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ABSTRACT

A class of algebraic parsing techniques for context-free
languages is presented. A grammar is used to characterize

a parsing homomorphism which maps terminal strings to a
polynomial semiring. The image of a string under an
appropriate homomorphism contains terms which specify all
derivations of the string. The work describes a spectrum
of parsing techniques for each context-free grammar, ranging
from a form of bottom-up to top-down procedures.
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ALGEBRAIC PARSING OF CONTEXT-FREE LANGUAGES

T. Introduction

For many years syntactic analysis and the theory; of formal
languages have developed in a parallel, but not closely relzted,
fashion. The work described here is an effort to relate these

areas by applying the tools of formal power series to the ptroblem

[

of parsing.

This papgr presents an algeébraic technique for parsing a broad
class of context-—free grammars. By parsing we mean the process of
determining whether a string of terminal symbols, ), is a member
of the language generated by grammar G (i.e., is X € L(G)?) and,
if it is, finding all derivations of x from the starting symbol
of G. We hope that posing the parsing problem in purely algebraic
terms will provide a basis for examination and comparison of parsing
algorithms and grammar classes.

Section IT presents an overview of ‘the algebraic parsing process.
1t provides a general notion of how the method works without going
into detail. Section III contains the algebraic preliminaries and
notational tonventions needed in order to describe the parsing method
precisely. The formal presentation of the parsing method and the
proof of correctness form Section IV. Section V contains some

interesting special cases of the theorem and presents some examples

of parses.
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IT1. Overview of the algebraic parsing process

The algebraic parsing formalism described here is applicable
to all context—free grammars G = <VN, VT’ P, S” except those that
contain productions of the form A » B where A and B are both
nonterminals, or erasing rules such as A > e¢. The parsing process
consists first of constructing (on the basis of the grammar G) a
polynomial and a function defined on polynomials. A parse of X is
obtained by repeated applications of the function to a polynomial
P(X). The process has two features worthy of note. TFirst, it
produces all parses of X in parallel., Second, the process of
cohverting a grammar into the required algebraic form is straight-
forward and does not alter the structure of the grammar. This
property, the preservation of grammatical structure, is particularly
important in areas such as mnatural language analysis where the
structure that a grammar provides is as important as the language
it generates.

The polynomials we will use have terms of the form (Z,A), where
Z is a string aver an extended alphabét and A represents a sequence
of productions of G. The process begins with a polynomial of ordered
pairs representing x, the string to be parsed. A function is
repeatedly applied to the polvnomial; the number of applications
nsgcessary is bounded by. the input length. If the resulting polynomial
contains a term (S,A) where S is the starting symbol in G, then A
represents the production sequence used in generating y from S. If

no such pair occurs, then ¥ is not in L(G), and if multiple pairs
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occur (S,Al), (S,Az)q ... then x is ambiguous and the A 's specify
the several parses. A precise formulation of the polynomial and the

operations on it is given below.

ITI. Algebraic preliminaries and notation

A semigroup is formally defined as an ordered pair <S, - where

S is a set (the carrier) and * is an associative binary operation.
Similarly, a monoid is a tripla consisting of a set, an operation
and a two-sided identity (e.g., <S,°,1>). We will feel free to

denote a monoid or semigroup by its cerrier.

*
For any set V, V denotes the free monoid generated by V;

* * +
V = <V ,concatenation,\>. Similarly, V denotes the free semigroup

+
3 vl o= <v ,concatenation”>. We denote the length of a

generated by

* ]t

string X in ¥ or V+, by lxl.
For an arbitrary alphabet V, we define V = {;lveV}. The free

half-group generated by V, H(V), is defined to be the monoid

generated by V u V together 'with the relation aa = 1, where 1 is
the monoid identity and a s any element of V. Note that in H(V)
the elements of V are left inverses but not right inverses of the
corresponding elements of V. We denote the extended alphabet
VuVv by Z.

If T = <T,+,1> and Q = <Q,+,0> are monoids, we denote by
T % Q the product monoid <T > Q,®,(1,0)>. The carrier of T - Q
is the cartesian product T X Q and the operation ® is defined to be

the component-wise operation of T and O:

(a,b) ® (c,d) = (a*c,b+d).
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A semiring is an algebraic system <S,+,+,0> such that

{§,+,0> is a commutative monoid,
<8,+> is a semigroup,

and the operation * distributes over +:
a*(b+c) = a*b + a-c,
(at+b)*c = a*c + b-c.

A semiring is commutative if the operation is commutative.

A semiring with identity is a system <S,+,+,0,1> where <S,+,*,0? is

a monoid. The semirings used in this paper are commutative and have

identities. Furthermore, in each case the additive identity is a

multiplicative zero:
O-x = x-0 = 0.

The boolean semiring B consists of the carrier {0,1} under the

commutative operations + and *, where 1l°1 = 1l+x = 1 and 0+0 = O0*x = DO

for all x € {0,1}.
For an arbitrary monoid M we denote by R(M) the scmiring of
polynomials described as follows:
1) Each term is of the form co where ¢ ¢ B (the
boolean semiring of coefficients) and o ¢ M.

2) Each polynomial is a formula sum (under +) of

a finite number of terms.

3) Addition and multiplication of terms is defined as follows:
a) ba + co= (b + ¢c) a
b) (ba)(ecB) = (be)(aB).

4) Addition and multiplication of polynomials is performed

in the usual manner coasistent with 3).
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Note that all coefficients of R(M) are either 1 or 0. We will
adopt the usual convention of not explicitly writing 1 for the terms
with that coefficient and omitting teims with a coefficient of O.

A context—free grammar is a system G = <V

N’ VT, P, S> where VN

and VT are finite, disjoint, non erpty sets denoted non—-terminal and

terminal symbols respectively. We denote by V the set VN o VT. The

symbol S is the distinguished nonterminal from which all derivations

begin, and P s the set of productions of G. A context-free grammer
is proper if it does not contain productions of the form A > ¢
(erasures) or A » B where A and R are both nonterminals.

It can easily be shown that the set of languages generated by
proper context-free grammars is exactly the set of context-free
languages. 1In addition, an arbitrary context—free grammar can be
made proper by a straightforward method which alters the structure
of the grammar very little. In this study we will deal with only
proper .context—-free grammars. This guarantees that all terminal
strings have a finite number of derivations in G, and thus makes
possible our goal of finding all derivations of an input.

Productions of G will be indexed by integers. Thus A 1 M denotes
that A - M is the ith production in P. We will deal only with left-
most derivations. A leftmost derivation is completely specified by the
initial sentential form and the seguence of production indices. TIf.
Loe I* is the sequence of production indices in the leftmost derivation
of N ~ V+ from M ¢ V+, we write M é=>N. The length of a derivation A
is denoted by /4!, and is equal to the number of production indices in /.

We will use, but not formally define, the notion of height of a
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derivation', meaning the height of the corresponding derivation tree
or the length of the longest path from the root to the frontier of the
tree.

The height of a derivation A will be denoted by h(.).

Since 'derivation' will always mean 'leftmost derivation' in the

sequel, the following assertions hold:

Assertion 1:

A derivation is of height 0 if and only if it is of

length 0. A derivation is of height 1 if and only if it is of length 1.

Assertion 22

Let G be a proper context-—-free grammar, and

I

A - M

where |A|>0. Then A is of height less than or equal to |M!

Assertion 3: Let G = <VN, VT3 P, 8> be a context-free grammar, I an

index set for P, and let the jth production of G be

$

A

Let jI' be a derivation

A =M M V+

m

of height n + 1. Then

F=LA

1 2...Am Ai < I*
and
M= M1M2"'Mm Ml e V+
and for all i, 1 - i ~ m,
Ai
a, = M
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is a derivation of height n or less.

The algebraic structure used in this work is the semiring of
polynomials R(H -~ I*) where H = H(V), the free half-group generated
by V, and I is the index set of the set of procductions P. We will

use an initial segment of the natural numbers, {1,2,3,..

., as
the index set 1. Each term of a polynomial from R(H - I*) consists
of an element from H < 1I* tcgether with a coefficient from the

boolean semiring B. The elements of H > I* will be the basis for
calculating the parses of a string x. The elements of H will inter-
act to deftermine if a product of terms characterizes a derivation.
If so, the associated element of I* is the sequence of production

indices of the derivatiom.

The following notational conventions will be observed.

G = <V, Vg, P, S
V=V U,

T =V Vv

z ¢zt

Z = 4

i, j, k m, n € N. (set of natural numbers):

I =N

A, T, 86 € I%
+

X € VT

a, by ¢ e v

A, B, C VN
*

M, N, P, O ¢V

> 8 ¥, v will denote functions. For the function g,
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gl(X) = g(x) and gkCX) = g(gkﬂl(X))-

IV. An algebraic parsing theorem

Theorem (version 1): Let G = <KV

N VT’ S, P> be a proper context-
free grammar. Then there exist homomorphisms v, g, and &,
* *_*
v: V. > R(V x I )
*_* &k
g: R(Z x 1) »R(E <« T)
*_ % *
s R » 1 ) > R(H ~ I )
* %k .
and a gpecial polynomial p ¢ R(Z * I ) such that for every

X € VT, X = Xq ««+ X 2 X4 € VT,

— M et

n; n n ‘ 1

og I p v(xi)
i=1

et
L

contains a term (5,4) if and only if A is a leftmost derivation

of ¥ from S.

Construction for the proof:

Let V = Vl 1 V2 be an arbitrary exhaustive division of V:

Vl " V2 = V.

The construction is most economical when Vl and V2 are disjoint, but
this is not required.
% * *
a.- vV -+ R{(V x L )
The function v is the homomorphism induced by the following:

*
v(a) = (a,A), a € V and A is the identity in I .

Since v is a homomorphism, v(A) = A.



x_ * *
g:R(Y x 1 ) » R(W ~ 1)

*x

The function g is the homomorphism induced by defining

g on the generators of the domain as follows:

- - - — *

1. g(a,A) = (a,a); a ¢ V, A ¢ 1

2i. g(a,r) contains the term (a,A); a « V
2ii. If A > abl .o bn is the ith production

of P and a ¢ Vl then g(a, ) contains

(8,i8) (b_,A) ... (b ,A).

2iii. There are no other terms in g(a,4).

Note that because g is a homomorphism, g(A)

* X

is the identity of the monoid (X ~ I )

x % x
§:R(Z x I ) - R(H-x I )

= A, where

The function ¢ is the canonical homomorphism which

* %
coalesces a product in (X ¥ T ) into a single ordered

pair by component-wise multiplication of the first

entries (thus allowing cancellation in H) and

catenation of the second entries.

* %
The polynomial p is an element of R(zZ ~ I )

as

follows:

p contains the summand Aj

If a cV, and A > ab, ... b_ is the 4R

2 1

of P then p contains the summand

(A,j)dsn,f\) ce. (B ,M(a,h).

1

P contains no other summands.

For example,

defined

preoeduction
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We adopt the convention that pk = A for k < 0.

. . k .
Note that since p contains A, p contains A as well

as all summands of pJ for j < k.

For notational convenience we adopt the following conventions.

* X
First, where no ambiguity can result, products in R(Z * T ) of

the form

. *
(zl’Al)(ZZ’AZ)."' (znAn) z, €, A, I

will be abbreviated as:

(zlz2 cer Zos AlAZ .o An).

No cancellation is implied by this notation since cancellation cannot

* %
occur in R(z *X I ) . Second, we define the function ¥, as follows:

k

* * %
Wk: v > R( x 1)

‘l’k(ala2 .o an) =

n =8

pk v(ai)
1

i
where a, € V and p is the polynomial defined above., Note that,k if

k « O, then qlk(ala2 e an) = v(ala2 . an), and Wk(A) = A. Using

this notation, we can re-state the theorem as follows:

Theorem (version 2): Let G = <VN, v

T P, S> be a proper context—free

grammar. Then there exist maps ¥, g and § such that

% _ %

Y: V — R(Z s I )
*_ x ®* *
g: R(Z » 1+ ) —-R(EZ ~ 1)

* % *
§: R(Z x I ) » R(H » 1)
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R _ ) n
such that for every x ¢ VT’ X = Xq{Xo <+ Xy» X4 € VT’ g Vn(x)
. . A
contains a term (S,A) if'and only if S = .
The proof of the theorem rests on three lemmas. -Lemma I

implies the ''if'" part of the theorem; Lemma III implies the ''only if"
p

part. Lemma II is used in the proof of Lemma III.

Lemma J: Let M € V+, A e V, and A éL>M. Then for all k > h(a),

éngka) contains (A,A).
Proof (by induction on h(A), the height of the derivation A):

Basis: If h(A) = O, then A = A and M = A. Then Wk(A) = pk(A,ﬂ).
Since A is a summand of p, it follows that (A,A) is a summand of
pk(A,A), and therefore (A,A) is a summand of 6gkwk(A,A). Thus the
derivation A ;L~ A is represented in 6gkwk(A) by (A,A), which

establishes the basis.

A
Induction: Let A be a derivation of height n + 1, A = M. By

assertion 3,

1 2 T
M = Mle .. Mr
where
3
A —~ ala2 . ar
and
T,
i
a, = M,
i i

where h(Fi) n.
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) k B k k k . -
Since Sg,Wk(M) = 6g Wk(Ml)Gg Wk(Mz) ... bg Wk(Mr), if Kk =z n

k
then by the induction hypothesis, og Wk(Mj) contains the summand

. k, . .
(aj,Fj). Consider the term of g Yk(Ml) which cancels to (al,Fl) in
1

*
R(H x T ). This term must be of the form (a )T, where T

1°01 is
Either a, ¢« V., or a, ¢ V,. The sum 6gk+lW M)
1° 1 1 1 2 k+1" 1
. k . . '
contains Sgg Wk(M]), which contains ég(al,Fl)T. Lf a, ¢ Vl, then
1 1

1
g(al,Fl).contalns (Aa2a3:..ar, JFl), and Gg(al,Fl)T contains

1
a prefix of T

) k+1,
(AazQB...ar, jTl). On the other hand, the sum ég Pk+1(Ml) also

‘u | 5 k’ - .
containms Opg Wk(Ml). If a; e V2’ then (Aalaz...ar, j) is a summand
t
of p, and therefore 6p(alll)T contains (Aaza3...ar, JFl). Thus in

k+]_\P

either case, 6g k+1(’M1) contains the summand (Aa2a3...ar, jPl) and

since every. summand of ngwk(Mj) is a summand of 5gk+lw

k+1
k+1

S Y i

g k+l(M) contains

M), it

follows that

1T r r r
(Aa2a3" "ar’ J l) (aza 2) (a3’ 3)"'(ar’ r)

= (A 4T T,...T) = (A,0).

This completes the proof.

*
Lemma IT: Let a ¢ V, I' « 1 . For k =z 0, all terms of gk(a,F)

——

are of the form (b,AF)(Em,A)...(El,A) where b ¢ V, c; ¢ V, m = 0,

*

A~ 1 and b = ac,...C_.
1 m

For notational convenience we abbreviate Cy~veCp by N: Hence we

denote (b,Ar)(Em,A)...(El,A) by (bN,AT).

Proof by induction on k, the number of applications of g. By

definition, go(a,F) = (a&,]') which establishes the assertion for the
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value k = 0.

+1(a,T) = ggn(a,r).

Assume the assertion holds for k ¢ n and consider gn
By the induction hypothesis, all terms of gn(a,T) are of the form

- © n+1
(bN,8I') where b = aN. Hence terms of g (a,T') are of the form
g(bN,d6T). Since g limited to V is the identity, g(bN,(T) = [g(b,6T )] (N,A).
By definition of g, g(b,0l') contains only terms of the form (Cﬁ,jQI)

. J "
where C *> bM is a production. Therefore terms of g" 1(a,F) are of

the form
(CM,j07) (N,A) = (CMN,jOT)
3 0 j9
and since C >bM and b == aN it follows that ¢ => aNM.

Corollary: All terms of gk(aﬁ,r) are of the form (bNM,AT).

- A
Lemma III: If'agkwk(M) contains (AN,A), then A = MN.

Proof by-induction on the length of M:
Basis: Let a. € V and assume
k . =
Sg Wk(a) contains (AN.A).

1f P, Trepresents an arbitrary summand of p other than A, then every

term of gkwk(a) can be represented in the form

g (p;) &a,h)
1

=g

i

where 0 = n < k and n denotes the number of nontrivial summands of p

which are factors of the term.
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By econstiuction, every summand of p is either A-or of the form

o _ +
(BiPi,Ji) where Bi € VN’ Pi c V., i; - T

Ji
and Bi - Pi is a production in G.

By Lemma. II. every term of gk(Biﬁi,ji) is of the form:

- = * *
3 - i ~ 7
(CiMiPi’rijf) where C, «¢ Vio Ni, P, o Vo, Fi « 1
.[1 .
i
and C, = B .M.
i ii

By the same lemma, it follows that every term of gk(a,A) 1s of the

form
(c .M T ) wh o vV, M ST I
41 Ty’ Where Cq e Vo Moy e Vs g €
4 c r‘n-i--l M
—_—>> -
anc “h+1 n+1
Hence every term of gk%k(a) is of the form
n — ——
OGP T30 ) CopqMuigelney) 0 7 m = K
ros
il )
< 3 ~
where Ci = P.M, for 1 <« 1 2 n and Cn+l Mn+1 (1)

By assumption there is a term t of gkwk(a) such that §[t] = (AN,A):

t must be in the form indicated above. In order for t to cancel under

$, the following must be true:

Cl = A since C1 cannot cancel from t,

—

= ¥ 1 - i < si “ e g f .
i Qici+l for i n since C2 Cn+l must all cancel from t

el
!

Therefore
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-
—

(C,M;QC, 44575350 | Cp Mg Thea?

gl
—

t =

-
| i=1
-

This cancels to (AN,A) as required with

N = Mn+1QnMnQn—an-—l"'Ql Ml

= i i L NN I | I“ a
& I’131I12‘]2 I1an n+1l
Then by (1),
Fydy
Ci = Ci+lQiMi’ 1 £1i < n, and
I1n+l
Chsl > M1
Hence, since Cl = .A,
rljl F232_"”1-'an rn+1

A —m M

n+lQthQn—iMn—l°"QlMl

and thus

This establishes the basis.

%
Induction: Assume that for all M ¢ V such that |M| 2 n, if
k -

Sg Wk(M) contains (Aﬁ,A) then A 4. MN, Let M = Ma be a string

suc¢h that [Mal = n+l and Sgk@k(Ma) contains (AN,A). Because § g

and ¥ are homomorphisms,

sgty, (Ma) = [sg v, 0D 1[sg v, (a)].
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Then 6ngk(M) must g¢ontain a term (Tl,Al) and Sgkwk(a) must contain

a term (T2,A2) such that T1T2 = AN and A = AlAz.

In order for this te occur, T2 must be of the form (BEQ) where

* - =
B ¢{V, ﬁz e V , and Tl just.be of the form (ANlB) where A ¢ V,

* « = - —
Nl € V, and N = N1N2' (1f Tl and T2 were not of this form,

cancellation to AN would be impossible.) Thus 6gkwk(M) contains

(ANlB,All, and by the induction hypothesis

Ay

A == MBNl.

Also Sgkwk(a) contains (Bﬁé’Az) and by the basis
A

2
B == aNz.
1t follows that
AlAz
A =—= MaNZNl
and since M = Ma and N = Nle,
A
A == "MN

which completes- the proof.

The theorem now follows from Lemmas T and IIT and Assertion 2.
The 'if' part follows from Lemma I and Asserfion 2, and the 'only if'
part follows immediately from Lemma IITI for the special case of N = A.

As we have stated the theorem, the length of y is used to
determine a sufficient number of applications of g and ¥. Alternatively,

the theorem could be formulated in terms of the heights of derivations
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of x; if A is a derivation of x of height k, then for every n =z k,
the term (S,A) will be in the polynomial Sgnwn(x). Furthermore, it
follows from Lemma III that no harm is done by choosing the value of
n too large, i.e., no 'false' derivation terms will occur.

In the first statement of the theorem, the derivation terms
n
[} n n 3
are obtained from the polynomial &g I p v(xi) which can be re-
i=1
written in the form

n

S g [pnv(xi)]

i

(=

1
Although we have used a constant vdalue of n (equal to the length of

X) for both the powers of the map g and the polynomial p, some

economy can be gained in this respect. In fact, the powers f g and

p can decrease from left to right so long as they remain large

enough to perform the appropriate computations on the suffix striugs

of x. Thus, the theorem is true (but considerably moro difficult to

prove) if_ one instead uses a parsing polynomial of the form

—i+ -i+
gn i 1[pn i 1V<Xi)]'
i=1

V. Special cases of the thegrem

A number of intetesting special cases occur based un the choice

of Vl and VZ'

Case 1. V

i

1= Vo

V2 = VN.

The function g handles all productions of the form

*

A~ oM &V, M c V
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while p handles productions of the form

*

A - BM B ¢V MecV

N?
Notice that since g is nontrivial on only VT, g need be used only

once; i.e.,

gk(a,Y) = g(a,T) k > 1.
The parsing polynomial is then

s{gl¥, GO}

The special case of V., = V_ and,V

1 T 5 = VN results in a particularly

simple form if the grammar is in Greibach no mal form. The polynomial
p = (A,A) and therefore has no effect. Since g need only be applied

once, all derivations are found in one step.

Example 1:

¢ = <{s,A,B}, {a,bl}, S, P>

P = 1. S -+ aA

2. A~ AB
3. A > A v, = {a,b}
4. B —> b v, = {s,A,B}

p = (AN + (A,2) (B,A)(A,41)
g(a,\) = (a,h) + (s,1)(@A,0) + (A,3)

g(b,A) = (b,A) + (B,4).

For the string x = aabb, the parsing polynomial g[?k(x)] then contains

(among other things) for all k = 2,
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gla,N) p? g(a,\) g(,N) g(,N).

This contains:

[(S,1) (A, M) ]1[(A,2)(B,0) (A.A)(A,2) (B,A) (A, M) 11(A,3)1{(B,4)11(B,4)].
Applying & we get
(5,122344) .

Case 2. Vl = V.

V2 = ¢.
The entire job of parsing is now done by g, since the polynomial

p is equal to (A,A). Hence the parsing polynomial is

SLg (x,s M) ]

Example 2: We use the same grammar and input strirng as above.
Vl = {S, A, B, a, b}.
V2 = ¢.
g(S,r) = (S,0)
g(A,0) = (A,A) + (A4,2)(B,M)
g(B,A) = (B,NA)

g(a,h) = (a,A) + (S,1)(A,A) + (A,3)

i

g(b,A) (A,A) + (B,4).
The parsing polynomial for azabb is

g(a,0) g5Ca,n) g¥Mm,A) g5b,A).

For k =2 3, this contains
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tgl(a,m1lga, M 1gr M) 1gt kb, 0) ]

which in turn contains

[(S,l)(K,A)][gz(A,B)][(B,A)][(B,4)] after one application of g,
[(S,l)(K,ﬁ)][gl(A,23)(ﬁ,A)][(B,4)][(B,4)] after two; and

[(S,1) (A,A)1[(A,223) (B,A) (B,A)][(B,4)1[(B,4)] after three.
Applying S results in ($,122344) as before.

Case 3. V1 = ¢.

V2 = V.

Now the entire parse is handled by p. The parsing polynomial

becomes

G[Wk(x)]-

VI. Observations

The major theorem presented here shows how context—free
parsing may be carried out by purely algebraic means. All parses

of an input string are developed in parallel and the process is

guaranteed to terminate. As we have described the process, the
+ .
number of terms of a parsing polynomial for a string x < VT is

unreasonably large. However, most of the terms in such a polynomial
are not associated with a derivation in the grammar, and methods
exist for reducing the computation by disregardingd dead-end terms
before they are completely evaluated. By applying such techniques in

a straightforward fashion, and choosing V1 and V2 in various ways,



the algebraic method can be associated in natural ways with classical
parsing techniques. For example, the algebraic process in case 1
above is a goal directed top-down apptoach similar to the predictive
analyzer. Case 2 is the algebraic versionm of generalized bottom—up.
Parsing algorithms are typically so dif%erent one from another
that they are incomparable. But using techniques described above,
many parsing algorithms may be posed in a single algebraic framework.

This may facilitate the comparison and evaluation of parsers and

of various classes of grammars.
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