American Journal of Computational Linguistics Microfiche 61

TOWARD A “NATURAL" LANGUAGE
QUESTION-ANSWERING FACILITY

BiLL D. MAXWELL AND FRANCIS D. TUGGLE

Department of Computer Science
University of Kansas
Lawrence 66045

Maxwell is also associated with the Computation Center
Tuggle is also associated with the School of Business

Copyright © 1977

Association for Computational Linguistics

SUMMARY

This study describes the structure, implementation and potential
of a simple computer program that undexrstands and answers questions in
a humanoid manne¥. An emphasis has been placed on the creation of an
extendible memory structutre--one capable of supporting conversation
in normal, unrestricted English on a variety of topics. An attempt
has also been made to find procedures that can easily and aecurately
determine the meaning of input text. A parser using a combination of
syntax and semantics has been developed for understanding YES-NO
questions, in particular, DO-type (DO, DID, DODES, etc.) questions. A
third and major emphasis has been on the development of procedures
to allow the program to converse, easily and "naturally" with a human.
This general goal has been met by developing procedures that generate

answers to DO-questions in a manner similar to the way a person might
answer them,

1.

3.

INTRODUCTION

[l el
1
w N =

TABLE OF CONTENTS

® @ & ® & e e ® & ° e & s e 0

MAIN GOALS =+ « o « &

SAMPLE DIALOG s o e s s s e s s s v e s oss
REVJE‘J . L] L] L] . . L] . » - L] L] L] L] L] L] . . L] Al
1.3.] lMemory Models =« s « o « « s o o o o« »

1.3.2 Linguistic Parsers = » » + + =«
1.3.3 Output Generation = « = ¢ ¢ ¢ ¢ o o = =

PROGRAM OVERIVEW ¢ ¢ o o o o o o o s o o o o o o o »

2.1

2-2
2.5

MEMO.
3.1
3.2
3.3
3.4

PROGRAM STRUCTURE » + o ¢ ¢ o « o v o o o o = =
THE RUNNING PROGRAM « & s o o ¢ ¢ ¢ ¢ o« o « & &
DATA FILES ¢ ¢ o o o o ¢ ¢ o o o ¢ v o s o » =

RY STRUCTURE « « o ¢ o s o s o o o » ¢ o o s o =

COMPONENTS « « ¢ o = = o s o« o ¢ + o s s » » =
RELATIONS O T T T TP S S SRR
SUBSTRUCTURLS I
NODES R T

PARSER s s s 8 e 8 w e e s e s s e s e e 4« e s

4.1
4.2

4.3

MEMORY SeARCHING

5.1
5.2

5.3

PARSING STRATEGY « ¢ ¢« « o o « ¢ o & & - e e e
GRAMMAR « ¢ o + « o o o o o o« « o » « » s o o
4.2.1 Acceptable Input Forms « + + + = + o -« «
4.2.2 Semantics and Syntax e e s e s s s
4,2.3 Pronouns, Ambiguity and Undefined Words
PARSING ALGORITHM . . . « v v v ¢ = 4 o o « o
4.3.1 Preprocessing of the Input Text
4.3.2 Determining Type of Input
4.3.3 Parsing a DO-Question or Statement .

OVERVIEU . & ¢ ¢ ¢ ¢ ¢ o o o o « o o o s o o« &
THE MEMORY MATCH STRUCTURE
5.2.1 General Structure

5.2.2 Actor, Act and Object Comparison Results

5.2.3 Word tlodification Results .
5.2.4 Example Structures
MATCHING MEMORY . . . & . & ¢ ¢ ¢ ¢ ¢ o » s0e «
5.3.1 Basic Algorithm « v 2 v v « o .
5.3.2 Selecting Suitable Actors .

PRODUCTION OF OUTPUT v v ¢ o« ¢ o « » « o &
6.1 OVERVIEW v &t v v v s o o o s o s o
6.2 THE OUTPUT PRODUCTION LIST . . . v v v o o o
6.3 PRODUCFION METHOD

[. [L - . - . - . . -

6.3.1 Responding to Input Mot Understood
6.3.2 Determining Mode of Response , . ,
6.3.3 Producing a Norral Answer

6.3.4 Making Output Grammatical

10
10
il
13

14
14
15
17

17
18
19
23
25

31
31
33
33
35
36

36
37
37
38

43

44
44
44
45
46
49
49
49

51
51
52
53

5%
54
55

7. DISCUSSION
7.1 RESULTS
7.1.1 Objectives Met ., ., « . .

7.1.2 Does the Program Really Understand?
7.2 LIMITATIONS

7.2.1 Memory Model

7.2.2 Parser ., 4 4 4 44 0. ..

7.2.3 Output Production , , .,

7.3 IGNORED PROBLEMS , ., ., . v ¢ ¢ ¢ ¢ « o« »
7.3.1 Intentions and Motivations e . .

7.3.2 HNorman's Problems , , ,
REFERENCES v v v v e e e e v e

56
56

58
59
59
59
60
61
61
62

64

1. INTRODUCTION

There are a number of extant computer programs which interact
intelligently with human interrogators, but all do so in a way we
characterize as "unnatural". By "unnatural," we mean that they con-
verse in a way significantly unlike two normal adult humans do. For
example, Winograd's SHRBLU [19] seems child-like, and it shares with the
Woods' moonrocks system [20] the problem of being task-constrained.
Weizenbaum's ELIZA [16] gives the appearance of being vague, evaslve and
doubting. Colby's PARRY [5], of course, is variously paranoid. Finally,
the CAI systems, such as Carbonell's SCHOLAR [4] and Brown and Burton's
SOPHIE [3], seem officiously pedantic. In contrast to those approaches,
we wanted to construct a program able to carry on an intelligent and
"natural” dialogue with a human user.

As an example of a "natural” and an "unnatural" dialogue, imagine
two computer programs (CPs) conversing with a human (H) in which each
CP already knows "THE 'BOY OWNS A BALL." One CP is "natural" (NCP); the
other is "unnatural" (UCP). (One may find fragments of responses from
existing programs in those responses we have labelled as "UCP.")

H: The ball is red.

UCE: By 'the ball,’' I assume you mean the ball the boy owns.
NCP: D.K.

H: Does the boy own a large, round ball?

UCP: No [or at best] I don't know.

NCP: He owns a red one. It probably i1s round and may be large.
H: The boy lives on Main Street.

UCP:. By 'the boy', I assume you mean the one who owns the red ball.
NCP: 0O.K.

-6-

H: Uhere does the boy play with his ball?
UCP: I don't krow.
NCP: I don't know, but I assume near his residence on Main Street.
H: A house is on Main Street.
UCP: O0.K.
NCP: Is it the house of the boy who owns the red ball?
H: It was.,expensive to construct.
UCP: By 'it,' do you mean
1. the house
2., Main Street?
NCP: O.K.

H: The ball broke a window.

UCP: By 'the Ball,' I assume you mean the red one the boy owns. By ‘a
window,' I assume it is a part of the house in Main Street.

NCP: Did the buy throw the ball?

H: Was the window expensive to repair?

UCP: I don't know.

NCP: Since the house was expensive to construct, I assume that its

windows gre expensive to repair,

From this shprt, simple dialogue some of the characteristics which
distinguish "natural" dialogue can be seen: '"natural" language under-—
standing processes are able to work with partial and overlapping
information, are able to retain ambiguity until disambigation is needed,
are able to perform "short" chains of deductions, are able to engage in
common sense reasoning, and are able to pose reciprocal questions to
the human to confirm expectations,

Reasons for trying to instill a certain degree of "humanness" to
computer programs should be obvious—-to facilitate their acceptance, to
extend their use, and to make them more pleasant to deal with. People
will be much more willing to work with a computer program if it gives the
appearance of being humanoid itself, whether the kernmel part of the

program concerns CAl, MIS, or whatever,

-7~

We have developed a computer program called JIMMY3 which embodies
some of the abqve set of characteristics of a "natural” language processing
system so as to demonstrate its feasibility, usefulness, and potential
power. The implementation has necessarily been largely ad hoc, but as
Lindsay [6] notes, this is not altogether bad. Newell [7] properly
records that there is a tradeoff between generality and power. Like
Lindsay, we deliberately eschew the general in favor of the specific.

In the interests of replicability and extensibility, we also provide a
reasonably complete description of the inards of JIMMY3.
1.1 MAJOR GOALS

The focus of this work has been on three problems: a) the develop-
ment of a memory structure useful for engaging in a dialogue with a person,
b) the development of procedures that can easily and accurately determine
the meaning of input text, and c) the development of procedures for the
generation of output.

As contrasted with more conventional models for language understand-
ing where input is decoded in terms of concepts and then mapped into
memory, this model storecs surface structures more or less intact without
any conversion. This approach simplifies both the input processing and
output generation phases of the system. However, it does necessitate the
use of complex memory matching procedures during the answer-producing
phase, of understanding.

For parsing, several ad hoc rules were developed for applying a
metric to measure "meaningfulness." Using this procedure, several
different interpretations of the input are examined. The one having the

highest "score," as determined by the metric, is selected as the proper

meaning.

-8-

Most memory models and understanding systems do not have elaborate
facilities for the creatidn of output that is interesting or stimulating
to .conversgtion. Output production by this program approaches solutions
to three related problems: a) what information should be used in the
response to a given input, b) how a response can be structured so
certain parts are emphasized and c) how &4 response can be made tp
appear natural in the sense of being like a similar remark a person
might make.

1.2 SAMPLE DIALOGUE

To get a feeling for the types of responses the currently Imple-
mented program cdn produce, the following short dialogue is presented.
Note that with only the capability for answering DO-questions
implemented, a continuing dialogue is not very easy to obtain.

Three explicit facts existed in memory at the time of this con-
versation. They were:

1) BRANDT MAXWELL OWNS A RED BOOKX.

2) BRANDT MAXWELL OWNS A BLUE BOOK.

3) JIMMY3 KNOWS BRANDT MAXWELL.

(this computer model has been dubbed JIMMY3)
The dialogue is given in upper case with commentary in lower case.
The J: and p: (identifying JIMMY3 and person) were added liere for
clarity.
j: HI. WHO ARE YOU?

JIMMY3 must find out who it is talking with in orderf

to translate the pronoun "I" to facilitate memory

searching.

p: BRANDT MAXWELL.

j:

ey

]

o
YT

OK.

-9-

BRANDT@MAXWELL is recognized as a legitimate name.
The @ in BRANDT@MAXWELL 1is used to indicate the
combining of two or more words to form a separate
erttity. In the above example, the names BRANDT
and MAXWELL are recognized as first and last names,
reéspectively, that, when appearing together, are
interpreted as the full name, BRANDT@MAXWELL.

DO YOU KNOW ANYONE?
YES, YOU.

Parsing is accomplished by matching input to
templates consisting of (ACTOR ACT OBJECT)
describing the different meaning senses for main
verbs. This question is parsed using the (PERSON
KNOW PERSON) definition of KNOW. On input, YOU
is translated to JIMMY3 (which has ISA PERSON as
one of its properties).

Memory is matched against the (JIMMY3 KNOW
PERSON) pattern which yields the match (JIMMY3
KNOWS BRANDT@MAXWELL). Output procedures then
convert the match into-the given response.

DO YOU KNOW BILL MAXWELL?

NO.

The search using (JIMMY3 KNOW BILLEMAXWELL) yields
no match. Under other circumstances a failure of
this type would produce an answer of "I DON'T KNOW",
However, the act KNOW 1s tagged so that "NO" is the
proper response if a search of memory fails when
the triple has KNOW as its act(main verb},

DO YOU THINK?
I DON'T KNOW,

The input was correctly parsed as (PERSON THINK NIL)
but the memory search found no matches. The
current model has no facilities for introspection
other than the examination of triples in memory
that deal explicitly with JIMMY3.

DO YOU KNOW ANYTHING?
I DON'T UNDERSTAND THE USE OF KNOW.

At the time this dialogue was produced, the only mean-
ing of KNOW contained in memory was (PERSON KNOW PERSON),

Therefore, the reasonable parse of (PERSON KNOW THING)
was not found.

=10~

p: DO I HAVE A BLUE ANIMAL BOOK?

A BLUE BOOK BUT NOT AN ANIMAL BOOK:
Some, but not all, of the modifiers on the input
were matched by a triple in memory as indicated by
the response. Since not all modifiers matched, the
answer is not prefaced with YES.

(&%
e

p: DOES ANYONE HAVE A RED THING?

j: YES. YOU OWN A RED BOOK.
Memory Ls sedrched using the (PERSON HAVE THING)
pattern which best matches (BRANDT@MAXWELL OWNS
BOOK). By comparing modifiers, (BRANDT@MAXWELL
OWNS RED-BOOK) is selected over (BRANDT@MAXWELL
OWNS BLUE-BOOK).

o

DO I QWN A GREEN BQOK?

j: NO. YOU OWN A RED BOOK.

Since GREEN and RED are mutually exclusive instances
of COLOR, the answer is NO. (BRANDT@MAXWELL OWN
BLUE~-BOOK) was also matched buty the triple with

RED BOOK was used to produce the response since it
was found first by the memory search routine.

p: DO I HAVE AN QLD BOOK?

j: YES. A RED ONE. I DON'T MNOW WHAT OLD MEANS.
OLD is ignored sincg 1t is an undefined word. Input
is parsed as if it had been "DO I HAVE AN BOOK?"

p: DOES BILL MAXWELL OWN A BOOK?
j: L DON'T KNOW,
The fact (BILLEMAXWELL OWNS BOOK) is not present
in memory. Neither is any contradiction of that fact.
p: BYE.
j: GOODBYE -
1.3 REVIEW

1.3.1 MEMORY MODELS-

The research involving memory models can be divided into two basie
approaches. First are models created for the exploration of theories of
human memory and for the testing of linguistic.cheories. 1In these
systems, the other features of a complete language understanding system
assume a background position since the main emphasis is the memory model
itself. Models which fall into this class are the works of Quillian [11],

Anderson and Bower [1], and Norman, Rumelhart and the LNR research

-11-

group [10]. The second type of memory model is that developed as part
of a systeh which has some component other than memory as the major
emphasis. These models include Winograd's blocks world [19], Schank's
Conceptual Dependency System (13, 14] and Colby's Artificial Paranoia
model [5].

The memory model developed by this current research does not
correspond to any axisting model. It is not based on case grammar in
a strict sense, but stores information in a form more closely related
to surface structures utilizing only three main components: actor,
act and object. Although this development was influented to a limited
extent by Anderson and Bower's model [1], it was shaped in actual design
by the parser dsed by Wilks (@ee below) which attempts to £ind meaning
by searching for triples. Wilks' work was also influential in the
development of the parser.

1.3.2 LINGUISTIC PARSERS

In the area of linguistic parsers, there are currently four
different methods being used. They are: a) semantic triples, b) aug-
mented transition networks, c) procedures and d) pattern matching.
These can be described most easily by examining specific examples
of each.

The parser developed by Yorick Wilks [17, 18] is based on identi-
fying triples composed of an actor, an act and an object. Input is
parsed by applying trial templates to the input and identifying
candidates to fill the three slots in a template. The association of

an input word with a template slot is made by consideratiomr of the

~12--

semantic relationship between the input word and the requirements of the
slot, The closer the trelationshlp, the better the match, and therefore,
the better the parse. The choice hetween several potential parsings

of an input string is determined by a scheme for computing the semantic
density of the parse based on the rdumber and types of matches that are
obtained by filling the slots in the triple. Assuming English is a
redundant language, the parse having the greatest density is the one
which contains the most interconnections and, therefore, is the one to

be accepted as the correct parse.

An important feature of Wilks' system is that syntactic propertids
of words take a role secondary to that assumed by the semantic properties.
Thus it is possible to determine rhe meaning of input which is ill-formed
and grammatically incorrect.

Augnmented transition networks have been used for sgme time as a
method for parsing. The principal system utilizing this method is the
NASA lunar rocks system developed by Woods {20]. The parser used by th
LNR group [10] is of similar design. While this technique is very
flexible in allowing a large grammar to be consistently modelled, most
implementations of it have been strictly syntactic. Little attempt has
been made to incorporate semantic knowledge into the parsing. Without
senantic knowledge, and using the strict grammatical rules embedded in
the tramnsition networks, this approach is really very brittle. It is not

capable of handling ungrammatical input with much success.

-13-

Clgsely related to the augmented transition network approach is the
use of procedures to describe a grammar as exemplified hy Winograd's pro-
gram [19]). This system is also predominately syntactic in nature. All
information about the grammar is represented in terms of actual routines
whioh are invoked during parsing.

The input analyzer used in Colby's Artificial Paranoia model- [5]
is essentially a pattern matcher which uses a few tricks to normalize
all input to short strings whikh it hopes to recognize. It is not really
either syntactically or semantically based but depends mostly on trans-
formations to reduce input to simple, empirically derived, recognizable
forms, The power of this approach lies in dts ability tp accept even
the most ungrammatical input and relate it tc something which is already
known. Thus, there is a given context in which all input is interpreted—-
the context of what the model knows and wants to continue talking about.
1.3.3 OUTPUT GENERATION

Perhaps the work on output production which has most influenced the
current program is the model by Colby [(5]. As described in the previous
section, input is recognized by reduction to simple identifiable patterns
which can be matched to prestored strings in the program's memory. Also
included in the memory are corresponding sets of strings which are to be
used as output. Fixed responses are selected based on the current state
of the program's self model; the state of its mgpdel of the person and the
previous conversation. This technique gives the appearance of a normal,
humanlike dialogue. This approach is successful because conversation is
always directed in one particular, very marrow, direction by the way input

is understood. The context is fixed and must not deviate from a single

~14-
2, PROGRAM OVERVIEW

2.1 PROGRAM STRUCTURE

The logical structure for the program consists of essentially four
main sections executed in sequence with each step producing informatiom
required by the following step. This design, with minor variation, is
charagteristic of many existing programs for language understanding.
One notable exception has been the SPEECH UNDERSTANDING PROJECT [8]
which advocates the use of parallel modules working simultaneously on
the input, passing data freely between routines, until the desired end
result is reached.

The following algorithm describes how JIMMY3 behaves at the mbst
superficial level.

DO until person is through talking:

(1) . Request user input and translate English words into internal
. codes (MEMORY node numbers).

(2) . Parse input to create the "best" parse network(s).

(3) . Match each parse network with structures in memory to produce
. the "best' match(es).

(4) . Produce a response based on the memory match(es).

éND~D0

To make the processing of text more efficient, English words and
punctuation are translated in step (1) into node pointers. Undefined
words are changed to null pointers.

The parser then creates a parse network from which a network density
is' computed. This density is a measure of how well the particular parse

captures the meaning of the input. The parsing procedure is driven by

-1§-
heuristics to do a search of the most likély parse networks., In case of
ambiguity, several parse networks can be passed to the memory match routine,

If the input was a statement, the information given by the network is
stored im short term mewory (STM). If a question is asked, then the parse
network is matched against event nodes in the memory structure to find
potential answers. A match score ig computed for each pattern match
based on how well the three major components (ACTOR, ACT and OBJECT) and
all minor components (single modifiers and prepositional phrase modification)
match. Only the tlosest matches are retained for use by the output
generatar., Ambiguity in the parse, if it exists, is resolved here by the
selection of the best match regardless of its generating parse network.

The response is generated by procedures operating on the memory
matches, The value of the match score determines generally what the
response content should be, The exact form of the response is determined
by. the way the components of the input matched (or did not match) the
memory pattern, After a form is decided om, the response is made
grammatical s then printed. Control is then returned to the input
routine and the wMlle sequence 1s ready to be repeated.
2,2 THE RUNNING PROGRAM

The environment, the time-sharing system on the Honeywell 66/60
running GCOS at the University of Kangas, in which this program was
developed and 1s run dictated its form. This machine poses several
problems besides the lack of suitable languages, the most serious being
the 25K word limit on the amount of memory an interactive program

can obtain.

~16--

Since there are no interactive string or list processing languages
available on the system, only FORTRAN came close to satisfying the
requirements of a language in which a natural languapge system could be
realistically implemented. What was wanted was a high level language
with overlay capabilities, small but powerful I/0 packages and the
facility for independently compiled and tested subroutines with utilities
for the maintenance of subtoutine libraries.

The program now running consists of over 130 subroutines written in
a total of about 13K lines of FORTRAN code. It runs in approximately
20K (36-bit) words of memory when segmented into 5 overlays. An
unlinked version is approximately 37K words in size. The use of core
by various parts of the program is given in Table 1,

Responsge time for the program is good considering the amount of
overhead required because of memory constraints. Dialogue like that
given earlier takes 2-3 seconds between the last character of input
until the answer starts to print.

TOTALS
I/0 PACKAGE 1.5 1.5
DATA
SCRTCH array 2
MEMORY Paging area 1.
WORDLIST area 1.
Miscellaneous 1
PROGRAM
Main 1link + support routines 1
Initialization & Setup
Command processor
Parsing

Memory matching
Qutput production

LoV WwHEQO
® 7 8 ®
WNLWWYN

Table 1: Storage allocation for unlinked program in
thousands of Honeywell 66/60 words

-17-
2,3 DATA FILES

Two data files, WORDLIST and MEMORY, are required by the program.
The WORDLIST file contains the text representation for all words,
punctuation and system commands along with the keys for translating that
text into memory node numbers. The MEMORY file is the collection of all
memory nodes.

To aid in the recreation and continual updating of these files, the
data ~ontained in them is present in a text file which is maintained on-
line using the time-sharing text editor. After changes to this primary
file, are made, a program, separate from JIMMY3, translates the text code
into the WORDLIST and MEMORY files. A second program can unload the
WORDLIST and MEMORY files back to text when.necessary. Currently the
text file contains a vocabulary of 387 entries (Wwords, punctuation and
commands), 22 ACT usages and 7 facts., This information is encoded in
approximately 4000 lines of symbolic node representation, It, when
loaded, creates a WORDLIST of 387 sevarate entries and a MEMORY with

approximately 800 memory nodes.

3. MEMORY STRUCTURE
The memory system for JIMMY3 is an aggregation of four components:
WORDLIST, MEMORY, temporary structures and STM, With the exception of the
WORDLIST, each part is a collection of one or more substructures comsist-

Ing of nodes connected by relations.

-18-
3.1 COMPONENTS

WORDLIST. The WORDLIST is an index into the MEMORY component and
consists of representations for all units of input JIMMY3 is to recognize,
Items not included in the WORDLIST are declared undefined by the input
decoding routines. In addition to the exact text representation, a
pointer to the corresponding node in MEMORY is given.

MEMORY. This is the model's long term memory--essentially a collec-
tion of interrelated nodes.

A node is the smallest packet of information in MEMORY that can be
referenced by a single pointer (either a WORDLIST pointer or a pointer
from another node.) The information contained in a node may describe or
modify a single word or symbol or may be a collection of relations
connecting several nodes into a more complex structure,

Information stored in nodes describing single words is varied and
includes such items as part of speech, inflectional variations and subset
or superset names. Other types of data, for examplé, events and state-
ments of fact, are formed by nodes that contain pointer structures
relating other nodes in a predetermined fashion.

TEMPORARY STRUCTURES. There are three basic memory structures of a
transient nature that can exist during the processing required to deter-
mine meaning and produce an answer. They are: a) the parse network,

b) the memory match structure, and c) the output production list.
A parse network is a small collection of nodes of the same format,

and connected in the same fashion, as the nodes in MEMORY. Produced by

the parser, it is used to represent the meaning of input text. This net-

-19-

work contains information about the major components of the input, i.e.,
what words or phrases represent the ACTOR, ACT and OBJECT; it also contains
information about 31l modifying words and phrases found in the input.

A memory match stiucture is produced by matching the parse metwork
with MEMORY. It contains comparison data relating the corresponding
components of the input (parse network) and a substructure in MEMORY.

The output production list is used during the examination of the
memory match structures to accumulate the discrete components of the
response to be made, i.e., the words and punctuation for the answer to
the questisn. Each element in this list contains a pointer to a text
representation for the word (or punctuation), its function and its
relation to other words in the sentence. When the output list has been
formed, it is passed to a print routine which writes the answer to the
terminal,

STM. STM is the short term memory component for the program. It
is essentially a collection area for parse networks, memory match

structures and output production lists generated for previous inputs

and their responses.
3.2 RELATIONS

Among the attributes used to relate the different MEMORY and parse
network nodes to each other are those for describing hierarchies and
chains.

HIERARCHY. Hierarchies are vertical structures formed by relating
nodes to one another using the ISA attribute. Set (superset, subset)

relations are implemented as hierarchies. A typical example would be

-20~
the path through the nodes: BRANDT (ISA) BOY (ISA) PERSON which displays
the relations among the three nodes.

In a hierarchy, each node is connected oniy to a single node
immediately before and after it. However, for any given hierarchy, it
is possible that the nodeg involved are connected to others both in and
out of the hierarchy by connections independent of that particular
hierarchy structure.

Transitivity is a property of hierarchies as implemented by the
program, Therefore, in the example 4bove, the information, BRANDT (ISA)
PERSON, is implicit in the hierarchy. It should be pointed out that in
the forward link between BRANDT and BOY, the connection is not one of
set membership but rather one of subset as is the relation between BOY
and PERSON. This is accomplished by the concept of GENERIC nodes even
for specific instances of, say, people. Therefore, the BRANDT in the
hierarchy is a GENERIC node which will, in turn, have under it an
INSTANCE node of BRANDT which is related by set membership. The GENERIC
BRANDT is a set of one element.

CHAIN. The mechanism for constructing horizontal structures is
the chain. As contrasted to the before link—-after link structure of
the hierarchy, the chain allows the creation of a linearly ordered set
of nodes each relating to a common "root" node to which it is' attached,
This allows the creation of sets of nodes related by a common property.
For example, chains exist in MEMORY tying together all inflectional

variations of a word. Another example of a chain is the list of color

21

nodes: RED, BLUE and GREEN, A singly linked list exists through these
nodes but in addition, each of the three points back to the mnode for
COLOR—-the nodé which points to the first color in the list.

The more important links currently used to form chains are
described mnext.

DEFN. The DEFN link is used to tie together all nodes that

represent different definitions for a word. Thus, for every symbol in

the WORDLIST, there is a chain of nodes in MEMORY connected via the

DEFN link.

PERSON

f‘[-]ISA['-j~—-—-—-——f ~=* To next node
;,, . representing a
L;' (>1Isaly] subset of PERSON.

3.To next node
representing a
sunsct of BOY.

Figure 1: Hicerarchy for BRANDT (1SA)
BOY (1SA) PERSON

INST. A chain emanates from each definition of each word in MEMORY.
These chains are created with the INST link and represent the set of all

instances of the word given by the root node of the chain.

—929-

ISA. This link is used to generate hierarchies. Actually created
is a chain with the property that every node in the chain is related by
the ISA link to the root node, The root node can be a member of
another ISA chain, thus giving a multilevel hierarchy. Figure 1 shows
part of the hierarchy for BRANDT (ISA) BOY (ISA) PERSON.

ACTOR., This is used to connect a set of ACTION nodes in which the
root node is used as the ACTOR of a triple. TFor example, there would be
a chain through the triples representing (BRANDT HAVE BOOK), (BRANDT LIKE
MILK) and (BRANDT HAVE CAT).

ACT. Used to form sets of ACTION nodes which contain the root node
as the ACT of a triple.

OBJECT. Similar to the ACTOR and ACT links except it chains through
ACTION nodes which. have the root node as the O0BJECT of a triple.

MODIFY., This is used to specify a set of nodes which are modified
by the root node. The type of this single word modification is partially
determined by the part of speech of the root node and that of the modified
node. It is further specified by the hierarchy of the root node and the
node being modified. For example, RED may be used to modify BOOK. 1In
terms of grammatical function, the parts of speech specify this as an
adjective modifying a noun. However, examination of the hierarchies
discloses that RED (ISA) COLOR which is a property that THINGs (BOOK (ISA)
THING) can have.

POS. This is the part of speech link,

PREP, This link is used in a CONTEXT node to point to the preposition

part of the prepositional phrase represented by the node.

~23-

POBJ. The CONTEXT node also contains the reference to a prepositional
object.,

CNTXT. This is the link used to attach a CONTEXT node as a modifjer
of another node. The chain created by a CNTXT link represents all nodes
modified by the same CONTEXT node.

INFLEC. Most words in MEMORY belong to an INFLEC chain, This is a
set of inflectional variations of the word. It brings together different
forms which vary in tense, number, person, etc. The INFLEC chain through
"I" would join nodes for I. ME, MY, and MINE. A similar chain through
OWN would link nodes for OWN, OWNS, OWNED and OWNING.

ANTONYM. All antonyms of a word are chained together using this
link. The words in the chain are not antonyms of each other.

PARTS, This link is used in nodes to express the sub-part, super-
part relationships.

3.3 SUBSTRUCTURES

Using the relations for constructing hierarchies and chains, various
other, more complex, structures can be created. These are structures
formed by the coincidence of several hierarchies or chains passing through
a single node, Of all possible substructures, triples (ACTION nodes),
CONTEXT nodes and SEMANTIC MODIFICATION nodes are of greatest importanke.

TRIPLES. A triple (ACTION node) is a node through which passes three

separate chains, one each for ACTOR, ACT, and OBJECT. These triples are

used to specify events, facts and as semantic definitions for the ACTs
tl.e., as ranges for acceptable candidates for ACTORs and 0BJECTs.) The

chains for ACTOR, ACT and OBJECT originate in nodes which represent those

-24-
major components and continue through this node to where they merge in
different combinations with still other chains to form more triples.
Figure 2 shows the relevant structura ef a triple representing "PERSON
HAVE BOOK".

CONTEXT NODES. A close relative of the triple is the context node.
It too has chains passing through it determining its structure. However,
it has only two chains: those for PREP and POBJ. These specify a pre-
position and its object. Nodes of this sort are used as modifiers of

single nodes, triples and other context nodes.

K PERSON.
"] ACTOR

lo next triple usng

PERSON a s an ACTOR.
’? }—{AVE.a' o e o > 1 A 1()1?

FRIACT 7" 2 PIACT(+————3|0 next triple using
: 3 <1 PIOBJECTI HAVE as an ACI.

fo next triple usdng

BOOK o € ¢ L
- BOOK. e aean | s an OBJLCT

"~ 4] OBJLCTIL

<
V.id
. $

Figure 2: A triple representing (PERSON
HAVE BOOK).

=25

SEMANTIC MODIFICATION NODES. These nodes are not similar to triples
or context nodes either in design or in function. However, they are one
of the major substructures appearing in MEMORY so will be considered here
briefly. These nodes or collections of nodes are the data strings whith
are used to drive the parser and in that capacity; will be described later.
Essentially they contain oxdered lists of semdntic categories representing
potential modification patterns for words. These lists are applied by the
parser to determine semantically acceptable word strings in the input that
can modify other word strings, For example, a noun would have a list
describing the types of adjectives that could modify it. TFor adjectives,
there would be a list of potential adverb types. Each definition of every
word in MEMORY that is to be recognized during parsing of input must have
attached to it a semantic mudification node., In cases where many words
have the same node, the structure for semantic modification is implemented
as a chain through-.all words having the same modification requirements,
3.4 NODES

Nodes in MEMORY are represented as fixed-size blocks of contiguous disk
or core locations and are the smallest units of MEMORY that can be refer-
enced, Each node is composed of links and variable length attributes which
may be data or pointers to other nodes. All the space allocated to a node
does not have to be used. In fact, most nodes use only part of their
allocated space to contain attributes; the remainder is empty (zero). The
current model uses a size of 8 words for its nodes. (This size was not
determined empirically as the optimum size but was, instead, selected
because of disk hardware considerations.) The first word of every node in

MEMORY is used for bookkeeping and, therefore, is not available for storing

26~
attributes. Contained in the first word is the node number itself, an
indicator of ¢he kind of node plus a pointer that gives the next word of
the node available for use as a]lnk or variable length attribute.
Whenever a single node has more attributes than it can contadin, additional
8-word blocks are allocated as extensions of the original node, These
extensions are connected in a chain to the original node by the CONT link
and are transparent to all the program except for the most basic MEMORY
manipulation routines.

There are eight different kinds of nodes in memory, each with its
own function. The Kinds are TYPE, SIMPLE GENERIC, ACTION GENERIC, CONTEXT
GENERIC, SIMPLE. INSTANCE, ACTION INSTANCE, CONTEXT INSTANCE and SEMANTIC
MODIFICATION, Each hag a different purpose in the representation of in-
formation in MEMORY. Briefly, their purposes are as follows, The TYPE
node is used as the reference point between the WORDLIST and MEMORY. The
three GENERIC nbdes are used to specify syntactic and semantic information
associated with words and substructures given by the INSTANCE nodes. The
INSTANCE nodes are used to represent actual instances of words or facts.
SEMANTIC MODIFICATION nodes are used to contain information required by
the parser to help direct its selection of the modification patterns during
parsing of the input. The other distinction made on node types is among
SIMPLE, ACTION and CONTEXT. SIMPLE nodes represent single words, ACTION
nodes are used to represent triples and CONTEXT nodes are used for
prepositional phrases.

TYPE. The TYPE nodes in MEMORY are in a one-to-one correspondence with
the entries in the WORDLIST and serve as the reference nodes for the WORDLIST

pointers to MEMORY, Some attributes that may appear in a TYPE node are DEFN

-27-

and POS, First to appear in a TYPE node is an attribute giving the text
representation for the symbol. Any routines, such as the output produc-
tion programs, can get the text representation for printing directly from
the TYPE nodes. This text is repeated here since the symbol given if the
WORDLIST is in 6 character chunks linked together -— a form not suitable
for prirting. The second attribute always present is the DEFN link used
to chain together all definitions of the symbol. Only words and
punctuation will have non-null chains of definitions. For words, there
is a SIMPLE GENERIC node in the DEFN chain for each different word

usage. For punctuation, there is a single SIMPLE GENERIC node chained

to the TYPX node. System commands and set mames have a null set o
usages since information of a more detailed nature for them is not
required. Figure 3 shows the relationship between TYPE podes and the
WORDLIST and between TYPE nodes and SIMPLE GENERIC nodes.

Among tne optional attributes used in a TYPE node is the SYSSET link
used to chain together all TYPE nodes which name items in the set. An
example of the use of SYSSET is for part of speech. In the TYPE node
for the symbol <P0OS> is the root for the chain through the TYPE nodes for
NOUN, PRONOUN, VERB, etc.

The POS 1link is present in the TYPE nodes for words that name the

various grammatical properties (singular, nominal, etc.) and parts of

speech (noun, etc.).

~28-

WORDLIST MEMORY
1 :l -.‘
] - 1 4 .
f e | [YIS
! !)) .
1 BOOK |- - : TYPE node
: DEFN :
: -------- : Eﬁ (. for BOOK.
i | :
] — I *saws
] 1
: SIMPLE GENERIC
i node for one
ot usage of BOOK.
)
4
'y 4000 POEBOIATQRIRTOEES

* - w[IDERN(0]

SIMPLE GENERIC
node for a second
: usage of BOOK.

[}
daeeenasns e

Figure 3: A segment of MEMORY showing the twe major
functions of the TYPE node.

SIMPLE GENERIC. These nodes are used to represent the different
usages for words, i.e., &0 serve mainly as a source for semantic and
syntactic information about a word. A large variety of attributes can
appear in a SIMPLE GENERIC node, such as DEFN, INST, ISA, POS, SYSMOD,
INFLEC, SYNONYM, ANTONYM, ACTOR, ACT, OBJECT, MODIFY, and PARTS. Of
these, only two are required. The DEFN link must be present to tie this
usage of the word with its TYPE node and to continue the chain to the

next usage, if any. Also required is the part of peech link, POS.

=20~

Of the other attributes that can appear, two of the more important omnes
are the INST and ISA links. The INST link is used to create the chain

of specific instances of this word represented by SIMPLE INSTANCE nodes
To create hierarchies within the .set of SIMPLE GENERIC nodes, the ISA
link is used. Although each ISA link belongs to a chain, the presence of
two ISA links —- one a root link, the other a4 son lihk —-- relates the
current node to the ode immediately above it and the ones below it.

The ACTOR, ACT and OBJECT links in a SIMPLE GENERIC node point tc
ACTION GENERIC nodes that use the node as an ACTOR, ACT or OBJECT, The
PREP and POBJ links, if present, point to CONTEXT GENERIC nodes that use
this node as a preposition or a prepositional object. The INFLEC, MODIFY,
PARTS, ANTONYM and SYNONYM links poift to other SIMPLE GENERIC nodes that,
are related to the current node in the specified manner.

ACTION GENERIC. These nodes represent the triples tised to give the
meanings for ACTS. They ustially contain three mandatory links. those for
the ACTOR, ACT and OBJECT ch&ins. However, for some ACTs, the OBJECT is
either not required or is optional. As an example of an ACTION GENERIC
node, consider the ACT "know'". In the curreht MEMORY, it has three triples
attached to it giving the verb semses of (PERSON OWN THING), (PERSON OWN
ANIMAL) and (PERSON OWN SLAVE).

Only two other attributes are allowed in an ACTION GENERIC node.
These are the MODIFY and CNTXT links whit¢h are used to specify single word
and prepositional phrase modification of the ACTION node. When these two

links appear in a GENERTC node, they refer to the potential types of

modification that way occur,

=30~

CONTEXT GENERIC. Nodes of this kind always contain exactly three
links: PREP, POBJ and CNIXT. Since this node is used to specify potential
types of modification, the PREP and POBJ links are used to point to
particular SIMPLE GENERIC nodes for the preposition and prepositional
object. The CNTXT link is used to tie this CONTEXT node to the ACTION
GENERIC node it modifies.

SIMPLE INSTANCE. A SIMPLE INSTANCE node is present in MEMORY for each
distinct instance of each word that has been used anywhere as an ACTOR, ACT.,
OBJECT, modifier, etc., in the. representation of information by ACTION
INSTANCE and CONTEXT INSTANCE nodes., There is only one mandatory link in
the SIMPLE INSTANCE node, the INST link. However, there are usually several
more selected from the set of AS8TOR, ACT, OBJECT, PREP, POBJ, and MODIFY
depending on the uses to which this .articular instance has been put., In
the case of all links except MODIFY, the link points to the ACTION INSTANCE
or CONTEXT INSTANCE nodes where the current node is used. For MODIFY,
however, it can show where this node modifies another or is modified by
another depending on whether or not this is the root link,

ACTION INSTANCE. All factual information within the system is
represented by ACTION INSTANCE nodes. [hese nodes are triples that bring
together the relations between actual INSTANCES of ACTORs, ACTs and
OBJECTs plus their modification.

CONTEXT INSTANCE. The modification of ACTION INSTANCE nodes by

prepositional phrases is specified by the use of PREP, POBJ and CNTXT links

1n nodes of this kind.

-3]-
SEMANTIC MODIFICATION. The structural information necessary for the

parser to determine correct forms of modification is given by variable

length attributes that can occur in this kind of node,

4, TPARSER
4.1 PARSING STRATEGY

The data structure used to drive the parser is the :triple (ACTION
GENERIC node) which specifies the semantics for the major components of
the parse. By applying the triple as a template to the input, the ACTOR,
ACT and OBJECT can be identified.

As the input is parsed, its meaning is converted into a parse network
and a network "score" is calculated Usually there are several parse
networks constructed from a single input representing different meanings of
that input. The best parse is that cne which has the highest score from its
parse network.

A parse network is created from nodes similar in design and function to
those present in MEMORY. Like the MEMORY structures, it is composed of
INSTANCE nodes of all kinds: SIMPLE, ACTION and CONTEXT (see Figure 4&).
These nodes are connected to one another by the same kinds of attributes,
e.8., the ACTION INSTANCE node has links to the ACTOR, ACT and OBJECT
INSTANCE nodes, the SIMPLE INSTANCE nodes contain MODIFY and CNTXT links
to other SIMPLE nodes or CONTEXT nodes, respectively, etc. Because the
normal access paths to INSTANCE nodes using DEFN and INST links in TYPE and
GENERIC nodes do not exist for temporary nodes, the nodes in a parse net-
work are kept track of by a system of pointers as shown along the right in
Figure 4. The entire aetwork is referenced by the pointer word in the upper

right hand cormer. HAll references in the temporary nodes of the parse net-

MEMORY

& - — =

-2

TEMPORARY STORAGE

Aloeou..... - /

,;-[-]Ac'runl] é—-———-—""
[«JacT]]

:{ JAcToR(}] : "

_.;.[JINsT[)} :

e — - -;[--]INST[.]

STeeeeeaNoes

;[JMODIFY|] Y.
e = felInsT]] € it

Figure 4: Parse network for "BRANDT HAVE RED BOOK."

~33

work to GENERIC nodes are by links which point to nodes that are part of
MEMORY, This relates the input to specific parts of memory as well as
provides the required syntactic and semantic properties of the input
words for reference during other stages of parsing. When complete, the
parse network is in a format identical to similar structures in MEMORY,
This 1s very important later during the matching of input to MEMORY where
compatibility between the two is necessary.
4.2 GRAMMAR
4.2,1 ACCEPTABLE INPUT FORMS

The parser has been developed to correctly handle restricted forms

of DO=questions and declarative sentences.

<DO-QUESTION> tt= <D0> <ACTOR> <ACT> <OBJECI> ?

<STATEMENT> ¢:= <ACTOR> <ACT> <OBJECT>

<Do> s:= DO or DID or DOES

<ACTOR> 1:= (<left modification>) ACTOR
(<right modification>)

<ACT> t:= (<context phrase>) (<adverb>) ACT
(<adverb>) (<context phrase>)

<0BJECT> 11= (<left modification>) OBJECT
(<right modification>)

<right modification> 13= <prep> (<left modification>)
<prepobj>

<left modification> 1= a string of words, usually adjectives, noums,
adverbs and determiners which_modify the item
to their right.

<prep> t:= one of a set of prepositions specified by an

attribute

=34~

<preobj>

a noun from a particular semantic class as
gpecified by an attribute

<context phrase>

essentially the same as <right modification>
but 1s used to modify verbs

<adverb>

an adverb from a set of particular words
gpecified by an attribute or an adverb plus
its <left modification>.

Table 2: Grammsr for DO-questions and statements.

The three components of <ACTOR>, <ACT> and <QBJECT> are identical for the
DO-question and statement. The <D0> component is found only in DO-questions.
The question mark and period are the only terminating punctuation symbols
currently allowed. All of these components are expanded in Table 2 in a
BNF-like format.

Additional restrictions currently imposed upon the input are the
following:

1. No relative clauses are allowed.

2, No compound units (subject, verb, etc.) are allowed,

Elements in Table 2 enclosed in < > are non-terminal elements of the
grammar. Such elements. enclosed in () are optional.

In the definition of <ACTOR> and <OBJECT>, the left and right modi-
fication is to the immediate left or right of the word being modified. 1In
the case of <ACT>, however, the <adverb> and <context phrase> modification
can occur anywhere in the sentence, Usually the single word modifiers are
adjacent to the ACT but do not have to be, The <context phrase>s usually

appear at the beglnning of the sentence or somewhere after the ACI.

~35-
In the case of the last five definitilons in Table 2, i.e.,
<left modification> through <adverb>, there are restrictions on the

nodes which are applicable at that point in the parsing. Some examples

of the types of modification allowed are:

<left modification> of a noun a blue animal book
<left modification> of an adjective a very blue sky
<right modification> of a noun a friend of mine
<context phrase> in June

to the house

<adverb> yesterday
not

4.,2,2 SEMANTICS AND SYNTAX

Semantics and syntax have been integrated throughout the parsing
procedure so that both work together in the selection of appropriate
words and phrases out of which the parse network is constructed.
When matching an ACTION GENEPIC node to the input, syntax is used first
to identify nouns as potential ACTORs and OBJECTs. Then the semantic
acceptability of each is verified by comparing the word with the semantic
class specified by the triple.

Syntax is checked by a simple matching of the part of speech.
Proper word order within a grammatical subunit 1s maintained automaticall
by the way the modification requirements are set up. A word is deemed
semantically acceptable if it matches the semantic class listed as a
requirement, or if a word upward in its hierarchy matches the semantic
class. For example, suppose the candidate is BRANDT and the required
semantic class 1s PERSON. In the hierarchy containing BRANDT we have
BRANDT (ISA) BOY (ISA) PERSON. At that point there is a match on PERSON,

80 BRANDT would be semantically acceptable.

~-36~

4.2.3 PRONOUNS, AMBIGUITY AND UNDEFINED WORDS

The currently implemented version of the program provides for only
very simple treatment of pronouns. On input, "I" pronouns (I, ME, MY, etc.)
are translated to the name of the person talking. "YOU" pronouns are
translated to JIMMY3. Similarly, on output, the person's name and JIMMY3
are translated back to "YOU" and "I", respectively.

Ambiguity is not a problem in this model. If two parse networks
have identical scores, ambiguity is resolved by the memory matching scheme.
All networks are matched against memory in the attempt to locate an answer.
If several matches come out equally likely, they can all be reported.
This simple-minded approach works well by relating the input to what the
program knows.

Throughout the program, undefined words in the input are ignored.
However, their text representations are saved so they can be printed
later to help explain, say, why the program was unable to interpret the
input. As illustrated by one line of the sample conversation in
section 1, the response to "DO I HAVE AN OLD BOOK?" was "YES. A RED ONE.
I DON'T KNOW WHAT OLD MEANS." The input was interpreted as 1f it had
been "DO I HAVE AN BOOK?'.
4.3 PARSING ALGORITHM

There are two operations performed on the input text before it 1s
actually parsed: a) preprocessing of the text in an effort to
"standardize" it and b) the determination of the type of input received

80 the proper parsing technique can be selected.

-37=
4,3.1 PREPROCESSING OF THE INPUT TEXT

The first operation performed on the input is the translation of
each defined component to its TYPE node pointer to MEMORY. Undefined
input items are converted to null pointers. After the tramnslation to
TYPE node pointers, the input is checked for standard greetings or
cliches that usually elicit a standard response, Examples are "HELLO.
HOW ARE YOU?", "HI", "GOODBYE", etc.

The second type of preprocessing is the attempted reductioh of
words and phrases to simpler forms., This approach can be used for the
reduction of slang, misspelled words, idioms, names, etc. Stored in the
TYPE nodes for input items that can be reduced are context strings in
vhich an item can occur plus its replacement form.

4,3.2 DETERMINING TYPE OF INPUT

This part of the parsing algorithm is where the kind of input, i.e.,
DO-question, IS-question, Wh-question, declarative statement, etc., is
determined.

Questions can be detected by the presence of the question mark at
their end. Discrimination of questions into classes of YES-NO, or Wh=-
is determined almost completely by the first word of the question. The
only questions not correctly classified by this approach are those with
inverted order, e.g., "HE ASKED A QUESTION, DIDN'T HE?" and hypothetical
questions, e.g., "IF I ASK A QUESTION, WHAT WILL YOUR ANSWER BE?".

Any input that ends with a period and does not begin with a verb is
classified as a statement.

Text that does not end with elther a question mark or a period is re-

jected with a request that the person supply punctuation with his input.

-38-
4.3.3 PARSING A DO-QUESTION OR STATEMENT

The DO-question and the statement are parsed in identical fashion
after the DO-word which begins the question is stripped off and the final
punctuation is thrown away.

An exhaustive approach to parsing has been selected for implementation
rather that one designed to use prediction coupled with backup facilities.
This decision was made partly on technilcal grounds--the inherent difficulty
in implementing such a parser in FORTRAN. A more important consideration,
though, was the attractiveness of working with the input as a whole using
the matching of templates (GENERIC ACTION nodes) rather than parsing in a
serial fashion whereby components are recognized in some left-to-right

decoding process.

The algorithm in Figure 5 describes how the parser works.

(1) DO for all possible combinations of usages of the input words:

(2)

DO for all combinations of reasonable referents for all pronouns:

(3) : : DO for each verb in the input:
(4) : : : DO for all GENERIC ACTION nodes for that verb:
(5) : : : : Find suitable actor and object candidates.
(6) : : : : DO for all combinations of actors and objects:
¢)) : : : : : Create a parse network skeleton.
(8 . « .+ « Add modafication to the parse network.
(9) Retain network 1f better than previous one.
. . . . END-DO
.+ + END-DO
:-: ﬁND-DO
:I.END—DO
E

Figure 5: The parsing algorithm

-39-
Essentially, the algorithm is set up to produce all possible parse

networks using the known meanings of the wotrds.

Steps (7), (8), and (®) are the heart of the parsing scheme, For
each triple provided by step (6), a skeleton consisting of an ACTION
INSTANCE node and three SIMPLE INSTANCE nodes is constructed as a temporary,
data structure, The other words in the input are then attached to it
accoxrding to the following modification scheme,

1. Apply left modification to the ACTOR, i.e.,, form a noun

group that consists of the ACIOR plus all i1ts modification

that lies to its iwmediate left. This includes all adjectives
and determiners.

2. Apply left modification to the OBJECT. This process is
identical to that used to get left modification of the ACTOR,

3. Find CONTEXT modification of the ACT. Prepositional phrases
which modify the main verb are located. As prepositional objects
are found, they have their left modification attached by a process
identical to that used in steps 1 and 2 for the ACTOR and the

OBJECT. Note that no right modification is attempted for objects
of prepositions.

4, Find right modification (prepositional phrase) for the ACTOR.
5. Find right modification for the OBJECT.

6. Locate single word (adverb) modification of the ACT. This
process works from right to left through all remaining unattached
words of the input.

A8 each modification is identified, nodes are attached to the grow
ing parse network. Simple modification nodes are attached using the
MODIFY attribute; phrase modification 1s constructed using a CONTEXT
substructure and attached with a CNTXT attribute.

Upon completing the parsing, the score for the newly constructed

parse network is compared with the score for the previous best network.

The higher scoring one is retained to the next iterationm.

~4Q~
The scheme developed for scoring a parse network is as follows:

1. +3 is added for both the actor and the object when they are
identified. A network with a null object would get only +3 for
its actor,

2. Add +l for each single word modifier.

3. Add +1 for each prepositional phrase, Note that this is just

the preposition plus its object. Modification of the object scores
additional points.

4, After the network is created, subtract +1 for each word of the

input, including undefined words, that was not used in the creation
of the network.

Upon termination of the algorithm, there will be a "best" parse net-
work which represents the meaning of the input. In case several networks
had the same "best" score, then disambiguation of meaning is deferred, to
be resolved according to the memory matching process described in section 5,

To detect and control the parsing of '"garbage" input, there 1s a
threshold value for the parse network score that must be exceeded before
the parse will be accepted. The current threshold value 1s zero., A parsing
that does not exceed this value 1s rejected and leads to the response of
"I DON'T UNDERSTAND THAT."

To i1llustrate the way the parsing algorithm works, consider the
question DOES BRANDT OWN A RED ANIMAI. BOOK?

After the DO-question form of the input is recognized, the DOES and the
question mark are discarded leavang
BRANDT OWN A RED ANIMAL BOOK

to be processed. In MEMORY, these words have the following usages:

BRANDT - pos=noun; ISA BOY,

OWN - pos=verb; GENERIC ACTION nodes are (PERSON OWN THING) and
(PERSON OWN ANIMAL).

A - pos=article.

RED -~ pos=adiective; ISA COLOR,

ANIMAL - pos=ncun,

BOOK - pos=noun; ISA THING.

-1

In this example, each word has only one usage so, in terms of the
algorithm in Figure 3, the top level loop (1) will be iterated once. At
step (2), there aré no prondvun referents to resolve. For the verb "OWN",
there are two triples that must be matched to the input.

Using (PERSON OWN THING), in step (5) we compile a list containing
BRANDT as its single entry to be used as an ACTOR candidate (BRANDT (ISA)
PERSON). Similarly, the set of OBJECT candidates contains BOOK since
BOOK (ISA) THING. Now, in step (6), the only possible combination of
ACTOR and OBJECT, (BRANDT OWN BOOK) is formed and passed to step (7)
where the skeleton of this network is formed.

In step (8) the procedure for adding modification is applied.
There is no left modification possible for BRANDI. MHowever, for BOOK,
there are three words, ANIMAL, RED and A, to 1its left that have not been
used in the parse so far. All are found to wodify BOOK.

The score for this parse network is 9, 3 each for a semantically
acceptable ACTOR and OBJECT plus one each for A, RED, and ANIMAL., There
are no unused or undefined words in the iInput so nothing is subtracted,

Now, consider what happens when a second meaning of OWN, (PERSON
OWN ANIMAL), is used in steps (5) through (8). Agsin, the set of
suitable ACTORs will be the singleton, BRANDT,

The set of suitable objects contains only ANIMAL. Therefore, the
triple, (PERSON OWN ANIMAL), matches (BRANDT OWN ANIMAL) and the node
for ANIMAL allows A and RED as modifiers. However, there 1s no way to
attach BOOK to the parse. network. This second parsing gets a score of

7 (ACTOR = +3, OBJECT = +3, A= 41, RED = +1, and BOOK = ~1),

42~

As a second example, consider the string:

DID BRANDT WILL THE PROPERTY TO YOU?

with
BRANDT - pos=noun; ISA PERSON.
WILL ~ pos=noun; ISA PERSON,
WILL - pos=verb; GA node is (PERSON WILL THING).
(TO PERSON) is optional context modifjication.
THE - pos=article.
PROPERTY - pos=noun} ISA THING,
TO - pos=preposition,
JIMMY3 ~ pos=noun; ISA PERSON.

One possible set of definitions (usages) of the words with WILL as a

noun will not include any verbs. Therefore, that combination is rejected
immediately in step (3) of the parsing algorithm. The other possible set
contains WILL as a verb.

Once that set of usages is decided on, the parsing 1s straight-forward
in the manner similar to that used in the previpus example. The maior
difference 1n this input is the existence of Lhe phrase "TO JIMMY3] (as
transformed from "TO YOU" in step (2)). Context modification for the ACT
is searched for pefore right modification of the OBJECT so "TO JIMMY3" 1s
properly attached to WILL in the parse. However, the node for PROPERTY
did not contain any patterns for right modification so that phrase could

not have been attached to the OBJECT anyway. The complete parse for this

input has a score of 8,

=43
5. MEMORY SEARCHING

5.1 OVERVIEW

R EREEE]
Y

1: :

. .
B R S

3: :

Figure 6. General form of a memory
match structure.

The strategy used in MEMORY searching is similar in one respect to
the parsing procedure. Namely, during the search process a structure is
constructed and a score 15 calculated to measure the degree of similarity
between the question and the candidate answer. However, unlike the
exhaustive process used in obtaining a parse, the memory searching procedur
is rather selective and does not examine all, or even a large part, of

MEMORY.

-
5.2 THE MEMORY MATCH STRUCTURE
5.2.1 GENERAL STRUCTURE

For each match attempted between a parse network and an ACTION INSTANCE
node in MEMORY, a complete, new memory match structure is generated. This
structure has a static component of 8 registers plus anywhere from zero to
four variable length, linked lists attached to it at various places ™
(see Figure 6). These linked lists are used for collecting information
about word modification.
5.2.2 ACTOR, ACT AND OBJECT COMPARISON RESULTS

Three of the registers, corresponding to the ACTOR, ACT and OBJECT
comparison results, form the heart of the memory match structure. In each
register is recoxrded the exact kind of match between input and MEMORY.

Three values are contained for the ACT comparison results: a pointer
to the SIMPLE GENERIC node id MEMORY for the ACT given in the parse network,

a pointer to the list which has the comparison between the modifiexs of

input and of the MEMORY structure, and an indicator of the type of match.
Five possible types of matches can occur for ACTs,

1. (+0) No match.

2. (+5) Exact match.

3. (+4) The input and MEMORY ACTs are synonyms.

4, (+4) The input and MEMORY ACTs are antonyms.

5. (+0) The ACT was missing from either the input or the MEMORY
node,

The registers for ACTOR and OBJECT are identical., Like the ACT, they
contain three items of information: a pointer to the SIMPLE GENERIC node
for the ACTOR in the parse network, a pointer to the modifier list and the

match type indicator. The match type indicator for the ACTOR is divided

AT
into three subunits. First, the number, singular or plural, of the ACTOR
is given., Second, the type of reference to the input ACTOR is recorded
as either a specific instance (i.e., it referred to a particular instance
of the ACTOR) or as an indefinite reference (referred to a class of
ACTORs rather than a specific one). Fimally, there is the result of the
match between Input and MEMORY.

1. (+0) No match.

2. (+5) Exact match.

3. (+4) The input ACTOR is a member of the set named by the
MEMORY ACTOR, i.e., input ACTOR (ISA) MEMORY ACTOR.

4. (+4) The input ACTOR is the name of a set for which the
MEMORY ACTOR is a member, i.e., MEMORY ACTOR (ISA) input ACTOR.

5. (+4) Input ACTOR matched a synonym of the MEMORY ACTOR.

6. (+4) Input ACTOR matched an ACTOR of another node in MEMORY of
the form "ACTOR1l BE ACTOR2" where ACTOR1 matched, the input ACTOR
and ACTOR2 matched fhe MEMORY ACTOR, or vice versa, i.e., input
ACTOR BE x and x BE MEMORY ACTOR.

7. (+2) Did not find an instance of the inmput ACTOR in MEMORY

but did find an instance of a member of the set the input ACTOR
would belong to if it had been in memoyy, i.e.,, the two relations
of input ACTOR (ISA) x and MEMORY ACTOR (ISA) x both hold for some
suitable cdtegory x.

8. (+0) ACTOR missing from either input or MEMORY.

5.2.3 WORD MODIFICATION RESULTS

Registers of the match structure corresponding to the ACTION, ACIOR,
ACT and OBJECT nodes can all have modifier lists attached.

The word modification list is singly linked; each item on the list
is given by two registers and represents a single modification, either
single word or phrase. All words or phrases that modify, say, the ACTOR,

will be on the same list. However, if any of those words is modified by a

<46~
word or phrase, then it will have a list attached containing all its modi-
fiers. Thus, for any component of rhe input, word modification is really a
tree of sublists whose structure is determined by the input word relations.

Six results of the match of modifiers are possible,

1. (+0) Was not compared because previous level modification did
not match.

2. (+2) Exact match.

3. (+2) Exact match if inflections are ignored, e.g., singular
matching plural.

4, (+1) One of the two modification words is a member of the set

named by the other, i.e., there is an ISA chain leading from one to
the other.

5. (+1) The two words are both from a set of mutually exclusive
elements, e,g., matching RED with BLUE.

6. (4+0) No match because the modifier appeared in only one of
the two (input and MEMORY) places.

5.2.4 EXAMPLE STRUCTURES

Consider the question:
(1) DOES A PERSON HAVE A RED BOOK?
This will be parsed as (PERSON HAVE BOOK) with RED modifying BOOK., The
two indefinite articles will also be part of the parse network but are not
matched since articles are not included in any memory structures. The

matthing of this parse network with a MEMORY structure for

(2) BRANDT OWNS A RED BOOK
would yield a memory match structure with the following properties.

Match score = 15; Maximum possible score = 17

~47-

MEMORY ACTOR = BRANDT (PERSON).
Input mode = singular, indefinite.

MEMORY mode = singular.
Match type = MEMORY (ISA) input. (+4 points)

MEMORY ACT = OWNS (HAVE).
Match type = synonym (+4 points)

MEMORY OBJECT = BOOK (BOOK)
Input mode = singular, indefinite.
MEMORY mode = singular.
Match type = exact match.
Modifiers:
RED -~ Location = input and MEMORY
Match type = exact match. (+2 points)

(+5 points)

If (1) above is matched against the MEMORY structure representing
(3) BRANDT HAS A BLUE ANIMAL BOOK
The following memory match structure will result,
Match score = 15; Maximum possible score = 17
MEMORY ACTOR = BRANDT (PERSON)

Input mode = singular, indefinite.
MEMORY mode = singular.

Match type = MEMORY (ISA) input, (+4 points)
MEMORY ACT = HAVE (HAS)
Match type = exact match (inflections are (+5 points)
ignored)

MEMORY OBJECT = BOOK (BOOK)
Input mode = singular, indefinite.
MEMORY node = singular.

Match type = exact match. (+5 points)
Modifiers:
RED - Location = input and MEMORY. (+1 point)

(Note: RED matches BLUE as mutually exclusive elements
from the same set.)
ANIMAL - Location = MEMORY only. (+0 points)
This second MEMORY node matches the Input as well (+15 score) as
the first because of the slightly better ACT match even though the OBJECT

is closer in the first case., It serves to indicate some of the problems

that are encountered by the procedure during matching.

(1

(2)
(3)
(4)

(5)

(6)
N
(8)

9)

(10)
(11)
(12)
(13)
(14)
(15)
(16)

(17)

(18)

~48~

DO for all parse networks:

.

Compute maximum possible match score for this network.
Don't search for this network if maximum is not good enough.
Get list of synonyms and antonyms for parse network ACT,

DO until a reasonable match has been obtained or until no more
. ACTORs can be found:

. Select an ACTOR to match on.

. DO for all INSTANCES of that ACTOR:

- . DO for all ACTION INSTANCES which have that ACTOR:

Create the skeleton for a memory match structure.
Compare modifiers of the ACTION INSTANCE nodes.
Compare ACTORs and their modifilers.

Compare ACTs and their modifiers.

Compare OBJECTS and their modifiers.

If no good OBJECTS, then try alternates.

Accumulate the total match score for the structure.
Add structure to the list for that ACTOR INSTANCE.

. . END-DO

. END~DO

. Save best match structures for that ACTOR.

END-DO

Further prune the set of best match structures

END-DO

Figure 7: The memory search algorithm.

A
5.3 MATCHING MEMORY
5.3.1 BASIC ALGORITHM

The algorithm used to search memory (see Figure 7) examines a limited
subset of all structures in MEMORY while trying to match the input. The
search is restricted to ACTION INSTANCE nodes in MEMORY that have either
the same or a closely related ACTOR. The object of the algorithm is to
obtain a small set of the best matches of the parse network with an
ACTION INSTANCE node in MEMORY.

To handle ambipuous input, i.e., multiple parse networks, the matching
procedure must be repeated for each network passed on by the parser (see
step (1)). Unpromising networks are eliminated in steps (2) and (3).
Synonym and antonym lists are compiled in step (4).

The termination criteria for MEMORY searching is the discovery of a
suitable match or the exhaustion of the set of suitable ACTORs used to
direct the search. The adequacy of the match between input and MEMORY is
the memory match score~~the accumulation of many component scores which
measure the similarity of corresponding parts of two structures. The
termination criterion for a sultable match is based on the value of this
score relative to the network's maximum possible score determined in step
(2). The threshold for a "suitable" match is currently set at 70 percent
of the maximum jossible score. The number 70 is not perfect in any sense
but was selected in a trial-and-error fashion.

5.3.2 SELECTING SUITABLE ACTORS

The selection of actors to control the range of the search procedure
is designed to provide a reasonable set of nodes closely related to the
input ACTOR. This selection procedure is used only when no ACTION INSTANCE

nodes with the input ACTOR produce sufficiently good matches.

~50-

There are five alternate methods, described below, for getting new
ACTOR candidates. Not all of these five are always used, however. The
ones to use and the order in which they are to be applied 15 determined by
the mode and numbexr of the input ACTOR.

1. Search memory of ACTION INSTANCE nodes of the form

"ACTORL BE ACTOR2" where either ACTORL or ACTOR2 matches the

input ACTOR exactly. Collect the ummatched members of all

these nodes for use as new ACTOR candidates. For example,

suppose the ACTOR, BRANDT, was not successful at generating a

good match. Search for INSTANCES of (X BE BRANDT) and

(BRANDT BE X) where X is in the same general hierarchy as

BRANDT, e.g., (BRANDT IS SECOND-GRADER). Now SECOND-GRADER

can be used as a source for more ACTION INSTANCE nodes to search.

2, Use all nodes above the ACTOR in its hierarchy,

3. Use all nodes below the ACTOR in its hierarchy.

4, Use all synonyms of the input ACTOR.

5. ¥Find all INSTANCE nodes that are in the same set as the

input ACTOR, i.e., search the other nodes in the ISA chain

rooted in the node immediately above the input ACTOR in its

hierarchy. For example, for an input ACTOR, BRANDT, we have

BRANDT (ISA) BOY. Search the chain which gives all subsets

of BOY, but excludes BRANDI.

For specific mode input ACIORs, the above procedures are executed in
the order: 1, 2, 4, 5. Procedure 3 is not used for specific input
ACTORs since its purpoce is to find specific instances for general references.
For indefinite input ACTORs, the procedures are executed in the order: 1, 2,
3, 4. Protedure 5 is not used since it would lead to too diversified a set
of potential candidates. For instance, consider PERSON as the input ACTOR.
If we had PERSON (ISA) THING, and ANIMAL (ISA) THING, ACTORs could be
selected that are only vaguely related to the input.

This set of procedures can be executed twice. The first time, the input

ACTOR is used as it appeared in the input, The second time, its number is

-51-
changed, i.e., for g singular ACTOR, the second time through, all comparisons
and searches would be performed for its plural.
In order for this procedure to work, the mode of the imput ACTOR must
be known. This is determined as follows:
1. An ACTOR is indefinite if
a) it 1s an indefinite pronoun,
b) it has modifiers but none is a definite determiner
(the, this, these, that, those) or
c) it is plural and has no modifiers.
2. An ACTOR is specific if
a) it is modified by a definite determiner or
b) it is singular and has no modifiers.
6. PRODUCTION OF OUTPUT
6.1 OVERVLIEW
Problems to be solved before "natural" sounding output can be produced

are

1. what information should be used in the response to a given
input,

2. how should the response be structured so certain parts are properly
emphasized and

3. how can the response be made to appear natural in the sense of
being like a similar remark a person might make?

Clearly, there are many factors which play a part in how a person
decides what to say at any time during the course of a conversation. Such
fagtors include the place of occurrence, the reason for the conversation,
the roles assumed by the participants, the type of information passed and
the motives of the participants. These factors have nbt been studied,
indeed, have not even been exhaustively identified, during this research.
What has been done, however, is the development of a few simple procedures

that will generate reasonable sounding answers to DO-questions based on the

results -of memory search,

~52—
6.2 THE OUTPUT PRODUCTION LIST

The only temporary structure created during the output phase is a
simple doubly linked list of elements representing the words and

punctuation of the answer to be printed (see Figure 8),

: »: : :
: [function] ":[function] :--%’-----:7 : [function]
GEN[‘] © cmn(p] f. e — ¢ cEN)

V ' cesvsesaessnavee sseoenclrosveswns

% =4 se es se

Figure 8: Structure of the output productiom list

As the output production routines analyze the relevant memory match
structures, they produce the output production list an element at a time.
Each element of the list has the following two register format:

Register 1 - contains the forward and backward links to the other
elements in the list.

Reglster 2 - contains a word function indicator (represented as

[function] in Figure 6) and a MEMORY pointer to the GENERIC

node for the word (given as GEN []). The pointer can be used

by the final print routines to trace back through the word's
GENERIC node to its TYPE node to retrieve its text representation.

The word function is an indicator to help out the routine that makes
the output grammatical. Currently 10 different function codes which
correspond very loosely to sentence parts are used.

1., Subject.

2. Verb.

3. Object.

4. Prepositional object.

5. DPreposition.

6. Modifier of subject.

7. Modifier of verb.

8. Modifier of object.

9. Modifier of prepositional object.
10. Other (includes punctuation).

53
6.3 PRODUCTION METHOD
6.3.1 RESPONDING TO INPUT NOT UNDERSTOOD
When the input is not understood or no answer has been found in memory,
enough information should be returned so that the person knows why he did
not receive the expected response. The procedure that is used to detect
that situation and produce a response cutrently works as follows:

1. If input was not parsed, respond with "I DON'T UNDERSTAND
THAT." Then print all undefined words in the form: I DON'T
KNOW WHAT wordl (OR word2 OR word3 ...) MEANS." For example,
the input "DOES BRANDT RIDE A BICYCLE?" would generate the
response "I DON'T UNDERSTAND THAT. 1 DON'T KNOW WHAT RIDE OR
BICYCLE MEANS."

2. If the input is parsed, but there was a poor, or no, memory
match, then check the ‘GENERIC node for the ACT to see if we
respond with "YES", "NO", "I DOM'T KNOW" or some "canned"
response. What is searched for is an attribute which is some-~
times present in ACT nodes and is the answer to be given when
no match is found with MCMORY. An example is the ACT "KNOW",
If the program is asked "DO YOU KNOW x?" and x is not in
MEMORY, then the respomnse will be "NO." rather than "I DON'T
KNOW."

If the input is parsed and there is a good memory match then the
following steps will be executed.

3. Check the OBJECT. I1f there is none and one is' required
by this ACT then, if there are undefined words, print

"I DON'T UNDERSTAND THAT." plus the undefined words. 1If
there are no undefined words, print "I DON'T UNDERSTAND YOUR

USE OF act." Substitute the current ACT in the output for
Maect" .

4. Check the ACTUR. 1If it is not directly related to the in-
put ACTOR but is a member of the same set (i.e., it was
selected during the memory search for producing actors as
given in section 5.2.3), print "I DON'T KNOW." However, in
this case, do not terminate the output production here. Pass
the good memory match structure involving this actor on to

the next procedure to be used to produce more output., As an
example, the input "DOES BILL HAVE A BOOK?" would generate

the response "I DON'T KNOW. BRANDT HAS A RED BOOK."

5. Check the ACT. If it does not match, print "I DON'T KNOW."
plus the undefined words, if any.

~54—
€.3.2 DETERMINING MODE OF RESPONSE

The answer to a DO-question has an optional interjection of YES or

NO which precedes the answer and is determined as follows:

1. Set the mode to YES unless the MEMORY ACTOR is a subset
of the input ACTOR. Iu that case, the response should not
have either YES or NO. This will occur when specific data
are being used to answer a question of a general nature.
For example, the input "DO PEOPLE OWN THINGS?" would be
answered by '"BRANDT OWNS A RED BOOK.' The YES is omitted
since the question has not been answered in general. Do
not continue examination of the match for contradiction
when this occurs.

2. Search the memory match structure looking for contra-
dictory data that would change the mode from YES to NO. If
the input ACT matched an antonym, set the mode to NO,.

3. Check the first level modifiers of the ACT. Look for
contradiction, i.e., modifiers from the same set that are
mutually exclusive. If any are found, reverse the setting

of the mode. For example, the input "DID BRANDT PLAY OUTSIDE?"
which would match the MEMORY node, "BRANDT PLAYED INSIDE."
would have a negative mode since INSIDE and OUTSIDE are
mutually exclusive.

4. Check the OBJECT for conflicting modifiers. Also change

mode if the OBJECT is not directly related to the input

OBJECT but is an element from the same set as the input

OBJECT. This will be the case when matching objects such as

GREEN BOOK with YELLOW BOOK or OLD BOOK with NEW BOOK.

5. Tinally check all single word modifiers of the ACT that

were present only in the input or MEMORY looking for negative

modifiers. These would be words like NOT, NEVER, etc.
6.3.3 PRODUCING A NORMAL ANSWER

At the top level in this procedure is the decision of how much
of the answer to print. The rules used are: a) if the answer is an
exact match of the input with respect to the three major components,
don't print anything except for the YES or NO, b) if the answer is am
exact match except for the OBJECT, then print only the OBJECT or c) if
the ACTOR or ACT doues not match, then print the whole MEMORY node given

by the memory match structure.

=55~
The list elements representing the output to be printed for the

ACTOR or OBJECT are generated by the following procedure.

1. Add the generic node for the ACTOR (OBJECT) to the end
of the output production list. Set its function type to
SUBJECT (OBJECT).

2, Put the modifiers into the list immediately in front of
the AGTOR (OBJECT). Use only modifiers that were present in
the” MEMORY node or that matched between MEMORY and input.
These modifiers are contained in the linked list attached to
the memory match structure for the ACTOR (OBJECT).

3. Put an article before the modifiers, if required.

4, Add prepositional modification of the ACTOR (OBJECT) at
the end of the list. This 1is accomplished by adding the
preposition followed by the prepositional object. Then the
modification on the prepositional object is added between
the two.

5. If the ACTOR (OBJECT) is the same for both input and
MEMORY but some Input-only modification exists, then add "BUT
NOT" plus the input node and the input-only modifiers. An
example of this is where "A BLUE BOOK BUT NOT AN ANIMAL BOOK"
is given in response to “DO I HAVE A BLUE ANIMAL BOOK?"

6.3.4 MAKING OUTPUT GRAMMATICAL

The procedure used to fix up the output examines the elements of

the output list and, using the word functions as specified in those

elements and the properties given in the words' GENERIC nodes, attempts

to apply the. four rules bglow:

1. JIMMY3 and the person's name get translated to the
pronouns "I" and "YOU". At this stage, the form of the
pronoun may be wrong.

2. Get person and number of the pronouns to agree with the
ACT (main verb). Change a pronoun to its possessive form if
it is used as a modifier of another sentence element,

3. Set the proper verb tense.

4. Convert the objects in the sentence (main OBJECT and
prepositional objects) to objective case.

~56~

A step in making the output grammatical that was given before was
the generation of an article as a modifier. An indefinite article
(A or AN) is always used; the one to be selected is given by the following

rules:

1. Dbon't use an article if the word modified is a pronoun or
a proper name.

2. Otherwise, select A or AN according to the first letter
of the word it will precgde.

Following the completion of this operation the output is printed.

7. DISCUSSION
7.1 RESULTS
7.1.1 OBJECTIVES MET

The objectives of this research, as restated from section 1, are
the development of three components able to carry on a "natural" dialogue
with humans: an extendible memory model, procedures for determining the
meaning of the input and procedures to allow the model to converse
"naturally" with a human.

The current design of memory, although a start in the right direction,
is far from complete. Thexe is much that cannot now be represented with
the structures available., However, the design of memory is flexible.
Extensions can be added to represent more complex surface structures via
INSTANCE nodes and also to capture more of the underlying structure of the

word meanings themselves in terms of GENERIC nodes.
Other features that an extended memory model will need are the
capabilities for supporting more elaborate question answering, the

prohessing of imperatives and the integration of new information into the

-57-

existing structures. We believe that the current design will allow such
procedures to be developed.

The parser now implemented does a reasonably good job on the
restricted input given it. The basic parsing philosophy, i.e., the
selection of one of several possible networks based on semantic density,
is believed to be a sound way to appwoach the problem of determining
meaning.

The development of output generation procedures has Just started.
The currently implemented procedures are rot general or powerful enough
to handle more than a few specialized situations. Work is required in
this area to first develop a large number of specific rules from which
more general rules can be deduced.

We have identified ten features which characterize "natural" language
understanding processes. Specifically, they are the ability, to:

(1) Work with partial information (to make plausible inferences
about missing information, e.g., default values from frames),

(2) Work with overlapping and conflicting information (not to
reject it out of hand, or seek only comsistent information, or

to assign all truth value F, but to sift through it to reject

that which - based on experience or knowledge - is implausible

or to temporarily suspend judgement),

(3) Retain ambiguity until disambituation is absolutely called for,

(4) Perform "short" chains of deductions,

(5) Engage in common sense reasoning (i.e., there is knovledge of
the properties of commonplace objects, events, etc.),

(6) Pose questions in order to confirm expectations or to elicit
more information about some subjact matter of personal interest,

(7) Construct, modify and extract information from a model of the

intentions, interests, skills, motiyatioms, etc., of the other party,

~58-
(8) Interrogate and update a similar model of the attitydes, beliefs,
abilities, goals, etc., of itself,

(9) Be sensitive to the plausibility of information received (see
Norman's "Charles Dickens" problem, discussed latet),

(10) Be aware of the context in which the conversation is occurring
(Norman's "Empire State Building" problem, discussed below, identifies
one kind of context; the roles of the parties involved, e.g., parent-
child, teacher-student, superior-subordinate; bureaucratic official-
client,, is a second context; other context types are no doubt present).

With JIMMY3 we have only begun to address this list of attributes. In parti-
cular, JIMMY3 illustrates one approach to coping with items #2 and #3.

Other programs pose avenues of attack for other items of the list (e.g., i1,
#4, #5), but the extendability of those programs to other features listed is
questionable - as it is for JIMMY3. However, by grappling with what we
consider to be the fundamental problem of designing the system from the

start to be extendable, we believe JIMMY3 can be grown to cope with other
features on that list, and thus approach being a "natural” language
understanding system.

7.1.2 DOES THE PROGRAM REALLY UNDERSTAND?

The answer to this question is prbdbably no. In the more restricted
sense of, can the program relate the input to something it already knows,
the ansver is yes. All input surface structures are matched during the
question answering phase to slmilar structures in memory. However, given
a single input in isolation, the program does not understand what it means.
It has no definitions for individual words. It is true ‘that there are
relationships between words via the chains and hierarchies but this is not

enough., Knowing that BRANDT (ISA) PERSON does not help at all in under-

standing if the model does not what a PERSON is,

~50-
7.2 LIMITATIONS

A majority of the model's general limitations are the result of
deficiencies in the memory structure. For instance, certain types of
input canndt be parsed because of inadequate structural building unit
of membry.

7.2.1 MEMORY MODEL

If the current philosophy of what is to be'stored in memory is
maintained, i.e., only surface structures are to be represented, then the
most serious limitation is the inability to represent more kinds of strings
of English. Nothing more complex than simple {ACTOR ACT OBJECT) facts cau
now be recorded. In general, there is no way of relating different facts
to show causation, result, presupposition, etc.

If we look at memory as more than a place in which surface strings are
stored, then there are many shortcomings. Nowhere in the current structure
are words given definitions. As for ACTs, the original design called for
the building of hierarchies of ACTs in a manner similar to hierarchies of
"things". Instead ACTs could be broken down to some basic primitives of
action. Different ACTs can then be compared, not by looking at their hler-
archies, but by comparing their common primitive actions.

7.2.2 PARSER

The single major limitation of the current parser is its inability to
parse anything other than simple DO-questions and statements. This is not
a theoretical shortcoming; it simply a question of implementation effort.
Howevet, there are problems with £/ parser irrespective of this major

limitation. These problems are quite often related to deficiencies in the

memory structure.

-60-
The parser will currently fail if it does not find a semantically
acceptable parse. In cases such as this, it should be allowed to find,

instead, a syntactically acceptable parse that would be marked as a

semantic anomaly.
Undefined words are now ignored. The ability to make reasonable

predictions about the function and meaning of undefined words would be

desirable.
7.2.3 OUTPUT PRODUCTION

The most serious limitation in the production of output has been
the lack of time to develop more extensive procedures. Examples of new

rules that are not yet implemented that could be used to produce answers

are the following:

1, Use more than one memory match structure to produce the
answer. Currently only the best one is used. For example,
the question "DOES ANYONE HAVE A RED TOY?" could be answered
by combining the two memory matches, ''BRANDT HAVE RED BOOK"
and "JENA HAVE RED BALL," to get "YES. JENA HAS A RED BALL AND
BRANDT HAS A RED BOOK,"

2. Several equally good memory matches could be combined to
produce a single answer which contains a compound actor or
object. The question "DOES BRANDT HAVE A BOOK?" matches two
memory structures equally well. These two matches, "BRANDT
HAVE. RED BOOK" and "BRANDT HAVE BLUE BOOK," could be combined
to form the response "YES. HE HAS A RED ONE AND A BLUE ONE."
Note that work also needs to be done with respect to pronoun

substitution (i.e., ONE for BOOK) before the above response
could be produced.

3. If the memory search fails and there was no actor in memory,
this should be reported explicitly rather than saying "I DRN'T
KNOW." For example, consider the question "DOES BILL MAXWELL
HAVE A SON?7" If BILLGMAXWELL is not present in MEMORY, report
"I DON'T KNOW BILL MAXWELL." However, if the memory match
procedures were successful in finding generiec information such
as "MEN HAVE SONS" then the phrase "BUT HE COULD HAVE A SON."
could also be generated.

-61-

Other limitations are the inability to handle definite articles or
to attach modifying clauses or phrases to help distinguish parts of
output. The production procedures allow only superficial treatment of
the ACT.

Typical of simple questions that currently cannot be answered is
"DOES BRANDT HAVE TWO BOOKS?". There is no mechanism for counting or com-
paring occurrences of relevant facts in memory during the search process.
nor of using them in the output production phase.

7.3 TIGNORED PROBLEMS
7.3.1 INTENTIONS AND MOTIVATIONS

The most serious problem is the lack of any modelling of intentions
and motivations of the person talking with JIMMY3 (or of JIMMY3 itself).
In order for a dialog to be sustained for any length of time with a sense
of continuity, models of the person and of JIMMY3 are required. Two
psychological models should be maintained by the program to indicate
1) what the program thinks about itself and the person and 2) what the
program thinks the person thinks about himself and the program. At all
times during the conversation, information in the models will specify for
both the person and the program what each a) wants to know, b) wants to
tell, c) already knows, d) feels, e) believes, etc., with respect to the
context of the conversation up to that point. Also required will be
informetion about the motives and physical and mental attributes and
capabilities of each participant from each point of view. Integration of

these models into the workings of the parsing, memory searching and output

-62-
production phases of the program will be a necessary step towards more
complete natural language understanding.

For example, to continue that hypothetical dialogue of section 1,
one would like to be able to see some exchanges such as:

H: Was the window expensive to repair?
NCP: Why do you ask?

H: Why do you want to know?
NCP: I fear I may be responsible for the debt.

H: I thought that might be the casq.
NCP: You mean I do owe you money?

H: No, it's just that I regret making you feel uncomfortable.
NCP: Then why did you ask if the window was expensive to repair?

H: To test your power of deduction.
NCP: You really don't seem to understand me,

Computer analysis of such complex interchanges is dependent upon the existence
of psychological models of both parties. Successful realization is probably
many years off.

7.3.2 NORMAN'S PROBLEMS

With respect to answering capabilities in language understanding
understanding models, Norman [9] has presented several basic problems that
should be considered. These are illustrated as: 1) the telephone number
problem, 2) the three drugstores problem and 3) the Empire State Building
problem.

The first problem concerns the appropriate response to the question:
"What is Charles Dickens' phone number?" The normal human response of
"That's a stupid question."” or "Phones weren't invented then. requires
the action of a plausibility check on the question before an attempt is

made to find an answer.

-H3~

The three drugstorels problem considers what the correct reaction
should be to the statement: "I went to three drugstores." This is
really a problem of integrating current with past knowledge and of
determining presuppositions to the new data. TFor instance, the program
should note (or ask) Why, didn't the other £wo drugstores have what you
were looking for?

The 'Empire State Building problem refers to the context and scope
of any particular question. The question, "Where is the Empire State
Building?" requires different answers depending on the context of the
conversation. To paraphrase Norman's response: If asked the question in
Russia, the answer most likely would be "In the United States."; if asked
by an adult in Europe, "In New York City."; if asked by someone in
New York City, then "On 34th Street." would be appropriate.

From these examples, it is obvious that much more is involved in
developing a language understanding system that answers questions "naturally"
than just the ability to parse input correctly, look up an answer and
report it. We hope we have more clearly identified some of the desirable
characteristics, and we hope we have illustrated some progress toward the
ultimate goal. If JIMMY3 allows other problems from our list to be addressed

also, we shall feel fortunate, indeed.

REFERENCES

(1] Anderson, John R. and Gordonm M. Bouer, lluman Associative Memory,
Wiley and Sons, 1974.

[2) Bobrow, Daniel G., and Allan Collins (eds.), Representation and
Understanding, Academic Press, 1975,

(3] Brown, John Seely and Burtonm, Richard R., "Multiple Representations
of Knowledge for Tutorial Reasoning," in [2].

(4] Carbonell, Jaime R., "AI in CAI: An Artificial Intclligence Approach
to Computer-Aided Instruction," IELE Transactions on Man-Machine Systems,
Vol. MMS-11, 1970, pp. 190-202.

[5] Colby, Kenneth M., Artificial Paranoia: A Computer Simulation of
Paranoid Processes, Pergamon Press, 1975.

(6] Lindsay, Robest K., "In Defense of Ad Moc Systems," in [15].
Y)

[7] Newell, Allen, "Heuristic Programming: Ill-Structured Problems,"
in J.S. Aronofsky (ed.), Progress in Operations Research, Wiley, 1969.

[8] Newell, Allen, et al., Speech Understanding Systems, American
Elsevier, 1973.

[9] Norman, Donald A., "Memory, Knowledge, and the Answering of Questions,”
in R.L. Solso (ed.), Contemporary Issues in Cognitive Psychology: The
Loyola Symposium, Winston, 1973.

[10] Norman, Donald A., David E. Rumelhart and the LNR Research Group,
Explorations in Cognition, Freeman and Co., 1975.

[11] Quillian, M. Ross, "Semantic Memory," in Marvin Minsky (ed.),
Semantic Information Processing, MIT Press, 1968.

[12] Rustin, Randall, Natural Language Processing, Algorithmics Press,
1973.

(13] Schank, Roger, "Conceptual Dependency: A Theory of Natural Langauge
Understanding," Cognitive Psychology, vol. 3, 1972, pp. 552-631.

[14] Schank, Roger, "Identification of Conceptualizations Underlying
Natural Language," in [15].

-5

[15] Schank, Roger and Kenneth Colby (eds.), Computer Models of Thought
and Language, Freeman, 1973.

(16] weizenbaum; Joseph, "ELIZA: A Computer Program for the Study of
Natural Language Communication between Men and Machine," Communicgtions
of the ACM, Vol. 9, 1967, pp. 36-34.

[17] Wilks, Yorick, "An Artificial Intelligence Approach to Machine
Translatiova," in [15].

[18] Wilks, Yorick, "The Stanford Machine Translation Project," in [12].

[19] Winograd, Terry, "Understanding Natural Language," Cognitive
Psychology, Vol. 3, 1972, pp. 1-191.

[20] Woods, William, "An Experimental Parsing System for Transition
Network Grammars,”" in [12].

American Journal of Computational Linguistics microricre 61 :

FIFTEENTH ANNUAL MEETING
ASSOCIATION FOR CONPUTATIONAL
LINGUISTICS

WasHineTON, D, C.
MarcH 16-17, 1977 ABSTRACTS

The decision to hold the 1977 meeting of the Association
in March was taken only in October 1976. The six-month
interval has not allowed advance distribution of abstracts
through the Journal. The abstracts accepted for presenta-
tion are published here for the record, and for the use

of members who could not attend the meeting.

Some or all of these papers may be published in future

issues.

The program, on frames 72 and 73, gives frame numbers for

all abstracts.

71

ACL MEETING 1977 72

ASSOCIATION FOR COMPUTATIONAL LINGUISTICS
FPifteenth Annual Meeting

Georgetown Univergity, Washington D.C. 16-17 March 1977
Palms lounge, Walsh Building; 36th Street between N and Prospect

PROGRAM

wWednesday. 16 March

Session |

9: 00

9:30

10:00

10:30

11:00

11:30

Session II

2:00

5:30
6:30

8:00

LANGUAGE MODELS AND TECHNIQUES

A Bi-Directional Parser for ATN Grammars 74
G. Brown and W. A. Woods, Bolt Beranek and Newman

The Efficient Integration of Syntactic Processing with
Case-Oriented Semantic Interpretation 75
R. J. Bobrow and M. Bates, Bolt Beranek and Newman

Some Properties of Arbitrary Phrase Structure Languages
and Translation 76

W, Buttelmann, Chio State University

The Augmented Finite State Machine Approach to Synthesis
by Rule 77
T. Kacamarek, University of Pennsylvania

A Lexicon for a Computer Question-Answering System 78
M. Evens and R. Smith, Illinois Institute of Technology

Progress Report on REL 79

B. H. Thompson and F. B, Thompson, California Institute
of Technology

Panel- Discussion: SPEECH UNDERSTANDING AND COMPUTATIONAL
LINGUISTICS - A CRITICAL EXAMINATION OF THE ARPA PROJECT

Chairman: J. Allen, M.I.T.

Participants: R. Reddy, Carnegie-Mellon University
D. E. Walker, Stanford Research Institute
W. A. Woods, Bolt Beranek and Newman

Business Meeting, Paul Chapin, ACL President, presiding

Adjourn for dinner

Dinner and Presidential Address by Paul Chapin
The Foundry, 1050 30th Street, Washington

$14.00; make reservations early Wednesday morning
40 person limit, because of restaurant capacity

BCY, MEETING

Georgetown University, washington D.C.
Palms Lounge, Walsh Building; 36th Street between N and Prospect

ASSOCIATION FOR COMPUTATIONAL LINGUISTICS

Fifteenth Annual Meeting

PROGRAM

Thurasday, 17 March

Session III

9:00

9:30

10:00

10:30

11:00

11:30

12:00

PROBLEMS OF DISCOURSE

Parsing Free Narrative
N. Sager and C. Inselio, New York University

Discourse Connectives
B. Phillips, University of Illinois

A Framework for Processing Dialogue
Gc E- BIOWn, H.I.T.

Natural language Programmning: Kitchen Recipes
L. A, Miller, IBM

Accommodating the Spatial Metaphor
J. R. Bobbs, City University of New York

Inferring an Antecedent
B. Nash-Webber, Bolt Beranek and Newman

Adjournment

Registration fees: $10.00 Member

No advanced registration procedures;)
of $15 for the year 1977 may be paid at the meeting.

$ 5.00 Student
$15.00 Other

dues are $30 for 1977.)

16-17 March 1977

73

80

81

82

83

84

88

individual dues for ACL membership
{Institutional

ACL Meeting 19717 74
G. Brown and W. A. Woods

Bi-directional Parsing with ATN Grammars

The Syntactic component of HWIM, the BBN Speech
Understanding System, is a middle-out, bi-directional parser for
Rugmented Transition Network grammars. Several of the HWIM
control strategies recuire a parser that can evaluate an isolated
sequence of words (called an "island") somewhere in the middle of
an utterance to determine whether it is a possible fragment of a
complete sentence, If so, the parser is required to make
predictions f£or all of the possible words that could be used to
extend the fragment in each direction. In this talk we will

describe a parsing algorithm which efficiently achieves these
capabilities.

The HWIM parser can be viewed as a bi-directional
generalization of Earley s algorithm extended to handle
context-sensitive, ATN grammars. The algorithm stores the
computations in "segment" and "island" confiqurations indexed by
end states and boundaries. (A segment is a partial parse that is
contained complete.y within one level of the transition network
grammar.) Organizing the computation into segment and island
configurations eliminates the need for a stack, thus solving a
difficult problem in middle-out parsing.

In the usual ATN formalism, the grammar is written as
1f to be processed from left to right, and in general some of the
arc actions will be dependent on other actions to their left in
the grammar. To insure the correct handling of such
context-dependent ar¢ actions by the bi-directional parser, the
grammar writer must specify the "scope" of any such action.
Except for the explicit declaration of scopes for
context~-dependent actions, a bi-directional ATN grammar is
exactly like an ordinary ATN, and left-to-right ATN grammars can

be converted to bi-directional operation simply by adding scope
statements,

Although developed in the context of a speech
understanding application we feel that the bi-directional,
middle-out parsing algorithm also has applications in text
parsing for problems such as error correction, partial
interpretation of sentence fr agments, and management of
corbinatorics in long sentences.

ACL Meeting 1977

R. J. Bobrow and M. Bates

THE EFFICIENT INTEGRATION OF SYNTACTIC PROCESSING
WITH CASE~ORIENTED SEMANTIC INTERPRETATION

processing systems to express syntactic constraints in a broa

general way while usinm tight semantic constraints to %ulde the
parsing and to interpret the resulting structures. he system
described here uses an avuvgmented transition network grammar
together with a case-oriented dictionary to achieve a close and
ef%ieient integration of the syntactie processin%,with the case
stguc%uges (which 1include semantic and pragmatic properties of
objects).

It has long been the goal of those writing natural 1anguage
]

The ATN defines, using normal syntactic categories, a very
general surface structure of about the capability of the LUNAR
and GSP systems. If case structures and semantic information
{including interpretation rules) are omitted from the dictionary,
the grammar functions as a standard parser, producing closely
related "deep structures” for syntactic paraphrases.

The system provides mechanisms for users to define semantic
interpretation rules and case frame checks which are to be
applied at various points in the parsing process. Thus
constituents may be interpreted as soon as they are parsed, and
the structure of the semantic interpretations thus produced may
be checked when filling the case frames for higher structures.
Since the "most likely local interpretation may not fit the case
requirements of containing structures, the system provides a
general coercion mechanism to reinterpret a constituent in light
of its context when necessary. To facilitate reinterpretation,
as well as certain anaphoric references, the original syntactic

structure is maintained throughout the parsing together with any
semantic interpretations.

The present system is being used as tWe natural language
front-end for a sophisticated message processing and filing
systen. Ultimately, we hope to have a general system which can
be adapted to other natural language input 3{stems by providing
nevw dictionary entries and semanti¢ interpretation functgons.

ACL Meeting 1977 76

W Buttelman

SOME PROPERTIES OF ARBITRARY PHRASE STRUCTURE LANGUAGES AND TRANSLATION
DERIVED USING A FORMAL MODEL OF PHRASE STRUCTURE SYNTAX AND SEMANTICS

Abstract

The notion of a phrase structure linguistic description is introduced --

a pair, D = (G,S) where G is an arbitrary phrase structure grammar and S is a
formal semantics (defined in the paper). 5 may be either context free or con-

text sensitive, 8§ models the following notion of meaning: the meaningful units

of language are phrases; the meaning of a phrase is a function of its syntactic
structure and of the meanings of its constituents and of its semantic context.

This concept is a generalization of semantic notions due to Tarski, later suggested
by Thompson and by Katz and Fodor, and recently popularized for programming lan-
guages In Knuth's synthesized attributes and for natural languages by Montague.

The (phrase structure) language of D, L(D), is the set of ordered pairs (w,m)

vhere w is a sentence of G and m is a meaning assigned to w by S.

We prove the following results: The set of phrase structure languages is
just the set of products of r.e. sets. Every phrase structure language has a
description ueing a regular grammar and a context free semantics. For every
description D with an unrestricted grammar and context sensitive semantics there
is a description D' using a context free grammar and context free semantics such
that L(D) = L(D'). Furthermore, D and D are "strongly equivalent” in the sense
that the phrase trees assigned by D' to each sentence are just the skeleton trees
of the phrase structures assigned by D to the sentence. The notions of "weak"
and "strong equivalence" are extended to semanties (if two descriptions are
strongly equivalent in a sémantic sense, then the structure of their semantic
functions is identical -~ in a programming sense, the same programs can be used
to compute the meanings of the same sentences). In this sense, D and D' are not
strongly equivalent. However, if D has a context free semantics, then D and D'
are semantically strongly equivalent. Also, we prove that there is a description
D" for L(D) using a context sensitive semantics which is strongly equivalent to
D in both the syntactic and semantic senses,

Next we define translation on phrase structure languages and consider a par-
ticularly appealing strategy for translation, which we call "syntax-coatrolled"
translation. (I have avoided the term "syntax-directed" because it has had
differing uses in tue literature.) We prove the following results: Every com-
putable translation is definable as a syntax-controlled translation. For two
arbitrary descriptions D and D', it is undecidable whether any syntax-controlled
translation from L(D) to L(D') exists. We give an algorithm which, glven two
arbitrary descriptions D and D', will halt and produce the definition (program)
of a syntax-controlled translation from L(D) to L(D') if and only if such a
translation definable by D and D' exists.

Syntax-controlled translation réquires no semantic computation at translate
time (for which one pays a dear price in the time required to generate syntax-
controlled translators). For a syntax-controlled translation which produces a

ACL Meeting 1977 77

single target sentence having a meaning in common with the source sentence, the
time complexity is 0 (ptw) where p is parsing time and w is the weight of the
source phrase structure, To produce the smallest set of target sentences such
that each target sentence has at least one meaning in common with the source and
such that all translatable meanings of the source are represented requires

0 (@™ (cn!) £ (pten))
time, where ¢ and d are constants, n is the source sentence length, f is the time
to check for semantic validity of a parse, and p is the time to prcduce all parses.
Finally, we consider phrase structure language descriptions having both
Inherited and synthetic meaning, No new languages can be defined, but the use

of inherited meaning lcads in a natural way to a notlon of semantic-controlled
translation.

T. Kaczmarek

The Augmented Finite State Machine -
A More Efficient Approach to Synthesis by Rule

The aurmented transition network (ATN), whiech has
proven useful for natural lanruage understanding, has been
refornulated and restricted slichtly to yeild a mechanism
termed the aurmented finite state machine (AFSM). The AFS!
is being used to do speech synthesis by rule, a process bv
which phoneti¢ transeriptions of speech are converted into
synthesizer parameters. The rules for synthesis in this
approach take the form of procedures which are conditionally
executed depending on context. Most previous synthesis by
rule systems began with a transformational component and
added procedural statements. In this system procedural
statements have been added to a much simpler mechanism, the
finite state machine. The advantace of the AFS! approach is

that the phonetic string may be processed in a single linear
pass.

ACL Meeting 1977 78

M. Evens and R. Smith

A LEXICON FOR A COMPUTER QUESTION-ANSWERING SYSTEM

Computer question-answering systems and other models of natural
language processing need lexicons that are much larger than those
available today (cf{. Simmons, 1970 and Becker, 1975). But the models
currently in operation (e.g. Winograd, 1971) already consume all avail-
able high-speed memory in large computer systems. Lexical relations
as developed by Raphael (1968), Apresyan et al., (1971), and Simmons
(1973) provide a method of storing lexical information in more compact
form. While Schank (1973) and Wilks (1975) both claim that there is
a fixed universal set of semantic primes, we argue in opposition,
follbwing the Russians and Millex and Johnson-Laird (1976), that the
set of lexical relations is open-ended; our system is designed to
add new relations whenever a lexical regularity is noticed.

Our lexicon is being developed as an integral part of a computer
question-answering system which answers wultiple-choice questions
about simple children's stories. It serves as a global data-base for
this system - a combination lexicon-encyclopedia - and must make in-
formation readily available for the parsing process, for building an
internal model of the story being read, and for making inferences.

One of our test paragraphs, which comes from a test desigged for first
and second graders, says 'Ted has a puppy. His name is Happy. Ted and
Happy like to play." In order to answer the first question, "The pet
is a: dog-boy-toy?", we need to know what pet means. The lexical
entry for pet contains a simple definition, that a pet is an animal
that is owned by a human, in a first-order predicate calculus form:
NCOM(PET,ZI) = (Z,)NCOM(ANIMAL,Z.) .NCOM(HIIMAN,Z,) .R(OWN,Z,,Z.). In
order to answer this question we dlso need to kndw that a puppy is a
young dog. This information: NCOM{PUPPY,Z,) = NCOM(DOG,Z,}.PROP
(AGE,ZI,YOUNG) could be part of the lexical entry for puppy. We would,
of course, need axioms of the same form as well for the entries for
kitten, lamb, etc. Instead we express this information by using a
lexical relation, CHILD. The lexical entry for puppy therefore con-
tains CHILD dog; the lexical entry for kitten contains CHILD cat; and
the lexical entry for CHILD contains the axiom scheme from which the
relevant axioms are formed when needed.

For verbs, corresponding to each case relation there is a lexical
relation which points to typical fillers of that case slot. The lexi-
cal entry for bake, includes TAGENT baker and TLOC kitchem: It also includes
T make where T is %he well-known taxonomy relation, so that if the
story says that Mother baked a cake we can infer that she made one and
CAUSE bake. so that we can deduce that the cake has baked. The selec~
tional res%tictions that help us tell instances of bake., and bake
apart can also be expressed compactly using the T relation. We also
need to make deductions from main verbs in predicate complement con-
structions; deductions such as.the speaker's view of the truth of the

ACL Meeting 1977

proposition stated in the complement as derived from the factivity

of the verb (in these sif cies the reader must infer that everything
that mother says is true!). Lexical entries for main verbs that

take predicate complements contain pointers to the implication class.
These relations can then be expanded to give the proper axiom schemes.

The use of lexical relations allows us to,express both syntactic

and semantic information in a form that is compact, easy to retrieve,

and that provides effective input to both parsing and deductive
processes.

B. H. Thompson and F. B. Thompson

A Progress Report on REL

The REL (Rapidly Extensible Language) System_ is now in operatiomal
prototype form. An experimental version of the system was
demonstrated in 1973 and since has undergone very thorough revision
and clean up. The REL English grammar, which includes an extensive
arithmetical compenent, has been improved and extended. The

system can be demonstrated and made available for user testing on
IBM 360/370 computers using most operating systems, e.g. TSO, CMS.
A user's Reference Manual is now in preparation and will be
available at the time of the conference.

The basic system philosophy has remained the same,, K namely to
provide the user with a tool for natural man-machine communication
that can easily be suited to his individual needs. Thus the system
provides the user with the capability to modify and extend his data
base and language package. Such modification can be carried out
by statements about the data base items; for example:

John was not a student after June 1, 1976.
will remove John from the student class as of that date. Extensions
can be carried out by adding new primitive individuals, classes, and
relations, as well as through definitional capabilities which
allow for defining new concepts in terms of existing ones. As a
part of this capability, verbs can be introduced by paraphrases,
for example:

def:ships "carry" coal:the cargo of ships is coal
and then used in a question such as:

What strategic materials were carried by USSR ships in 19637

79

ACL Meeting 1977 80
N. Sager and C. Insolio

Parsing Free Warrative

The results of an experiment in parsing narrative texts
are presented. The texts were dlscharge summeries obtained
from a hospital's computerized files of patient records.
Each document states the background of the case, the results
of the physical exsmination and laeboratory tests, the time
course of the illness in the hospital, diagnosis, status on
discharge, etec. These texts are particularly interesting
because they are unedited--cryptic phreses are mixed with
full sentences, punctuation is not consistent, and spelling
errors and sbbreviations sgbound. In short, the material is
free narrative as one would find it in a technicel environment
where reports are dictated and where there would be motivation
for processing the data in their naturel language form. The paper
will @@scribe how the above difficulties were treated and will
present statistical results of the experiment, such as the number
of sentences correctly parsed vs. the total number of sentences
and the average parsing times for different types of sentences.
In addition, the speciel problems due to commas, conjunctions,

quantifiers, and run on sentences will be discussed.

ACL Meeting 1977 81
B. Phillips DISCOURSE CONNECTIVES

In essence current systems of discourse analysis map surface structures
into underlying causal chains of propositions. As the surface form is elliptic,
it is necessary to include a knowledge base by means of which omitted linking
propositions of the discourse may be inferred, rendering them explicit in the
underlying representation.

Cause is not the only link between propositions, however; also used are
syllogistic and analogic mechanisms, statements of relative belief, and processes
of decomposition and abstraction, the last being the explication of abstract
concepts.

Additive discourse connectives - 'because', 'so', etc., are realizations of
the links between propositions in these modes of discourse construction. There
are also adversative connectives, such as 'however', 'but', ete., that cannot
be so explained. They must be Interpreted as signals to turn off inference
mechanisms.

To understand the need for adversative connectives, we first need to
recognize two kinds of propositions, episodic and systemic. The former encode
specific acts and states, e.g., 'Thompson won the election for the governorship
of Illinois', whereas the latter are gemeralized categorical statements, e.g.,
'birds have wings'. The content of discourse is usually episodie. The
knowledge base contains both kinds of propositions, there are episodic and
systemic memories.

There is a predictive component in the process of understanding discourse.
A statgd situation sets up expectancies which may eilther become the unstated
linking propositions, or may be explicitly stated, and hence confirmed, at
a later point. The predictions are set up by systemic memory. An episodic
proposition has a counterpart in systemic memory, e.g.,

(1) John ate cheese. (Episodie)

(2) Person eat food. (Systemic)
The predictlons are associated with systemic memory, e.g.,

(3) Person eat food CAUSE person mnot hungry.
Thus given (1), a later expectancy of (4) would be set up by (3)

(4) Jobn was not hungry.
But systemic knowledge contains generalizations, not inviolable truths, and the
inference may not be valid., This can be marked by the use of an adversative
connective:

(5) John ate the cheese, but he was still hungry.

ACL Meeting 1977 82

G. P, Brown

A FRAMEWORK FOR PROCGESSING DIALOGUE

This report describes a framework for handling mixed-initiative English
dialogue in a console session environment, with emphasis on recognition. Within this
framework, both linguistic and non-linguistic activities are muodelled by structures called
methods, which are a declarative form of procedural knowledge. Qur design focusses on
units of linguistic .activity larger than the speech act, so that the pragmatic and semantic
context of an utterance can be used to guide its interpretation. Also important is the

treatment of indirect illocutions, eg., the different ways to ask a question, give a command,
etc.

Our basic approach has been to combine careful structural distinctions
with a mixed recognition strategy. The central distinction is in the way that utterances can
be related to the methods in the dialogue model. First, an utterance (called an initiator) may
introduce a method that corresponds to one of the standard activities in an environment (for
example, asking a question at an information desk or requesting help from a consuitant).
Second, an utterance may correspond to a step in a stendard path in a method already
underway; here, a standard path is a normally expected successlon of activity steps. Third,
an utterance may be part of recovery discussion, which is generated when when some
violation of standard expectations occurs, necessitating clarification, correction, etc. Finally,
an utterance may belong to metadiscussion, a relatively constrained class whose function is to

fay out the context for other utterances 5o that these may be identified with the appropriate
method step.

Given the static model of dialogue embodied in the methods, the problem is
to find the correct method step that relates to a particular input. We handle this problem by
defining a set of special structures to aid in matching, by using the methods to generate

expectations dynamically, and by differentiating overall matching strategies according to the
four utterance classes described.

The ideas presented here have been implemented in a prototype system called
Susie Software, which is embedded in OWL-I The OWL system is currently under
development in the Knowledge-Bases Systems Group at the M.LT. Laboratory for Computer
Science. This research was supported by the Advanced Research Projects Agency of the

Department of Defense and was monitored by the Office of Naval Research under Contract
Number N00OI4-75-C-0G6!.

ACL Meeting 1977 . 8
Abstract submitted for presentation at The Association for Computational Linguistics
March 16-17, 1977, Georgetown University, Washington, D. C

L. A, Miller

Natural Language Programming :

Kitchen Recipes

Laboratory studies of computer programming by naive programmers
indicated that, for formal programming languages, most behavioral errors
are associated with specification of the transfer-of-control characteristics
Subsequent studies revealed that it is this feature which most discriminates
between formal computer programming and "natural language" programming:
the former embeds the data-manipulation actions within a complex control
structure whereas the latter emphasizes first the action, followed by suhsequent
qualifications, This ACTION-QUALIFICATION style is su strikipgly different
from the CONTROL-ACTION style of programming computers that a study of
natural language programming by professionals was initiated. The objective
of the investigation is to determine the mechanisms whereby process information
is communicated and to assess the oft-asserted (but empirically untesied)
"imprecision” and "ambiguity" of natural language usage in procedursl domains
Potentially, such an investigation could result in an alternative to formal
programming languages for the linguistic man-machine interface -- e, g., Natural
Language Procedure Specification,

We report on our progress tp date in the analysis of a corpus of recipes from

The Joy of Cooking. Qur present understanding of the communication process in
recipes is that the imperative verb is a call to some procedure which returns s
case-frame into which are mapped the remaining object- group and verb-qualifier
elements of the surface text. We present statistics concerning case frequencies,
syntactic structures, and word usage, and we detail our approach for the automatic
comprehension and symbolic modelling of the activities involved in recipe
execution (we are using Heidorn's NLP LISP system),

ACL Meeking 1977 84
J. B Hobbs ACCOMMODATING THE SPATIAL METAPHOR

Linguists and psychologists have frequently noted that in
English and other languages one often appeals to spatial metaphors
when speaking of abstract ideas (9,1,3). VFor example, we speak of
"high hopes", "high prices", “deep thought", '"being in politics",

"a book on sociology", "petting the idea", etc. Heretofore, this
has been only an observation. Even Schank's work, with its
decompositions into PTRANS, ATRANS, and MTRANS, is onlv suggestive
of an underlying unity, and Jackendoff's classification of word
senses into positional, possessional, identificatienal, and
circumstantial modes remains only a classificatinn, This paper
describes an aprroach which mtilizes the spatial metaphor in
constructing economical definitions of "all-purpose" words that have
previously defied precise specification, and a method for
interpreting these words in context which treats metaphor not as
an anomoly but as the natuvral state of affairs.

The basic idea is to defrne words in tcrms of very general spatial
predicates and then, in the analysis of a givep text, to seek a more
specific, context-dependent interpretation, or binding, just as
a compiler or inteipreter seeks bindings for the variables and
procedure names mentioned in a program,

Interpretation as Binding: In programming languages, there is
normally a fixed means of determining bindings, either by fallowing
a chain of access modules (2} or by consulting an a-list or
PUWNARG=-frozen environment,

Van Emden & Kowalski (8) have presented unother outlook, In a
mechanical theorem proving system, they show how Horn clauses
may be viewed as procedure declarations in which the positive

literal is a procedure name, the negative literals the procedure

ACL Meeting 1977 85

body, and each negative literal a call to another procedure. » sel
of Horn clauses is a non-deterministic program, non-deterministic
because several Horn clauses may have the same positive literal,

That is, the procedure name in a procedure call may be bound to one
of several different procedure bodies. Resolution is an attempt to
bind a procedure name in & way that leads to the desired refutation.
Put in another way, we may view the infercnce "A>B" as specifying

A as a possible binding fer R,

Montague (6,4) developed a variety of intensiomal logic

as a representation for natural language, 1In his formalism,
jindividual words can be defined as functicons exrressed in terms of
intensions, i.e, variables and procedure names. Syntactic relations
in English are translated into function applicaticns in

intensional logic. These function applications bind the intensions
to specific interpretations. 1Im this way the meanings .of individual
words are composed into the meaning of the sentence., However, the
binding mechanism is quite fixed, making the formalism insufficieptly
flexible for the whole range of natural language,

Qur approach combines Montague's with that of Van Emden &

Kowalski. As in Montague's approach, individual words are defined

in terms of general predicates that may be viewed as unbound
predicate names, and their bindings in a given text are determined
from syntdctically related words. However, the binding mechanism
is not fixed, but as with Van Emden & Kowalski, it is a search for
chain of inference which culminates in an expression involving the
general predicate. An example is given below. In addition, a
dynamic ordering determined by context is imposed on the axjoms in
the data base of lexical and world kicwiedge, defining an ordering

on chains of inference. The binding is chosen which is given by the

APL Meeting 1977 86
appropriate chain of inference highest in this ordering.

The Spatial Metaphor: At the base of the Lexicon, or set of
axioms, are a small number of primitive notions with a highly
spatial or visual flavor. Among these are "Scale" or a partial
ordering defined by possible changes of state, the relation "on"
which places points on the scale, and “at" which among other things
relates an entity to a point on a scale, Moreover, "at" is related
to predication: for an entity to be at a predication is for the
entity to be one of its arguments, as illustrated by the equivalence

John is hard at work = John is working hard.

Concepts at higher levels of the Lexicon are defined in terms of
these basic spatial concepts, Por example, "to think of '™ or "to
have in mind" is defined as a variety of "at" Time is a scale, and
an event may be at a point on that scale. A set may algo be thought
of as a scale and its elements as being points on the scale, Note
that this takes seriously the visual image one has of a set as the
elements spread out before one,

Finally, "all-purpose' words such as the common adverbs and
prepcsitions are defined in terms of the basic concépts like "scale",
"on", and "at", In the analysis of a text, we find interpretations
for these basic concepts by finding chaind of inference from
properties of the arguments of the 'all-purpose' words to propositions
invelving the basic concepts,

Simplified kxample: Consider "John is in politics". Swppose
"in" means to be at a point on a scale. We must find bindings for the
underlined words, Politics is a set of activities directed toward
the goal of obtaining and using power in an organization. A set is

is a scale, The typical activity is on the scale. For John to be

at such an activity is for him fo be one of the parti¢ipants in it.

A®L Meeting 1977 87
thus, for John to be in politics is for him to engage in the
activities that characterize politics.
Other examples illustrating the dis¢inction between "in" and
"on® and the meaning of that elusive adverb "even' will be rresented,
Significance: This work represents.an advance in our
understanding of how meanings of words are. composed into the meanings
of larger stretches of text, and of the effect of context on
interpretation. Moreover, it is the result of a happy blend of
computational or logical technicue with linguistic and psychological

insights.,

Bibliography

1. Asch, S.kE. "The Metaphor: A Psychological Inquiry™ in M Henley,
ed. Documents of Gestalt Psychology, 1961.

2. Bobrow, D. & B, Wegbreit. "A Model and Stack Implementation of
Multiple Environments™ CACM, October 1973, p. 591.

3. Clark, Herbert H. *Space, Time, Semantics, and the Child" in
Cognitive Develnpment and the Acquisition of Language. 1973,

4, Hobbs, J. & S. Rosenschein, Making Computational Sense of
Montague's Intensional Logic. Report No., NSO-11, Courant
Institute of Mathematical Sciences. December 1976,

5. Jackendoff, Ray, "Toward an Explanatory Semantic Representation™
Linguistic Inquiry, Winter 1976. p. 89, '

6. Montague, Richard, '"The Proper Treatment of Quantification in
Ordinary-English" in Approaches to Natural Language, 1973,

7. Schank, R.,, N, Goldman, . Rieger, & C, Riesbeck, "Inference
and Paraphrase by Computer' JACM, July 1975, P, 309,

8., Van Emden, M,H. & R,A. Kowalski, "The Semantics of Predicate
Logic as a Programming Language™ JACM, October 1976. p. 733.

9. whorf, Benjamin., “The Relation of Habitual Thought and Behavior
to Language" in Language, Thought, & Reality, 1956,

ACL Meeting 1977 88
B. Nast

Inferring an Antecedant

Computational research on pronominal anaphcra has centered
around the problem of "reference resolution*, i.e., the problem of
choosing the correct antecedant for an anaphoric expression fron
a set of several possible candidates, But reference resolution,
though a complex process requirihg the interaction of many
sources of knowledge, is really only half the problem. The other
half involves actually finding the candidates. In current natural
lanquaqge systems, this half of the problem has teen handled in a
rather ad hoc fashion or has been ignored entirely. In these
systems, the set off possible antecedants for a pronoun is usually
culled off a history list of objects introduced earlier in the
discourse. Various heuristics ipcluding recency, structural
constraints, semantic selectional restrictions, known
higher-level task or discourse organization, and case and numbher
agreement are then applied, in order to choose the best-fitting
candidate.

on the one hand, i+ has long been recoagnized that inference
may be needed to find possible antecedants for a definite noun
phrase. For example, in

A leering face appeared at Mary's window.

She called the police to arrest the man.
at Jeast one inference rule relating man and face is needed to
figure out a possible antecedant for "the man".

The point I shall be making in this paper is that inference
may be required,to conjure up possible antececdants for pronouns
as dell, Examcles like the following will be used to illustrate
this point.

I saw a married couple walking in the park.
He had on awful plaid shorts, and she had on a dashiki.
fhe = the hushand, she = the wife)

John blended some flour and water and used it to seal
the 1id onfo the pot.
[it = the flour-water mixture]

Mary qgave each girl a T-shirt,
They thanked her for then.
fthem = the set of T-shirts, each of which Mary
gqave to some girl)

T shall show that any pronoun resolution prccedure, even one
that uses highly sophisticated syntactic, semantic and pragmatic
checks, cannot restrict itself to considering only objects and
events given explicitly in the tgxt. In additior I shall show how
the needed antgcedants can he inferred, tsing a formal
representatiorn lanquage for English aeseribed elsevherc.

