American Journal of Computational Linguistics wicroriche 75:

THE DERIVATICN OF ANSWERS FROM LOGICAL FORMS
[N A QUESTION ANSKERING SYSTEM

FRED J DAMERAU

IBM Corporation
Thomag J Watson Research Genter
Yorktown Heights, New York

ABSTRACT

This paper describes how the process of genervting a
response given an vunderlying representation for an input
question 1s accomplished in the Transformational Question
Answering (TOA) system under development at IBM Researth, a
brief description of which is given.

The last formal level of representation in this system is
called a logical form. The bhasic method of evaluation of
logical forms is the generate and test" paradigm, used, for
awample in the LUNAR system (Woods, Kaplan and Nash-Webber,
1972), although the'implementation muyst be fairly efficient
in order ta be practical on a moderate size data base. The
basi¢ idea is to Kkeep track of the egquivalence relationships
between the variables in the logical forh and associated
constants, and use this information to derive from the data
base the extensions of the predicates contained in the
logical fozrm. R similar proposal has been made hy
Reiter(1976). The logical forms and the process Rhy which
candidate sets are computed from these forms @re described
in c¢onsidevable detail. We believe it should not be
necessary for a computational 1linguistics proiect to
describe operations beyond the last level of formal
representation in order f9xr an outsider to understand
exactly how a system operates sufficiently well that he.can
predict its behavior. Although we have attempted to achieve
that, we still have a considerable wayv te go.

3

am

INTRODUCTION

This paper describes how the process of generating a
response given an underlying representaion fox an input
question is accomplished ain the Transforpational Question
Answering (TRA) systenm under continuing development at IBM
Research. T®A has been, operatiecnal in a laboratory wmode for
several years. The system 1is now installed in the office of
the planning department of a small city where it is used to
access the file of land use for each parcel of land in the
city, (about 10,000 parcels with 40 pieces of data for each
parcel). The sysgtem 1is untergoing modifications and

improvement prior to a formal evaluation stage.

SYSTEM OVERVIEW

A generaliced flow diagram of thé T@A system is given in
Figure 1. Input, from a display device or typewriter-1like
terminal, is fed to the preprocessor, which segments the
input character string anto words and pexrforms lexical
lookRup. The process of lookup is complicated somewhat by a
provision for synonym and phrase replacement. Words like
"car" and "automobile" are changed to "auto™, and strings

like M"gas station" are fromen into single lexical units.

PAGE

| Transformational parserl <-——-String fransformations
L mmmmmm) Vel N . . S k) e B S WA S vl W, S G W J

|
| List of trees
I

rm-—-—a L Uty s S Tk Bl T ke e e w e Pl -‘

|Context free parser| <——=——- Context free phrase
b 4 structure rules

{ List of surface trees

[P - v —— Y S — . W VP S A S h-—-‘

|Transformational parset| <——-—-Inverse transformational
grammar

ITransformational parser{ <——-—Data base specific

b e e e e e e transformational rules
|

I' Query structure(s)
|

7 T S S ey e e v W ST i s e 1
Semantic interpreter| <——--Semantic rules
_______ ———d ,
¥ !
I Logical form(s)
' |
r — " |
[Evaluatox]| < —-——Data base
L 4
|
|
Ansuex

PAGE
The output from the lexical looKup 1s a last of trees,
each tree. containing part of svecch information, sSyntactaic
features and semantic features, as reguired A descraption.

of the lexical component, now obsalete an xts detail but
still valid ain main outlane as given in Robansan(i1¢73). The
list of trees is input to & set of gtrang transformations.
described an Plath(1974). THhese transformationa ovperate on
adjacent lexicals items to deal with patierns of classaifaiers,
oxdinal numbers, stranded prepositaons, and the liRe. The
effect of this phase 1is to reduce the number of surface
parses and the amount of work done in the transformational
cycle. The zresulting list of trees 1s input to a context

free pagser, which produees a set of surface trees, each of

which 1s fed to the transformatianal recognicer,

The recognizer attempts to find an undexlvang structure
fox each surface tree, Plath(i1973). Typically only one of
a set of surface trees will zresult. in an underlyiny
structure. This structure itself 1s input onca again to the
transformational recogniczer, using a (small) set of grammar
rules tailored to a specific data base to produce a guery
structuzxe. Query structures are similar to underlying
structures in form, but reflec¢t €the paxrticular meanirg
constraints resulting from the foxrmat and ceontent of a given
data base. The query structure tree 1s processed by a

kKnuth-style semantic interpreter, Petzick (1977), producing

a logical form. A logical form can best be thought of, in

»

b

PAGE

our- context, as a retrieval expression. which is to . be
evaluated, producing an ansuwer to the English input query.
gince the major part of this paper is concerned with
processing logical forms, discussion of theix specifics will

be deferred until later

The process of ansuwer extraction from the data base is
acegmplished by a combinatien of LISP and PL/I programs,
descrihed below, and an experimental relational data base
management system called Relational Storage System (RSS)
(Astxahan, et al. 1976). The RSS provides the capability
to denerate a data base of n-ary relations, with indexes on
any field of the zrelation, and low-level access commands
like OPEN, NEXT, CLOSE, with appropriate parameters, to

retrieve information from such a data base.

All the processing modules are under the contxol of a
driver module, which maintains comméinication with the user,
calls the processors in the correct sequence, and tests for

errxors. BAn example of the progessing of a gquestion, with

the intexmediate outputs, is given in Figure 2.

In this example, the numbers 2945, 6535, 6635, 6975 are
the numbers of milliseconds .0f computer time used up to the
point shown, on an IBM §8S/370 Model 168. The structures
printed are a bracketted terminal string zrepresentation of

structures which are stored and manipulated as trees by the

'7‘

PAGE

what are the heights of the drug stores *?
294% SURFACE STRUCTURES:

(T(WH SOME) (THING X1)) BE (THE ((HEIGHT X4)
(OF (ThE ((DRUG_STORE 591) X7)))3)) ?7)

6535 UNDERLYING STRUCTURES:

1. (BD IDENTICAXL (THE.(X&% (¥ BD HEXIGHT X4
YTHE ((DRUG_STORE 591) X7)).BD ¥))):((WH SOME)
(THING X1)) BD)

6635 QUERY STRUCTURES:

1. (THE (X4 (¥ BD HEIGHT X4 (THE ((DRUG_STORE §j91)
X7)) BD *)))

6975 LOGICAL FORM:

(setx 'X4!
"{foratleast »1 'X44y
(setx "XR7
"(testfdt
r5971
"('LucC X7 '1976)
t=))
(testfct
X4
"('JSTOR Xu4u '1976)
=)))

7995 ANSHWERS:

NUMBER

STORIES
1976

70590001610
80100000710
80100000811
90430000910

- N

Figure 2

PAGE 9

processing programsi The nonterminal nodes of the tree,
together with +their associated complex featyrers, represent
muclhh additional infdrmation that is not shown here. The
numbexr 591 is a land use c¢ode which. in the data base,
indicates a drug store, and thé long numbexrs in Gthe answner

are the parcel identifiers, (ward-block~lot).

Fron this brief description, it should be apparent that
the TRA system, considered as a black box, is similar to
many others. In particular, thexe is a desifnated level of
meaning representation, the logical form, which is the last
"formal construct in the systenm. The remaining processing
necessary to dexive an ansuer and to format it for
presentation to a user is accomplished py an unstructured
set of computer programs. Tuwo separate issues arise as a
result: how efficiently can the logical form be evaluated
against & real data base, and to what extent do the
processing functions #further specify meaning, beyond +that

carried by the logical form?

EVALUATION OF LOGICAL FORMS

The basic method of evaluation of lpgical forms is the

"generate and test" paradigm used, for example, in the LUNAR

PRGE

system JiJoods Kaplard and Nash-Webbex, 1972). The simple
version of this paradigm, used by WNoods and implemented in
our €arly systems, inuolves checking pre-selected Jlists of
objects ox, in the worst case, all the objects Knoun to the
system, to see. if they satisfy. the query predicates. It is
computationally impractical except for small data bases.
Our current: yariant of this method is much more efficient.
The Dbasic idea is to Keep +track of the equivalence
relatiénships between the variables in +the logical form and
associated constants, and use this information to derive the
extensions ¢f the predicates contained in the logieal form
from tne aata base, AR simjlaxr-provosal has been made by
Reitex(1976) We do not houever, maka such extensive use of

query transformations as Reiter outlined.

Logical forms

In order to describe the ewaluation process, 1t is
necessary to describe the logical form in samewhat mozxe
detail, refexrring for an example again to Figure 2. In the
first place, except ror the set-zorming function setx, which
takes as arguments a variable name and a proposition, all
other well-formed formulas are composed of predicates and
their arguments. Some of the predicates are perfectly

crdinazxy like greatérthan. Some are quantifiers, like

foratleast, which takes a limit argument n, an argument

10

PAGE 11

which is a set, and a proposition p, and which is true just
in case n or more elements of the specified set satisfy the
proposition p. Othexs are special application predicates
like parcel, uwhich is true Just in ease its single argument

is a parcel identifiex.

The main data base related predicate is named testfct.
Referring to Figure 2, it is seen that festfgt has three
arguments. The first is a constant oxr a variable which will
be replaced by a constant before evaluation, the second
argument is a list whose members determinie a particular
data base value, and the third is an operxator specifying the
relation which must hold betueen the zirst argument.and the

data base value determined by the second argument.

The data base can be thought of as a collection oF binary

relations, all sharing the same Kkey. In our applicatioh,
this is the parxrcel identification ¢r: account number, by
which any piece ©f p2Qpexrty ¢an be identified. The list

which is the second argument of testfct c¢consists of the
relation name and the Key which identifies @ value in the
relation. The Kkey actually has +tuwo parts. The second part
is a yedr, nouw unused, although since the files in whic¢h we
are currently interested are changed on a yearly basis, uwe
anticipate maintaining and accessing historical data. The
first part of the Key is the account number mentioned above.

In general, the second argument of testfct must be

PAGE 12

sufficient to identify a unique binary relat¥ion and value in

that relation.

If the logical form is itsel}f a proposition the system
will answer eithexr "yes"™ oxr "no". If the logical foxrm has a

top level setx, the system will print the members of the set

satisfying the specified proposition, perhaps along with

some identifying information:

Simplifications

A number of simplifications c¢an be, and in part have been,

carried out on logical Hforms prior to evalbiation. Some

predicates, for example, are essentially empty for purposes

of evaluation, in that they always evaluate to true. As an
egxample, the predicate dollax. for dinformation fields
referring to taxes, is empty of meaning Yecause the

processor assumes that the contents of the taxes field arxe
always dollars. A slightly less obvious example of a
possible simplification c¢an be seen in Figure 2. The set
argument of the foratleast predicate <c¢ocntains no <free
variables. It is not necessary, therxrefore, to evaluate the
inner setx function for each evaluation of +the foratleast

predicate. Instead, the setx function is evaluated as soon

as the semantic dinterpreter has discovered that i1t has no
free variadbles, using the standard evaluation mechanism, and

the value, i.e., a set, is substituted feor the setxn

PAGE 113

axpression. Oour system performs simplifications of this
kind in 4its normal mode (although it can also delay all
evaluations yntil a comiplete form has been built), so that
the final logical form seen by the retrieval functions
during processing is wusually that shown in Figure 3, uhere
the innex setx has been replaced hy the satisfying set
viz the parcel identifiers of the set of drug stores.?
After all the applicagble simplifigations have been done, the

resulting form is passed to the evaluation function, EVALU.

The Pre—evaluator

It might seem that since the system has bheen written in
LISP, it would only be necessary to define the appropriate
functions and then call the regular LISFr evaluator, instead
of a special evaluator like EVALU. While this would be
possible, the difficulty with such an approach can readily
be seen by considering the embedded setx® in Figure 2. The
desired set of X7s is that set of parcel identifiexs fo
which the associated land use code is "591". testfet is a
predicate which is true for the appropriate X7s, but what is
the candidate set of X7s which should be tested? At woxrst,
the system might consider the set of all objects it Knous
about. As a bhetter choice, the system could infer Ffrom the
syntax of testfect that the candidates are all members of the

set of parcel identifiers, but still thexe are almost 10,000

PAGE 14

what are the heaghts ox the drug stores 7
2930 SURFACE STRUCTURES:

1. (((WH SOME) (THING X1)) BE (THE ((HEIGHT X&)
(OF (THE (UDRUG_STORE 591) X7)7)3)))

6500 UNDERLYING STRUCTURES:

1. ¢(BR IDENTICAL C(THE (X4 (¥ BY HEIGHT X4 (THE
((DRUG_STORE 591) X7)) BR %¥))) ((WH, SOME)
(THING %X1)) RBRD)

6599 QUERY STRUCTURES:

1T (THE ¢X4 (* BDp HEIGHT X4 (THE {{(DRUG_STORE 591)
X7)) BD *)))

7176 LOGICAL FORM:

(setxr 'Xb&
'(foratleast 1 'Xuy
(90430000910 80100000811 80100000710
70590001610
(testfct
Xt
('JSTOR Xuy 1976%
'=)))

7385 ANSWERS:

NUMBER
STORIES

1976

70590001610 1
80100000710 1
80100000811 2
90430000910 1

Figure 3
vf¥ those A much better approach is to attempt to compute

the extension of those predicates for which the variable

being seught 1s an argunent Again referxaing to Figure 2, a

PAGE 15

reasonable set (in fact the pertect set) of candidates for
X7 can be found by. looking in the data base for that set of
identifiers foxr which the land use code is 591 If the data
base is properly organized, such a search can be very zast

Not all predicates are so simple however. The remainder of

this section will describe in some detail hoew candidate sets

for more complicated predicates are ¥rived at. Once
candidate sets have been computed the EVALU function can
invoke *he LISP evaluator onv the logical form. The

alternative of including a candidate generatoxr in the setx
program and all the votential +top level predicates and then

aprlying the LISP EVAL function directly seems much less

attractive.

As a preliminary, notice that we need only insure that

candidate sets have been established for all the setx

variables in a logical form. This is so because, while each
quantifier has an associated variable, +the domain of that
quantifier is either given explicitly as a list of
constants, or implic¢itly by a.gsetx expression. Secondly.,
since the object of pre-evaluation is merely +to find
efficient, not nedesc~rily optimal, candidate sets <for the
Setx variables, we need not keep track of the structure of a
complex predicate. As an example, consider Figure 4, whicgh
is the logical form for the question,
"What drug stores are located in ward 2?7

The préddicate of the setx is "and", but for purposes o%

PAGE 16

(setx 'X2
'(and
(testfct
'591
*{T'LUC X2 '1976)
Y=)
(testfct

'%‘NARD X2 '19769
*=) Y)

Figure 4

determitning a candidate set we can considexr each term of the
"and" individually. Evaluation of +the form with a given
candidate set will ensure that a particular membex

satisfies both terms of the "and".

Operation of the pre-evaluation function. Pre-evaluation
is accomplished by a functioh EVALUA, which takes a logical
form, i.e., a setx expression or a proposition as its
arxrgument. It determines the type of form with which it is
dealing and calls an appropriate specialist routine If as
in the case of the "and" of Figure 4, the logical form being
considered c¢ontains more than one c¢omponent form, EVALUA
calls itself recursively. Consequently, pre—-evaluation is a
depth-first, left-to-rimht process. The Zfunction always

returns nil, all work beiny accomplished by changes to

global variables. Among these are a LISP variable which

PAGE 17

contains a list of all gsetx variables in the logical form, a
LISP variable which lists each query variable for which a
value has been found, and its value, and a LISP variable
which keeps track of the equality relationships which have
been discovered between gquery variables for which a value is

vet to be found.

Operation of the algorithm can be better understood by
considering somewhat more complicated examples than those

seen previously. When EVALUA is given the logical form of

What pwrcels have an area exceeding 550000
square feet ?

7524 LOGICAL FORM:

(setxr 'X2
'(and
(foratleast 1 'X39
(setx 'X5
"(testfct
X5
*('PARARER X2 '1976)
'=))
'(greatexthan ¥X39 '550000))
{parcel X2)))

Figure 5

Figure 5, it calls the setx specialist, which adds X2 to the

(null) list of set variables and the (null) list of query
variables, &and c¢alls EVALUA with +the associated setx

predicate, Yand”. BAs mentioned, this simply results in two

PAGE 18

calls to EVALUA, the first of whiech causes +the quantifierx
specialist to be invoked. (The second call, when made, will
not cause any change to the global lists of candidate values
for variables, since a candiadate set of all parcel
identifiers is not useful for purposes of retrieval.) X39
is added +to the list of query variabies, and the domain
argument of the quantifier is inspected. When this is seen

to. be an instance of setx rathexr than a list of constants,

two actions are taken. Notice that whatever +the domain, of
X39 ig, it is a subset (perhaps not a proper subset) of the
domain o¥ X5, i.e., the candidate set for X5 must jinclude at
least a¥l of the elements of X39. Further, any restrictions
which can be imposed on X39 can also be imposed on X5, since
~the proposition associated with the quantifier is the one to
be satisfied, and any candidate not meeting +this criterion
would be supertliuous. Thexrefore, wuwe ¢an 1) enter into the
list of variable zrelationships the information that for
purposes of the pre—-evaluator, X39 and X5 are equivalen and

2) call EVALUA once morxe with the setx associated with X5 as

an arxgument.

X5 is added to the 1ist of set variables, and
reinvocation of EVALUA with the setx predicate causes a call
to the specvialist for testfct. Since there are two variables
in testfct, X5 and X2, for which values are unknown, ascall
to the data base cannot yet be made. The instance of

testfet is placed.on a list of pending 1ata base c¢alls,

PAGE 19

preceded by the variablés which require values. (Each time a
value for a variable is f£ound, that list is inspected, and
any data base calls which can then be made are executed.)
Return is made to +the quantifier specialist, which calls
EVALURA with the predicate over whose arguments

quantification is.made, viz., greaterthan.

The specialist for numeric predicates, finding that one
argument is a variable and the other a constant, c¢auses a
shange in the variable list to show that X39 and
consequently X5 are greater than 550,000, A value 1like
">550,000" can be used by the data base component to narrow
its search just as well as a constant or list of constants,
and is therefore acceptable as the value of a candidate
list. These changes to the variable lists cause the list of
pending data base calls to be inspected and, since only one
variable is now unknown in the stacked testfct, a call to

the data base is made for those parcels with an area greatex

than 550,000 square feet.

The specialist for testfct instructs the data base search
routine to return as a value a 1list corresponding +to the
remaining variable in the forxrm, i.e., X2. In the present
example, +that is a 1list of parcel numbets, viz., those
parcels which have an area exceeding 550,000 square feet.

This list is then assigned as the valye of the candidate set

for X2.

PAGE 20

The stack of recursive calls to EVALUA will now unwind,
until a return is made to the evaluation function EVALU.
This function determines that candidate 1lists for all the
setx variables have been found, and oreates a hew 1list of
variable-candidate set pairs for use by the setx function
itself. Finaldly, EVALU ¢an call the LISP evaluator, with

the original logical foxrm as an argument.

The case of neqatives . The predicate "not", denoted in
pur system by not¥ to distinguish it from the LISP not,
presents special problems for the Kind of system outlined

above. X simple example of the difficulty c¢can be seen ain

What drug stores are not in traffic
=one 6 °?

5651 LOGICAL FORM:

(setx 'X3
'Cand
(notk¥
(tegstfct
'6 ‘l
'('"TRAFZ X3 '1976)
‘s))
{testict
'*591

*('LUC X3 '19876)
=)))

Figquxe 6

Figure 6, which corresponds to the question

"What dxrug stores are not located in traffic zone 6?2

PAGE 21

and variants thereof. ‘When the testfct specialist is given
the first half of the and in this £orm, along with
information that there is a dominating not*, it could in
principle generate a data base call, since there is only one
unassigned variable. The effect would be the zretrieval of
all parcel identifiers of parcels nbt located in +traffic
sone 6. This is a substantial fraction of the data' base, and
would require inqrdinate amounts of time and storage space
to handle Notice that the other half of the and will also
provide a candidate list for the variable X3, presumabiy
much smaller in size. It appears to be the case, fxom our
so far limited ewperience, that gquestions containing only a
single negated searxch c¢lause harxdly ever occur. The
evaluatoxr therefore puts a testfct call of this type on the
stack mentioned earlier, indexed by the variable(s)
corresponding +to the parcel identifier. When the second
half of the and of Figure 6 is processed, and a value found
for X3, the deferrxed testfct will be unstacked, resuPting in
a data base call, and causing a retrieval based on that list
of identifiexs rather +than on the negated value. This data
base search 1s necessary, since we must find the traffic

zones for the parcels contained in the candidate list.

This example is also an illustration of why, as was
mentioned above, the logical form as a whole must in general
be evaluated by the LISP evaluator. In this case, the

candidate set for X3 derived from the second clause of the

PRGE 22

and 1is a superset of the answer set uwhicn c¢an only be
dexived by evaluating the whole conijumection. Some
efficiencies could doubtless be gained rbhy sKipping
evaluation in those cages where 4t is unnecessazy, bhut that

is purely an implemgntation decision

The AotX of Figure 7 presents a different Kind of problem

How many banks have a height not exceeding
5 floors ?

7966 LOGICAN FORrRM:

(setx 'X1
'(quantit§ X1
(setxr 'X3
'(and
(not¥
(foratlcast 1 "Xu4b
(setx 'X6
"({testifct
X0
"('JSTOR X3 '1976)
L)
Y(greatexthan X45 '5)))
(testfct
61T «
"('LUC X3 '1976)
=)))))
Figuxe 7
from the previous example. Firstly, notice that the

negative must be passed inside the quantidfijier since the
alternative of f£inding all buildings greater than 5 stories

in height and then getting the complement set with respect

PACE 23

to- all buildings is extremely unattractive computationally.
in the second place, a search qualifier of "<= 5" does not
intuitively seem to ba much worse than "> 5", at least in
the absence of data base distributional statistics, One
might, therefore, gemerate & search with such a qualifier.
Our present system does this., although experience thay shouw
that all instances of testfet dominated by not¥ should be

deferred, as are the cases of*'"-=", for efficiency reasons.

Other specialists Most of the dimportant speceialist
routines in the pre-evaluator have already been mentioned.
There are a few others which should be noted. One is a
generator function which, given a predicatae, will produce
its extension. from a stored list. This featyre was heavily
used in our early system, which had a small data base, but
is currxently haxdly used at all, though it zremains
availdble., In prainciple, one could, given a predicate 1iMHe
"SCHOQL(X)Y, generate a list of schools. In the present
application, this would not be useful, but might in sone
other. The sole uses at present are a generator Ffor the
predicate RANK, for which a list of numbers from 1 to 100 is

produced, and for the predicate YEAR, which produces a list

of the numbers 1960 to 1985.

The proposition "(QUANTITY X s)" is trxue if x 'is equal ko
the cardinality of the set s: The associated specialist hkRs

the obvious function. of determining X when § is an instance

PAGE 2

of setx.

Equality between variables ¢an be inferred whexre the

domain of a quantified variable is aiven by agn instance of

setx, as was illustrated abeve. Certain predicates also
allow +this inference to he made . It is clear that
predicates like MEQUAL™, "SAMEREF™, (for "same reference"),
and "IDENTICAL" should belong to this class. Since

variables c¢an only refer to individuals. the predicate
"MEMBER" also is in this class, e.g., given (MEMBER X3 (SETX

cves J), a candidate set for X3 can be derxived by evaluating

the setx expression.

Further efficiency considexations. Tt has already been
noted that genexration f£rom instances of testfct with an
operator of "-=" are deferxed until enough information is
available to execute the query using a list o¢of parcel
identifiers. Some other steps have also been taken +to
reduce data bate access time and subsequent evaluation time
Foxr one thing, the semantic interpreter has a preferzred
orderaing Ffor instances of the predicate testfct. For
example, the relation "WARD" divides the pareels of the city
into 6 classes, while the relation "LUC" (Land Use Code)
divides the parcels inteo several hundred classes. If there
is no intrinsic reason for ordering the instances of testfct
differently, the one with "LUC" will occuwr earliex in the

logical form, (cf. Figure U). The pre—-evaluation specialist

4

PAGE 25

for testfct makes use of this ordering in tuo ways. I£ a
variable has been assigned a list of identifiers containing
fewer members than some threshold X, (x is currently set to
25, but can easily be changed), then a retrieval will always
be made using the list of identifiers rather than by a
constant compared. to data base values. In Figure 4, the
gsecond call to the testfct specialist will look up the ward
of the fourxr drug stores instead of finding the hundreds of
parcels in ward 2. In some instances, vparticularly for
relations like Land Use Code, this may result in mor2 data
base accbsses than retrieving a new set of keys depending en
value, but +the improvement cannot be large. In many other

instances, there is a big reduction in accesses.

If the candidate set is larger than .25, retrieval will be
made using the c¢onstant, but the 1length of the c¢current
candidate 1list is used te 1limit the numbexr of accesses.
Thus, if thé currents candidate list is 50, the data base
access program will terminate if it f£inds more than 590
identifiers with the value being used. A re-access is then
made using the* list of identifiers. Again, this may result
in .inefficiency in some cases wherxe searches are ended just
before normal termination, but it does provide a guarantee

against excessively long retrievals.

Any number of other efficiency measures could be adopted,

and more may be necessary than we now have. For the moment,

PAGE 26

these seem to provide acceptable retrieval times.

The Evéiluatorm

For the most part, evaluation of loyical forms is quite

straightforward. Hidden semantic effects are discussed in
the next szection; herxre we are mainly concerned with
computation.

Each instance of setx searcheas the list of

variable-candidate set pairs <to £find the candidate set
associated with its own variable and substitutes the members
of the set <foxr the variable one by one into 1ts associated
predicate. Those members of the candidate set for which the
predicate evaluates to true are prlaced in the solution set.
Opexation of the quantifier predicates is similar to that of
setx, except that, as in Figurxe 5, 1t may be necessary to

evaluate an instance of setx to f£ind the domain of the

quantification variable.

Evaluation of the ether predicates consists simply of
applying & correspording LISP function to the arguments.
Sometimes the final logical form to be evaluated b&#ars no
obvious relation to the input question, as in Figure 8. The

usual reason is that a large amourr of evaluation uwas done

Are there imoxre than 25 parcels in the Carhart
neighborhood ?

36229 LOGICAL FORM:

(greaterthah '176 '25)

Figure 8

during interpretation. because form contained

variables. The zull logical foxrm corresponding to

PAGE 27

no frewe

Figure 8

ARrxre there more than 25 parcels in the Carhart neighborhood. ?

15986 LOGICAL FORM:

(forall '"X115
(setx 'X38
"(quantity
X38
(setx "X34
"(and
(testict
'9
Y(*NEIGH X34 '1976)
L)
(pazxcel X34%)))))
(greatexrthan X115 '25))

Figure 9

isvgiven in Figure 9.

PAGE 2§

The evaluatién of the predicate testfct is not as abvious
as that of the othe#rs One of the design goals in the
project has heen to make it relatively easy to move from one
data base to another. As part of that effért, we have
attempted te make the LISP programs, as contrasted to the

PL/I programs, insensitive to the structure of the dats

base. Our approach to this has been to define a 1list
striucture, essentially nested binary relations, into which
the xeal data structure is mapped. Restxructuring is

accomplished by the PL/I program which serves as the LISP -
RSS interface. At the same time- as the PL/XI program returns
values to the testdct specialist during the pre-evaluation
phase, it formats the corresponding data base items into the
standard struycture and writes them onto a disk file, an
effect creating a sub-data base <£or the partaicular query.
Only the sub-data base is wused during evaluation ofrlogical
foxrms, to find values corresponding to Keys in the instances
of testfgt. In addition to isolating the LISP programs from
the real data structure, this tactic makes it unnecessary
for any programs called by the evaluator to ze-access the

full data hase, with a consequent efficiency gain.

Creation of the standard LISP data base into which the
real data is translated has meant that the set of ISP
functions has undergone the least modification in our change
of data base from business statistics +to planning data.

Except for improvements made to increase the efficiency of

PAGE 29

programs, thesew PFoutines are almost the same as they weére

beXore.

SEMANTIC EFFECTS OF EVALUATION

In principle the processes which will bw used to compute
the answer +to a quexry should be obvious at the level of
edthexr the query structure oxr the logical form. We have
not, however, been zompletely successful in accomplishinhg
this. In some c¢ases, we c¢an see how it might be done and

have not gotten around to doing it because of more urgent

congcexrns. In other cases; we can see how to de it, but not
how to do it efficiently. In a few cases, it 1is not clear
what to do.

Approximgtion, Consider the sentence and coxresponding
logical form shown in Figure]0. The precise system meaning
of "about" is ¢learly hidden i1n the program corresponding to
the operatoxr APPROX. In the present implementation, APPROX
of x and y is true if:

1) when y<10, x>y—-2 and x<y+2,
2) when 10<y<40, x>y-3 and x<y+3,
3) uhen y2=49, x>y—-.05y and x<y+.05y.
I.e., 5 and 8 are approximately equal to 7, 14 ahd 18 are

approximately equal to 16, and 951 and 1049 are

—

approximately equal to 1000. Whether +this definition #®s

PAXGE 30

What parcels are assessed at about & 1000000 ?

6168 LOGICAL FORM:

(setx 'X2
{and
(testfect
1000000
"('VNCIT X2 '1976)
"APPROX)
(parcel X2)))

6373 ANSWERS:

ASSESSMENT-
CITY_ ¢
1976
70590002600 977,750
70430000609 1,000,000
70400000600 1;033,425
70310000602 955,900
Figurxe 10
satisfactory or not <clearly depends on a variety of

contextual factors. It should also be clear +that the
semantic interpreter could produce a logical form in which
this meaning was expressed directly. We have chosen to
express the meaning in our processing programs primarxily for
convenience, ize. it was easiest to do it in this way, and

there was no obvious reason to do it elsewherxe.

A similar kut slightly different example 1is shown in
Figure 11, whexe +the oqutput rather than the input is to be
an approximation to the +true value. In this instance, a

funrction called FUZZUP is applied to a data base value to

PAGE 131

About how many square feet do the, drug
stores have ?

7227 LOGICAL FORM:
(setx 'XUu
'{foratleast 1 'X52 '(18570 24814 8440
5465) '(approx X52 X4)))

7479 ANSWERS:

PARCEL
AREA-SQ_FT

1976

70590001614 19,000
80100000714 25,000
80100000814 B,u400
90430000914 5,500

Figurxe 11.

find that number with *the maximum number of trailing =zexos
which. satisfies the APPROX relation. The fuzzed value

rather than the true value bhecomes the output.

A more subtle case is illustrated by Figure 12. It seems
¢lear that what is really wanted are those parcels with an
area of a million square feet or more, rather than exactly
1,000,000 square feet. IXf the latter result is wanted, the
question is better phrased "exactly 1,000,000"™, (and must be
pPhrased in this 6r a similar way 4in our system.) On the
other hand, a value like 1,000,205 seems to imply that exact

equality is wanted. This intuition is capturxed in our system

PAGE 32

what parcels have an area of
1,000,000 square feet?

8416 LOGICAL FORM:'

(sety 'X2
'(and
(foratleast 1 '"Xu5
(getnr 'X5
'(testfct
X8
'(YPARAREA X2 '1976)
's))
'lequal X45-'1000000))
(paxrcel X2)))

8789 ANSWERS:

1: 70880000900
22 70790000100
3: 789790000100

22: 80300000101

MORE PARTICULARS DESIRED?

YES OR NO?

ves

EXPLANATIONS TO THE ANSWERS:
FOR 70880000900 MORE - 13590410
FOR 70790000100 MORE - 5977500
FOR 70790000100 MORE - 5583085

FOR 80300000.101 ALMOST-~- 958320

Figure 12

by having the testfct predicate inspect its numeric
arguments‘uith a function called ROUNDNM, which is true if
an arxgument is a round number, defined in our systam to be a
number greater than 99 in which at least the rightmost half
of its digits are 0. In the case -of round numbers, it seems

reasonable to give as an answer the identifiexr of a parcel

PAGE 33

whose area is only slightly less than 1,000,000 square feet,
as well as greater.. In our implementation, we use the same
lower limit as for APPROX, but this may be too 1low. In
order to insure that the answer is correctly undexrstood by
the user, the system saves the exact values retrieved and

displays them on request, as shouwn in Figuxeu12.

Equality of charactexr values. A problem analagous to that
of nunmerical approximations oc¢curs also in comparing
character string values. Consider the question and answer

pair shown in Figure 13. The contents of the OWNER field

What parcels does Shell own ?
4244 LOGICAL FORM:

(setn 'X2
"(and
(testfct
'SHELL
"('OWNER X2 '1976)
"=)

(paxcel X2)).)

4432 ANSWERS:

OWNER
1976
70600009501 SHELL OIL COMPANY
80220003300 SHELL OIL CO
Figure 13

S — ——— o s &

have not been standardized, so that parcels could be ouned

PAGE 3/

by "Shell 0il", "Shell 0il Co.", etc. Fortunately, for names
of persons) last names are 1listed fixst, so that the
strategy of assuming equality if the input argument and the
field value match up to a c¢omma or a blank is generxally
successful. Probhlems do arise; for example, properties
belong both to "The City of ..." and "City of «..", whexe

the left match fails to f£ind all the relevant data items.

The opposite situation, i.e., avexr-generalization, can of

— —— ——

what parcels does GlucKk own ?
4525 LOGICAL FORM:

(setxr '"X2
'(and
(testfct
'G6LUCK
"('OWNER X2 '1976)
! =)
(paxcel X2)))

4742 ANSWERS:

OWNER
1976
90400000100 GLUCK, DE & ORS
90410000900 GLUCK, CP
Figure 14
course also occur, c¢f. Figure 14. In any event, the

decision as to what c¢constitutes sameness of referxrence is
buried in computexr code in this instance in the PL/I

program as well as in the LISP definition »f the function

PAGE 35

SAMEREF.
Definitions. The extensional definition of most
predicates c¢an be derived <£rom the data base. A few

predicates are defined by the system code. Examples are RANK
and YEAR. whid¢h as mentioned above have associated
generators An additional example is LASTYEAR which 1is
defined t¢ Dbe the previous year. Many other definitions of
this kind have been &liminatedl in the current version &f the

system.

Answers. It is not always obvious what constitutes the
answer to a guestion. Consider the example in Figuxe 15.
Both the English question in its literal reading and the
logical form would seem to imply that the question would be
answered by presenting only the numbexs in the zxight hand
column of the table which is actually printed as an ansuwer.
Yet it 15 quite c¢lear that a simple list would generally be
useless without the parcel identifiexrs printed on.the left,
and indeed that identification would be expected by +the

person entering such a question. The example of Figuke 16

PAGE 36

what is the gross floor ared of the drug stores ?
7245 LOGICAL FORM:

(setx 'X4
(foratleast 1 'Xuy

(90430000010 80100000811 80100Q00710
70590001610
(testfct

X4

"('"PGFAREA X44 '1976)

=)))

7465 ANSWERS:

GROUND-FLOOR
AREA-S@_FT
1976
70590001610 7.078
80100000710 105, 125
801000600811 6,500
90430000910 1,800

Figure 15

is less c¢lear. An enumeration of +the three wards in which
the four drug stores uwere located might have been a
sufficient answer. The answer given would be corxrxrect for

"In What ward is each drug store located?”

Moxeovexr, given the question

"What are the wards which have drxug storxes?"

it is clear that only a list of wards should be the output,
and given

"What is the combined floor area oif the drug stores?"

only a single number representaing the total 1s the desired

PAGE 37/

{T
|
|
|

In what wards are the drug stores located ?
9403 LOGICAL FORM:!

(setr 'X3
'*{foratleast 1 'X64

'(90u430000410 80100000811 80100000710
70590001610)

"(testfct
X3
*{"WARD Xo4 '1976)
'=)))

9597 ANSWERS:

WARD
1976
70590001610 2
80100000710 3
80100000811 3
90430000910 5
Figurxe 16
answer. (Our system does not as yet answer this gquestion or

its analogues, “4<hough this is planned for later in the
year.) Since the ambiguity exhibited by +the questjon of
Figure 14 is so pervasive in an application of this kind, ue
have chosen to present a maximally general answer, including
identifications, when we are unable to resolve the ambiguity
directly. An exchange with the user could be devised to
elicit the information foxr resolution, but would apidly
became tedious for gquestions of this type.. For ves/no
questions, and for questions in which there is only one

object in +the answer set, this problem naturally does not

PAGE 33

arise, and the appropriate ansuer .is easdily produced..

coxcrLuistons

We have not vyet concerned ourselves with adding an
English response generateor +0 the T@A system. In the
applications envisioned at present, such a capability does
ndét seem to be critical. We are able to manage with short
ansuwers from the data base and with canned inforxrmatien and
exror messages. In spite of this omission, it should also
be avparent that our computational component has a
considexrable amount of linguistic Xnouwledge embedded in it,
more than we would like. Whether it is possible to achieve
a level ef formal representation which would make this
unnecessary is still wunclear. Moreover, even if it uexe
possible, it is not clear whether such a solution would be
efficient enough, or even if it would be more perxspicuous
than the current system HWe intend to proceed as far as uwe
are able in this direction, out of conviction ‘that
practically useful systems must bhe easily adaptable +to new
apyplications, and that such adaptation is much More
difficult when computer code, even high-level computer code,
must be changed, xather than tables. This is not to impIy
that we regard modification of a +table whose size is on the
orxdexr of a grammar as trivial; quite the c¢ontrary.

Nonetheless, we believe it is easiexr to change.a grammar or

PAGE 39

a semantic interpreter expressed in table forxm than it is to
change a s&special parser or a special interpreter. In
essence, we believe it should not be necessary Ifor a
computational linguistics project to describe operations
beyond the last level of farmal representation in order for

an outsider to lnderxstand exactly how 'a system operates.

FAGE 40

FOOTNOTES

This system was formexrly called REQUEST.

The form of Figure 3 is, in faect, subject to dnother
syntactic transformation prior to execution. Noxrmally,
foratleast needs +to be executed once for each potential
value of the setx variable. However, in the case whexe the

quantificational range of foratleast 1 4is a constant,

repeated evaluation of the quantifier is quite

inefficient. Instead, a special retrieval function called

MAPFIELD, which can accept a listjiof arguments, replaces

foxrms liKe those of Figuxre 3. In thias example the

replacement takes the form

(MAPFIELD 'x77 'JSTOR "(5043.,. ...00) '1976 ')

Although this transformation arises- quite often in practice,
it is sufficiently non-general that we have not augmented
our inventory of logical forms by including MAPFIELD.

Instead, we look on it as an implementation measure only.

PAGE 4]

References

Astrahan, M.M.; Blasdgen, M.W.; Chamberlin, D.D.; Esuwaran,
K.P.; Gray, J.N.; Griffiths, P.P.; King, W.F.; Lorie, R.A.;
McJones, J.; Mehl, J.W.; Putzolu, 6.R.; Traigexr, I.L.; Wade,
B.W., Watson, V.(1976). System R: Relatdional Approach to
Database Management. ACM Transactions on Database Systems,

Vel, 1, No. 21 June, 1976, pp. 97-137.

Petrick Stanley R.(1977). Semantic Interpretation in the
Request System: In in Computational and Mathematical
Lingustics, Proceedings of the Internamtional Conference on

Computational Linguistics, Pisa, 27/VIII-1/IX 1973, bpp.
585-610.

Plath, Warren J.(1973). Transformational Grammar and
Transformational Parsing in the Request System. IBM Reseaxch

Report RC 4396. Thomas J. Watson Research Center, Yorktown

Heights, N.Y.

Plath, Warren J.(1974), String Transformations in the

REQUEST System American Journal of Computational

Linguistics, Microfiche 8.

Reitezx, Raymond(1976) . Query Optimization for

Question-Answering Systems. In: COLING 76, Proceedings.

PAGE 42

Robinson, Jane J.(1973). An Inverse Transformational
Lervicon. In Natural Language Proceessing. Randall Rustiny ed.

Algorithmics Press, Inc., New YorK, N.Y., 1973 pp. 43-60.

Woods, W.A.; Kaplan, R.M.; Nash-Webber, B.(1972). The Lunar
Sc¢iences Natural Language Information System: Finagl Report. ..
BBX Report No. 2378. Bolt Beranek and Newman, Inc.,

Cambridge, Massachusetts. June 15, 1972.

