly of cooperat ing ATN's ,  each 
with its own characteristic domain of responsibility. 

As ment ioned previously, a C A T N  is a sequence 
of ordinary ATN' s  that  include among the actions 
on their arcs an operat ion T R A N S M I T ,  which trans-  
mits an e lement  to the next  machine in the se- 
quence. The first machine in the cascade takes its 
input f rom the input sequence, and subsequent  ma-  
chines take their input f rom the T R A N S M I T  com- 
mands of the previous ones. The output  of the final 
machine in the cascade is the output  of the machine 
as a whole. The only feedback  f rom later stages to 
earlier ones is a filtering function that  causes paths 
of the nondeterminist ic  computa t ion  to die if a later 
stage cannot  accept  the output  of an earlier one. 

The concept ion  of cascaded A T N ' s  arose f rom 
observing the interaction be tween the lexical retriev- 
al componen t  and the "pragmat ic"  g rammar  of the 
H W I M  speech understanding system (Woods et al., 
1976). The lexical retrieval componen t  made use of 
a ne twork that  consumed successive phonemes  f rom 
the output  of an acoustic phonet ic  recognizer and 
grouped them into words. Because of phonological  
effects  across word boundaries,  this ne twork could 
consume several  phonemes  that  were par t  of the 
transi t ion into the next  word before  determining 
that  a given word was possibly present.  At  certain 
points, it would return a found word together  with a 
node in the network at which matching should begin 
to find the next word (essentially a state remember -  
ing how much of the next word has already been 
consumed due to the phonological  word  boundary  
effect) .  This can be viewed as an A T N  that  con- 
sumes phonemes  and transmits words as soon as its 
has enough evidence that  the word is there. 

The  lexical retr ieval  componen t  of H W I M  can 
thus be viewed as an ATN whose output  drives an- 
other  ATN. This led to the concept ion of a com- 
plete speech understanding system as a cascade of 
ATN's ,  one for  acoustic phonet ic  recognition, one 
for  lexical retrieval (word recognit ion),  one for syn- 
tax, one for semantics,  and one for  subsequent  dis- 

course tracking. A predecessor  of the RUS parser  
(Bobrow, 1978) was subsequently perceived to be  
an instance of a syn tax / semant ics  cascade, since the 
semantic  structures that  it was obtaining f rom the 
lexicon to filter the paths  through the g rammar  
could be viewed as ATN's .  Hence ,  practical solu- 
tions to problems of combinator ics  in two different 
problem areas have independent ly  mot ivated compu-  
ta t ion s tructures  that  can be viewed as cascaded 
ATN's .  It  remains to be seen how effectively cas- 
cades can be used to model  acoustic phonetic  recog- 
nition or to t rack discourse structure,  but  the possi- 
bilities are intriguing. 

4.1 Spec i f ica t ion  of a C A T N  C o m p u t a t i o n  

As with ordinary A T N ' s  and other formal  auto-  
mata ,  the specif icat ion of the computa t ion  of a 
C A T N  will consist of  the specification of an instan- 
taneous "conf igurat ion"  of the au tomaton  and the 
specification of a transit ion function that  computes  
possible successor configurations for any given con- 
figuration. Since C A T N ' s  are nondeterministic,  a 
given configurat ion can in general have more than 
one successor  conf igurat ion and may occasional ly 
have no successor. One way to implement  a parser  
for C A T N ' s  would be to explicitly mimic this formal  
specification by  implementing the configurations as 
data structures and writing a program to implement  
the transit ion function. Just as for ordinary ATN's ,  
however,  there are also many  other  ways to organize 
a parser,  with various efficiency tradeoffs.  

A configurat ion of a C A T N  consists of a vector  
of state configurat ions of the successive machines,  
plus a pointer  to the input string where  the first 
machine is about  to take input. The transit ion func- 
t ion (nondeterminist ic)  operates  as follows: 

I. A distinguished register C is set (possibly 
nondeterministically) to the next input ele- 
ment  to be consumed and the pointer  in the 
input string is advanced.  Then  a stage 
counter  k is set to 1. 

2. The state of  the kth machine in the se- 
quence is used to determine a set of  arcs 
tha t  may  consume  the cur rent  input  
(possibly following a sequence of JUMPs,  
PUSHes ,  and POPs  to reach a consuming 
transit ion).  

3. Whenever  a transmission opera t ion TRA N S-  
MIT  is executed by  the stage k machine,  the 
stage k +  1 configurat ion is act ivated to proc-  
ess that  input, and the stage k +  1 componen t  
of the conf igurat ion vec tor  is upda ted  ac- 
cordingly. If  the k + l  stage cannot  accept  
the t ransmi t ted  structure,  the conf igurat ion 
is aborted.  
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As for  a conventional  ATN,  the fo rmat  of  the 
state configurations of  the individual machines con- 
sist of  a state name,  a set of  registers and contents ,  
and a stack pointer  (or  its equivalent).  2 Each ele- 
ment  of  a stack is a pair  consisting of a PUSH arc 
and a set of  register contents.  Transit ions within a 
single stage are the same as for  ordinary ATN's .  

4.2 Uses of C A T N ' s  

A good illustrative example  of  the use of cascad- 
ed A T N ' s  for  natural  language understanding would 
be a three stage machine consisting of a first stage 
that  pe r fo rms  lexical analysis,  a second stage for  
syntact ic  analysis,  and a third stage for  semant ic  
analysis. The  lexical s tage A T N  would consume 
let ters f rom an input sequence  and pe r fo rm word 
identif icat ion,  including inflectional  analysis,  tense 
ext rac t ion  (e.g., B E E N  = >  P A S T P A R T  BE) ,  de- 
compos i t ion  of contract ions ,  and aggregat ion of 
compound  phrases,  producing as its ou tput  a se- 
quence of words with syntactic categories and fea-  
ture values. This machine could also per form cer- 
tain s tandard bo t tom-up ,  locally determined parsings 
such as construct ing noun phrase  s t ructures  for  
proper  nouns and pronouns.  Ambigui ty  in syntactic 
class, in word grouping, and in homographs  within a 
syntact ic  class can all be taken care of by the non-  
determinism of this first stage machine (e.g., " saw"  
as a past tense of "see"  vs present  tense of  "saw"  
can be t reated by two different  al ternative outputs  
of  the lexical stage).  

This lexical stage machine is not likely to involve 
any  recursion,  unlike o ther  stages of  the cascade,  
but  does use its registers to pe r fo rm a cer ta in  
amount  of  buffer ing before  deciding what  to trans-  
mit  to the next  stage. Because stages such as this 
one will reach states where  they have essential ly 
finished with a particular construct ion and are ready 
to begin a new one, a convenient  act ion to have 
available on their arcs is one to reset  all or a speci- 
fied set of  registers to their initial empty  values 
again. Such register clearing is similar to that  which 
happens  on a push to a lower level, except  that  here 
the previous values need not be saved. The use of a 
register clearing action thus has the desired effect  
without  the expense of a push. 

The  second stage machine  in our  example  will 
pe r fo rm the normal  phrase grouping functions of  a 
syntact ic  g r ammar  and produce  T R A N S M I T  com-  
mands  when it has identified const i tuents  that  are 
serving specific syntactic roles. The third stage ma-  
chine will consume such const i tuents  and incorpo-  

2 For example, Earley's algorithm for context free 
grammars (Earley, 1968) replaces the stack pointer with a 
pointer to a place where the configuration(s) that caused the 
push can be found. A similar technique can be used with 
ATN grammars. 

rate them into an incremental  interpretat ion of the 
ut terance (and may also produce differential  likeli- 
hoods for  al ternat ive in terpre ta t ions  depending on 
the semant ic  and pragmat ic  consis tency and plausi- 
bility of the partial  interpretat ion).  

The advantage  of having a separate  stage for  the 
semant ic  in terpre ta t ion ,  in addi t ion to providing a 
clean separa t ion  be tween  syntact ic  and semant ic  
levels of descript ion and a more domain- independent  
syntactic level, is that  during the computat ion,  dif- 
ferent  partial semantic  interpretat ions that  have the 
same initial syntactic structure share the same syn- 
tactic processing. In a single "semant ic"  ATN,  such 
different  semantic  interpretat ion possibilities would 
have to make  their own separate  syn tac t i c / semant ic  
predict ions with no sharing of the syntact ic  com- 
monal i ty  be tween  those predict ions.  Cascaded  
A T N ' S  avoid this while retaining the benef i t  of 
strong semantic  constraint.  

4.3 Benef i ts  of  C A T N ' s  

The decomposi t ion of a natural  language analyzer  
into a cascade of A T N ' s  gains a " fac tor ing"  advan-  
tage similar to that  which A T N ' s  themselves provide 
with respect  to ordinary phrase structure grammars.  
Specifically, the cascading allows alternative config- 
urations in the later stages of  the cascade to share 
common  processing in the earlier stages that  would 
otherwise have to be done independently.  That  is, if 
several semantic  hypotheses  can use a certain kind 
of const i tuent  at a given place, there need be only 
one syntactic process to recognize it. 3 

Cascades also provide a simpler overall  descrip- 
tion of the acceptable  input sequences than a single 
monoli thic  A T N  combining  all of  the informat ion  
into a single ne twork  would give. That  is, if any 
semantic  level process can use a certain kind of con- 
stituent at a given place, then there need be only 
one place in the syntactic stage A T N  that  will recog-  
nize it. Conversely,  if there are several syntactic 
contexts  in which a const i tuent  filling a given se- 
mantic  role can be found,  there need be only one 
place in the semantic  A T N  to receive that  role. (A 
single ne twork  cover ing the same facts  would be 
expected  to have a number  of  states on the order  of  
the product ,  ra ther  than the sum, of the numbers  of  
states in the individual stages of  the cascade.)  

3 One might ask at this point whether there are situa- 
tions in which one cannot tell what is present locally without 
"top-down" guidance from later stages. In fact, any such 
later stage guidance can be implemented by semantic filter- 
ing of syntactic possibilities. For example, if there is a given 
semantic context that permits a constituent construction that 
is otherwise not legal, one can still put the recognition trans- 
itions for that construction into the syntactic ATN with an 
action on the first transition to check compatibility with later 
stage expectations (e.g., by transmitting a flag indicating that 
it is about to try to recognize this special construction). 
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An additional advantage provided by the factor-  
ing commonal i ty  introduced by the cascade is that  
the resulting localization of early stage activities in a 
single place provides a single place for a given lin- 
guistic fact  to be learned, ra ther  than independent  
versions of  essentially the same fact  having to be 
learned in different semantic contexts.  Moreover ,  
the separat ion of the stages of the cascade provides 
a decomposi t ion of the overall problem into individ- 
ually learnable skills. These facts may be significant 
not  only for  theories  of human  language develop-  
ment  and use, but also for computer  systems that  
can be easily debugged and can contr ibute  to their 
own acquisition of improved language skill. 

The above facts suggest that  the traditional char- 
acter izat ion of natural  language in terms of pho-  
nemes,  syllables, words,  phrases,  sentences,  and 
higher level pragmatic  constructs may be more deep-  
ly significant than just a convenience for  scientific 
manipulation. 

4.4 Parsing w i th  C A T N ' s  

Conceptually,  each A T N  in a cascade produces 
(nondeterministically) a sequence of inputs for  the 
next stage, which the next stage then parses. One 
could implement  a computer  parsing algorithm for a 
cascade in several ways. For  example,  the individual 
components  of a configuration could be incremented 
as described above,  with the later stages advanced 
as soon as the earlier stages t ransmit  something.  
Alternat ively,  the later stages could wait  until the 
earlier stages have comple ted  a pa th  through the 
input sequence before  they begin to process  the 
output  of the earlier stages. The latter approach has 
the advantage of not performing second stage analy- 
sis on a pa th  that  will eventually, fail at  the first 
stage. On the other hand, it will result in the first 
stage occasionally continuing to extend partial paths 
that  could already be rejected at the second stage. 

In general, one can envisage an implementat ion 
in which the second stage can wait  until the first 
stage has proceeded some distance past  the current  
point before  commencing its operations.  This could 
either be done by having a fixed " lookahead"  par-  
ameter  which would always run the first stage some 
number  of transmissions ahead of the second stage, 
or one could have a command  that  the first stage 
could execute  when it considered its current  pa th  
sufficiently likely to make it worthwhile for the sec- 
ond stage to opera te  on it. In fact,  to handle both  
of these cases, one could simply have the first stage 
buffer  its information in registers until it is ready for 
the next stage to work on it and only then per form 
the transmissions. For  the remainder  of this paper,  I 
will assume that  this is done and that  the next stage 
begins to operate  as soon as its input is t ransmitted.  

As presented above,  an instantaneous configura- 
tion of a C A T N  is essentially a vector  of configura- 
tions for  the individual stages of the cascade. Let  us 
call the individual configurations IC ' s  and the vector  
as a whole a configurat ion vector.  Since any two 
configurat ion vectors  having the same IC in some 
componen t  will per form the same computa t ion  for  
that  c o m p o n e n t  and will only differ  when  they 
transmit  to a subsequent  stage, a parsing implemen- 
tat ion should merge such common components  and 
only pe r fo rm their  processing once. This can be 
achieved by represent ing the set of  ins tantaneous  
configurations of the C A T N  not simply as a set of 
IC vectors,  but as a tree structure (TC)  that  merges 
the common  initial parts of those vectors.  That  is, 
each vector  representing an instantaneous configura- 
t ion of the C A T N  will be represen ted  by a pa th  
through the TC f rom root to leaf, with the succes- 
sive nodes in the path  being the successive IC ' s  of 
the vector. It  is s t ra ightforward to t ransform the 
transition function that computes  successor configu- 
rat ion vectors  into a transit ion function that  com- 
putes successor T C ' s  f rom a given TC. 

The TC representat ion has the characteristic that  
as long as the common  left parts of configuration 
vectors  are merged,  the computa t ion  of a given IC 
at some level k will be done only once. To fully 
capitalize on the factoring advantages  of this repre-  
sentation,  one would like to assure that  the common 
initial parts  of  alternative configuration vectors  re- 
main merged. This happens automatical ly for alter- 
native stage k + l  computa t ions  that  s tem f rom a 
common  stage k configuration. However ,  it is possi- 
ble for  two distinct k stage configurat ions,  which 
have gone their separate  ways and accumulated their 
own trees of higher level configurat ions,  to come 
again to essentially the same k-stage configuration 
via different paths. This can happen  especially with 
lexical stage computat ions  when one word is recog- 
nized and the parsing of the next word begins. To 
provide maximum factoring, it is thus necessary to 
check for such cases and merge subtrees when the 
IC ' s  at their heads are found to be equivalent. 

When the k-stage network happens  to be a finite 
state machine  (i.e., makes  no use of  registers or  
recursion) the detect ion of a duplicate configurat ion 
is easy due to the simple equivalence test  (i.e., 
sameness of s t a t e ) .  When it is a general ATN,  the 
detect ion of the conditions for merging are some-  
what  more involved (due to the register contents) ,  
and the likelihood of such merging being possible 
tends to be less. Hence  for such stages the cost of 
checking for duplication may not be worth  the bene-  
fit. Interestingly,  it appears  that  the early stages of 
phonetic,  lexical, and simple phrase recognit ion do 
have essential ly finite state t ransi t ion ne tworks ,  
while those of the later stages, where such sharing is 
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not  as important  or as likely, is more  apt  to require 
non-f ini te-s tate  register activities. 

4.5 Comparison of Cascading wi th  Recursion 

Some interesting questions arise when consider-  
ing the nature of cascaded A T N ' s  as au tomata .  For  
example,  since a number  of activities that  are nor- 
mally done with recurs ion in A T N ' s  and o ther  
phrase structure grammars  can be done by separate  
stages of  a cascade,  one is led to wonder  about  the 
relationship be tween  cascading and recursion. That  
is, instead of arcs of  an A T N  pushing for a consti tu- 
ent of a certain kind, occasionally a cascade can be 
set up to find const i tuents  of that  kind and transmit  
them to a later stage of the cascade as units. A 
part icular  example ,  which has occasional ly been  
p roposed  informally,  would be for  an early stage 
processor  to group the input words into basic noun 
phrases,  verb groups, etc. and for a later stage to 
take such units as input. Clearly this is a task nor-  
mally pe r fo rmed  by recursion. One might then won-  
der whether  cascading was just another  form of re- 
cursion, or somehow equivalent to it. 

It  turns out that  cascading is in some respects  
weaker  than  recursion,  and in other  respects  it is 
more  powerful.  In the next section, I will give an 
example of a context  free cascade that  can recognize 
a language that  cannot  be recognized by  a single 
context  free ATN.  Hence,  cascading clearly increas- 
es the power  of a basic A T N  beyond  that  provided 
by recursion alone. On the other hand, one is con- 
siderably more  constrained in the way he can use 
cascading when writing a g rammar  than he is in the 
use of  recursion.  For  example ,  indefini tely deep 
recursion can be used to recognize  noun phrases  
inside preposi t ional  phrases inside noun phrases,  etc. 
When setting up a cascade of two A T N ' s  to per form 
such grouping, the earlier cascade cannot  model  this 
directly,  but  instead would have to recognize 
"e lementa ry"  noun phrases consisting of, say, deter-  
miner,  adjectives,  and head noun,  and would use 
looping transitions to accept  subsequent  preposi t ion-  
al phrases and relative clauses. Moreover ,  this stage 
of the cascade could not content  itself solely with 
the noun phrases ,  but  would also have to t ransmit  
the o ther  e lements  of  the sentence  (auxiliaries, 
verbs,  adverbs,  particles,  etc.)  so that  the later  
stages of the cascade will have a chance to see them. 
That  is, a stage of a cascade provides a level of  de- 
scription of the entire input sequence in terms of a 
sequence of units to be t ransmit ted to a later stage 
of analysis. Hence  it appears  that  cascading is a 
fundamenta l ly  different  operat ion that  interacts with 
recursion and overlaps some of its functions in inter- 
esting ways. 

Ano the r  interest ing compar i son  arises be tween  
cascaded A T N ' s  and the kinds of  t rans format ions  

used in a t ransformat ional  grammar.  If  one a t tempts  
to use a t ransformat ional  g rammar  by  successively 
applying its t ransformat ions  in reverse to the surface 
string, one repeatedly  performs a parti t ioning of the 
input into a sequence of units as described above.  
Tha t  is, in applying a reverse t r ans fo rmat ion  to a 
syntax tree in the course of  a reverse t ransforma-  
tional analysis, the operat ion of matching the pat-  
tern description of the t ransformat ion  to the syntax 
tree amounts  to finding a level at which the syntax 
tree can be "cu t"  yielding a sequence  of units 
matching the sequence of e lements  in the pat tern  of 
the rule. This is exactly the kind of parti t ioning of 
the input into units that  is done by  a stage of a cas- 
caded ATN.  Moreover ,  the result of the t ransfor-  
mat ion  is expressed by  a " r igh t -hand-s ide"  of  the 
t ransformat ional  rule, which may  reorder  the input 
sequence into a slightly modif ied sequence,  and may 
copy an element  several  times, modify  it in certain 
restr ic ted ways,  or even delete it (under  suitable 
restrictions).  In exactly the same way, a stage of a 
cascade can transmit  the units that  it has picked up 
in a different  order  than it found them, can dupli- 
cate a unit, drop a unit, insert a constant ,  and trans-  
mit units that  are modif ied f rom the fo rm in which 
they were recognized.  In short,  a stage of an A T N  
cascade can mirror  the activity of  any given t rans-  
format ional  rule. 

However ,  t r ans format iona l  rules arc normal ly  
considered to apply in a cycle governed by  the num- 
ber  of  levels of  embedding  of clauses in the sen- 
tence, so that  the number  of  successive t ransforma-  
tions applied can be unbounded.  By contrast ,  in an 
A T N  cascade,  there are only a finite n u mb er  of 
stages in the cascade. Moreover:  successive trans-  
format ions  in a t ransformat ional  g rammar  are free to 
discard everything that  was learned about  the struc- 
ture of the input in the matching of the previous 
t r ans fo rmat ion  and there is no const ra in t  that  the 
manner  in which a subsequent  t ransformat ion  ana- 
lyzes the result of the previous t ransformat ion  bear  
any relationship to the level of descript ion imposed 
on the input by  that  previous t ransformat ion.  In an 
A T N  cascade, there is an assumed sequence of prog- 
ressive aggregation and higher level o f  description 
implied by the t ransduct ion of informat ion to suc- 
cessive stages of the cascade,  with each stage per-  
ceiving the input in the terms that  it was described 
by  the previous. Thus,  the A T N  cascade seems to 
impose additional constraints  on the process of lan- 
guage recognit ion that  are not imposed by  an ordi- 
nary t ransformat ional  grammar.4 

4 These constraints tend to promote the efficiency of 
the processing. See Woods (1970) for a discussion of some 
of the inherent inefficiencies of an ordinary transformational 
analysis. 
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Figure 2. ATN cascade for {anbncn: n_> 1 } 

Experience with ATN grammars for  natural lan- 
guage indicates that  everything that a t ransforma-  
tional grammar of natural  language does can be 
done with even a single ATN,  so there does not  
appear to be any need for more than a finite number 
of stages of a cascade. On the other  hand, the argu- 
ments presented here indicate that one may be able 
to obtain a simpler description of an overall set of 
facts with a cascade than with a single monolithic 
ATN. It is possible, therefore,  that a cascade of 
ATN's  corresponds to a more appropriate formaliza- 
tion of the underlying facts of language that gave 
rise to the original model of transformational gram- 
mar than does the conventional  conception. 

4.6 A S imple  Formal  Example  

As a simple example of what a cascade of ATN's  
can do, I will give here a simple ATN cascade that 
without the use of registers can recognize the set of 
strings of the form n a's followed by n b's followed 
by n c's, for arbitrary n. This language is a tradi- 
tional example of a language that is not context  free 
but  is context  sensitive. However ,  it does happen to 
be specifiable as the intersection of two context  free 
languages. Capitalizing on this fact, it is possible to 
represent  it by a cascade of two "contex t  f ree"  
ATN's  (i.e., ATN's  which do not use registers to 
check constraints be tween different  consti tuents) .  
This cascade effectively computes the intersection of 
two ways of viewing the input. The two ATN's,  
whose structure is illustrated in Figure 2 above 
(where " t rans"  in the figure is short for  " t ransmit") ,  
can be written as follows: 

(ml  (accepts q) 
(sl  (initial p q) 

('a s2)) 
(s2 

(p s3) 
( 'b s4 (transmit 'b)))  

(s3' 
( 'b s4 (transmit 'b)))  

(s4 (pop p) 
( 'c s5 (transmit 'c)))  

(s5 (pop q) 
( 'c s5 (transmit ' c ) ) ) )  

(m2 (accepts r) 
(sl  (initial r) 

( 'b s2)) 
(s2 

(r s3) 
( 'c s4)) 

(s3 
('c s4)) 

(s4 (pop r)))  

These two machines correspond to the grammars: 

q - ->pc* ,  p - ->ab ,  p - ->apb  
and 

r - ->bc ,  r - ->b rc  

with augmentation such that the b's and c's accepted 
by the first grammar are passed through to be ac- 
cepted by the second. The first stage checks that 
the number  of a's and b's agree and accepts any 
number of o's, while the second stage requires that 
the b's and c's agree. 

4.7 A n o t h e r  Example  - S y n t a x  and S e m a n t i c s  

Another, less trivial example is the use of an 
ATN cascade to represent  syntactic and semantic 
knowledge sources of a language understanding sys- 
tem. We will give here a brief example illustrating a 
kind of cascading of syntactic and semantic knowl- 
edge similar to that done by R, Bobrow in his RUS 
parser (Bobrow, 1978). A rough characterization of 
this parser is that as the syntactic component  works 
its way through a noun phrase, it accumulates infor- 
mation about  the determiner  structure and initial 
premodifiers of the head noun until it encounters  the 
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head noun (i.e., takes a path corresponding to a 
hypothesis that it has found the head noun). At 
that point, it begins to transmit information to the 
semantic stage, starting with the head noun, and 
followed by the premodifiers of that noun. Then it 
continues to pick up post modifiers of the noun 
phrase, transmitting them to the semantic stage as it 
encounters them, and finally, when it hypothesizes 
that the noun phrase is completed, it transmits the 
determiner information. 

In a similar way, in the parsing of a clause, the 
syntactic ATN can wait until it has encountered the 
main verb before transmitting that verb followed by 
its subject and any fronted adverbial modifiers. Af- 
ter that it can transmit subsequent post verbal ele- 
ments as they are encountered, and finally transmit 
any governing modality information such as tense, 
aspect, and any governing negations. 

The example presented here, is a constructed one 
to illustrate the principle, and does not directly rep- 
resent the analyses by the RUS grammar. The ex- 
ample implements a subset of the semantic rules of 
the airline flight schedules system of Woods (1967), 
a predecessor of the LUNAR system (Woods et 
a1.,1972). I will give here only a fragment of the 
semantic stage ATN that understands designators 
(i.e., noun phrases). It assumes that the syntactic 
stage operates as outlined above and, in particular, 
that it transmits prepositional phrases by transmit- 
ting the preposition and then transmitting its ob jec t .  
It also assumes that the syntax stage transmits a 
signal QUANT when it has hypothesized the end of 
a noun phrase and is about to transmit the determin- 
er and number information. One could alternatively 
transmit prepositional phrases as single units to be 
tested for syntactic and semantic features. I will 
assume that a pattern such as <flight> on a con- 
suming arc is matched by a constituent that receives 
the indicated semantic marker (e.g., FLIGHT). 

(m2 (accepts designators) 

(dl (initial designator) 
(J d2 (setr vbl (getnewvar))) 

(d2 
('flight,'plane d/flight (setr head 'FLIGHT)) 
('jet d/flight (setr head 'FLIGHT) 

(addr mods '(JET !vbl))) 
('airline d /head (setr head 'AIRLINE)) 
('city,'town d/head (setr head 'CITY)) 
('airport,'place d/head (setr head 'AIRPORT)) 
('time d/t ime) 
('fare d/fare)  
('owner,'operator d/owner))  

(d/owner 
('of d/owner-of))  

(d/owner-of 
(<flight> d/head (addr quants (getquant lc)) 

(setr head '(OWNER !c)))) 

(d/fare 
('(rood first-class),'(mod coach), 

'(mod stand by) d/fare  
(require (not class)) 
(setr class It)) 

( '(mod one-way), '(mod round-trip) d/fare 
(require (not type)) 
(setr type !c))) 

( 'from d/fare-from (require (not from))) 
('to d/fare-to (require (not to))) 
(J d /head (require class type from to) 

(setr head '(FARE !from lto !type !class))) 

(d/fare-from 
(<place> d/fare  (addr quants (getquant !c)) 

(setr from !c))) 

(d/fare-to 
(<place> d/fare  (addr quants (getquant lc)) 

(setr to !c))) 

(d/t ime 
('(mod departure) d/ t ime (require (not op)) 

(setr op 'DTIME)) 
( '(mod arrival) d/ t ime (require (not op)) 

(setr op 'ATIME)) 
('of d/ t ime-gf (require (not flight))) 
('in,'at d/time-prep (require (eq op 'ATIME))) 
( 'from d/time-prep (require (eq op 'DTIME))) 
(J d /head (require op flight place) 

(setr head '(!op !flight !c)) 
(* e.g., (setr head 

'(ATIME AA-57 CHICAGO)))))  

(d/t ime-of 
(<flight> d/t ime (addr quants (getquant !c)) 

(setr flight !c))) 

(d/time-prep 
(<place> d/t ime (addr quants (getquant lc)) 

(setr place !c))) 

(d/head 
( 'QUANT d/quant  (setr mod [(packmods)))) 

(d/flight 
('from d/flight-from (require (not from))) 
('to d/flight-to (require (not to))) 
( '(mod first-class),'(mod coach), 

'(mod jet-coach) d/flight (once class) 
(addr mods '(SERVCLASS !vbl It))) 

( '(mod jet) d/flight (addr mods '(JET !vbl))) 
( '(mod propeller) d/flight (once equip) 

(addr mods '(NOT (JET !vbl)))) 
(J d/flight (once connect) (require from to) 

(addr mods ' (CONNECT !vbl 
!(sem from) l(sem to)))) 

( 'QUANT d/quant  (setr mod l(packmods)))) 
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(d/flight-from 
(<place> d/flight 

(addr quants (getquant !c)) 
(setr from !c)) 

(d/flight-to 
(<place> d/flight 

(addr quants (getquant !c)) 
(setr to !c))) 

(d/quant 
( 'some,'a, 'any,'NIL d/some) 
('each,'every d/each) 
('all d/all) 
('not d /not)  
('the d/ the)  
('this,'that d/this) 
('which,'what d/what)  
(<integer> d/integer)) 

(d/some 
('sg,'pl d /end 

(setr quant ' (FOR SOME !vbl / 
!head : !mod ; DLT)))) 

(d/each 
('sg d/universal)) 

(d/all 
('pl d/universal)) 

(d/universal 
(J d /end (setr quant ' (FOR EVERY !vbl / 

!head : !mod ; DLT))))  

(d/not  
('some d/not-some) 
('every d/not-every) 
('all d/not-all)) 

(d/not-some 
('sg,'pl d /end 

(setr quant '(NOT (FOR SOME !vbl / 
!head : !mod ; DLT)))))  

(d/not-every 
('sg d/not-universal)) 

(d/not-aU 
('pl d/not-universal)) 

(d/not-universal 
(J d /end 

(etr quant ' (NOT (FOR EVERY !vbl / 
!head : !mod ; DLT)))))  

(d/the 
('sg d /end (setr quant ' (FOR THE !vbl / 

!head : !mod ; DLT))) 
('pl d /end (setr quant ' (FOR EVERY !vbl / 

[head : !mod ; DLT))))  

(d/this 
('sg d /end  (setr quant ' (FOR THE !vbl / 

!head : !mod ; DLT))))  

(d/what  
('sg d /end (setr quant 

' (FOR THE !vbl / !head : 
(AND !mod DLT) ; 

(PRINTOUT !vbl)))) 
('pl d /end (setr quant 

' (FOR EVERY !vbl / !head : 
(AND !mod DLT) ; 

(PRINTOUT !vbl))))) 

(d/integer 
('sg,'pl d /end (setr quant 

' (FOR !integer MANY !vbl / 
!head : !mod ; DLT))))  

(d/end 
(pop <designator> (sem-quant 

!quants !quant !vbl)))) 

In the above fragment grammar, the state dl  gets 
a variable name to use for the recognized designa- 
tor, the state d2 dispatches on the head noun of the 
designator phrase to various states that recognize 
modifiers that are particular to the head. Eventually 
the path for each such head will lead to the state 
d/quant,  where the determiner and number informa- 
tion is picked up to build the quantifier that governs 
this designator. This transition is triggered by the 
transmission of the flag QUANT from the syntax 
stage, signaling that the noun phrase is complete and 
the determiner information is coming. Notice how 
the quantification information that is common to 
most designators is shared. 

The transitions that follow d/quant  implement 
most of the d-rules in Woods (1967), which is itself 
a subset of the d-rules of the LUNAR system 
(Woods, et al,. 1972; Woods, 1978b). The function 
sem-quant is a function that performs the sem-quant 
pair manipulations described in Woods (1978b). 
These manipulations usually embed the quantifier 
just constructed (lquant) into the quantifier nest 
accumulated from below (!quants) to form a quanti- 
fier nest to be passed up to a higher clause. They 
then return the variable name (!vbl) as the "sem" to 
be inserted into an argument position in the higher 
structure. The function getquant, here, is a function 
that extracts the quant from a structure that has 
been passed up from below and is used to accumu- 
late the quantifier nest (quants) from subordinate 
designators that should dominate the quantifier of 
the designator being interpreted. The function 
packmods examines the contents of the register 
mods and returns an AND of the roods if there are 
several, a single mod if there is only one, and T if 
there are none. 
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5. Conc lus ions  

In Woods (1977, 1978a; Woods & Brachman, 
1978), I discussed the general principle of hypothe-  
sis "factoring" - i.e., the coalescing of common parts 
of alternative hypotheses in such a way that an in- 
cremental hypothesis development and search algor- 
ithm does not need to individuate and consider sepa- 
rate hypotheses until sufficient information is pres- 
ent to make different predictions in the different 
cases. The most common example of factoring is 
the well-known device called "decision trees" in 
which a cascade of questions at nodes of a tree 
leads eventually to selection of a particular "leaf" of 
the tree without explicit comparison to each of the 
individual leaves. If the tree is balanced, then this 
leads to the selection of the desired individual leaf in 
log(n) tests rather than n tests, where n is the num- 
ber of leaves of the tree. Another  example of fac- 
toring is the mechanism in ATN grammars whereby 
common parts of different phrase structure rules are 
merged, thereby saving the redundant processing of 
common parts of alternative hypotheses. 

One can think of an ATN as a generalization of 
the notion of decision tree to permit recursion, loop- 
ing, register augmentat ion,  and recombinat ion of 
paths. In this paper, I have discussed a generaliza- 
tion of ATN's ,  called cascaded ATN' s  (CATN's ) ,  
which provides additional factoring capabilities. A 
C A T N  consists of a sequence of ATN transducers 
the later stages of which take input from the output 
of the previous stage. ATN cascades permit a de- 
.composition of complex language understanding 
behavior into a sequence of cooperating ATN's  with 
separate domains of responsibility. 

Of specific interest are two distinct notions of 
the concept  of factoring that are beginning to 
emerge from such considerations. One, which I 
have called hypothesis factoring, provides a reduction 
through sharing in the number of distinct hypotheses 
that have to be explicitly considered during parsing. 
The other, which I will call conceptual factoring,  
provides a reduction through sharing in the number 
of times or places that a given fact or rule needs to 
be represented in a long-term conceptual structure 
(e.g., the grammar). The former promotes efficien- 
cy of "run-t ime" parsing, while the latter promotes 
efficiency of grammar maintenance and learning. In 
many cases conceptual factoring promotes hypothe-  
sis factoring, but this is not necessarily always the 
case. 
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