American Journal of Computational Linguistics Microfiche 47

A SURVEY OF
SYNTACTIC ANALYSIS PROCEDURES

FOR NATURAL LANGUAGE

RALPH GRISHMAN

Computer Science Department
Courant-Institute of Mathematical Sciences
New York University
251 Mercer Street, New York. 10012

This survey was prepared under contract No. N0D0014-67A-0467-0032 with the
Office of Nawval Research, and was originally issued as Report No. NSO-8 of
the Courant Institute of Mathematical Sciences, New York University.

Copyright © 1976

Association for Computational Linguistics

A SURVEY OF SYNTACTIC ANALYSIS PROCEDURES

FOR NATURAL LANGUAGE

RALPH GRISHMAN

Computer Science Department
Courant Institute of Mathematical Sciences
New York University

This survéy was prepared under contract

No. NOQ014-67A-0467-0032 with the Office of
Naval Research, and was originally tssued as
Report No. NSO-8 of the Couragnt Institute of
Mathematical Sciences, New York University.

SUMMARY

This report includes a brief discussion of the
role of automatic syntactic analysis, a suvrvey
of parsing procedures used in the analysis of
natural language, and a discussion of the
approaches taken to a number of difficult lin-
guistic problems, such as conjunction and gra-
ded acceptability. It also contains precise
specifications in the programming language SETL
of a number of parsing algorithms, including
several context-free parsers, a unrestricted

rewriting rule parser, and a transformational
parser.

1.
1.1
1.2

Table of Contents

INTRODUCTION.: ¢ c o e osvececans e e s accnc s oo amose ot e e e
The Role of Syntactic AnalysSiS....cecicieceearennns
Computational and Theoretical Lirnguistics..........
GENERAL SURVEY OF PARSING PROCEDURES......ecc0v....
Early Systems: Context-Free and Context-Sensitive

PaAYSEerS . e ctoeeecs saevestansccssosasenss
Transformational Analyzers: First Systems..........
Transformational Analyzers: Subsequent Develdpmegts
Other Syntactic Analysis Procedures................
Parsing with Probability and Graded Acceptability..
Conjunction and Adjunction.......... ...t cnn.
ALGORITHM SPECIFICATIONS...... e,
Parsing Algorithms for Context-Free Grammars.......
A Parser for Unrestricted Rewriting Rule Grammars..

Parsing Procedures for Transformational Grammars...
APPENDIX. A Very Short Introduction to SETL.......

BIBLIOGRAPHY ¢ttt v cc e v e v aocececscsancossscsnansosnsons

18

92

1. INTRODUCTION

The Computer Science Department of Wew YorR University,
under contract to the Office of Naval Research, has prepared
a series of reports examining selected areas of artificial
intelligence. We hope in these aritical surveys to place in
perspective the main lines of past research and thereby perhaps
to suggest fruitful directions for future work. As part of
these surveys we have prepared precise specifications, in the
programming language SETL, of some of the basic algorithms in
each area. These specifications are intended to provide clear

points of reference for structuring our review of past work.
* % * % %

This first report is concerned with natural language proces-
sing systems, systems which are able to accept instructions or
data in natural language. In very general terms, these systems
process the text through several stages:

(1) syntactic: analyzes the structure of each sentence (or
other text unit) and rearranges the elements of the sentence
to simplify its structures; this stage should recognize
paraphrases due to altexnative arrangements of words in a
sentence

(2) semahtic: restructures the sentences into the form used
for internal processing, such as inference or data retrieval;
depending on the application, the output may be a command in
an information retrieval language, a structure based on some
set of semantic "primitives", or a tabular structure suitable
as a data base; this stage should recognize some of the
paraphrases due to alternative choices of words.

(3) pragmatic: interprets the text based on particular context
(problem situation or data base); this stage should recognize
sentences which are equivalent in effect .(such as "Throw that
switch." and "Turn on the light.").

The reader will note that these stages are very.vaguely charac-

terized. Current language processing systems differ very greatly

in their structure and not cven these general divisions can
be 1ldentified in all systems.

Ihe pragmatic stage is the most heterogeneous and the common
threads which do appear are based more on general problem-solving
methods than on specifically linguistic technigques. Since the
semantic stage maps into the notation reguired by the pragmatics,
it is correspondingly varied. There is, however, a fair amount
of current research on the selection of semantic primitives or
semantic classes; some of this research is reviewed in the
proceedings of a recent Courant Institute symposium on Directions
in Artificial Intelligence (Courant Computer Science Report No. 7).

The syntactic stage is by far the best established afd most
clearly defined. There is a general (although far from total)
agreement on the most.basic underlying principles, and thexe are
a number of widely-used procedures. For this stage, therefore,
it seems possible to present a survey of current research in
some organized fashion. In the report which follows, we have
endeavored to show the relation between the various syntactic
analyzers in terms of their historical development, linguistic
assumptions, and aialysis procedures. For a broader survey of

automated language processing, readers are referred to [Walker
1973].

1.1 The Role of Syntactic Analysis

The systems we shall be describing are all motivated by
particular applications requiring natural language input, rather
than by purely linguistic considerations. Consequently, the
parsing of a text (determining its structure) will be viewed as
an essential step preliminary to processing the information in
the text, rather than as an end in itself.

There are a wide variety of applications involving natural
language input, such as machine translation, information retrieval,
question answering, command systems, and data collection. It may

therefore seem at first that there would be little text processing

which wauld be generally useful beyond the determination of a
structural description (e.g. a parse tree) for each sentence.
There are, however, a numbe¥r of operations whych can regularize
sentence structure, and thereby simplify the subsequent appli-

cation-spe¢ific processing. For example, some material in
sentences (enclosed in brackets in the examples below) can be
omitted or "zeroced":

John ate cake and Mary [ate] cookies.

. . . five or more [than five] radishes
e talks faster than John [talks].

. + .« the man [whom] I met . . .

Sentence structure can be regularized by restoring such zeroed
information. Other transformations can relate sentences with
normal word order {I crushed those ¢grapes. That I like wine

is evident.) to passive (Those grapes were crushed by me.) and
cleft (It is evident that I like wine.) constructions, and can
relate nominal (the barbarians' destruction of Rome) and verbal
(the barbarians destroyed Rome) constructions. Such transforma-
tions will permit further (e.g., semantic) processing to concern
itself with a much smaller numper of structures. In addition,
if the structures are appropriately chosen, operator-operand
relations should be clearly evident in the output of the
syntactic stage.

Some lexical processes, such as nominalization and lexical
decomposition, are considered syntactic by some and semantic by
others. Whether a clear division between the syntactic and
semantic stages is gossible at all has been a major point of
controversy in linguistics -- between interpretive and genera-
tive semanticists -- over the past decade. We may therefore
expect that, while some transformations will clearly be the
province of the syntactic stage and others the province
of the semantic stage, there will be a considerable fuzzy
area in between. This, however, should not disqualify

automatic syntactic analysis as an area of separate research;

there is hardly a field of science or engineering which is clearly
delineated from its neighbors.

The last few years have seen most work in language processing
devoted to the development of integrated systems, combining
syntactic, semantic, pragmatic, and generative components. This
was a healthy and predictdble reaction to the earlier resecarch,
which had largely approached syntactic processing in isolation
from these other areas. It produced some systems whose modest
successes dispelled the skepticism that natural language proces-
sors would ever be able to do anything. These systems indicated
how syntactic, semantic, and pragmatic information must interact
to select the correct sentence analysis.

It is now generally understood that syntactic processing by
itself is inadequate to select the intended analysis of a sentence.
We should not conclude from this, however, that it is impossible
to study the processes of syntax analysis separately from the
other components. Rather, it means that syntax analysis must
be studied with an undarstanding of its role in a larger system
and the information it should be able to call upon from other
components (i.e., the processing which the subsequent components
must do to select among the analyses produced by the syntactic
component) .

While recognizing the importance of total systems in insuring
that none of the problems has fallen in the gaps ‘betwcen stages
and been forgotten, it still seews that more specialized research
projects are essential if the field-of natural language proces-
sing is to mature. The development of another total system will
not advance the field unless it endeavors to perform some
particular processing task better than its predecessors; the
problems are too vast for each research project to usefully
attack the problems involved in all the phases of processing at

once.

Some researchers have asserted recently that natural language
processing can be done without syntax analysis. It seems to us
that such claims are exaggerated, but they do arise out of some
observations that are not without validity:

(1) For the relatively simple K séntences whose semantics is
within the scope of current artificial dintelligence systems,
sophisticated syntactic processing is unnecessary.

This was certainly true of some early question-answering systems,

whose syntax was limited to a few fixed imperative structures,

into which adjective and prepositional phrase modifiers could be
inserted. It is questionable whether this is true of the most
syntactically sophisticated of today's systems (such as Pétrick's)

In any case, it is hard to imagine how sentences of the complexity

typical in technical writing cqQuld be undetrstood without utilizing

syntactic (as well as semantic) restrictions to select the

correct analysis.

(2) Syntactic analysis may appear in guises other than the
traditional parsing procedures; it can be interwoven with
other components of the system and can be embedded into the
analysis programs themselves. This will often increase the
parsing speed considerably.

The "grammar in program" approach which characterized many of

the early machine translation efforts is still employed in some

of today's systems. Its primary justification seems to be

parsing efficiency, but this should be a secondary consideration
for research purposes at present, since most current systems are
able to parse (or, as often, reject as unanalyzable) a sentence
in under a minute. More important as research goals should be
the ability to manage grammatical complexity and the ability to
communicate successful methods to others. 1In both these regards,

a syntactic analyzer using aijunified, semiformal set of rules

is bound to be more effective.

(3) Syntax analvsis can be driven by semantic analysis (instead
of being a separate, earlier stage), and, in particular,

can be done by locking for semantic patterns in the sentence.

Syntax analysis is done geparately because there are rules of
sentence formation and transformation which can be stated in
terms of the relatively broad syntactic categories (tensed verb,
count noun, etc.). If the semantic classes are subcategori-
zations of the syntactic ones, then clearly the transformations
could be stated in terms of sequepces of semantic classes.

For those transformations which are properly syntactic, however,
we would find that several transformations at the semantic stage
would be required in place of one at the syntactic stage;
certain useful generalizations would be lost.

The strongest argument of those advocating a semantics-driven
syntax is the ability of people to interpret sentences from
semantic clues in the face of syntactic errors or missing infor-
mation ("I want to xx to the movies tonight."). This argument
works both ways, however -- people can also use syntactic rules
when semantics is lacking; for example, to understand the function
of a word in a sentence without knowing its meaning ("Isn't that
man wecaring a very frimple coat?”). Ultimately, we want an
analyzer which can work from partial information of either kind,
and research in that direction is to be welcomed (some work on
parsing in the face of uncertainty has been done by speech-under-
standing groups). At the same time, since successful processing
of "perfect" sentences is presumably a prerequisite for processing
imperfect sentences, it seems reasonable to continue devoting
substantial effort to the considarable problems which remain in

analyzing perfect sentences.

1.2 Computational and Theoretical Linguistics

Theoretical linguists and the sort of computational
linguists we have been considering espouse quite different
research objectives. A primary interest of transformational
linguists is expleining grammatical competence -- how people
come to accept some sentences as grammatical and reject others

as ungrammatical. 1In particular, they are concerned with

language universals -- principles of grammar which apply to all
natural languages.

Computational linguists, ih contrast, are usually delighted
if they can manage to handle one language (two, if they're
translating). Their primary concern lies ih transforming
sentences -- often assumed to be grammatiocal -- into a form
acceptable to some particular application system. They are
concerned with the efficiency of such processing, whereas
theoretical linguists generally don't worry about the recogni
tion problem at all.

Nonetheless, the two specialties should have many common
areas of interest. Questions of grammaticality are important,
because exverience has shown that a grammatical constraint
whichyin one case determines if & sentence is or is not
acceptable will in other cases be needed to choose between
correct and incorrect analyses of a sentence. The relations
between sets of sentences, which are a prime focus of transfor-
mational grammar, particularly in the Harrisian framework, are
crucial to the success of syntactic analysis procedures, since
they enable a large variety of sentences to be reduced to a
relatively small number of structures.

More generally, both specialties seek to understand a
particular mode of communication. Traditional linguists are
interested in a mode which has evolved as an efficient means
of communicating ideas between people; ultimately, we may hope
that they will understand not only the principles of language
structure, but also some of tlie reasons why language has
developed in this way. Computational linguists, in studying
how language can be used for man-machine communication, are
really asking much the same questions. They want to develop
a mode of communication for which people are naturally suited
and they want to understand the principles for designing

languages which are efficient for communicating ideas.

10

2. GENERAL SURVFY OF PARSING PROCEDURES

We can impose several rough groupings on the set of parsers
in order to structure the following survey. To begin with, we

may try to scparate those systems developed with some reference

to transformational theory from the nontransformational systems.

This turns out also to be an approximate historical division,
since most systems written since 1965 have made soine connection
with transformational theory, even though their methods of
analysis may bhe only distantly related to transformational
mechanisns.

The transformational systems may in turn be divided into
those parsers which have been systematically derived from a
specific transformational generative grammar and those which
have "sacrificed" this direct connection with a generative
grammar in order to obtain a more direct and efficient algorithm
for recovering base structures. This division appears to be
in part a result of our inadequate theoretical understanding of
transformational grammars, and may be reduced by some recent
theoretical work on transformational grammars.

2.1 Early Systems: Context-Free and Context-Sensitive Parsers

The pretransformational systems, developed mostly between

1959 and 1965, were, with a few exceptions, parsers for context-

free languages, although cloaked in a numnber of different guises.

These systems were based on immediate constituent analysis,
dependency tHeory, linguistic string theory, or sometimes no
theory at all.

The largest and probably the most important of these early
projects was the Harvard Predictive Analyzer [Kuno 1962]. A
predictive analyzer is a top-down parser for context-free
grammars written in Greibach normal form; this formulation of
the grammar was adopted from ecarlier work by Ida Rhodes for

her Russian-English translation project. The size of the

11

grammar was staggering: a 1963 report [Kuno 1963] quotes
figures of 133 word classes *and about 2100 productions. Even
with a grammar of this size, the system did not incorporate
simple agreement restrictions of English syntax Since the
program was designed to produce parses for sentences which
were presumed to be grammatical (and not to differentiate
between grammatical and nongrammatical sentences), it was

at first hoped that it could operate without these restric-
tions. It was soon discovered, however, that these restric-
tions were required to eliminate invalid analyses of grammatical
sentencegs. Because the direct inclusion of, say, subject-verb
number agreement would cause a large increase in an already
very large grammar, the Harvard group chose instead to include
a special mechanism in the parsing program to perform a
rudimentary check on number agreement. Thus the Harvard Predic-
tive Analyzer, though probably the most successful of the
context-free analyzers, clearly indicated the inadequacy of

a context-free formulation of natural language grammar.

The Harvard Predictive Analyzer parsing algorithm progressed
through several stages. The first version of the predictive
analyzer produced only one analysis of a sentence. The next
version introdticed an automatic backup mechanism in order to
produce all analyses of a sentence. This is an exponential time
algorithm, hence very slow for long sentences; a 1962 report
gives typical times as 1 minute for an 18 word sentence and
12 minutes for a 35 word sentence. An improvement of more than
an order of magnitude was obtained in the final version of the
program by using a bit matrix for a path-elimination technique
[Kuno 1965]. When an attempt was made to match a nonterminal
symbol to the sentence beginning at a particular word and no
match was found, the corresponding bit was turned on; if the
same symbol came up again later in the varsing at the same

point in the sentence, the program would not have to try to
match it again.

12

Aneother important early parser was the immédiate constituent
analyzer used at RAND. This system used a grammar in Chomsky
nérmal form and a parsing algorithm designed by John Cocke,
which produced all analyses bottom-up in a single left-to-
right scan of 'the sentence [Hays 1967f. This was a fast
algorithm but- because all parses were developed simultaneously,
it nceded a lot of space for long sentences; the Rand system
appears therefore to have been limited to sentences of about
30 words.

A different bottom-up analysis procedure was used in the
first linguistic string analysis program develeped at the
University of Pennsylvania [Harris 1965]. This procedure,
called a cycling cancelling. automaton, makes a series of left-
to-right passes through. the sentenge; in cach pass one type of
reduction was performed. The string parser recdgnized two
classes of strings: first order, not containing verb-object,
and second order, containing verb-object; the reduction -of the
sentences was correspondingly done in two stages. In addition
to these reductions, which corresponded to context-free rules
the parsipg program also included some syntactic restrictions
which were checked when secondg order strings were reduced.

A system incorporating this é&ycling automaton scheme was later
used by Bross at Rosewll Park for the analysis of medical
reports (Bross 1968, Shapiro 1971].

As far as we know, only one major parsing system has been
developed using a context-sensitive phrase structure grammar,
This was DEACON, Direct English Access and Control, which was
designed as a natural language interface to a command, contrel,
and information retrieval system for the Army and was developed
at General Electric [Craig 1966]. DEACON was one of the first
systems to provide flexible, systematic interaction between
the parser and the semantic component. Associated with each
production in the grammar was a semantic rule. These rules

operated on a ring-structured data base and had the functions

13

14

of locating, adding, and changing information in the data base.
The parsing was done bottom-up, developing all analyses of the
sentence in parallel. As each reduction was performed, the
associated semantic rule was invoked. In the ¢ase of a query,
the sequence of rules associated with the correct analysis was
supposed to locate the desired answer in the data base. 1In
some cases a rule could not be applied to the data base (e.g.,
a particular relation between two items did not exist); the
rule then returned a failure signal to the parser, indicating
that the analysis was semantically anomalous, and this analysis
was aborted.

Woods has noted [Woods 1970a] that the parser used in the
DEACON project may produce redundant parses, and has given
a parsing algorithm for context-sensitive languages which
remedies this deficiency.

2.2 Trans formational Analyzers: First Systems

When the theory of transformational grammar was elaborated
in the early 1960's there was considerable interest in finding
a corresponding recognition procedure. Because the grammar is
stated in a generative form, however, this is no simple matter.
A (Chomsky) tree transformational grammar consists of a set
of context-sensitive phrase structure rules, which generate a
set of base trees, and a set of transformations, which act on
the base trees to produce tihe surface trees. A (Harris) string
transformational grammar consists of a finite set of sequences
of word categories, called kernel sentences, and a set of
transformations which combine and modify these kernel sentences
to make the other sentences of the language. There are at
least three basic problems in reversing the generative process:
(1) for a tree transformational grammar, assigning to a given

sentence a set of parse trees which includes all the surface

trees which would be assigned by the transformational grammar

15

(2) given a tree not in the base, determining which sequences

of transformatigns might have applied to generate this trce
(3) having decided on a transformation whose result may be

the present tree, undoing this transformation
If we attack each of these problems in the most straightforward
manner, we are likely to try many false paths which will not
lead to an analysis. For the first problem, we could use a
context-free grammar which will give all the surface trees
assigned by the transformational grammar, and probably lots more
The superabundance of "false" surface trees is aggravated by the
fact that most English words have more than one word category
(play more than one syntactic role), although normally only one
is used in any given sentence. For the second and.thrmiprpbiems,we
can construct a set of reverse transformations; however, since
we are probably unable to determine uniquely in advance the
transformations which produced a given tree, we will have to
try many sequences of reverse transformations which will not
yield a base tree.

Because of these problems, the earliest recognition procedure,
suggested by Matthews, was based on the idea of synthesizing trees
to match a given sentence. Although some checks were to have
been made against the sentence during the generation procedure,
it was still an inherently very inefficient procedure and was
never implemented. Two major systems were developed in the
mid-60's, however, which did have limited success: the system
of Zwicky et al. at MITRE and that of Petrick.

The transformational generative grammar from which the MITRE
group worked had a base component with about 275 rules and a set
of 54 transformations [Zwicky 1965]. For the recognition proce-
dure they developed manually a context-free "covering" grammar
with about 550 productions to produce the surface trees and a
set of 134 reverse transformational rules. Their recognition
procedure had four phases:

(1) analysis of the sentence using the context-free covering

grammar (with a bottom-up parser)

16

(2) application of the reverse transrormational rules

1\3) for each candidate base tree produced by steps (1) and (2),
a check whether it can in fact be generated by the base
component

(4) for each base tree and sequence of transformations
which passes the test in step (3), the (forward) trans-
formations are applied to verify that the original
sentence can in fact be generated

(The final check in step (4) is required bocause the covering
grammar may lead. to spurious matches of a transformation to the
sentence in the reverse transformational process and because
the reverse transformations may not inccrporate all the
constraints included in the forward transformations.) The
covering grammar produced a large number of spurious surface
analyses which the parser must process. The 1965 report for
example, cites a 12 word sentence which produced 48 parses
with the covering grammar; each must be followed through steps
(2) and (3) before most can be eliminated. The system was
therefore very slow; 36 minutes were reguired to analyze one
11 word sentence.

Two measures were taken by the MITRE group to speed up the
program: '"super-trees" and rejection rules [Walker 1966].
"Super~trees" was the MITRE term for a nodal span representation,
in which several parse trees were represented in a single
structure. They intended to apply the reverse transformations
to these super-trees, thus processing several possible surface
trees simultaneously; it is not clear if they succeeded in
implementing this idea. Rejection rules were tests which were
appliea to the tree during the reverse transformational process
(step (2) above), in order to eliminate some trees as early
as possible in the parsing. The rejection rules incorporated
some constraints which previously were only in the forward
transformational component, and so eliminated some trees in

step (2) which before had survived to step (4). The rejection

17

rules had a significant effect on parsing times -~ the 11 word
sentence which took 36 minutes hefore now took only 6
The system developed by Petrick [Petrick 1965, 1966;
Keyser 1967] is similar in outline: applying a series of
reverse transformations, checking if the resultindg tree can
be génerated by the base component, and the: verifying the
analysis by applying the forward transformations to the base
tree. There are, however, several dirferernces from the MITRE
system, motivated by the desire to have a parser which could

be produced automatically from the generative formulation of

N

the grammar. Petrick devised a procedure to generate, from
the base component and transformations, an enlarged context-
free grammar sufficient to analyze the surface sentence struc-
tures. He alsc automatically converted a set of forward trans-
formations mevting certain conditions into pseudoc-inverse
(reverse) transformations. Huis parsing procedure also aiffered
from the MITRE algorithm in the way in which the reverse
transformations are applied. In the MITRE program reverse trans-
formations operated on a sentence tree, just like foxward
transformations in a Chomsky grammar. Petrick, on the other hand,
did not construct a surface tree in the analysis phase; when a
particular reverse transformation came up for consideration, he
built just enough structure above the sentence (using the enlarged
context-free grammar) to determine if the transformation was
applicable. If it was, the transformation was applied and the
structure above the sentence then torn down again; what was
passed from one reverse transformation to the next was only
the string of word categories. In the verifying phase, of course,
Petrick had to follow the rules of Chomsky grammar and apply
the forward transformations o a sentence tree.

The price for generelity was paid in efficiency. Petrick's
problems were more severe than MITRE's for two reasons. First,
the zbsence of a sentence tree during the application of the

reverse transformational rules meant that many seguences of

18

revérse transformations were tried which did not correspond to
any sequence aof tree transformations and hence would eventually
be rejected. Second, if several rever se transformations could
apply at some point in the analysis, the procedure could not
tell in advance which would lead to a valid deep structure.
Consequently, each one had to be tried and the resulting struc-
ture followed to a deep structure of a "dead end" (where no
more transformations apply). This produces a growth in the number
of analysis paths which is exponential in the number of reverse
trans formations applied. This explosion can be avoided only if the
reverse transformations include tests of the current analysis tree
to deéetermine which transformations applied to generate this tree.
Such tests were included in the manually prepared reverse trans-
formations of the MITRE group, but it would have been far too
complicated for Petrick to produce such tests automatically when
inverting the transformations.

Petrick's system has been significantly revised over the
past decade [Petrick 1973, Plath 1974a]. In the current system
the covering grammar and reverse transformations are both
prepared manually. The transformational decomposition process
works on a tree (as did MITRE's), and considerably flexibility
has been provided in stating the transformations and the condi-
tions of applicability. The transformations and conditions
may be stated either in the traditional form (used by linguists)
or in terms of elementary operations combined in LISP procedures.
The resulting system is fast enough to be used in an information
retrieval system with a grammar of moderate size; most requests
are processed in less than one minute.

2.3 Transformational Analyzers: Subseguent Developm&nts

One result of the early transformational systems was a
recognition of the importance of finding an efficient parsing

procedure if transformational analysis was ever to be a useful

technigue. As the systems indicated, there are two main
obstacles to an efficient procedure. First, there is the problem
of refining the surface analysis, so that each sentence produces
fewer trees for which transformational decomposition must be
attempted. This has generally been approached by using a more
powerful mechanism than a ¢ontext-free parser for the surface
analysis. Second, there is the problem of determining the base
structure (or kernel sentences) from the surface structure in a
relatively direct fashion. This has generally been done by
associating particular rules for building the deep structure
with rules of the surface structure analysis. The approach

here has generally been ad hoc, developing a reverse mapping
without explicit reference to a cerresponding set of forward
transformations.

Several groups which have played a significant role in the
development of curvent parsing systems have been tied together
by their common use of recursive transition networks. Although
their use of these transition metworks is not central to their
basic contribution, it is frequently referred to and so deserves
a few words of explanation. A transition network is a set of
nodes (including one initial and at least one terminal node)
and a set of directed arcs between the nodes, labeled with
symbols frcom the language; it is a standard representation for
regular languages. A recursive transition network is a set of
transition networks in which the arcs of one network may also
be labeled with the names of other networks; it is a form of
representation of context-~free languages. In contrast to the
usual context-free phrase structure grammars, this is equivalent
to allowing regular expressions in place of finite sequences of
elements in productions. This does not increase the weak
generative capactity of the grammars, but allows nonrecursive
formulations for otherwise recursive constructions.

The first system using such a network was developed by
Thorne, Bratley, and Dewar at Edinburgh [Thorne 1968, Dewar 1969].

They started with a regular base grammar, i.e., a transition

19

network. The importance of using a regular base lies in their
claim that some transformations are equivalent in effect to
changing the base to a recursive transition network. Transfor-
mations which could not be handled in this fasion, such as
conjunction, were incorporated incvu the parsing program. Parsing
a sentence with this surface grammar should #men also give some
indication of the associated base and transfcimational structure.
Their published papers do not describe, however, the process by
which the surface grammar is constructed and so it is not clear
just how the transformation and base structure is extracted

from their parse.

The recursive transition network was developed into an
augmented recursive transition network grammar in the system of
Bobrow and Fraser [Bobrow L9639]. An auagmented network is one
in which an arbitrary predicate, written in s®me general purpose
language (in this case, LISP).may be associated with each arc in
the network. A transition in the network is not allowed if the
predicate associated with the arc fails. These predicates
perform two functions in the grammar. First, they are used
to incorporate restrictions in the language which would be
difficult or impossible to state within the ocentext-free
mechanisms of the recursive network, e.g., agreement restrictions.
Second, they are used to construct the deep structure tree as the
sentence is being parsed.

The augmented transition network was further developed by
Woods at Bolt Beranek and Newman. In order to regularize the
predicates, he introduced a standard set of operations for
building and testing the deep structure [Woods 1970b]. He
considerably enlarged the scope of the grammar and added a
semantic component f5r translating the deep structure into
information retrieval commands. With these additions, the
system served as a moderately successful natural language input
interface to a retrieval system for data about moon rocks [Woods
1972, 1973]. The augmented transition network, and in parti-
cular the formalism developad bv Woods, has proven to be an

=0

<1

effective instrument for constructing natural language front~ends
which is relatively simple to implement and use; it is probably
the most widely used procedure today.

Like several of the systems described above, Proto~RELADES,
developed ! IBM Cambridge [Culicover 1969], tried to obtain an
efficient transformational decomposition algorithm by linking
the rules for building the deep structure to the productions
of the surface grammar. Their surface grammar was also augmented
by restrictions (in PL/I this time). However, their system
differed from those mentioned ecarlier in several important
respects: First, the surface grammar allowed context-sensitive
as well as context-frece rules. Second, the rules which built
the deep structure during the parse were in the form of reverse
transformations acting on an (incomplete) sentence tree (in
contrast to the rules used by Woods, for example, which first
put words into registers labeled "subject", "verb", and "object"
and later build a trece out of them). Proto-RELADES was tested
as a restricted English language preprocessor for a library card
catalog retrieval system [Loveman 1971}.

One drawback of these procedures was the relatively ad hoc
methods, from a linguistic point of view, used to construct the
surface grammars and to tie them in to the appropriate reverse
transformations. A more principled approach to transformational
decomposition was proposed by Joshi and Hiz [Joshi 1962, Hiz 19671
In contrast to the systems described above, their procedure
was based on Harris' string ftransformational grammar.

One advantage of the Harrisian theory over that of Chomsky is

the theoretical basis it provides for the segmentation of the
sentence into "linguistic strings" (Chomsky's theory, in
contrast, makes no general assertions about the surface structure
of sentences.) The procedure of Joshi and Hiz was predicated on
the claim that, from an analysis of the sentence into linguistic
strings, one could directly determine the transformations which

acted to produce the sentence, without having to try many sequences

<<

af reverse transformations. Their proposed system therefore
consisted of a procedure for linguistic string analysis (a
context-free parsing problem at the level of simplification

of their original proposal) and a set of rules which constructed
from each string a corresponding kernel-like sentence.

Their original proposal was a simplified scheme which
accounted for only a limited set of transformations. It has
been followed bY agood deal of theoretical work on adjunct
grammars and trace conditions [Joshi 1973] which has laid a
formal basis for their procedures. These studies indicate kow
it may be possible, starting from a transformational grammar
not specifically oriented towards recognition, to determine the
features of a sentence which indicate that a particulars transfor-
mation applied in generating it, and hence to produce an effi-
cient analysis procedure.

Another group which has used linguistic string analysis is
the Linguistic String Project at New York University, led by
Sager [Sager 1967, 1973; Grishman 1973a, 1973bl]. Their system,
which has gone through scveral versions since 1965, is based
on a context-free grammar augmented with restrictions. Because
they were conce ned with processing scientific text, rather than
commands or gueries, they were led to develop a grammar of
particularly broad coverage. The present grammar has about 250
context~free rules and about 200 restrictions; although not as
swift as some of the smaller systems, the parser is able to
analyze most sentences in less than one minute. Because of the
large size of their grammar, this group ‘has been particularly
concerned with techniques for organizing and specifying the
grammar which will facilitate further development. In particular,
the most recent implementation of their system has added a special
language designed for the economical and perspicuous stakement
of the restrictions [Sager 1975].

One of the earlier versions of this system, with a much more
restricted grammar, was used as the front end for an information

<3

retrieval system developed by Cautin at the University of
Pennsylvania [Cautin 1969].

The Linguistic String Project system has recently been extended
to include a transformational decomposition phase; this phase
follows the linguisti¢ string analysis [Hobhs 1975]. As in
the case of the Joshi-Hiz parser, the strings identified in
the sentence generally indicate which reverse transformations
must be applied. 'The transformations are written in an exten-
sion of the language which was used for writing the restrictions.

The systcems of Woods, Petrick, and Sager exhibit a range of
approaches to the problem of transformational decomposition.
Their parsing procedures are similar in many respocts: they have
a context-free grammar as the framework for lheir surface analysis,
and they use procedures both to express grammatical constraints
and to effect the reverse transformations. Pctrick's system
differs from the others in two primary respects: the restrictions
on the context-free grammar are imposed by filtering transforma-
tions which act early in the transformational phase to reject
ill-formed trees, rather than by procedures operating during
the surface analysis. This wotld seem to be disadvantageous
from the point of view of efficiency, since erroneous parses
which might be aborted at the beginning of the surface analysis
must be followed through the entire surface analysis and part
of the transformational decomposition. Second, the transforma-
tions are not associated with particular productions of the
surface grammar, but rather with particular patterns in the
tree ("structural descriptions"), so pattern matching opera-
tions are required to determine which transformations to apply.
These differences reflect Pe:riek's desire to rcmain as close
as is practical to the formalism of transformational linguistics.

The primary distinction of the Woods system is that the deep
structure tree is built during the surface analysis. Conse-
guently, his "transformational" procedures consist of tree
building rather than tree transforming operations. The tradeoffs

between this approach and the two-stage analyzers of Petrick

<4

and Sager are difficult to weigh at this time. They are part

of the more general problem of parallel vs. serial processing;
e.g. should semantic analysis be done concurrently with
syntactic analysis. Parallel processing is preferred if the
added time required by the deeper analysis is outweighed by the
fraction of incorrect analyses which can be eliminated early in
the parsing process. In the case of s-ymantic analysis, it
clearly depends on the relative complexity of the syntactic and
semantic components. In the case of transformational analysis,
it depends on the fraction of grammatical and selectional
constraints which can be expressed at the surface level (if

nost of these can only be realized through transformational
analysis, concurrent transformational analysis i1s probably more
efficient). This may depend in turn on the type of surface
analysis; for example, the relationships exhibited by linguistic
string analysis are suitable for expressing many of these
constraints, so there is less motivation in the Linguistic String

Project system for concurrent transformational decomposition.

2.4. Other Syntactic Analysis Procedures

The system developed by Winograd at M.I.T. [Winograd 1971]
for accepting English commands and questions about a "block
world" also uses a context~free grammar augmented by restric-
tions. Winograd's context-free grammar was encoded as a set
of procedures instead of a data structure to be interpreted,
but this is not a material difference. His grammar is based
on Halliday's "systemic grammar" to the extent that it
extracts from a sentence the set of features described by
Halliday; however, Halliday's grammar (at least in its present
stage of' development) is essentially descriptive rather than
generative, so most of the detailed grammatical structure had
to be supplied by Winograd. His parser does not construct a
deep structure; rather, it builds semantic structures directly

O
during parsing. The primary distinctive feature of his system
is the integration of the syntactic component with semantics
and pragmatics (the manipulation of objects in the block world):;
hi§ parser is thus able to use not only syntactic constraints
but also semantic and pragmatic information in selecting a
proper scntence analysis. With regard to the serial vs.
parallel distinction drawn in the previous section, his system
would be characterized as highly parallel.

A number of natural language systems have used grammars
composed of Unrestricted phrase-structure rewriting rules.
Since unrestricted rewriting rules, like transformational
grammars, can be uscd to define any recursively enumerable
language, they may be sufficient for analyzing both surface and
deep structure. As with transformational grammars, it will in
practice be necessary to impose some constraint (such as ordering)
on the rules, so that the language defined is recursive; other-
wise a parser will never be able to determine whether some
sentences are grammatical or not.

One parser for unrestricted rewriting rules was described
by Kay [Kay 1867]. This parser included a number of mechanisms
for restricting the application of rules, such as rule ordering,
specifying part of the structure dominated by one element -of
the rule, or requiring the equality of the structures dominated
by two elements. These mechanisms do not increase the genera-
tive power of the grammars, but are designed to make grammars
easier to write. Xay described how his parser could be used
to effect some #everse transformations.

Kay's parser was incorporated into a system called REL
(Rapidly Extensible Language) developed by Thompson, Dostert,
et al. at the California Institute of Technology [Thompson 1969,
Dostert 1971]. Kay's original parscer was augmented byr allowing
a set of binary features to be associated with each node,
inciluding feature tests as part of the rewrite rules, and
permitting more general restrictions where the features were

inadequate. The REL system was designed to support a number

<6
of grammars, each interfaced to its own data base. One of
thege is REL English, which analyzes a subset of English into a
set of subject-verb-object-time modifier deep structures;
this grammar has 239 rules. In support of the use of general
rewrite rules with features, they note that only 29 of the
239 rules reguired constraints which could not be conveniently
stated in terms of feature tests. This is also a factor in
efficiency, since binary feature tests can be performed very
quickly.

Another system which uses unrestricted rewriting rules with
optional conditions on the elements is the "Q" system developed
by Colmerauer [Colmerauer 1970]. This system is presently being
used in a machine translation prqject at the University of
Montreal [Kittredge 1973].

Colmerauer and de Chastellier [de Chastellier 1969] have
also investigated the possibility of using Wijngaarden grammars
(as were developed for specifying ALGOL 68) for transformational
decomposition and machine translation. Like unrestricted
rewriting rules, W-grammars can define every recursively enumer-
able lanquage, and so can perform the functions of the surface
and reverse transformational components. They show how portions
of transformational grammars of English and French may be
rewritten as W~grammars, with the pseudo-rules in the W-grammar
taking the place of the transformations.

2.5 Parsing with Prop&bility and Graded Acceptability

In all the systems described above, a sharp line was drawn
between correct and incolNect parses: a terminal node either
did or did not match the next word in the sentence; an analysis
of a phrase was either acceptable or unacceptable. There are
circumstances under which we would want to relax these require-
ments. For one thing, in analyzing connected speech, the

segmentation and identification of words can never be done with

complete certainty. At best, one can say that a certain sound
has some probability of being one phoneme and some other
probability of being another phoneme; some expected phonemes
may be lost entirely in the sound received. Consequently,
one will associate some number with each terminal node, indi-
cating the probability or quality of match; non¥erminal nodes
will be assigned some value based on the values of the terminal
nodes peneath. Another circumstance arises in natural language
systems which are sophisticated enough to realize that syntactic
and semantic restrictions are rarely all-or-nothing affairs,
and that some restrictions are stronger than others. For example,
the nominative-accusative distinction has become quite weak
for relative pronouns (?The man who I met yesterday.) but remains
strong for personal pronouns (*The man whom me net yesterday.).
As a resulty a parser which wants to get the best analysis even
1f every analysis violates some constraint must associate a
measure of grammaticality or acceptability with the analyses
of portions of the sentence, and ultimately with the analyses
of the entire sentence.

In principle, one could generate every sentence analysis with
a nonzero acceptability or probability of match, and then select
the best analysis obtained. Hobbs [1974] has described a modi-
fication to the bottom-up nodal spans parsing algorithm which
uses this approach. Wilks [1975] wuses an essentially similar
technique in his language analyzer based on "preference
semantics"”

A more efficient approach, called "best-first" parsing,
has been developed by Paxton and Robinson of the Stanford Research
Institute as part of a speech understanding system [Paxton 1973}.
Their procedure involves a modification of the standard top-down
serial parsing algorithm for context-free grammars. The
standaxd algorithm generates one possible parse tree until it
gets stuck (generates a terminal node which does not match the

next sentence word); it then "backs up" to try another alternative.

The best-first procedure instead tries all alternatives in
parallel. A measure is associated with each alternative path,
indicating the likelihood that this analysis matches the
sentence processed so far and that it can be extended to a
complete sentence analysis. At each moment, the path with the
highest likelihood is extended; if its measure falls below that
of same otner path, the parser shifts its attention to that
other path.

2.6 Conjunction and Adjunction

There are certain pervasive natural language constructions
which do not fit naturally into the standard syntax analysis
procedures, such as augmented context-free parsers. Two of
these are coordinate conjunctions and adjuncts. Special
measures have peen developed to handle these constructions;
these measures deserve brief mention here.

The allowed patterns of occurrence of conjoinings in a
sentence are quite regular. Loosely speaking, a sequence of
elements in the sentence tree may be followed by a conjunction
and by some or all of the elements immediately preceding the
conjunction. For example, allowed patterns of conjoining
include subject-verb-object—-and-subject-verb-object (I drank
milk and Mary ate cake.), subject-verb-object-and-verb-object
{I drank milk and ate cake.), and subject-verb-object-and-object
{I drank milk and seltzer.). There are certain exceptions, known
as gapping phenomena, in which one of the elements following the
oconjunction may be omitted; for example, subject-verb-object-and-
subject-object (I drank milk and Mary seltzer.).

The trouble with coordinate conjunctions is that they can
occur almost anywhere in the structure of a sentence. Thus,
although it would be possible tn extend a context-free surface
grammar to allow for all possible conjoinings, such an extension
would increase the size of the grammar by perhaps an order of
magnitude. The alternative scheme which has therefore been

<8

developed involves the automatic generation of productions
which allow for conjunction as required during the parsing
process. When a conjunction is encountered in the sentence,
the normal parsing procedure is interrupted and a special
conjunction node is inserted in the parse tree. The alter-
native values of this node provide for the various conjoined
element "sequences allowed at this point.

An interrupt mechanism of this sort including provision for
gapping, is part of the Linguistic String Project parser [Sager
1967). A similar mechanism is included in Woods' augmented
transition network parser [Woods 1973] and a number of other
systems.

This solves the problem of correcting the context-free
grammar for conjunctions, but the context-free grammar is
generally only a small part of the total system. The task
remains of modifying the routines which enforce grammatical
constraints and the transformations to account for conjunctions.
Since practically every routine which examines a parse tree
is somehHow affected by conjunction, this can be a large jcb,
but fortunately the changes are very regular for most routines.
The Linguistic String Project grammar, by performing all
operations on the parse trece through a small number of low-
level routines, was able to localize the changes to these
routines and a small number of restrictions (such as number
agreemeﬁt) which are specially affected by ceonjunction ([Raze
1974].

Certain classes of adjuncts or modifiers give rise to a
different kind of problem: a high degree of syntactic ambiguity.
For instance, in the sentence, "I fixed the-pipe under the sink
in the bathroom with a wrench." there is no syntactic basis
for deciding whether the pipe had a wrench the sink had a
wrench, the bathroom had a wrench, or the tixing was done with
a wrench. If semantic and pragmatic restrictions are invoked

during the syntactic analysis, the parser will have to generate

30

several analyses, all but one of which will (hopefully) be
rejected by the restrictions; this is moderately inefficient.
If syntactic analysis precedes semantic processing,; the
ambiguities of the various adjuncts will be multiplied
producing dozens of analyses for a sentence of moderate size;
this is hopelessly inefficient.

A more efficient solution has the parser identify the
adjuncts and list fo: each adjunct the words it could be
modifying, without generating a comple#e separate analysis
for each possibility. The ambiguities associated with the
adjuncts are thus factored out. The semantic and pragmatic
components may then choose for each adjunct its most likely
or acceptable host (modified word). This may be done either
during the syntactic analysis [Woods 1973, Simmons 1975] or
after the syntax phase is complete [Borgida 1975, Hobbs 1975].

3. ALGORITHM SPECIFICATIONS

We present below precise specifications for some of the
parsing algorithms which have been discussed. These algorithms
are presented in SETL, a programming language which is based on
concepts from set theory and has been developed at New York
University by a group led by Jack Schwartz. The large variety
of data types, operators, and control structures in SETL makes
it possible to specify the algorithms in a relatively compact
and natural fashion. An implementation is available which
includes most of the fcatures of the specification language,
so that algorithms can be tested in essentially the form in
which they are published. A description of the subset of SETL

which has been used in this report is given in the appendix.

3.1 Parsing Algorithms for Context-Free Grammars

Context-free grammars played a major role i the early stages
of automatic natural language analysis. Although they have now
generally been superceded by more complex and powerful grammars,
many of these grammars are based on or have as one of their
components a context~free grammar. The sclection of an efficient
context~free parser therefore remains an important consideration
in natural language analysis.

Jecause s0 many different context-free parsers have been
proposed, a comprehensive survey would be impractitable. We shall
rather present a taxonomy according to which most context-free
parsers can be classified, and illustrate this classification
with five of the possible basic slgorithms. At the end we shall
mention which of these are being used in current natural language
systems.

The first division we shall make is according to the amount
of memory space required by the parser. Type 0 parsers store

only the parse tree currently being built. The other parsers

gradually accumulate data from which all parses of a sentence

can be extracted; types 1, 2 and 3 store this data in decreas-

ingly compact representations. The four types are:

(0) Develops a single parse tree at a time; at any instant the
store holds a set of nodes corresponding to the nodes of an
incomplete potential parse tree

t) The store holds a set of nodes, each of which represents the
fact that some substring of the sentence, from word f to word
2, can be analyzed as some symbol N.

(2) The« store holds a set of nodes, each of which represents an
analysis of some substring of the sentence, from word f to
word &, as some symbol N (if there are several different
analyses of words f to % as some symbol N, there will be severa.
nodes corresponding to a single node in a type 1 parser).

(3) The store holds a set of nodes, each of which corresponds to
an analysis of some substring of the sentencey from word f to
word &, as some symbol N appearing as part of some incomplete
potential parse tree (if symbol N, spanning words £ to ¢,
appears in several of the incomplete potential parse trees,
there will be several nodes corresponding to each node in a
type 2 parser).

Type (0) parsers require only an amount of storage proportional

to the length of the input sentence. The storage requirements of

type (1) parsers grow as the cube of the length, while the require-
ments for types (2) and (3) grow exponentially.

A second division can be made between top-down and bottom-up
parsers. A third criterion for classification is whether
alternative parses of a sentence are all produced together
(parallel parser) or are generated sequentially (serial parser);
this division does not apply to type (0) parsers.

Finer divisions can be made of some of these categories.

For example, among bottom-up parsers we can distinguish those

which perform a reduction only when all required elements have

been found from those which make a tentative reduction when the
first element of a production is found (so-called "left-corner

parsers”). Parallel parsers can be classified according to the

orderinc strategy they use in building nodes: by leftmost or
rightmost word subsumed (i.e., spanned) by the node or by level.
In addition, we shall not consider a number of optimization
strategies, such as selectivity matrices and shaper and general-
ized shaper tests for top-down parsers.

We shall now describe algorithms in five of the categories:

A Type O Top~down serial
B Type 2 Bottom—~up parallel
C Type 1 Bottom—up parallel
D Type' 2 Top~down serial
E I'ype 1 Top-down serial

We have not included any type 3 parsers because, despite their
profligate use of storage, they do not operate much faster than
type 0 parsers. The only reported use of such a parsexr of
which we are aware is the "Error-Correcting Parse Algorithm" of
Irons (Comm. ACM 6, 669 (1963)). A top-down left-to~right

parallel strategy was employed so that the parser could make a

suitable modification to the sentence when it "got stuck" because

of an error in the 1input.

SHETL procedures are given for these five parsers. The input
data structures are the same in all cases: The sentence, passed
through parameter SENTENCE, is a tuple. The elements of the
tuple, the words of :the sentence, are to be matched by terminal
symbols from the grammar. The context-free grammar, passed
through parameter GRAMMAR, is a set each of whose elements

corresponds to a production. The production

a a

0 2 """ "n
is transformed into the (n+l1)-tuple

+ala

<a0'al'a2’oov,an> -

The root symbol of the grammar is passed to the parser in
parameter ROOT.

33

34

Algorithm A, Type 0 Top—-down Serial

This procedure builds the parse trees for the input sentence
sequentially in a two-dimena&ional arrayi TREE. The first
subscript of TREE specifies the number of the node, the second
selects & component of the node as follows:

TREE (n, 'NAME ') name of node n

TREE (n, 'PARENT') number of parent node vf node n
(= 0 for root node)

TRCE (n, ' DAUGHTERS ') tuple of numbers of daughter nodes
of node n

TREE (n, '"CURRENT OPTION') tuple of current production used

to expand this node

TREE (n, 'ALTERVATIVE OPTIONS') set of tuples representing

productions not yet¥ tried for

this node

TREE(n, 'FW') number of first sentence word
subsumed by node n

TREE (n, 'LW+1"') (number of last seitence word subsumed

by node n) + 1
As each analysis of the sentence is completed, it is added
to the set PARSES. When parsing is finished, this set of trees
is returned as the value of the function PARSE.

The variable NODES holds a count of the number of npdes in the
parse tree; this is also the number of the node most racently added
to the tree. WORD holds the number of the next word in the sentence
to be matched.

The heart of the parser is the recursive procedure EXPAND. EXPAND
is passed one argument, the number of a node in the parse tree. If
EXPAND has not been called for this node before, it will try to
expand the node, i.e., build a parse tree below the

node which matches part of the remainder of the sentence.

If EXPAND has already been called once for this ncde -- so that
a tree already exists below this node -- EXPAND tries to find an
alternate tree bhelow the node which will match up with part of
the remainder of the sentence.

If EXPAND is successful -- an (alternate) tree below the node
was found -- it returns the value true; if it is unsuccessful,
it returns false. In the case where the node corresponds to
a terminal symbol, EXPAND will return true on the first call
only if the symbol matches the next word in the sentence; it
will always return false on the second call.

definef PARSE (GRAMMAR, ROOT, SENTENCE) ;
local PARSES, TREE, NODES, WORD;
TREE = n&;
PARSES = n?;
WORD = 1;
NODES = 1;
/* set up root node (node 1) */
TREE (1, 'NAME') = ROOT;
TREE (1, 'FW') = WORD;
/* loop until all parse trees have been formed.*/
(while EXPAND(1l))
/* if tree spans cntire sentence, add to set */
if WORD eq ((#SENTENCE)+1) then
PARSES = PARSES U {IREE};
end if WORD;
end while EXPAND;
return PARSES;
end PARSE;

definef EXPAND(X) ;
local I, OPT;
if GRAMMAR{TREE (X,'NAME')} eqg n& then
/* terminal symbol */
if TREE (X, 'ALTERNATE OPTIONS') eqg then
/* first call -- test for match with sentence */
TREE (X, 'ALTERNATE OPTIONS') = n&;
if WORD le #SENTENCE then
if SENTENCE (WORD) eq TREE(X, 'NAME') then
WORD = WORD + 1;
TREE (X, 'LW+1') = WORD;
return true;
end if SENTENCE;
end if WORD;
else /* second call */
WORD = WORD-1;
end if TREE;
return false;
end if GRAMMAR;

/* nonterminal symbol */

if TREE (X, 'ALTERNATE OPTIONS') eg © then
/* first call, retrieve options from grammar */
TREE (X, 'ALTERNATE OPTIONS') = GRAMMAR{TREE (X, 'NAME') };
TREE (X, 'DAUGHTERS') = nult;
OPT = §i;
else /* second or subsequent call */
OPT = TREE (X, 'CURRENT OPTION');
I = #OPT;
end if TREE;

@

/* select next option to try */
GETOPT: if OPT eq 9 then
OPT from TREE (X, 'ALTERNATE OPTIONS');
TREE (X, "CURRENT OPTION') = OPT;
I =1;
end if OPT;
/% expand node */
while I ge 1)
/* work on Ith element of current option */
/* if corresponding node not in parse tree, add it */
if TREE (X, 'DAUGHTERS') (I) eg Q then
NODES = NODES + 1;
TREE (NODES, 'NAME') =, OPT(I);
TREE (NODES, 'FW') = WORD;
TREE (NODES, '"PARENT') = X;
TREE (X, 'DAUGHTERS') (I) = NODES;
end if TREE;
/* try for an{other) expansion of this node */
if EXPAND (TREE (X, 'ISAUGEITERS') (I)) then
/* expansion found... if this is last element, return
successfully, else advance to next element */
if I eq #OPT then
TREE (X, 'LW+1') = WORD;
return true;
else
I =1+ 1;
end if I;
else
/* no expansion found ... erase this node and examine
previous element */
TREE (NODES) = Q;
NODES = NODES-1;
TREE (X, 'DAUGHTERS') (I) = Q
I = I-1;
end if EXPAND;

end while I:

~e

/* all expansions for this option have been generated;
if more options, loop, else return false ¥*/
OPT = 3
if TREE(X,'ALTERNATE OPTIONS') ne nk then go to GETOPT;:;
return false;
end EXPAND;

One way of viewing this procedure is to consider each node
as a separate process. Each process creates and invokes the
processes corresponding to its daughter nodes. In SETL,
the algorithm cannot be represented directly in this way, since
there are no mechanisms for c¢reating and suspending processes.
Instead, the data which would correspond to the local variables
of the process are stored as components of each node in the
parse tree. In languages which provide for the suspension of
processes, such as SIMULA, the algorithm can be represented even
more succinctly (see, for example, a version of this algorithm
in "Hierarchical Program Structures" by O0.-J. Dahl and

C. A. R. Hoare, in Structured Programming by O.-J. Dahl et al.,
page 201).

Algorithm B. Type 2 Bottom-up Parallel

This algorithm is sometimes called the "Immediate Co%stituent
Analysis" (ICA) alcorithm, because it was used quite early in
parsing natural language with ICA grammars. I% constructs all
nodes in a single left-to-right pass over the sentence. As each
word is scanned, the parser builds all nodes which subsume a
portion of the sentence ending at that word. The nodes ("spans")
are accumualted in a two-dimensional array SPAN, whose first
subscript specifies the number of the span and whose second

subscript selects a component of the span, as follows:

SPAN
SPAN
SPAN

SPAN

At

a graph
parses,

39

(n, 'NAME') = name of span n
(n, 'FW') = number of first sentence word subsumed by span n
(n, 'IW+1')= (number of last sentence word subsumed

by span n) + 1
(n, 'DAUGHTERS') = tuple of numbers of daughter spans
of span n.

the end of the routine is some code to convert SPAN,
structure with each span potentially a part of many
into a set of parse trees. This code has two parts:

a loop to find all root nodes created in the immediate

constituent analysis, and a recursive routine EXPAND which makes
copies of all descendants of the root node and puts them in TREE.
Bach node in the tree has the following components:

TREE(n, 'NAME') = name of node n

TREE(n, 'FW') = number of first sentence word subsumed
by node n

TREE(n, 'IW+1') = (number of last sentence word subsumed

by node n) + 1

TREE(n, 'DAUGHTERS') = tuple of numbers of daughter nodes

of node n

TREE (n, 'PARENT')= number of parent node of node n.

The set

of parse trees is accumulated in PARSES and finally

returned as the value of the function PARSE.

definef PARSE (GRAMMAR,ROOT,SENTENCE) ;
local TODO, WORD, CURRENT, DEF, DEFNAME, DEFELIST, REM, SPAN, ,
SPANS, TREE, NODES, PARSES, MS, I;
/* initialization */

SPAN = nl:;
SPANS = 0;
TODO = nl;

/* iterate over WORD=last word subsumed
by spans being constructed */
(1 <= YWORD <= $SENTENCE)
/* add span whose name is sentence word */
ADDSPAN (SENTENCE (WORD) , WORD, WORDb+1l, nult);

/* TODO contains the numbers of spans which were
just created and for which we have not yet
checked whether they can be used as the last
daughter span in bnilding some more spans */

(while TODO ne nl)
/* select a span from TODO */
CURRENT from TODO;
/* loop over all productions whose last element
= name of current span */
(YDEF € GRAMMAR|DEF(#DEF) eq SPAN (CURRENT, 'NAME'))
/* separate left and right sides of production */
DEFNAME = hd DEF;
DEFELIST = tl1 DEF;

/* if elements preceding last element of production
can be matched by spans, add a new span whose
name = left-hand side of production for each match*/

(VREM € MATCH(DEFELIST(l:(#DEFELIST)-l),

SPAN (CURRENT, 'FW')))
ADDSPAN (DEFNAME, hd REM, SPAN (CURRENT, 'LW+1'),?
(t1 REM) + <CURRENT>);
end YREM; end VDEF;
end while TODO;
end 1 ~= YWORD;

40

/* ektract trees from set of spans */
PARSES = nl;

(1 <= VI %= SPANS| (SPAN(I,;'NAME') g ROOT) and
(SBRAN(I,'FW') eq 1) and
(SPAN(I,'LW+1') eq ((#SENTENCE)+1)))

NODES = ;
TREE = nl;
TREE{1} = SPaN{I};

TREE (1, ‘DAUGHTERS')
end 1 <= VI;

return PARSES;

cnd PARSE;

EXPAND(TREE (1, 'DAUGHTERS '), 1) ;

define MATCH (ELIST, ENDWDPL);
local I, NTUP;
/% MATCH finds all n-tuples of spans whose names
match the elements of the n-tuple ELIST and which
span a portion of the sentence whose last word +1

= ENDWDP1; returns a set, each element of which

a1

is an (n+1l)-tuple, whose tail is one of the n-tupleo

of spans and whose head is the number of the first
word spanned by the n-tuple of spans */
if ELIST eqg nult
then return {<ENDWDPl>};
else return [VU: 1 <= I <= NODES,
(if (SPAN(I, 'NAME') eg ELIST (#ELIST))
and (SPAN(I,.'LW+1') eg ENDWDP1)
then {NTUP -+ <I>, NTUP €
MATCH(ELIST(l:(#ELIST)yl),SPAN(I,'FW'))}
else nl);;
end MATCH;

define ADDSPAN (NAME, FW; LWPl, DAUGHTERS)

/* ADDSPAN builds a span whose components
are passed in the four parameters */
SPANS = SPANS+1;
SPAN(SPANS, 'NAME') = NAME;
SPAN (SPANE, 'FW') = FW;
SPAN (SPANS, ‘LW+1') = LWP1;
SPAN {SPANS, 'DAUGHTERS ') = DAUGHTERS;
SPANS in TODO;
return;
end ADDSPAN;

definef EXPAND (DAW,PAR) ;

/* creates a node for each span in DAW and each
descendant thereof, and returns a tuple with
the numbers of the nodes (in TREE) corresponding
to the spans in DAW */

local S, D, N;
if DAW eq 22 then return Q;;
D = nult;
(¥s € DaW)
NODES = NODES + 1;
X = NODES;
TREE{N} = SPax{s};
TREE (N, '"PARENT') = PAR;
TREE (N, '"DAUGHTERS ') = EXPAND (TREE (N, 'DAUGHTERS') ,N) ;
D =D + <N>;
end ¥S;
return D;
end EXPAND;

42

43

Algorithm C Type 1 Bottom-up Parallel

Algorithm C is the basic "nodal spans" parsing algorithm
[Cocke 1970]. The sequencing logic is identical to that for
Algorithm B, The only difference in the tree representation
ig that all spans in Algorithm B with common values in the NAME,
FW, and LW+l components are joined into a single span in
Algorithm C. The DAUGHTERS component now becomes a set, each of
whose elements corresponds to the value of the DAUGHTERS
component of one of the spans in Algorithm B (this set is
called the "division 1list" in the nodal spans algorithm):

SPAN(n,'DAUGHTERS') = a set each of whose elements is a tuple

of numbers of daughter nodes of spann

In order to effect this change in the tree, it is necessary only
to modify the procedure appspanN to check whether a span with the
specified value of NAME, FW, and LW+l alreeasy exists:

define ADDSPAU (NAME, FW, LWPl, DAUGHTERS) ;
local S;
if 1 <= 38 <= SPANS' | (SPAJ(S,'NAME') eqg NAME) and
(SPAM(S,'FW') eq ¥W) and
(SPAW (S,"LW+1') ec LWP1)
then DAUGHTERS in SPAJ (S, 'DAUGHTERS') ;
else SPANS = SPANS+1;
SPAN (SPANs, "NAME') = NAME;
SPAN (SPANS, 'FW') = FW;

SPAN (SPANS, 'LW+1') = LWP1;
SPAN (SPANS, 'DAUGHTERS') = {DAUGHTERS!};
SPANS in TODO;
end if;
return;
end ADDNODE;

The procedure for converting the spans into a set of trees is
pow more complicated than for Algorithm B; see, for example,
owens [1975], Sec. 7.

algorithm D. Type 2 Top-down Serial

We now seek to combine the advantages of algorithm A with
those of algorithms B and C. Algorithms B and C would construct
any given tree over a portion of the sentence only once, whereas
algorithm A might construct some trees many times during the course
of a parse. On the other hand, B and C would construct many trees
which A would never try to build. More precis&ly, B and C would
build +trees while processing word n+l which could not enter into
any parse for any sentence whose first n words were those processed
so far.

To combine these algorithms, we shall return to the basic
framewdrk provided by algorithm A. To this we add a mechanism
for recording "well formed substrings." The first time the parser
trie§ to analyze a portion of the sentence beginning at word f as
an instance of symbol N, this mechanism records any and all trees
constructed below node N. The next time the parser tries symbol N
at word f, the saving mechanism retrieves this information so
that the trees below N need not actually be rebuilt.

The previously-completed trees are stored in the two-dimensional

array WFS, whose structure is identical to that of SPAN in
algorithm- B¢

WFS(n,'NAME') = name of well-formed substring n
WFS(n,'FW') = first word of well-formed substring n
WFS(n,'LW+l') = (last word of well-formed substring n) + 1

WFS (n,'DAUGHTERS') = tuple of numbers of daughter substrings
of substring n

44

a3

WFSS yholds the number of substrings in WFS. When the parsing
operation is complete, WFS will contain a subset of the elements
which were in TREE at the end of algorithm B.

The tree used by the top-down parser must be augmented to allow
for the possibility that the parser is not building a tree below
a given node but rather consulting the table of well-formed
substrings for that node. In that case the node will have, instead
of & tuple of daughters and a set of alternative options, the
number of the well-formed substring currently being used in the

trce and the set of alternative well-formed substrings. The
structure of a node is thus:

TREE(n, 'NAME') = name of node n
TREE {n, '"PARENT') = number of parcnt node of node n
(= 0 for root node)
TREE (n, 'DAUGHTERS ') = tuple of numbers of daughter nodes of node n
(= nult if node is matched by well-formed substring)
TREE (n,'WFS"') = number of well-formed substring matched to node n
(= @ if not matched to a substring)
TREE (n,'CURRENT OPTIGN') = tuple of current production used to
expand node n
(= Q@ 1f node is matched by a well~-formed substring)
TREE (n, '"ALTERNATE OPTIONS') =
set of tuples representing productions not
yet tried for node n
TREE (n, 'ALTERNATE WFS') =
set of nuwbers of well-forméd substrings not
vet tried for node n
TREE (n,'FW') = number of first word subsumed by node n
TREE (n, 'LW+1"') = (number of last word subsumed by node n) + 1
Finally, we require a table which indicates, for each symbol N
and sentence word f, whether all the well-~formed substrings for N
starting at f have been recorded in WFS. For this the parser uses
the two-dimensional array EXPANDED: EXPANDED(N,f) = true if all
substrings have been recorded, Q if not.
The text of procedure D is given below; comments are included

only for those statements added to procedure A.

46

definef PARSE (GRAMMAR, ROOT, SENTENCE) ;
local PARSES, TREE, NODES, WORD, WFS, WFSS, EXPANDED;

TREE = ni;

PARSES = n¥&;

WFS = ni;

WFSS = Q;

EXPANDED = n¥%;

WORD = 1;

NODES = 1;
TRYE (1, 'NAME') = ROOT:;

TREE (1,'FW') = WORD;
(while EXPAND(1))
if WORD eq (#SENTENCE + 1) THEN
PARSES = PARSES U {TREE};
end 1f WORD;
end while;
return <PARSES,WFS>;
end PARSE;

definef EXPAND(X) ;
local I, S, LAST, OPT;
if EXPANDED (TREE (X,'NAME'), TREE(X,'FW')) eqg true then
/* the expansions for this symbol have been computed before */
/* if this is a new node, get its WFS entries */
if TREE (X,'ALTERNATE WFS') eq then
TREE (X, 'ALTERNATE WFS') = {S, 1 < S < WFSS |
(WFS(S,'NAME') eqg TREE (X,'NAME')) and
(WFS(S,'FW') eg TREE(X,'FW'))}
end if TREE;
if TREE(X,'ALTERNATE WFS') eq n? then
/* all WFSs tried for this node */
WORD = TREE(X,'FW') ;
raturn false;
else

a4'y

* select next WFS for node */
TREE (X, '"WFS') from TREE (X, 'ALTERNATE WFS') ;
WORD = WFS (TREE (X, 'WFS'), 'LW+1');
TREE (X, "LW+1') = WORD;
return true;
end i1f TREE;
end if EXPANDED;

if GRAMMAR{TREE (X,'NAME')} eq n& then
if TREE(X,'ALTERNATE OPTIONS') eq © then
TREE (X, "ALTERNATE OPTIONS') = n&;
if WORD le #SENTENCE then
if SENTENCE (WORD) eq TREE (X,'NAME') then
WORD = WORD+1;
TREE (X,'LW+1') = WORD;
* add WFS recording match to terminal symbol */
ADDWFS (TREE {X}) ;
TREE (X, 'WFS') = WFSS

return true;

-
14

end if SENTENCE;

end if WORD;

else WORD = WORD - 1
end if TREE;

/* matcn to terminal symbol, if successful, has been recorded?*/
EXPANDED (TREE (X, 'NAME ') ,WORD) = true;
return false;
end 1f GRAMMAR;

if TREE (X,'ALTERNATE OPTIONS') eg £ then
TREE (X, 'ALTERNATE OPTIONS') = GRAMMAR{TREE (X, 'NAME') };
TREE (X, 'DAUGHTERS') = nult;
OPT = Q;
else OPT = TREE (X,'CURRENT OPTION') ;
I = #0OPT;
end if TREE;

GETOPT: if OPT eq { then
OPT from TREE (X, 'ALTERNATE OPTIONS');
TREE (X, 'CURRENT OPTION')= QPT;
I = 1;
end if OPT;
(while I ge 1)
if TREE (X, 'DAUGHTERS') (I) eq § then
NODES = NODES + 1;
TREE (NODES,'NAME') = OPT(I);
TREE (NODES,"FW') = WORD;
TREE (NODES, '"PARENT') = X;
TREE (X, '"DAUGHTERS ') (I) = NODES;
end if TREE;
if EXPAND (TREE (X, 'DAUGHTERS') (I)) then
if I eq #OPT then
TREE (X, 'LW+1') = WORD;
/* record substring matched by node X */
ADDWFS (TREE {X}) ;
TREE (X,'WFS') = WFSS;

return true ;

se
I = I+1
end if I;

else TREE(NODES) = Q;
NODES = NODES-1;
TREE (X, ' DAUGHTERS ') (I) = Q;
I = I-1;
end if EXPAND;
end while I;
OPT = Q;
if TREE (X, 'ALTERNATE OPTIONS') ne n% then go to GETOPT;;
/* all expansions tried */
EXPANDED (TREE (X, '"NAME') ,WORD) = true;
return false;
end EXPAND;

48

49

define ADDWFS (NODEX)
/* add an entry to WFS */

local I;

WFSS = WFSS+1;

WFS (WFSS,'NAME') = NODEX('NAME') ;

WES (WSS, 'FW') = NODEX('FW');

WFS (WFSS, "LW+1') = NODEX('LW+1');

if NODEX('DAUGHTERS') ne Q then
WFS (WFSS, "DAUGHTERS') = [+: I € NODEX('DAUGHTERS')]

<TREE (I, 'WFS')>;

end if NODEX;

return;

end ADDWFS;

Note that this parser returns an ordered pair consisting of
the set of trees and the set of well-formed substrings,

since the trees alone do not contain complete information
about the sentence analysis.

Algorithm E Type 1 Top-Down Serial

To complete our set of algorithms, we shall apply to
Algorithm D the same change we made to convert Algorithm B
to Algorithm C. That is, where in Algorithm D we may have
had sever.li wvell formed substrings with the same values of
NAME, I'W, LW+l, we shall combine these into a single substring
ir. Algorithm Ef{ The component DAUGHTERS ‘becomes a set, each
of whose elements is a tuple corresponding to the value of
DAUGHTERS of one of the substrings in Aigorithm D. Just as
we oniy had to change ADDNODE in Algorithm B, we only have
to change ADDWFS in Algorithm D.

define ADDWFS (NODEX) ;
local W, I, DAUGHTERS;
/* compyite DAUGHTERS for substring */

S0

DAUGHTERS = Qi
if NODEX('DAUGHTERS') ne { then
DAUGHTERS = [+: I € NODEX('DAUGHTERS')]J<TREE(I,'WFS')>;
end if NODEX;
/* s&arch for well formed substring with identical JAME,
FW, LW+l */
if 1 <= IW <= WFSS| ((WFS(W,!NAME') eq NODEX('NAME'))and
(WFS (W, 'FW') eq NODEX('FW')) and
(WFS(W,'LW+1') eq NODEX('LW+1')))
/* found one, add daughter to set */
then if DAUGHTERS ne {8 then
DAUGHTERS in WFS (W, 'DAUG.TERS 'Yy ;
end if DAUGHTERS;
else WFSS = WFSS+1:

WFS (WFSS, 'NAM.) = NO™I{('NAME');
WFS (WFSS, '"W') = NODEYV('FW');
WFS (WFSS,'LW--7') = NODEX('Lw+1');

WFS (WFSS, 'DnUGnnL RS V\ =
i-f DAUGJITE. eg § +hen n2 else DAUGHTERS ;
end if dw;
return;
end ADDWFS;

ol

Use of the Variou$ Algorithms in Natural Language Svstems

The type 0 top-down algorithm (algorithm A) is one of the
simplest and most frequently used. For example, a special version

of this algorithim (for Greibach normal form grammars) was used in

the original Harvard Predictive Analyzer [Kuno 1962]. The later
version of the Harvard system, incorporating a "path elimination"”
technique, was a type 1 top-down serial parser, a variant of
Algorithm E; instead of saving all daughtecrs in WFS during the
parse, they were recomputed later for those nodes appearing in

a parse tree [Kuno 1965].

Several current systems use augménted context-free grammars:
grammars to which have been added restrictions on the parse tree
typically in the form of LISP predicates, which must be true if
the tree is to be accepted as a sentence analysis. The Winograd [1971]
svstem uses an augmented context-free grammar with the context-free
component encoded as a program rather than data. The parsing
strategy is essentially that of.a type 0 top-down algorithm,

except that back-up is explicitly controlled rather than automatic.

Woods' system [1970b] also uses a type 0 top-down algorithm, although
somewhat different from the one presented here since his grammar

is a recursive transition network. The Linduistic String Project
system [Sager 1967] started out with a parser based on a type 0
top-down algorithm; for efficiliency it later progressed to a type 2
top-down algorithm. A type 2 rather than a type 1 algorithm was used
because the restrictions can reject one analysis of a portion of
the sentence as a particular symbol while accepting another

analysis of the same portion of the sentence as the same symbol.

For a type 2 algorithm, this means simply eliminating some nodes in
WFS; for a type 1 algorithm, where a single node may represent
several rstrees, a complicated procedure which could create new nodes
would have been required in general. The Linguistic String Project
parser is considerably more complex than the type 1 top~down

serial parser shown above (algorithm D), in part because of the
restrictions which must be evaluated during the parse, in part
because (for reasons of storage economy) the system makes it
possible to save only selected nodes in WFS.

QK

The type 2 bottom-up parallel algorithm also saw early use in
natural language processing. The parser designed by Cocke for the
Rand system*was a special version of this algorithm for Chomsky
normal form grammars. A thorough survey of the different ordering
strategies possible with this algorithm was given by Hays [1967]. This
algorithm was subsequently developed by Cocke (among others) into
a type 1 bottom-up parallel algorithm named "nodal spans" and
subsequently into a type 1 top-down parallel algorithm called
"improved nodal spans" (see Cocke [1970] for a description
of these algorithms). The latter is very similar to a parsing
algorithm described by Earley [1970]. 'These type 1 algorithms
have, to ¢he best of our knowledge, not yet been used in natural
language parsing.

In closing a few remarks are in order on the practical
importance of the differences between the various algorithms.

How significant is the difference between type 2 and type 1,
between top-down and bottom-up, between serial and parallel?
There has been no systematic study of these questions, and the
answers to them are in all likelihood guite grammar specific.

For example, the advantage of the tdp-down parser is that,
in working on word n+l, it eliminates from consideration those
symbols which could not occur in any parse tree whose first n
terminal symbols are the first n words of the sentence. Is this
a large effect? Although I am not aware of any measurement
of this quantity, the factor seems to he relaﬁively small for
large-coverage English grammars -- perhaps reducing the number
of symbols in half.

The advantage of type 1 over type 2 algorithms depends on the
degree of ambiguity of the grammar. How frequently can a portion
of 3 sentence be analyzed as a particular symbol in several ways?
For unaugmented context-free grammars the answer in general has
been very frequently -- this was one of the problems of the
context-free systems. For such grammars, type 1 algorithms
would be much more efficient. When restrictions are added,

however, they discriminate some of the analyses Ffrom others.

N

A rich set of syntactic, semantic, and pragmatic restrictions
(available so far only for small subsets of English in limited
areas of discoursc) would presumabl eliminate almost all
ambiguity, so that the advantage of a type 1 algorithm would
then be small.

Finally, we should mention the difference boetween serial and
parallel parsers. Since serial and parallel algorithms will
have created the same number of nodes by the +time parsing is
complete, the difference in time is probably quite small.
The parallel algorithm may have the edge because "bookkeeping"
is simpler. Also; the parallel algorithm can handle left recursion
natufaily, whereas a special mechanism is required for top-down
serial parsers. On the other hand, a serial algorithm may be
preferable if only the first parse of a sentence is required.
In addition, the serial algorithms can more simply handle the
situation where memory space is marginal. Normally most of the
space in algorithms D and E is used by the set WFS, not by TREE.
Consequently a type 1 or 2 serial parser can "rescue itself”
when memory is almost exhausted by reverting to a type 0 algorithm;
this simply means that it stops saving nodes in WFS. In terms of
the SETL programs given above this requires, in addition to a
change to ADDWFS, only that elements of EXPANDED no longer be set

to true qQnce -saving has been terminated.

3.2. A Parser for Unrestricted Rewriting Rule Grammars

A number of natural language systems, such as REL (at
the California Institute of Technology) and the Q-system (at
the University of Montreal) have used unrestricted phrase
structure grammars. In such grammars, each rule specifies
that some sequence of symbols be rewritten as some other
sequence of symbols. The parsing algorithm used in these
gystems was described by Kay in 1967 ("Experiments with a
Powerful Parser," Martin Kay, in 2éme Conference Internationale
sur le Traitment Automatique des Langues, Grenoble).

Kay added quite a few features to the basic parsing
procedure to create his "powerful parser". These included
rule ordering and conditions on rule application. Other
unrestricted rewriting rule systems have also included some
such features. ta permit the parsimonious description of
domplex natural language grammars. In this newsletter,
however, we shall not be concerned with these additional
features; only the basic parsing procedure will be described
below.

The parser to be presented represents only a small modi-
fication to the context-free parser B (the "immediate
constituent analyzer") given earlier. To understand this
modification, consider the following example. We are given

a context-free grammar which includes the productions

a > def
and

X * Yy a
and the sentence

y de £

We shall create a diagram for the sentence by making each word
into an arc connecting two nodes, which are labeled with the
number of the word in the sentence and the number +1:

1 2 3 4 5

Context-£free parser B would fifst apply the product a + def

in reverse, to obtain a span "a"; we can indicate this thus:

Note that the arc for the span connects nodes corresponding to
the first word and the last word + 1 subsumed by the span.
The parser would then apply x =+ y a in reverse:

X
a

{v(d.e‘fﬂ

1 2 3 4 5

getting a span which subsumes the entire sentence.

Now consider analyzing the same sentence with the
unrestricted phrase structure grammar

ab>de £

Z + vy a

X+ 2D
We begin by using the first production tc¢ reduce the sentence
to y @ b. This raises the problem of how to label the node
between arcs a and b. Although a and b together subsuwe the
last three words of the sentence, no fraction of this can be
assigned individually to a or to b; hence we cannot label
this new node with the number of a sentence word. Instead,

we assign a new, unique label (here, v1l) to the node:

We can then reverse the second production to get a span z
from 1 to vl:

1 2 3 4 5
Finally we reverse the third production to get a span x
subsuming the entire sentence:

In the program below, new node names are created by
calls on the SETL function newat, which returns a different
unique symbol (a "blank atom" in SETL terminology) each time
it is called. We have retained the span component names
FW and LW+l for the labels of the nodes at the ends of the arc,
though their values may now be blank atoms instead of numbers.

A production of the form

a1 . oo an -+ bl e bn

is represented by the structure
<<al'-o-pan>’ blyooo'bn>

GRAMMAR is a set of such structures. For example, the
unrestricted rewriting rule grammar given above would be
encoded .,as
{ << a, b>, 4, e, £>,
< < z>, y, a>,
< < x>, z,b >}

The fact that spans numbered Syr--- S, were formed by

applying an inverse production to spans numbered dl ‘o dn

is recorded by assigning the component CONSTITUENTS with wvalue
<<Syree-rS > <dl,...,dn>>

to span s -

A

define URRPZARSE (GRAMMAR, SENTENCE)
local SPAN, SPANS, WORD, TODO, CURRENT, DEF, DEFNAME,
DEFELIST, MS;
/* initialization */
SPAN = nl
SPANS = 0;
TODO = nult;

e

/¥ iterate over WORD=last word
subsumed by spans being
cons tructed */

(1 <= VWORD <= #SENTENCE)
/* add span whose name is sentence word */
ADDSPAN (SENTENCE (WORD) , WORD, WORD+1, nult);

/* TODO contains the numbers of spans which were just
created and for which we have not yet checked
whether they can be used as the last daughter span
in building some more spans */

(while TODO ne nult)
/* select a span from TODO */
CURRENT = hd TODO; TODO = tl1 TODO;

/* loop over all productions whose last element
= name of current span */

(VDEF € GRAMMAR|DEF (#DEF) eq SPAN(CURRENT, "NAME'))

/* separate left and right sides of production */

DEFNAME = hd DEF;
DEFELIST = tl1 DEF;

/* 1if elements preceding last element of production
can be matched by spans, add new spans whose
names = left-hand side of production for each matciu*/

(VREM € MATCH(DEFELIST(l: (#DEFELIST)-1),

SFAN (CURRENT, 'FW')))

ADDSPANS (DEFNAME, hd REM, SPAN(CURRENT, 'LW+1'),

(t1 REM) - <CURRENT>):;

end YREM; end VDEF;
end while TODO;
end 1 <= VYWORD;
return SPAN;
end URRPARSE;

N
@

define MATCH(ELIST, ENDWDP1) ;

local I, NTUP;

/* MATCHfinds all n-tuples of spans whose names
match the elements of the n-tuple ELIST and
which span a portion of the sentence whose
last word + 1 = ENDWDPl; returns a set, each
element of which is an (n+l) -tuple, whose tail
is one of the n-tuples of spans and whose head
is the number of the first word spanned by the
n-tuple of spans */

if ELIST eq nult
then return {<ENDWDP1>};
else return [U: 1 <= I <= NODES]

(LE(SPAN(I,'NAME') eq ELIST(#ELIST))

and (SPAN(I, 'LW+1l') eq ENDWDP1)
then {NTUP ~ <I>, NIUP €
MATCH(ELIST(1: (#ELIST)~-1) ,SPAN(I, 'FW'))}

else nl) ;;

end MATCH;

define ADDSPANS (LHS, FW, LWP1l, CONSTITUENTS) ;

/* builds a sequence of spans whose names are given by tuple

LHS, with the first span beginning at FW and the last one
ending at LWP1l */

local W, I, TUP;

W =
TUP

FW;

="nult;

(1 <= VI <= #LHS)

SPANS = SPANS + 1;

TUP = TUP + <SPANS>;

SPAN(SPANS, 'NAME') = LHS(I);
SPAN(SPANS, 'FW') = W;

W = 1if I eq #LHS then LWPl else newat;
SPAN (SPANS, 'LW+1l') = W;

end 1 <= Y¥I;

SPAN (SPANS, "CONSTITUENTS ') = <TUP, CONSTITUENTS>;

TODO

= TUP - TODO;

o3

return;
end ADDSPANS;

The unrestricted rewriting rule parser has the power of a
Turing machine. The user is afforded great flexibility in
the manipulation of sentence strings. One drawback of such
power, hewever, is the absence of a decision procedure --
no parser can determine, for an arbitrary grammar of this
type, that a given sentence string is ungrgmmatical.

The user must therefore be careful to design grammars so

that the parser will terminate (in a rcasonable amount of
time) for any input sentence.

* ¥ % % %

60

3.3. Parsing Procedures for Transformational Grammars

Most linguistic research over the past fifteen years
has been conducted within the framework of transformational
grammar developed by Chomsky and Harris. In the early 1960's,
a few years after the blossoming of transformational grammar,
several efforts were begun to develop parsers which could
operate fairly directly from a transformational grammar.
Two of these achieved some measure of success: a project
at MITRE led by Donald Walker [2wicky 1965, Walker 196¢] and
work at MIT by Stanley Petrick [1965].

These twa efforts had quite different objectives.
The MITRE group was concerned with a specific¢ practical
application: development of a natural language interface
for a military information retrieval system. They developed
a grammar for a subset of English meeting their requirements
and were primarily concerned with designing a parser which
could handle this particular grammar. Petrick; ian contrast,
developed a general parsing procedure which would work with
any member of a class of transformational grammars. This
difference in objective affeé¢ted a number of design decisions
regarding the parsing procedure, as we shall see later on.
Petrick and his coworkers, at the Air Force Cambridgje Research
Laboratory and now at IBM, Yorktown Heights, have modified the
parser to reflect changes in transformational grammar and to
adapt it for use as the front-end in an information retrieval
system. [Petrick 1966,1973,1975; Keyser 1967; Plath 1974a,1974b].
Interestingly enough, these modifications have brought
Petrick's parser much closer to the original MITRE design.

Since the structure of transformational grammar has
varied in time and between different schools of linguistic
theory, the notion ©of a transformational parser is not well
defined. In order to present a parsing algorithm, we have
selected a particularly simple grammar formulation. This
formulation coryxresponds approximately to the early work of
Chomsky (e.g., Syntactiec Structures) and the theory used in
the early versions of the MITRE and Petrick systems.
Complicating factors, such as features and content-sensitive
rules for lexical insertion, have bcen omitted.

The grammar consists of a base component and a transforma-
ttonal component. The base component is a context-free grammar
which produces a set of deep structure trees. The transforma-
tional component is a set of tree-rewriting rules which, when
applied to a deep structure tree, produces one or nore surface
structure trees. The frontiers (terminal node sequences)
of the surface structure trees are the sentences of the
language.

The root symbol of the base component is named S. The
base component also contains a distinguished symbol COMP which
appears on the left side of only one production:

COMP -+ ¢ S #
is referred to as the sentence boundary marker. With the
exclusion of this production, the crammar is not recursive.

Each transformation consists primarily of a strwctural

index and a structural change. The structural index is a
tuple (vector), <sil,...,sin>, each of whose components
is either a symbol (name of a node) or "X". The structural

change is a tuple <scl,...,scn> of the same length as the
structural index. Each of its components is ir turn a tuple
scy =<scil,...,scini>, possibly empty (ni = 0). Each of the SC; 5
is either a termina] symbol or an integer between 1 and n.

61

The application of transformational rules is based ¢h
the notion of a proper analystis, which is in turn based on the
concept of a cut of a tree. Roughly speaking, a cut is
defined by drawing a line from left to right through a tree,
passing only through nodes (hot through the lines connecting
nodes); the nodes thus passed through form the cut. For
example, for the tree

S
~———wm;75//&:::::>
\
PRO - TIVERB- - -~
I like

the sequence of nodes NP, VERB, M form a cut. More formally
(Aho and Ullman, The Theory of Parsing, Translation, and
Compiling, Vol. I, pg.1l40), a cut is a subset C of the nodes D
of the tree such that
1. no node in C is on a successor path from some
other node in C
2. no other node of D can be added to C without
violating rule 1
If the nanes of the nodes in the cut, arranged in sequence
from left to right, match the structural index of the
transformation, the cut is a proper analysis of the tree with
respect to this transformation. A structurai index matches
the sequence of node names if there exists a substitution of
sequences of symbols (possibly null and not including #) for
the occurrences of "X" in the structural index which will
make the structural index identical to the sequence of names.
For example, the cut
NP VERB N
would be matched by any of the structural indices

NP VERB N
X NP VERB N X
NP X
X
The proper analysis associates with each element of the

structural index (except possibly "X"s) a node in the tree
and hence a subtree, the trce dominated by that node. The
structural change indicates how these subtrees are to be
shuffled to effect the transformation. sCy specifies what
is to go into the position occupied by the node matching scy
If sc, is a l-tuple, we simply have a case of one node (and
the subtree it dominates) replacing another; if sCy is an
n tuple, n > 1, we first substitute scil for the original node
and then insert sciz,...,scirli as right siblings of that node:

I r

":.__—"""‘_'.__"'___>
% A'SIi Y % Zil Ziz Zini
If Scij is an integer, between 1 and n, the new node is the node

matched to the scij—th element of the structural index; 1if SCij
is a terminal symbol, the new node is a terminal node with that

* o @

Y

name.

Because the value of sci may be the null tuple < >,
it is possible for a node in the tree to be left with no
successors. We therefore "clean up" the tree after applying
the transformation by deleting any nonterminal node not
dominating at least one terminal node.

The prescription just given is inadequate for components
of the structural index equal to "X", since these may match
zero or more than one node. Ve shall constrain the transforma-
tions so that nodes in the cut which are matched by "X"'s do

not take part in the transformation. In terms of the structural

63

change, if sik = "X" then sck = <k> and no other sclj = k.
As an example (a simplfication of the example in
Keyser and Petrick, Syntactic Analysie, p. 9), consider the

passive transformation. Its structural index is
<NP, AUX, V, X, NP, X, BY, PASS>
and its structural change
<<5>, <2>, <BE EN 3>, <4>, < >, <6>, <7>, <1>>

Applied to the tree

PN

C < NP— — _ PREDP
\\\ .
DET N - -AUX
\
ART vl ox - _1\ MANNER
DET
\ \
\
ART .
\
the crocodile PRES frighten the girl “BY— -PASS—- — -

it produces the proper analysis indicated by the dotted line
Applying the transformation yields the tree

s
//////’ \\\\\\\\
NP PREDP
/// \\\ ////// \\\\\\‘\\
DET W AUX VP
\
ART v MANNER
AN
BN

DET N
e

. } |
the girl PRES BE EN frighten BY the crocodile

64

65

In addition to the structural index and structural
change, some transformations may have an identity condition,
requiring that the subtrees matched by two elements of the
structural index be identical for the transformation to
apply.

The rule COMP + # S #, which makes the base conponent

recursive, also plays a special role in the transformations.
If the structure

COMP
/I\\
S

appears in the parse tree, we call the tree dominated by that
S a constituent {(or embedded) sentence, and the tree dominated
by the next S above COMP the matrix sentence parse tree.

The transformations are of two types, singulary and binary
(or embedding). In a singulary transformation, the structural
index does not contain the symbol #. In a binary transformation,
the structural index is of the form o # B8 # Yy , where
a, B, and y are strings of symbols not containing #.

The binary transformation deletes these boundary markers

(if # are the ith and jth components of the structural index,
then none of the SCp, = i or j), thus combining a constituent
sentence with its matrix sentence.

The transformations are also cl ssed as optional or
obligatery. Just like the generation of sentences with a
context-free grammar, the application of transformations to a
base structure may be viewed as a nondeterministic process.
Depending on the choices made, one of several possible surface

structures may be obtained from a single deep structu.e.

66

The transformations are considered in a fixed order to be
described momentarily. If there exists no proper analysis for
a transformation, the transfqQrmation is skipped. If there exist
several proper analyses, one is chosen. If the transformation
is obligatory, it is then applied; if i1t is optional, a choice
is made to apply it or not,

The singulary and binary transformations are separately
ordered. The tr nsformational process begins by selecting
an embedded sentence tree not including any other embedded
sentence. The singulary transformations are applied in sequence
to this tree; structural indices are matched against the
embedded tree, not the entire parse tree. The binary trans-
formations are then applied to this tree and its matrix
sentence tree; one of these should actually transform the
tree, deleting the embedded sentences (if none applied, we
would eventually be left with a surface structure containing
#'s, which would be rejected). Another deepest embedded
sentence is selected and the process repeats until no embedded
sentences remain. The singulary transformations are then
applied to the entire tree, completing the generating process
(if the base structure contained rno embedded sentences, this
would be the only step).

In order to parse a sentence -- obtain its deep structures =--
we would like to reverse the process just described. First
build cne or more potential surface structure parse trees for
a sentence and then, by applying the transformations in reverse,
try to obtain a valid deep structure from each of these.

We shall deal with these two steps in turn.

The surface structure parse tree will, in general, contain
many structures which could not be directly generated by the
base component. If we want to produce all the surface structure
trees for a sentence using a context-free grammar, it will be
necessary to augment the base component. For example, if the
base component contains the production

67
A+ XY
and there is a transformation which interchanges X and Y,

the rule
A+ Y X

must be included in the grammar which is used to produce the
surface structure trees. Petrick has described (in his Ph.D.
thesis) a procedure which can determine from the base and
transformational components, how the base must be augmented
in order to obtain all surface structure trees.

Because a transformation can replace one node with two,
it is possible for repecated application of such a transforma-
tion to produce a node in the surface.structure with an arbi-
arbltrary numwber of immediate descendants. This means that.
an infinite number of rules must be added to the base
component. Petrick noted, however, that if a limit is placed
on the length of sentences to be analyzed (and certain minimal
assumptions are made about the grammar), only a finite nunmber
of rules are required. (Alternatively, it seems, a recursive
transition network could be used tu obtain the surface
structure, since such a device allows a node to have an
arbitrary number of immediate descendants.)

This augmented grammar will produce all the valid surface
structure parse trees but it will also produce, in general,
many spurious treces (trees not derivable from deep structures)
This is unavoidable, since a context-frece grammar is a much
weaker computational device than a transformational grammar.
Because the language defined by the augmented base component
is larger than that defined by the transformational grammar,
the augmented base compcnent is called a covering grammar.

Since each spurious surface analysis will have to undergo
a lengthy reverse transformational process before it is
recognized as invalid, it is important to minimize the number

of such parses. The seriousness of this problem is indicated

68

by some early results obtained by the MITRE group. The
MITRE system did not have a procedure for automatically
augmenting the base component; theirs was assembled manually.
Using a small grammar, one of their 1l2-word test sentences
obtained 48 surface analyses, almost all of them spurious.
Petrick had similar experience: he found that the covering
grammars produced by his procedure-were too bread, producing
too many surface parses. He has instead, like the MITRE
group, produced his surface grammars manually, by analyzing
constructions which appear in the surface structure of input
sentences to determine which productions are required. In
this way, he has been able to produce a practically useful
covering grammar for a limited area of discourse.

These practical difficulties do nopt negate the value of
an automatic procedure, such as that described by Petrick,
which will produce a covering grammar we can be surc is
complete {(will produce all valid surface analyses). They do
indicate, however, the value of developing procedures which
produce "tighter" surface grammars, perhaps by observing that
certain sequences of transformations are impossible and hence
suppressing the corresponding surface grammar productions.
They also suggest that a more powerful device than a context-
free grammar -- such as an "augmented* context-free grammar"
should perhaps be used to generate the surface analyses. This
view is held by a number of workers, such as Sager and Woods,
who are also aiming at & transformational decomposition.

Armed with a covering grammar, we turn now to the
construction of a reverse transformational component. This
component should produce, from a surface structure, all base
structures which can generate the surface structure (and for

a spurious surface structure, indicate that there are no base
structures).

* "augmented" meaning here that the grammar may contain
predicates which are arbitrary computable functions.

The first problem is that it is not always possible to
construct such a component. If a (forward) transformation
simply deletes a portion of the parse tree, it will in general
be impossible to reconstruct that portion when working
backwards from the surface structure; there may be an infinite
number of deep structures which produce one surface structure.
Such a situation is called {rrecoverable -deletion. (Chis is
in contrast to recoverable deletipns, which make use of a
component of forward transformations briefly mentionsd ecarlier:
identity conditions. An identily condition specifies two or
more components of the structural index; the transformation
may be applied only if the trecs dominated by the nodes
matched by these elements ake identical. If some =-=- but not all
-- of these treces are deleted by a transformation, the
deletion is recoverable: the reverse transformational
component may restore the deletion by. copying another part
of the tree.) So, to be able to construct a reverse compo-
nent at all, the grammar may contain no irrecoverable
deletions.

Life would be relatively easy if, for each transformation,
one could produce an inverse transformation which undoes the
change wrought in the tree. Unfortunately, for the form of
transformation we have chosen, this is not possible. Consider,

for example, a transformation with structural index

<A, C, D>
and structural change
<<1>, < >, <3>>
Suppuse that the only structure to which it ever applies

in the generation of a sentence is
M
/2\
B
N
A C D

M
" N\p

producing

70

Bewersing this transformation seems straightforward enough.
The rewerse transformation need not be a true inverse; it
does not have to be able to reconstruct any input given to
the forward transformation. It need only be able to regon-
strmct inputs which occur in the derivation of sentences.
Thus, in this case, it must insert a B dominating a C
below M.

This operation cannot be performed in the transformational
formalism desc¢ribed above (unless a B dominating a C is
already present in the tree). In terms of elementary changes
to a parse tree, thHis formalism permits only deletion (of
a node), replacement (of éne node by another), and sister
adjunction (insertion of one node "next" to another, with both
dominated-by the same node); it does not allow insertion of
one node‘'below another. This formalism was used in Petrick's
original system. Most more recent systems, including the
MITRE system and Petrick's later systems, have allowed a
larger set of elementary operations, capable of making an
arbitrary change to a tree.

Even if the set of operations is sufficient to form a
set of reVerse transformations, their formation is not trivial.
In cases such as the one just considered, the reverse trans-
formation cannot be generated from an examination of the
forward transformatian alone One must examine the entjire
grasmar to see how the transformation is used in sentence
generation. This is a complex process which has (to the
author’s knowledge) never. been programmed. In the MITRE
group, the reverse transformations were all produced
manually.

Petrick, seeking originally a procedure which would work
astomatically from the transformational grammar took a
different tack. He developed a reverse transformational
component which mapped the surface string (the sentence)
into a set of potential deep structure strings; the latter
were then parsed by the base component. The individual

transformations of the reverse component are string and not
tree rewriting rules.

The advantage of this approach lies in the simplicity of
forming the individual reverse transformations. The reverse
transformations will be in one-to-one correspondence with
the forward ones, and each reverse transformation T' can be
computed on the basis of the corresponding forward transfor-
mation T alone. These reverse transformations will satisfy
the following property: for any tree t with frontier s, if
T maps t into t' with frontier s', then T' maps s' into s.

Suppose we are given a forward transformation with
structural index si and structural change sc. Since we
are interested only in the frontier and not in the internal
structure of the tree, we shall use a reduced structural
change

rsc = [+: 1 <= 1 <= #sc] sc(i)

obtained by concatenating the elements. of the structural
change. The fact that a proper analysis exists for a tree
with frontier s implies that s can be divided into substrings
Syre-esSy such that, for all j from 1 to n, a tree can be
built with root sij and frontier s. " (unless sij = 'X',

in which case there is ne restricdtion on sj):

The transformation rearranges the string into a set of
]

substrings S5 given by (for j from 1 to r, r = #rsc)
s'(j) = if rsc(j) is an integer then s(rsc(j)) else rsc(j)
si(rsc(l)) si(rsc(r))}
s{rsc(1)) ‘s (rsc(r))

* using the, covering grammar.

2

How can this shuffle be reversed? We begin by creating an

inverse structural itndex isij (1 <= j <= r) according to.

isi(j) = if rsc(j) is an integer then si(rsc(j))

else rsc(j)

and an inverse structural change iscj (L <= j <= n)
according to

isc(j) = if 3k | rsc(k) eq j then k
else si(j)

Then, given a string s', we divide it into r substrings,
requiring that the. j-th substring be the frontier of some
tree with root isij (again, unless isij = 'X'). One of
these divisions will be the Sj produced by the forward
transformation (there may be others). These substrings

are then rearranged according to th& isc, producing the
original string S5

s(j) = if isc(j) is an integer then s' (isc(j))
else isc(j)
If there are several matches to the isi, the transformation
must be applied to all; we can only be sure that one of the
resulting strings will be s. If the forward transformation
is a recoverable deletion involving identity conditions, Ehe
formulas given above are somewhat more complicated.

Given a set of reverse transformations, we must finally
specify the sequencing among them. The reverse transforma-
tions should be considered in precisely the reverse order
fron that of the corresponding forward transformations. The
sequencing is again cyclic, with each iteration now creating
an embedded sentence.

Even if a reverse transformation matches the sentence
being decomposed, one cannot be sure that the corresponding
forward transformation was involved in the generation of the

sentence. Undoing the transformation may lead to a dead end

73

(no other reverse transformations apply), and another trans-
formation may also have produced the current structure.
Consequently, both possibilities -- undoing and not undoing
the transformation -- must LUe followed. In analogy with the
forward transformations, one can say that all reverse trans-
formations are optional.

This implies, unfortunately, that parsing time can
increase exponentially with the number of applicable trans-
format.ons. Such a procedure has therefore proved impracticable
for all but the smallest grammars and sentences. To avoid this
exponential growth, tha parser must have some way of deter-
mining directly from a tree the last transformation which
applied to produce the trece. An analysis must be made of
the possible intermediate structures which can arise in
sentence generation, and the resulting information translated
into conditions on the reverse transformations. Such an analysis
has not been automated, but it is normally a straightforward
and integral part of the manual constructicn of a reverse
transformational component. The MITRE group was able to
specify the appropriate conditions for all their reverse
transformations; their system provided for cptional reverse
transformations but their grammar did not utilize this
facility.

Eliminating optional reverse transformations is more
difficult in a reverse component using string rewriting rutes,
not retaining any tree structure between transformations. *
Most of the information which is needed to determine which
transformation to undo is not availilable. In any case, the
original impetus for using string rewriting rules -- providing
a procedure which can operate directly from the transformational
grammar —-- is lost when we seek to add, for reasons of efficiency,
restrictions which are not automatically generated from the

grammar-.

* Petrick's original system, using string rewriting rules,
did retain some low-level tree structures between transforma-
tions, but his later systems did not.

Petrick's current parser, part of the REQUEST system,
is much closer in overall structure to the MITRE design.

A set of potential surface structure trees are operated
upon by a reverse transformational component consisting of
tree rewriting rules. The reverse transformations are
prepared manually, not obtained automatically from corres-
ponding forward transformations. The conditions on the
reverse transformations are sufficiently tight to obviate
the need for optional reverse transformations. As a result,
they are able to operate efficiently with a moderately large
set of reverse transformations (about " 130).

Once all reverse transformations have been applied, the
resulting structures must be checked to determine which are
valid deep structures. If the reverse transformations work
on trees, each tree must be exanined for productions not
in the base component. If the reverse transformations work
on strings, each string must be parsed using the base
component.

The original Petrick and MITRE procedures envisioned
a final synthesis phase. This phase would apply to each
deep structure produced by the reverse transformational
component. It would apply the corresponding forward transfor-
mations to determine whether the original sentence can be
recovered; if it cannot, the deep structure is rejected.

Such a -check is necessary if the reverse transformations can
produce deep structures which do not lead-back to the original
sentence and perhaps do not lead to any sentence at all. This
is certainly the case with the reverse transformations applied
to strings; such transformations are unable to capture many
constraints present when applying the forward transformations
to trees. It can also be true with reverse transformations
working on trees, if the constraints on the reverse transfor-
mations are too loose. With revers? transformations on trees,
however, it should be possible to formulate constraints

sufficiently tight as to obviate the need for a synthesis phase.

7S

A synthesis check is optional in the current Petrick-Plath
system. Instead of applying the forward transformations in a
separate syn*hesis phase after a deep structure is obtained,
however, they are applied during analysis after each corres-
ponding inverse transformation is applied.

THE PROCEDURE

We present below a SETL vervion of one of Petrick's early
transformational parsers. As was noted earlier, this algo-
rithm is of importance because it is the only procedure which
can work directly from a forward transformational grammar.

The SETL program has been adapted from the LISP program devel-
oped by Petrick at the Air Force Cambridge Research Laboratories
(1966) , and is somewhat simpler than the version presented

in Petrick's thesis. 1In particular, the 1966 version preserves
no trece structure between reverse transformations.

Considerable liberty has been taken in rewriting the
program for presentation here. Features which were not deemed
essential to an understanding of the basic¢ procedure were
deleted. Specifically, the procedure for converting forward
to reverse transformations was not included; identity condi-
tions in transformations were not provided; optional clements
in structural indices were not allowed. On the other hand,
the gross flow of control of the LISP proyram has been preserved.

The main procedure of the parser, XIPARSE, takes five
argunents:

SENTENCE the string to be analyzed

XFMN the set of reverse transformations
NUMXFMNS the number of transformations
BASEGR the (context-free) base component
AUXRULES the additional rules which must be

added ‘to the base component to form

the covering grammar

The context-free grammars have the form described in Sec. 3.1l.
Each transformation has the f8llowing components:

XFMN (i,'ISI') inverse structural index

XFMN (i, 'NAME') name of transformation

XFMJ (i, 'TYPE') type of transformation: 'UNARY'
or 'BINARY'

if the transformation is unary, it also'has the component
XFMN (i,'ISC') inverse structural change

if the transformation is binary, the inverse structural change
will contain a pair of sentence boundary markers, with the
component sentence inside the markers and the matrix
sentence outside (the general formismmm#$ ccc Fmmm,
with the m's part of the matrix sentence and the c¢'s
part of the component). For the parser, it is more
convenient to represent this as two separate tuples,
one with the boundary markers and the elements between
them replaced by the symbol 'COMP' (mmm 'COMP' m m m)
the other with the elements between the markers (c ¢)

In the transformation, these are components

XFMN (i, 'ISC-MATRIX') inverse structural change for matrix
sentence
XFMN (i,'ISC-CcOMP"') inverse structural change for

component sentence

The value of XFPARSE is a set, with each element giving
one possible deep structure frontier for the sentence, and
the reverse transformations which were applied to obtain
that deep structure. To determine whether these are in fact
deep structures for the sentence, it would be necessary to go
through the generative transformational phase for each

potential deep structure and verify that the original sentence
can be obtained.

'’6

P
If the deep structure contains no embedded sentences,
the structure of an element in the returned set is

<deep-structure-frontier, transformations-applied>

where deep-structure-frontier is a tuple whose elenents are

the symbols in the frontier of the possible deep structure.
Transformations—applied is a tuple whose elements are the
transformations applied to obtain this deep structure; the

first element gives the last transformation applied in the
decomposition, and hence the first which would be applied in
generation. If the deep structure contains an embedded sentence,
the element will still be a pair as just described;
deep-structure-frontier, however, will not include as elements
two boundary markers and the intervening embedded sentence.
Instead at that point in the tuple will be an element which

s itself a pair, with the first element the frontier c¢f the
ernbedded sentence and the second the transformations applied

to decompose the embedded sentence. The transformations-applied
element of the top-level pair will include only the embedding
transformation and the transformations applied to the sentence
before it was divided into matrix and constituent.

Since each reverse transformation is optional and may
apply in several ways, there will usually be many paths to
follow during the decomposition process. In XFPARSE, each
such path is recorded as an element in the set TODO; the
element is a fronmtier/history pair, just like those produced
as output. The main loop of' the parser runs over the trans-
formations. For each element ‘n TODO, if the transformation
applies all possible transforms of the element are added to
TODO; since the transformation is optional, the original
element remains as well. When an inverse embedding transforma-
tion applies, XFPARSE is called recursively to decompose the

embedded sentence.

definef XFPARSE (SENTENCE, XFMN, NUMXFMNS, BASEGR, AUXRULES) ;
local TODO, DONE, PARSES, SGRAMMAR, XFMNNO, CONT, SENT, XFAPPLD,
MATCHSET, MATCH, COMPPARS, KOMP, MATRIX, P;
DONE ={<SENTENCE, nult>};
PARSES = ni;
/* compute covering grammar */
SGRAMMAR = BASEGR U AUXRULES;
/* iterate over transformations */
(1 <= YXFMINO <= NUMXFMNS)
TODO .= DONE;
DONE = n#f;
/* iterate over active continuations */
(YCONT € TODO)
SENT = CONT(1) ;
XFAPPLD = CONT (2) ;
MATCHSET=PROCES (SENT , XFMN (XFMNNO, 'ISI') ,1,SGRAMMAR) ;
/* iterate over matches to structural index */
(YMATCH € MATCHSET)
if XFMN (XFMNNO, 'TYPE') eg 'BINARY' then

/* for binary transformatidns, first try
to analyze embedded sentence */

COMPPARS=XFPARSE (IMPOSE (MATCH, XFMN (
XFMNNQ, 'ISC~-COMP')) ,XFMN , XFMNIIO,BASEGR,
AUXRULES) ;

/* iterate over analyses of embedded
sentence, adding matrix with analyzed
embedded sentence to continuations */

(YKOMP € COMPPARS)
MATRIX=IMPOSE (MATCH , XFMN (XFMNNO,

'"ISC-MATRIX')) ;
<MATRIX,<XFMINO> - XFAPPLD> in DONE;
end VYKOMP;

else /* unary transformation */

/* add transformed sentence to continuations*/

78

79

NEWSENT = IMPOSE (MATCH,XFMN (XFMINO, 'ISC')):
CNEWSENT, <XFMNNQ> - XFAPPLD> in DONE;

end VMATCH;

/* include untransformed sentence in continuations,

since reverse transformation ig optional */
CONT in DONE;

eand VCONT;
end 1 <= ¥ XFMNJO;
/* all transformations have been tried */
/* select and return those strings which can be
analyzed by the base component */
return {PCGDONE|PARSE (BASEGR,'S',P(1)) ne nt};
cnd XFPARSE;

Most of the work of the parser is done by the two routines
PROCES and IMPOSE, PROCES matches fthc current string against

the inverse structural index, ani IMPOSE computes the effect
of the inverse structural change.

PROCES takes four arguments:

SENTENCE the string to be matched
SI the structural index
STARTWD the number o the first word in the

string to be matched by the structural
index (this argument is required
because the procedure operates
recursively; its value 1s 1 for
calls from XFPARSE)

GRAMMAR the context-free grammar used in

matching the structural index to
the string.

80

The value of PROCES is a set, with each element giving one
match of the structural index to the string. Each element

is a forest, i.e., a tuple of trees, where each tree 1is
represented as described in Sec. 3.1A. The nth tree of the
forest hos as its root Symbol the nth element of the
structural index. Successive trees subsume contiguous
segments of the string being matched. The following routine
differs from Petrick's routine of the same name in using
recursion instead of iteration.

definef PROCES (SENTENCE,SI,STARTWD,GRAMMAR) ;
local R, RMDRSI, MATCHES, ENDWD, P, M, RMDRMATCH, PARSES;
/* split off first element of structural index */
R = hd SI;
RMDRSI = tl SI;
/* parse part of remainder of sentence with this element*/

PARSES = PARTPARSE (GRAMMAR,R,SENTENCE, STARTWD) ;
MATCHES = n¥;

(VP € PARSES)
/* set ENDWD = next word in sentence to be matched */
ENDWD = P(l, 'LW+l');
if RMDRSI eq nult then
/* 1f at end of s.i., accept parse tree for last

element of s.i. only if it extends to end of
sentence */

if ENDWD eq ((#SENTENCE) + 1) then
<P> in MATCHES;
end if ENDWD;
else /* not at end of s.i., call PROCES recursively
to process next element */
RMDRMTCH = PROCESS (SENTENCE ,RMDRSI,ENDWD, GRAMMAR) ;
/* concatenate parse tree for current element

to each forest of matches to succeeding elements*/
(YM € RMDRMTCH)

<P> - M in MATCHES;

end ¥M = RMDRMTCH;
end if RMDRSI;

end YP € PARSES;
return MATCHES;
end PROCESS,

The transformational parser uses two varieties of
context-free parser. The first, called simply PARSE,
has the external specifications given in Sec. 3]A. The other,
PARTPARSE, differs in three respects:

1. the routine takes a fourth argument, STARTWD,
specifying the first word in the sentence to be
matched by the parser (prcceding words are ignored) ;
the returned value includes parse trees which do not
extend to the end of the sentence.

2. if the specified Yoot symbol is 'X', the routine
crecates a sct of parse trees, cach containing a
single node, named X, spanning all possible
substrings with first wdrd = STARTWD

3. the symbol COMP will match an element of the string
which is a tuple (since, as noted earlier, an embedded
sentence is represented as a tuple).

The first two changes are effected by modifying the main

routine of the first parser presented in Sec. 3.1.

de finef PARTPARSE (GRAMMAR, ROOT, SENTENCE, STARIWD);
local PARSES, TREE, WODES, WORD, LW;
if ROOT eq 'X' then

return {{<1, 'NAME', 'X'>, <1,'FW',STARTWD>, <1,'LW+1',LW+1>},

(STARTWD+1) <= LW <= #SENTENCE};
end 1if ROOT;
if STARTWD gt #SEJYTENCE then return nf; end if STARTWD;
TREE = n&;
PARSES = n&;
WORD = STARTWD;
NODES = 1;

81

82

TREE (1, 'NAME') = ROOT;

TRIE(1,'FW') = WORD;

(while EXPAND(1l,GRAMMAR,SENTENCE))
PARSES = PARSES U {TREE};
end while EXPAND;

return PARSES;

end PARTPARSE;

The third change is accomplished by modifying one line in the
EXPAND routine of the first parser in Sec. 3.1. The line
which tests for a match against the current sentence word is
changed from

if SENTENCE (WORD) eq TREE (X, 'NAME'?)
to

if (SENTEJCE(WORD) eq TREE (X,'NAME'))

or
((type SENTENCE (WORD) eqg tupl) and
(TREE (X, '"NAME') eq 'COMP'))

IMPOSE, which computes the effect of the structural

change, is a routine with two arguments.

FQREST is a tuple of trees representing the
match to the structural index (one
element of the value returned by
PROCES)

SC is the structural change component
of a transformation

In addition, KOMP, which (for binary transformations) holds
the embedded sentence and its transformational history, is
passed from XFPARSE to IMPOSE as a global variable. IMPOSE
returns a tuple, the frontiers of the trees in the forest

as rearranged in accordance with the structural change.

53

definef IMPOSE (FOREST,SC)

local I;

return [+: I € SC]
if (type I) eq int then FRONTIER(FOREST(I))
else 1f I eq 'COMP' then <KOMP>
alse <I>;

end IMPOSE;

The function FRONTIER takes as its argument a tree and returns
the frontier of the tree. Since the root node of the tree
specifies the words spanned in the sentence (variable SFENT,
daclared in XFPARSE) this is trivial:

definef FRONTIER(TREE) ;
local. FW, LWPl;

W = TREE(1,'FW');

EWP1l = TREE(L1,'LW+1');
return SENT (FW: LWP1l-FW);
end FRONTIER;

Appendix. A Very Short Introduction to SETL
(Prepared in collaboration with Norman Rubin, CIMS.)

SETL is a programming language designed aromrd set-theoretic
constructions and developed at NYU by a group led by Jack*Schwartz.
The rich set of operators and control structures provided in
SETL are intended to make the specification of algorithms
considerably easier in SETL than in other higher-level languages.
To facilitate the reading of our artificial intelligence surveys,
we have used only a subset of SETL; this subset is described in
the pages which follow. Those few points where we have deviated
from a true SETL subset are marked on the left with asterisks and
noted at the end of this section.

Further information on SETL is available in

J. T. Schwartz, On Programming: An Interim Report on the
SETL Project, Parts I and II. Courant Computer Science Notes,
Courant Institute of Mathematical Sciences, New York Univ.

K. Kennedy and-J. Schwartz, "An Introduction to the Set
Theoretical Language SETL." Comp. and Math. with Appl. 1 97.

General Features

Much of the expression semantics of SETL is modeled on that
used .in the mathematical theory of sets, and many of the syntactic
conventions used reflect notions which are standard in that
theory. However, for programminyppurposes a set theory including
atoms which tHemselves have no meambers but may freely be
members of sets is more conveniejt jhan pure set theory. Thus
SETL contains both a general datd oubject (the set) and other
operationally more efficient structures known as atoms; among
these is a vector-like object known as a tuple.

85

Atoms

(1) integers (1276)

(2) character strings ('hello, pally')

(3) bit strings (10101b)

(4) boolean constants (true = 1lb, false = 0Ob)

(5) blank atoms (created by the function NEWAT, the SETL
equivalent of the LISP GENSYM)

(6) , the undefined atom

(7) labels (lahels precede statements, separated by a colon)

(8) subroutines and functioens

(9) tuples (one-dimensional arrays of variable length; i.e.,
ordared lists; written as <1,2,'three'>; the null tuple
is designated nult)

Sets

are unordered collections of elements, written as {1,2,'three'}
the null set is designated n#f

Operators

Integers
arithmetic (+,-,%,/), comparison (eqg,ne,lt,qgt,le,ge)
max,min, abs
Booleans
and, or, not (abbreviated n), eqg, ne
Character and bit strings
concatenatdion (»), length (#), substring (S(I:K), is the
string of length K starting with the Ith element, like
the PL/I substring function)
Tuples
A tuple is a sequence of components Cl’FZ’C3""’ all but
a finite number of which are equal to @, the undefined atom.
1) T(K) is the Kth component of T
2) T(I:K) is the tuple of length K starting with the Ith element
3) 4T is the index of the last defined component of T
4) hd T = T(1)

86

(5) t8 T = T(2:(#7-1))
(6) T + U is the concatenation of tuples T and U
Tuples are often used as push-down stacks, using

T(#T+1) = X to push X on the stack and T(#T) = @ to
pop the stack.

Sets
(1) X € 5 (true if X is an element of X, otherwise false)
(2) arb S (an arbitrary eletent of set S)
(3) AU B (union of sets A and B)
(4) A N B (intersection of sets A and B)
(5) A'/ B (symmetric difference of sefs A and B).
(6) A - P (difference, set)
(7) #S (number. of elements in set S)
(8) A with B = A U {B}
(9) A less B = A- {B}
(10)- sets may be compared wusing eq, ne, incs (includes)
Precedence

There are three levels of precedenca:

(L) (highest built-in binary operators procducing Boolean

from non-Boolean values (eq, ne, 1lt, gt, le, ge, incs, €)
(2) unary operators..

(3) other binary operators

Within each level, evaluation is left~to-right.

Set Definition

A set may be defined by enumeration {A,B,C} or by a set-former:
{EXPR(Xl,...,Xn),range-restrictionlC(Xl,...an)}

which forms the set of wvalues EXPR(Xl,...,Xn) for those

Xl""'xn v1thin the range-restriction for which C(Xl,...,Xn)

is true. The range-restriction is a series of items, one
each of the Xi, of the form

for

< .
X S(Xlrt "Xit—nl)
< X,
M <X <N
M < X, <N
l —
< , <
M < X, <N
. <
M < X1 N
N > X, > M
— l P,
. 2
N > X, > M
N >X, >M
R
> X,
N Xl > M

For example,
(<X, X*X>, 1L < X <4 | X1t 4}
is

{<l;l>l <2l4>l <319>}

Two abbreviated forms are allowed:

{xes | cxX)} for {X,,Xx€s | C(X)}
and

{EXPR(X), X€8} for {BXPR(X),.XES{trne}

Conditional Operators

if BOOL then EXPRl erse EXPR

2
has the value EXPRl if BOOL is true, the value EXPR2 1f£.BOOL is
false. The else is considered a unary operator, so that:

if X gt 0 then Y else X + Y
is analyzed as
(if X gt 0 then Y else X) + Y

Functional Application and Sets

If F is a set and A any set or atom then
(1) F{a} = {if $P gt 2 then tf P else P(2), P € F |
("P is atuple") and (#P gt 2) and (P(l) eq A)}

o %

88

e.g., if F is a set of pairs, F{A} is the set of all X
such that <A,X» € F.

(2) F(A) = if #F{A} eq 1 then arb F{A} else Q.
i.e., the unique image of A under F.
(3) F[A] = the union of the elements of F{Al.

Sets are often used to define complex mappings. For instance

F = {<1,1>, <2,4>, <3,9>},
or alternatively

F(l) = 1; F(2) = 4; F(3) = 9;

defines a set mapping the first three integers into their
squares. In either case, F(2) is 4 and F(4) is Q.

Quantified Boolean Expressions

The basic forms for quantified boolean expressions are
ix € s | C(x) ¥x € s | C(x)

The first is true if C(x) is true for some x in s, and further-
more sets x to the first value found for which C(x) is true;
the second is true if C(x) is true for all x in s. Several
range restrictions may be combined:

Ix) €87, X, € 5, (%)), ¥Vxg ESB(Xl'Xz)'““IC(X)

The alternate, numerical, forms of range restrictions, such as

min <3x < max and min < Vx < max, .may also be used.

Compound Operators

Compound operators have the form

Lop: range—restrictionslc(xl,...,Xn)] EXPR(X{s+ . rX)

where op is a binary operator and the range-restrictions have
the form described earlier. The value of this expression is
the value of variable VALUE after executing:

PILE = {EXPR(X;,...,X), range-restrictions|C(X
VALUE from PILE;
(while PILE ne ni)
X from PILE;
'VALUE = VALUE op X;
end while PILE;
For example,

l,...,Xn)};

[max: X € {1,2,3})](X+1) 1is

[+ : 1 <N < K] A(N) is

i Vol
2

Statements

All statements are terminated by a semicolon.

Assignment

A = EXPR;
<A,B,C> = EXPR; is the same as A=EXPR(1l) ;B=EXPR(2) ;C=EXPR(3);

Assignment may alsc be done with the operater "is":
"EXPR is V" 1is an expression with value EXPR

and the side effect of assigning this value to V

X in §; is S = S8 with X;
X from S; is X=arb S; S = S5 less X;
X out S; is S = S less X;
Transfer
go to LABEL;
Conditional
if BOOLl then BLOCK, else if BOG.L2 then ... else BLOCKn;
Iteration
(while BOOL) BLOCK;
(¥X, € 5, X, € sz(xl),...IC(xl,...,xn)) BLOCK ;
(M < ¥X < N) BLOCK;
(N > ¥X > M) BLOCK;

etc.

90

Scope of Conditionals and Iterators
The BLOCK indicated above as the scope of a SETL condi-
tional statement or iterator is any sequence of SETL statements.
Note that the semicolon terminating the block is in addition to
the semicolon terminating the final statement of that block.
This semicolon may be replaced by an end statement such as
end V; end V¥X; end while; end while BOOL; to indicate

to the reader which scope is being closed.

Ex.:
(1 < ¥X < 100 | P(X)) Y(#Y+l) = X; end VYX;
if ¥ gt 0 then S = S with X; else N = N+1; end if Y;
Output
print EXPR,,EXPR,,...,EXPR ;

Subroutines and Functions

Subroutines
defined by define SUB(X,Y,Z); BLOCK end SUB;
invoked by SUB(A,B,C):
exit from subroutine by return;

Functions
defined by definef FCN(X,Y,Z); BLOCK end FCN:
invoked by FCN(A,B,C)
exit from function by return EXPR;

Infix operator definition
defined by X infixop Y; BLOCK end A infixop B;

Name Scoping
local X,Y,%; defines X,Y, and 2 as local to the
current subroutine or function (these variables are
allocated on entry to the routine). Name scoping is
dynamic, as in LISP; a variable declared local by
procedure p is available to all procedures invoked by p
which do not themselves declare the variable local. Thus

o1

define P;
local X;
Q1) ;
print X;
return;
end B;

define Q(Y);
X =Y;
return;
end Q;

will print a 1.

Differences from Standard SETL

Standard SETL uscs a somewhat smaller character set than we
have adopted in this survey. Thus + (addition), -+ (concatena-
tion) and VU (union) are all written as + in standard SETL;

* (multiplication) and N (intersection) are written as *.

We have adopted the simple and familiar name-scoping rules

of the current SETL implementation in place of the relatively
complex ones of the SETL standard.

We have written all variables, function names, and subroutin

names in upper case, operator names and other tokens in lower case.

BIBLIOGRAPHY

[Aho 1972] A. V. Aho and J. D. Ullman. The Theory of
Parsing, Translation, and Compiling, Vol. I.
Prentice-Hall, Englewood Cliffs, N. J.

[Bobrow 1969] D. Bobrow and B. Fraser, "An Augmented State
Transition Network Analysis Procedure," Proc.
Intermational Joint Conference on Artificial
Intelligence.

[Borgida 1975] Alexander Borgida, Topics in the Understanding
of English Sentences by Computer. Tech. Rep. 78,
Dept. of Computer Science, Univ. of Toreonto.

[Bross 1968] Irwin Bross; "A Syntactic Formula for English
Sentences: Application to Scientific Narrative,"
Compu:ers and Biomedical Research 1, 565.

[Cautin 1969] Harvey Cautin, Real English: A Translator to
Enable Natural Language Man-Machine Conversation.
Thesis, Moore School of Electrical Engineering,
Univ. of Pennsylvania.

[Cocke 1970] J. Cocke and J. T. Schwartz, Programming Languages
and their Compilers. Lecture Note series, Courant
Institute of Mathematical Sciences, New York Univ.

[Colmerauexr 1970] Alain Colmerauer, "Les \Systems-Q ou un
formalisme pour analyser et synthetiser des phrases
sur ordinateur. Publ. interne no. 43, Faculté
des sciences, Université de Montréal.

[Craig 1966] J. A. Craig, S. C. Berenzner, H. C. Carney, and
C. R. Longyear, "DEACON: Direct English Access
and Control."™ Proc. 1966 Fall Joint Computer Conf.,
Thompson Books, Washingtpn{ D. C.

[Culicover 1969] P. Culicover, J. Kimball, C. Lewis, D. Loveman,
J. Moyne, An Automated Recognition Grammar for
English, IBM Technical Repor- FSC 69-5007.

[de Chastellier 1969] G. de Chastellier and A. Colmerauer,

"W-Grammar," Proc. 24 National Conf. Assn. for
Comp. Mach..

93

[Dewar 1969] H. Dewar, P. Bratley, and J. P. Thorne, "A Program
for the Syntactic Analysis of English Sentences, "
Comm. Assn. Comp. Mach. 12, 476.

[Dostert 1971] B. Dostert and F. Thompson, "How Features Resolve
Syntactic Ambiguity," Proc. Symposium on Information
Storage and Retrieval.

[Earley 1970] J. Earley, "An Efficient Context-Free Parsing
Algorithm. Comm. Assn. Comp. Mach. 13, 94.

[Grishman 1973a] Ralph Grishman, "Implementation of the String
Parser of English," in Natural Language Processing,
ed. R. Rustin, Algorithmics Press, New York.

[Grishman 1973b] R. Grishman, N. Sager, C. Raze, and B. Bookchin,
"The Linguistic String Parser." Proc. 1973 Natl:
Computer Conf., AFIPS Press, Montvale, N. J.

[Harris 1965] Zellig Harris, String Analysis of Sentence Structure.
Mouton, The Hague.

[Hays 1967] David Hays, Introduction to Computational Linguistics.
American Elsevier, New York.

[Hiz 1967) D. Hiz and A. Joshi, "Transformational Decomposition:
A Simple Description of an Algorithm for Transforma-
tional Analysis of English Sentences." 2éme Conf.
Internationale sur le Traitement Automatigue des
Langues, Grenoble.

[Hobbs 19%4] Jerry Hobbs, A Metalanguage for Expressing
Grammatical Restrictions 4in Nodal Spans Parsing of
Matural Language. Courant Computer Science Report 2,
Courant Inst. Math. Sci., New York Univ.

[Hobbs 1975] J. Hobbs and R. Grishman, "The Automatic. Transfor-
mational Analysis of English Sentences: An Implge-
mentation.” Submitted to Int'l J. Computer Math.

[Irons 1963] N. Irons, "Error-Correcting Parse Algorithm." Comm.
Assn. Comp. Mach. 6, 669.

[Joshi 1962] Aravind Joshi, A procedure for transformational
decomposition. Transformations and Disccurse
Analysis Papers #42, Univ. of Pennsylvania.

[Joshi 1973} Aravind Joshi, "A Tlass of Transformational Grammars."”
In The Formal Analysis of Natural Languages. ed.

M. Gross, M. Halle, and M.-P. Schitzenberger,
Mouton, The Hague.

94

[Kay 1967] Martin Kay, "Experiments with a Powerful Parser."
In 2&éme Conf. Internationale sur le Traitement
Automatique des Langues, Grenoble.

[Keyser 1967] S. J. Keyser and S. R. Petrick, Syntactic Analysis.

Air Force Cambirdge Research Laboratories,
AFCRL-67-0305.

[Kittredge 1973] Richard Kittredge et al., TAUM 73. A report

of the Projet de Traduction Automatique de l'Univer-
sité de Montréal.

[Kuno 1962] S. Kuno and A. G. Oettinger, "Multiple-Path Syntactic
Analyzer." Information Processing 1962, North-Holland,

Amsterdam.
[Kuno 1963] Susumo Kuno, "The Multiple-~path Syntactic Analyzer for
English." Report No. NSF-9 in Mathematical Linguistics

and Automatic Translation of the Computation Lab.,
Harvard Univ.

[Kuno 1965] Susumo Kuno, "The Predictive Analyzer and a Path
Elimination Technique." Comm. Assn. Comp. Mach. 8,
453.

[Loveman 1971] D. Loveman, J. Moyne, and R. Tobey, "CUE: A Pre-
processor ‘System for Restricted, Natural English."
In Proc. Symposium on Information Storage and
Retrieval.

[Owens 1975] Phillip Owens, A Comprehensive Survey of Parsing
Algorithms for Programming Languages, Courant
Computer Science Report #4, Courant Inst. Math.
Sci., New York Univ. (Forthcoming).

[Paxton 1973] W. H. Paxton and A. E. Robinson, "A Parser for a
Speech Understanding System." Advance Papers of the
Third Intl. Joint Conf. on Artificial Intelligence,
Stanford Research Institute, California.

[Petrick 1965] Stanley R. Petrick, A Recognition Procedure
for Transformational Grammars. MIT Doctoral
Dissertatxon.

[Petrick 1966] Stanley R. Petrick, A Program for Transformational

Syntactic Analysis, Air Force Cambridge Research
Laboratories, AFCRL--66-698.

[Petrick 1973] Stanley R. Petrick, Transformational Analysis."”
In Natural Language Processing, ed. R. Rustin,
Algorithmics Press, N. Y.

[Petrick 19751 Stanley R. Petrick, "Design of the Underlying
Structure for a Data Base Retrieval System." 1In
Directions in Artificial Intelligence: Natural
Language Processing, ed. R. Grishman, Courant
Computer Science Report #7, Courant Institute of
Mathematical Sciences, New York Univ.

[Plath 1974a) Warren J. Plath, "Transformational Grammar and
Trans formational Parsing in the REQUEST System."

In Computational and Mathematical Linguistics, Proc.
Intl. Conf. on Computational Linguistics, ed.
A. Zampolli.

[Plath 1974b] Warren J. Plath, String Transformations in the
REQUEST System. IBM T. J. Watson Research Center,
RC 4947 (#21963).

[Raze 1974] Carol Raze, A computatidnal treatment of caordinate
conjunctions. Talk at 12 Ann. Meeting of Assn. of
Computational Linguistics, Amherst, Mass., July 26,
1974.

[Sager 1967] Naomi Sager, "Syntactig analysis of natural language.™
In Advances in Computers, No. 8,ed. F. Alt and
M. Rubinoff, Academic Press, N. Y.

[Sager 1973] Naomi Sager, "The string parser for scientific
literature.” In N&atural Language Processing, ed.

R. Rustin, Algorithmics Press, N. Y.

[Sager 1975] N. Sager and R. Grishman, "The Restriction Language

for Computer Grammars of Natural Language." Comm.
Assn. Comp. Mach. 18, 390.

[Shapiro 1971] P. Shapiro and D. Stermole, "ACORN (Automatic

Coder Report Narrative): An Automatied Natural-
Language Question-Answering System for Surgic#i

Reports.” Computers and Automation, Feb. 1971, p. 13.

[Simmons 1975] R. Simmons and G. Bennett-Novak, "Semantically

Analyzing an English Subset for the Clowns Micro-
world.™ Tech. Report NL-24, Dept. of Computer
Sciences, Univ. of Texas at Austin.

[Thompson 1969] F. B. Thompson, P. C. Lockeman, B. Dostert,
and R. S. Deverill, "REL: A Rapidly IExtensible
Language System." Proc. 24 Natl. Conf. Assn.

Comp. Mach.

(Thorne 1968] J. P. Thorne, P. Bratley, and H. Dewar, "The
Syntactic Analysis of English by Machine."

Machine Intelligence 3.

[Walker 1966] D. Walker, P. Chapin, M. Geis, and L. Gross,
Recent Developments in the MITRE Syntactic AnalySis
Procedure. MITRE Report MTP-1ll.

[Walker 1973] Donald Walker, "Automated Language Processing."
In Annual Review of Information Science and Technology,
vol. 8, ed. C. Cuadra, American Society for Informa-
tion Science, Washingtoen, D. C.

[Wilks 1975] Yorick Wilks, "An Intelligent Analyzer and Undexr-
stander of English." Comm. Assn. Comp. Mach. 18,
264.

[Winograd 1971] Terry Winograd, Procedures as.a Representation
for Data in a Computer Program for Understanding
Natural Language. MIT Report MAC TR-48.

[Woods 1970a} William A. Woods, "Con®ext-Sensitive Parsing.”
Comm. Assn. Comp. Mach. 13, 437.

[Woods 1970b] William A. Woods, "Transition Network Grammars
for Natural Language Analysis." Comm. Assn. Comp.
Mach. 13, 591.

[Woods 1972] W. A. Woods, .Rs M. Kaplan, B. Nash-Webber, The

Lunar Sciences Natural Language Information System:

Final Report. Report #2378, Bolt Beranek and
Newman, Cambridge, Mass.

[Woods 1973] William A. Woods, "An Experimental Parsing System
for 'Transition Network Grammars." In Natural

Language Processing, ed. R. Rustin, Algorithmics
Press, New York.

[Zwicky 1965] A. Zwicky, J. Friedman, B. Hall, and D. Walker,
"The MITRE Syntactic Analysis Procedure for
Transformational Grammars." Proc. 1965 Fall Joint
Computer Conf., Thompson Books, Washington, D. C.

36

hokel
SECURITY CLASSIFICATION 6’F THIS PAGE (When Data Entersd)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
[T, REPORT NUMBER 2. GOVT ACCESSION NO,| 3. RECIPIENT'S CATALOG NUMBER
NSO-8§
1. TITLE (and Subtitte) 5 TYPE OF REPORT & PERIOD COVERED
- . Technical R T
A Survey of Syntactic Analysis Procedures € eport

for Natural Language

6. PERFORMING ORG. REPORYT NUMBER

T AUTIOR(S ‘ 8 CONTHACT OR GRANT NUMBER{e)
Ralph Grishman NOOOl4-67A-0467-0032 |
9 PERFORMING ORGANIZATION NAME AND ADDRESS | 0. PROGRAM ELEMENY. PROJECT, TASK
AREA & WORK UNIT NUMBERS

Courant Institute of Math. Sci.
- New York University
251 Mercer St., New York, N.Y. 10012

1, CONTROULLING OFFICE NAME AND ADDRESS 12, REPORT DATE
Office of Naval Research August 1975
Department of the Navy 3. NUMBER OF BAGES
Arlington, Virginia 22217 94

JTTTMONRITORING AGENCY NAME & ADDRESS(If dliferent {rom Controlling Ollice) 18, SECURIYY CLASS. (of thiz repost)

unclassified

tSa. DECLASSIFICATION DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Distribution of this report is unlimited.

17. BISTRIBUTION STATEMENT ‘ol the abstract entered in Block 20, if diiferent from Report)

18, SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse gide 1f necessary and identify by block number)

natural language, syntax, parsing, grammar, computational
linguistics

20 ABSTRACT (Centinue on reveras side If necessary and identify by block numbar)

This report includes a brief discussion of the role of automatic
syntactic analysis, a survey of parsing procedires, past and
present, and a discussion of the approaches taken to a number of
difficult linguistic problems, such as conjunction and graded
acceptability. It also contains precise specifications in the
programming language SETL of a number of parsing algorithms.

DD , Eg:"fn 1473 EDITION OF | NOV 65 IS OBSOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

