American Journal of Computational Linguistics Microfiche 45

SYNTAX
IN

AutoMATIC SPEECH UNDERSTANDING

MADELEINE BATES

Boston University
and
Bolt Beranek and Newman Inc.
50 Moulton Street
Cambridge, Massachusetts 02138
This research was principally supported by the Advanced Research
Projects Agency of the Department of Defense (ARPA Order No.
2904) and was monitored by ONR under Contract No. N00OL4-75-c-
0533. Partial support of the author by NSF grant GS5-39834 to
Harvard University is gratefully acknowledged.
Copyright @ 1976

Association for Computational Linguistics

Table of Contents

Seetion

1

)

Introduct ion

The BBN Speech Understanding System
The Grammar

Overview of SPARSER
Preliminaries
Bepginninre to Parse an Island
Parsing Through an Island
Endine an Island
Endine a Theorv
Processineg Multiple Theories
Processine Events

$ore Details of the Parsing Process
Depth vs. Breadth
Scoring Paths
SBorine Predictions

Examples and Results
Example 1
Example 2
Example 3

Conclusions
Streneths and VWeaknesses of SPARSER
Presodics

Extensions and Further Research
Conclusion

Appendix I MINIGRAMMAR

Appendix II

Bibliograpnhy

The Vocabulary and Svntax Classes

Parc

a1 ¢ B0) BN I= =l
-~ D W N O 0O

-3
0

4

7

e
o e o

o
Ja

o o
‘o =

O
)

Pare 2

Page 3

Section 1

Introduction

Understanding speech is an extremely complex process which
requires the use of many types of knowledge, one of which is
syntax. This report presents a system called SPARSER which |is
designed to provide and use the syntactic knowledge necessary to
support an artificial speech wunderstanding system. (We will
assume for the remainder of this paper that unless explicitly
stated otherwise "speech" means grammatical speech spoken at a
moderate rate with natural inflections and pauses, spontaneously
produced but similar to the type of speech produced by reading
text.)

We will make the following assumptions about the
characteristics of speech and a speech processor:
1. There is not enough information in the spech signal to

uniquely identify the phonemes or words in a normally spoken

utterance.
2. The acoustic processing component of any artificial speech
understanding system will introduce additional errors and

ambiguity as it attempts to identify the phonemes. or words in the

utterance.

3. As a consequence of 1 and 2, when an utterance is scanned to

try to identify the words, it is reasonable to suppose that a

numbet of (perhaps overlapping) candidates will be found.

Page {4

This is illustrate in Figure 1.1 by a structure called a
word lattice which shows schematically that many Wwords may
initially appear to be present. In this representation, the
numbers along the horizontal scale are segment boundary points in
the utterance which roughly correspond to points in time. This
word lattice was produeed by the lexical retrieval component of
the BBN speech understanding system from an utterance which had
been ‘segmented and labeled by hand under conditions designed to

simulate the performance of an automatic segmenter and labeler.

5 10 15 20 25 30 35
rF1Tr+r1ryr1rrt1r1r1yr11r+1trtvt1rervtrtyrirrrirrrtrtrib e iror bl
ten people |ore glass somple S with mognetite
been mooh lead | been
did mode not did
give lunar somple and
we | greater does grel | done
give dealing dash did
ore} metal percent give done
lo nickel less | hod
any
anyone
and
greater
dealing
metal
nickel.
Figure 1.1

A Word Lattice
Sentence: Give me all glass samples with magnetite.

In the system described here, such a word lattice can be
represented by a collection of word matches, each of which is
composed of a word, the boundary points at the 1left and right
ends of the portion of thé utterance where it appears to match
well, and a score 1indicating how well it matthes the ideal

phonemic representation of the word.

Page 5

We also make a number of assumptions about the nature of the
speech understanding process and the characteristics of a system
to carry out ‘that process:

1. People can understand ‘a speaker e¢ven when the speech .is
fairly ungrammptical, so a syntax-driven system which would
accept only input meefing rigid syntactic requirements would not
be adequate for natural, converstional speech.

2. Since a number of word candidates are 1likely to be found
throughout the utterlane, it may be fruditful to be able to select
a subset of them on semantic, pragmatic, or prosodic grounds as
well as syntactic, depending on which cues seem most robust.

3. Syntax must interact with semanties in order to cut down the
combinatorial explosion of syntactically correct but meaningless
subsets of the utterance. Even in the small word lattice of
Figure 1.1 it can be seen that there are numerous short sequences
which are syntactically but not semantically valid (e.g. "Ten
people are glass samples with magnetite", "glass samples give
magnetite”, "lunar samples give magnetite", "samples give lead",
"people are percent", ete.).

4, The input to a spewch parser will be similar to the word
lattice described above, thus the parser will have to face not
only the problem that one or more words in its input might be
incorrect, but that gaps may appear in the input as well.

5. The parser will have to0 have the ability to predict words and
syntactic classes which are consistent with partial hypotheses

about the content of the sentence in order to help fill gaps in

the lattice.

6. Because of the combinatorial explosion of syntactic

Page 6

alternatives which occurs when all syntactic possibilities are
explored for small sections of an utterance, the syntactic
component must 1l1limit the number of such alternatives which are
actually generated, or at 1least factor them or treat them
implicitly rather than explicitly. One way of partially solving
this problem is to order the alternatives in such a way that only

the best alternatives abe extended.

Section 2

The BBN Speech Understanding System

In the past few years there has been a flurry of activity in
the field of automatic speeeh understanding, resulting in a
number of different systems. For surveys of a number of these
systems the reader is recommended to Wolf [31], Bates[#4], and
Hyde [10]. For more specific details on some of the individual
systems, see (1, 2, 7, 8, 16, 19, 20, 21, 22, 28, 29, 33, 35].
Since SPARSER was implemented as part of a speech understanding
system called SPEECHLIS which is under development at Bolt
Beranek and Newman Inc., that system is briefly described here
and 1is further documented in [3, 4, 5, 6, 15, 23, 24, 26, 33,
35]. SPEECHLIS has used two task domains; that of the LUNAR
text question-answering system [36] which deals with chemical

analyses of Apollo 11 moon rocks and one dealing with travel

budget management.

Page 7

The overall design of the system is illustrated in Figure
2. 4. The acoustics component analyzes the acoustic signal to
extract features and segment the utterance into a lattice of
alternative possible sequences of phonemes (Schwartz and Makhoul
[26]), phonological rules augment the outputi of the acoustic
component to include sequences of phonemes which could have
resulted in the observed phonemes; the 1lexical retrieval
component retrieves words from the lexicon on the basis of this
information (Rovner, et.al. [24]); the word matcher determines
the degree to whieh the ideal phonetic spelling of a given word
matches the acoustic analysis at a particular loocation [24]. All
of these components structure their output in such a way ds to
represent the ambiguity whicu is inherent in their analyses. For
example, they can be used to produce word lattices such as that

which was shown in Figure 1.1.

The syntactic component is SPARSER, the system comprising
the body of this paper (see also Bates [3, 4]). Acceptable
utterances are not restricted to context-free syntax, since the
grammar which SPARSER uses is a modified ATN grammar, capable of
handling a large, natural subset of English. The remaining

sections of this thesis detail the structure and operation of

SPARSER.

The semantic component uses a semantic network to associate

semantically related words and to judge the meaningfulness of a
hypothesized interpretation (See Nash-Webber [15]). This
semantic formalism is very-.general although a new network must be

constructed for each new task domain.

Page 8

e

cCRICAL CONTROL SEMANTICS

ACOUSTICS PRAGMATICS
Figure 2.4

Design of BBN SPEECHLIS

The pragmatics component is currently being implemented, but
is projected to contain information about the past dialogue, a

model of the user, and other pragmatic data (sce Bruce [6]).

control component contains an overall strategy for
employing the other components in order to obtain an
interpretation of an utterancg (see Rovner, et al [23]). It
decides which coemponent is to be called, what input it is to be
given, and what 1is ¢to be done with the output. It sets
thresholds on word match quality. It combines the scores
produced by the other components in order to rank competing
hypothesies, and is the primary interface to all other

components.

‘Page 9

Section 3

The Grammar

We have chosen the Augmented Transition Network formalism
[32] for the grammar which drives SPARSER because it is a
representation which allows merging of common portions of the
analysis, it 1is amenable to both bottom up and top down parsing
techniques, it fairly clearly separates the use of local
information from information which was obtained from a distant
portion of the utterance and, the author s previous experience
with a large ATN grammar for parsing text laid the groundwprk for

the development of a similar grammar for speech.

We have tried as much as possible to keep the formalism
which was developed by Woods intact, but some changes have been
necessary or desirable to make the grammar more amenable to the

speech parser. We call the formalism a Modified Augmented

Transitiomn Network (MATN), and assert that it has the same power
as the original ATN formalism. The changes, are briefly indicated

here. For a fuller discussion, see Bates [4].

Every arc of an ordinary ATN has a test component, which may
be any predicate. It is usually a boolean combination of tests
on the current input word (its features, etc.) and the contents
of registers which have been sef by actions on previous ares. 1In
the MATN formalism, the test component of each arc is, on all but

the PUSH are, a list of two ted3ts. The first is a test on the

Page 10

current word and its features, i.e. a local, context-free test.
The second 1s a test on the register contents, 1i.e. a
context-sensitive test. Both tests must succeed for the are to

be taken.

The reason for splitting up the tests in this wav 1is that
register checking tests cannot be made unless the registers are
set, apd in many situations in the speech environment there may
not be enough left context to guarantee that the proper registers
would be set. Thus it is useful to be able to evaluate the
context~-Free test on an arc at a different time in the parsing

process from the context-sensitive one.

On PUSH ares, there are three types of tests which are used.
It is useful and efficient to test the next word of input before
actually doing the PUSH, to see, for example, if the next word
can begin a constituent of the type being PUSHed for. This test
is called a look-ahead test, and takes the place of the normal
context-free test in the test component of the arc. There is
also the usual context-sensitive test on registers which were set
before the PUSH arc was encountered. And finally, when the PUSH
arc returns with a constituent, another context-free test may be
done on the structure of the entire constituent. Therefore, the

test component of a PUSH arc is a list of the three tests ijust

described.

SENDR s were an efficient mechanism for text parsing because
they allowed tests to be made on a lower level which involved

information obtainegd somewhere (possibly far) to the left in the

input string -- information which would normally be iraccessible

Page 11

because it would be hidden on the stack during the parsing of

sub-constituents.

There are sgveral reasons for not allowing this mechanism in
the speech parser Suppose, in the input that looks like "...
the person who. travels ...", the word "person" is not the word
which was really uttered. If it were allowed to be passed down
it would become an integral part of the analysis at the lower
level, and if another word were to be hypothesized in its place,
the Yower level the analysis would have to be redone even if none
of the words in the relative clause had been changed. This is a
process which would be extremely wasteful, especially in the
speech environment where one wants to be able to take as much
advantage as possible of information whieh was gained at one
point and slightly altered at another. In particular, it is
advantageous to consider as constituents such constructions as
relative clauses S0 that they can be placed in a

well-formed-substring table for use by other protesses.

Another reason is that some types of verifications
(semantic, prosodie, and pragmatic, at least) can be done most
conveniently on portions of an utterance which have been assigned
a syntactic structure, i.e. on constituents. If a portion of an
utterance is parsed (e.gt "that I gave you" from the complete
utterance "The book that I gave you") but does not form a
complete constituent because it is missing a piece of information
from a higher constituent te the left which would have been sent
down had it been available, then these verifications may not be

made until the missing word or words are identified. Yet it may

Page 12

be important to build and verify the constituent in order to
predict the missing word to the left. Therefore, it is better to
allow constituents to be built without information which would
normally have been passed down When parsing possibly incorrect
fragments with little or no left context, it is best to keep

constituents as small and as independent as possible.

The conversion process from an ATN grammar to a MATN grammar
with regard to SENDR s is straightforwardand infolves the use of
a dummy symbol which is used in the construction of the lower
lJevel constituent. When the structure is popped, the PUSH arc
examines it for agreement and may replace the dummy node by the
appropriate item which would have been sent down. The structure
returned by the PUSH for a relative clause on the fragment "that
I gave you" might look like Figure 3.1 (where the structure is
shown in both the usual tree diagram form and a corresponding

form more amenable to computer output).

/S
REL S
S REL / \
S NP PRO I NP\ AUX VP
FEATS NU SG /\
AUX TNS PAST PRO FEATS TNS V PP
VP V GIVE | | / /
NP ¥¥Npa* I NU PAST GIVE NP PREP NP
PP PREP TO | /! /\
NP PRO YOU SG TO PRO FEATS
FEATS NU SG | I

xNPx YOU NP
Figure 3.1 SG

Two Representations of a Parse Tree

Page 13

The fourth element of every arc in a MATN is a small integer
which is called the weight of the arec. This weight was
originally conceived of as a rough measure of either (a) how
likely the arc is to be taken when the parser is in that state or
(b) how much information is likely to be gained from taking this
are, 1i.e. whether the parse path will block quickly if the arc
is wrong. That these two schemes are not equivalent can be seen
by the following example. In a given state, say Jjust after the
main verb of the sentence has been found, the arc which accepts a
particle may be much less 1likely than the are which jumps to
another state to look for complements. However if a particle
which agrees with the verdb is found in the input stream at this
point, then the particle arc is more likely to be correct. Since
it is not at all clear how to measure or even intuit how much
informatiop is likely to be gained from taking an are, it was
decided that the weights would reflect relative likelihoods. The
actual weights which have been used in the speech grammar reflect
an Intuitive, though experienced guess as to how likely the arc
is to be correct if it is taken, assuming the state itself is on

the correct path.

Two grammars which will figure predominantly in the
remainder of this paper have been written in the MATN formalism.
One is an extensive grammar which can handle .many questions,
declaratives, noun phrase utterances, imperatives, active and
passive forms, relative clauses (reduced and unreduced),
complements, simple quantifiers, noun-noun modifiers,
verb-particle constructions, numbers, and dates (but not

conjunctions). It began as a modification of the grammar for the

Page 14

LUNAR system [36] but has been considerably adapted and expanded.
This grammar is. called SPEECHGRAMMAR, and is listed in:[4],

Exampled are given below which were produced using this prammar.

For some illustrative purposes, SPEECHGRAMMAR is too bip and
complex, so we have produced a MINIGRAMMAR which will be used to
show the basic operation of the speech parser. A Jdetailed
listing is given in Appendix I, but the diagram in Figure 2.7
probably shows the structure more c¢learlv. The serious reader is
encouraged to sketeh a copy of this grammar for reference later

on.
CAT ADJ CAT N PUSH PP/

CAT _ART CAT QUANT

CBOMme

CAT PREP PUSH NP/ POP

Figpure 3.2
MINIGRAMMAR

Since the work reported here was finished, the author has
written another grammar, called SMALL&GRAM which uses the HATN
formalism but which embodies a great deal of semantic and
pragmatic information specific to the domain of discourse

currently being used by the BBN speech understanding project.

Page 15

In or for the parser der to move from right to 1left (to
predict what could precede that first given word), it must be
able to determine for any state which arcs can enter it, and for
any arc which state it comes fromn. Since the grammar is
organized for normal parsing in just the opposite fashion, 1i.e.
for any state one can determine what ares leave it and for any
arc (except POP) one can determine which state it terminates on,
it was necessary to builld an index into the grammar. This index
consists of a number of tables containing pre-computed

informationwhich in effect inverts the grammar.

Section 4

Overview of SPARSER

The input to SPARSER is assumed to be a set of words
together with their boundary points (which may or may not be
related to points in time). A word together with its boundaries

is termed a word mateh. A word match also includes a score which

indicates how well the ideal phonemic representation of the word
matched the acoustic analysis of the utterance (but as we $hall
see the parser has little need of this information). Since the
same word may match at several sets of boundary points or may

matceh in several ways between the same boundary points, each word

match 1s also given a unique number to help identify it. Thus

Page 16

the structure for a basic word matech is:

(number word leffboundary rightboundary lexicalscore)
e.g. (4 TRAVEL 5 11 94), or (4 TRAVEL 5 11 (94 110)) where the
score 1is given as a pair of numbers representing the actual and

maximum scores, or (4 TRAVEL 5 11) where the score is omitted.

How is the input to the parser to be constructed? We assunme
that acoustic processing and lexical scanning components can
operate on a digitized waveform to produce a number of word
matches such as previously shown in the word lattice of Figure
1.1. (That this is possible has been demonstrated by Woods
[33]). Allowing the parser to operate unrestricted on the entire
word lattice would probably not be fruitful because of the large
number of locally syntactically correct combinations of words,
but one possibility for input to the parser would be to take a
set of the best-matching, non-overlapping word matches in the

lattice, such as those in Figure 4.1.

A set of non-overlapping word matches is a hypothesis about
the content of the utterance. In order to avoid creating large
numbers of such sets which are put together combinatorially with
no basis except 1local acoustic match, semantic or pragmatic
processes can be used to group word matches based on what 1is
meaningful or likely to be heard. For example, if a dialogue has
been about various nickel compounds, the combination "nickel
analyses" may be more likely than "chemical analyses" even though
the word match for '"chemical” has a higher score tkhan that for
"nickel"". We will not attempt to detail here how this semantic

grouping could. be done and how the sets could be scored, since it

Page 17

has been described elsewhere [15].

DO MANY PEOPLE DONE CHEMICAL ANALYSES ROCK
0 2 6 n 4 22 30 35 38

GIVE EIGHTY PEOPLE DONE TEN MODAL DETERMINATION ROCK
o 3 6 n 1418 18 21 26 38 38

WERE ANY PEOPLE METAL SEVEN
0 3 6 n 17 21 a7 32
Figure 4.1

Sample Word Match Sets

Using more terminology from the BBN speech system, the word
theory to denotes a set of word matches such as we have just
described together with (possibly empty) slots for information
from each of the possible knowledge sources in the system. From
the point of view. of SPARSER, usually only the word match portion
of a theory is of interest, hence we shall fall into the habit of
using the word "theory" to refer to the word match set it
contains. When speaking of the syntactic component of a theory,
however, we are refering to the information slot for syntax whicn

accompanies each word match set.

Theories have the fallowing characteristics:

1) They contain a set of basie, non-overlapping word
matches.

2) They tend at first to contain long content words and not
many short function words. This is because long words are more

reliably acoustically verified and content words are easier to

Page 18

relate semantically and pragmatically. Since small words such as
"am", "do", "the", "one", "have", "of", "in", etc. may be
represented by very little acoastic information, they would tend
to match at many places in the utterance where they do not really
occur. Consequently they are not searched for by the initial
word match scan, nor are they proposed in the semantic stages of
hypothesis formation.

3) They need not (and generally do not) completely span the
utterance, but have numerous gaps of varving sizes (e.g. for the
function words).

}) They tend to contain some sequences of contiguous word

matches. Such a sequence is called an island.

That such a set of theories can be c¢reated has been
demonstrated by the BBN SPEECHLIS system. The syntactic
component, SPARSER, is expected to process these theories one at
a time. In certain circumstances which will be detailed later,
the input to SPARSER will be a theory together with one or more
word matches which are to be added in order to create a new

larger theory which is then to be syntactically analyzed.

We will assume that there exists a control component which
presents SPARSER with theories to process and to which SPARSER

can communicate predictions and results.

Preliminaries

Given a theory, what is to be done with 1it? We begin by

considering a subset of the question: Given an island of word

matches, what is to be done with it? The answer is to create one

Page 19

or more parse paths through the island and to predict what words
or syntactic classes could surround the island. A parse path 1is
the sequehce of ares in the grammar which would be used by a
conventional ATN parser to process the words in the 1island, if

the island were embedded in a complete sentence.

For example, consider the way a parser might process an
island of word matcHus such as (1 CHEMICAL 14 22)
(2 ANALYSES 22 30) using the MINIGRAMMAR of the previous section.
Beginning in state NP/ of the grammar (omitting for the moment
the problem of how it is known that NP/ is the right place to
begin) the sequence of ares which would bt taken to parse
"ochemical analyses" as a noun phrase 1is that shown below in

Figure 4.2.

Figure 4.2

Portion of MINIGRAMMAR needed to parse "chemical arnalyses"

Let us define a configuration to be a representation of the
parser being in a given state (say NP/QUANT) at a given point in
the utterance (say 14). We will write configurations as
STATE:POSITION in text (e.g. NP/QUANT:14) and schematically as a
box within which are written the state and the position. If. a
configuration represents a state which is either the initial

state of the grammar or a state which can be PUSHed to (i.e a

%
state which can begin the parsing of a constituent), it is called

Page 20

an initial configuration, and is indicated schematically by a
filled-in semi-circle attached to the left edge of the box. Note
that a configuration NP/QUANT:14 is quite distinet from a
configuration NP/QUANT:22 since they are at different positions
in the input. In SPARSER, each configuration is also assigned a

unique number which is a convenient internal pointer.

The process of traversing an arc of the grammar using a
particular word is represented by a transition from one
configuration to another, A transition ¢an be made only if the
arc type is compatible with the current item of input and if the
context-free test on the arc is satisfied. (The
context-sensitive tests are evaluated 1later.) A transition
carries with it information about the arc which it represents and
the item of input it uses. The item of input is usually the word
match which the arc uses, but it is NIL in cases such as JUMP
arcs which do not use input, and it is a complete constituent for
PUSH ares. A unique identifying number and the list of features,
if any, which is associated with the input word or constituent
are also recorded on the transition in SPARSER, but they are not
shown schematically. A transition is represented schematically
by an arrow from one configuration to another with an abbreviated

form of the arc written above the arrow and the item of input

under it.

The syntaetic part of any theory which SPARSER processes
contains, among other things, 1lists of the transitions and
configurations which are created or used by the theory. Thus

when we talk about creating a configuration or transition it is

Page 21

implicitly wunderstood that SPARSER also adds it to the
appropriate list, and wher we talk of adding anr existing
configuration or transition to a theory we mean adding it to the
apprbpriate list, Therefore, removing a configuration or
transition from a theory means removing it from the syntactic
part of the theéry, not removing it entirely from SPARSER s data

base.

Like configurations, transitions are umique, so0o only one
transition is ever constructed from point A to point B for arc X
and input Y. We will frequently speak of creating a transition
or a configuration, but the reader must bear in mind that if such
a configuration or transition already exists, this fact will be
recognized and the pre-existing configuration or transition will
be used. (Timing measurements indicate that it takes about .052
seconds to create a configuration and only .01 seconds to test if
a particular configuration already exists. For transitions,

creation takes about .54 second$ and recognition .012 seconds.

The sequence of configurations and transitions which would

parse the above example is displayed in Figure 4,3,

NP/ ’JUMP NP/ART {JuMP |NP/QUANT |JumP | NP/ADJ| CAT N NP/ADJ| CATN |NP/N
% 14 [NiL] 14 [N 14 [NIL 14 [CHEMICAL | 22 [ANALYSES'| 30

Figure 4.3

Path for parsing "chemical analyses”

A conpected sequence of transitions and configurations is
called a path. If the sequence begins with an initial

configuration and ends with a transition representing a POP arc,

Page 22

it is a complete path, otherwise it is a partial path. Paths are

assumed to be partial unless otherwise specified.

Beginning to Parse an Island

SPARSER processes an island of words by beginning with the
leftmost word and determining its possible parts of speech. Then
the arcs of the grammar which ¢an process the word are found (by
looking in the previofisly constructed grammar index). For each
arc, two configurations are constructed one for the state at the
tail of the arc and one for the state at the head, using the left
and right boundary positions of the word match, respectively, and
a transition for that arc using the current word match is also
built. Schematically, we have for our example a situation which
looks 1like that of Figure 4.4 (such a display of all or some of
the transitions and configurations which the parser has
constructed is called a map). Notice that a configuration may

have any number of transitions entering or leaving it.

[NP/ADU
g 22

WGAY-
NP/ADJ | CHE
14
Car
’C 4(
NP/N
22
Figure 4.4

Initial map for parsing "chemical analyses"

BRI

may

Page 23

The idea of this process is to begin to set up paths which

be used to parse the island.

Hewever it is not necessarily

the case that the only donfigurations which could

start paths

through the island are those which have just been obtained, since

it may be possible to oreate transitions which enter

JUMP

arcs or TST

them via

arcs. For each state, the sequence of ares

which can reach it without using the previous word of input have

been

be pre-calculated by the grammar indexing package so the

appropriate configurations and transitions may be

These

transitions are called lead-in transitions.

becomes that in Figure 4.5

constructed.

Thus the map

NF/ADJ
22
V)
NP/ |Jump | NP/ART {yumP_| NP/QUANT | sump | NP/ADY |—CHE
14 |[NIL 14 NIL 14 NIL 14
&
7.
Ch(
‘NP/N
Figure 4.5 22
Lead-in transitions for parsing "chemical analyses"
Note that any of the configurations (except for NP/ADJ:22

and NP/N:22) could actually be the correct leftmost configuration

for this island, depending upon what the (currently unknown) left

context of the island is.

each

By looking in the grammar index, SPARSER can determine, for

configuration

which could start the island, just what sort

of left context could be appropriate. For example,

arc

the

CAT ADJ

in MINIGRAMMAR which enters state NP/QUANT implies that an

Page 24

ad jective could precede the island and, if it did, the tragsition

whigh would process it would terminate on configuration

NP/ADJ: 14,

Because the initial configuration NP/:18 could start the
1sland, anything which could precede a noun phrase could occur to
the left; again the grammar index provides the information that
the CAT PREP arc could lead to a configuration which could accept
a noun phrase (via the PUSH NP/ arc), so a preposition could also
prefix the island. If the index functions indicate that a
constituent could be picked up by a PUSH arc which could
terminate on the configuration under consideration, an indication
is made in the WFST so that any time a constituent of the desired

type is built which ends at the proper location, it may be tried

here.

Because of the highly recursive nature of ATN grammars, it
is very likely that as we chain back through the possible
sequences of PUSHes which could lead to the beginning of the
current constituent (or the seauence of POPs which could be
initiated by the completion of the current constituent) a large
number of predictions will be made. Rather than make all these
predictions automatically, before we are even sure that there 1is
in faect a constituent at the current level, the possible
configurations which could make predictions on other 1levels are
saved to be activated later if the predictions from the current

set of active configurations are not sufficient.

Page 25

The predictions which are mgde (not saved) are not acted
upon at this time, but ard kept internally by SPARSER until all
the islands of the theory have been prooessed. We shall see

belew what then becomes of the predictions.

Parsing Through an Island

Once processing has proceeded this far, we can go back and
consider the set of configurations which represent states the
parser could be in just after processing the first word of the
island. In our example, these are configuratiqns NP/ADJ:22 and

NP/N:22. Configurations such as these which are waiting to be
extended to the right are called active configurations. SPARSER
selects a subset of the set of active configurations (how this
subset is selected will be discussed in the next section) and for
each configuration tries to extend it by trying to parse the rest
of the 1island beginning in that configuration. When the parser
is considering a configuration at some position, the input
pointer is set to the word match of the island, if any, which

begins at the same position in the input.

The grammar associates with the state of the configuration a
list of arcs which may be tested (using the arc type, the context
free test on the arc, and the ¢urrent input) to determine whether
a transition can be made to extend the path. We will consider
each type of arc in turn, since the effects of taking various
types of arcs are different, and explain for each case what

happens if the arc is taken. Whether just one transition, or

several, or all possible transitions are made from an active

Page 26

configuration is a matter to be discussed in Section Five.

Some JUMP arcs do not look at the current item, so they may
be taken whether the input pointer is set to a word match or to
NIL. The transition which results from taking an arc of this
type has a null item associated with it, even if there is a word
match in the theory at this point. The positions of the
configurations at each end of the transition are the same; this
corresponds to the fact that an ATN parser would not move the

input pointer as a consequence of taking this arc.

Rarely, a JUMP arc may test the current item in some way,
for example, to make a feature check. If there is no word match
for input, an arc of this type cannot be taken. If there 1is a
word mateh, it is noted on the trahsition wh ch is created, but
the configurations at each end of the transition have the same
position. (It is then the case that theinext input-using or
input-~-consuming transition on the path including this transition

must use the same word match.)

These are TST, CAT, and WRD arces which end in a
(TO nextstate) action. The operation is exactly the same as that
above except that the configuration on which the transition
terminates has the position of the right boundary of the current

word match.

Taking a POP arc results in the creation of a ¢transition
which has a null final configuration and a null item, because POP

arcs are not permited to look at input.

Page 27

When a PUSH arc is encountered, a monitor is placed in the
Well-Formed Substring Table (WFST) at the current position to
await the occurrence of a constituent of the required type. If
ong or more such constituents are already in the table, then for
cach one there are three possibilities: it may be composed of
word matches which are in the current theory, it may be composed
of word matches some of which are not in the current theory but
which could be added without viclating the non-overlapping
constraint, or it may be composed of word matches some of which

are incompatible with the current theory.

In the first case a transition 1is set wup using the
constituent as the current word. The transition terminates on a
conflguration whose state is determined from the termination of
the PUSH arc and whose position is that of the right boundary of

the rightmost word match in the constituent.

In the second case, a potice is created and sent to the
control component. A notice is a request that SPARSER be called
to enlarge a theory by adding some new information, in this case,
some additional word matches which form a constituent that the
theory can use. SPARSER does not try to determine when (or even
whether) the theory should be so enlarged. That is an issue for
the main cantroller to decide (see Rovner, et.al. [23]). We

will discuss below how SPARSER enlarges a theory if called upon

to do so.

In the final case, if there are no usable constituents in

the WFST, a new configuration is set up to start looking for one

and is added to the list of active configurations. Its state is

Page 28

the state specified by the PUSH arc and its position is the same

as the current configuration.

There is a considerable amount of procwessing that can happen
any time one of the transitions i{ust discussed is made. Whenever
an initial configuration is constructed, this fact is recorded in
the configuration. Whenever a transition is made from such a
configuration, the information that there is a path from some
initial configuration is recorded on the subsequent
configuration. Similarly, whenever a PQOP transition is made, the
configuration it emanates from and all previous configurations on
any path which can terminate with the POF transition are marked
to indicate that they can reach a POP transition. Whenever a
transition is made which completes a path from an initial
configuration to a POP transition, the path is executed, one
transition at a time, and the register setting actions and
context sensitive tests are executed. If a test fails or an arc
aborts, the transitions and configurations of the path are
removed from the list of configurations and transitions which are
in the syntactic part of the current theory (unless they are used
by another path in the theory) but not removed from the map. If
the execution is successful, a deep structure tree is produced.
That structure together with its features is given a score, whiach
may include evaluations by other compotrients such as semantics and

prosodics, and is entered in the WFST.

It is quite important that sources of knowledge other than
syntax be called upon to verify and to rank syntactic

constituents. This is because there are 1likely to be many

Page 29

combinations of plausible words from the word lattice which form
syntactically reasonable constituents but which may be ruled out
on other grounds. To allow immediate use of this information
which syntax cannot provide alone, SPARSER has an interface to
the semantic component so that constituents can be verified
directly without going through the control component. It will be
agtrivial modification to insert verification calls to pragmatics
and prosodics when they become avallable. In the meantime, even
semantic knowledge can be turned off; if the parser gets no

inforsation from the call to semantics, it proceeds without it.

Placement of a constituent in the WFST causes a number of
things to happen. First, any monitors which have been set by the
current theory at that position ate activated. That is, for each
eonfiguration which was waiting for this constituent, a PUSH
transition is made which uses the censtituent as its input item.
If no wmonitors have been set which can use this constituent, it
is treated exactly as if it were the first word of an island:
all the PUSH arcs which can use if are found in the grammar index
and appropriate configurations and transitions (including lead-in
transitions, 1if appropriate) are set up. Next, if there are any
monitors for other theories which c¢an use the constituent,

notieces are created and output to Control as was described above

in the section on PUSH transitions.

Figure 4.6 shows SPARSER s map after our example island has
been coampletely processed. The parsing results in the creation
of a CAT N transitiop to configuration NP/N:30 wusing the word

Yanalyses"™ The PUSH PR/ arc at state NP/N would oause

Page 30

configuration PP/:30 to be created. Similarly, PP/:22 would be
created when the configuration NP/N:22 is picked up to be
extended. The POP arc transitions from each of the
configurations for state NP/N result in the formation of complete
paths, resulting in the creation of two noun phrases ("chemical
analyses" and ‘"chemical"). Since there were no monitors for
them, they result in the creation of configuration PP/PREP:14 and

its subsequent paths.

NP/ADJ| CATN
NN 22 |ANALYSES

: WEW
NP/ |JUMP |NP/ART {JuMP | NP/QUANT | JumP | NP/ADJ C

RSEBRR

NP/N{ POP
p—

30

14 |NIL 14 NIL 14 NIL 14

NB/N {pop
22

Skl é PP/

22

{ 30 | |

P/NP | POP
30

ANP
PP/PREP \c.aaﬂ‘”“' L

14

Figure 4.6

Map after processing island

NP/ADJ
30

Page 31
Ending an Island

It may be the case that no path can be found from one end of
an 1sland to the other. (This would occur when all active
configurations block.) In this case, there 1is no possible way
that the island could form part of a grammatical string, so
SPARSER can inform the control component that the theory is

Wwrong.

When an active configuration is picked up to be extended and
there is no word match at that point, the end of the island has
been reached. That does not mean that no more transitions can be
made, since arcs which do not test the input word can be taken as
usual. Arcs which do use input cannot be taken, but they can be
used to prediet what sort of input would be acceptable at that
position. For example, a GAT V arec which has a test requiring
the verdb to be untensed would allow SPARSER to predict an
untensed verb beginning at the position of the gurrent
configuration. CAT and WRD ares cause the prediction of
syntactic categories and specific words, respectively, modified
by the c¢ontext-free test on the arc. TST arcs provide only the
test which must be satisfied, and PUSH arcs cause a monitor to be

set in the WFST as well as a TST monitor for the the look-ahead

test (if any) on the arec.

Ending a Theory

When all the islands of a theory have been processed in the
manner Jjust described, it is time to deal with the gaps between

the islands. As we have seen, arcs in the grammar which can

Page 32

enter configurations at the left end of an island or which can
leave configurations at the right end of an island can be used to
make predictions about words that may be adjacent to the island.
The prediction is a list of the arc, the configuration it would
connect to, and an indication of whether the transition caused by

the arc will enter the configuration from the left or leave it to

the right.

If a gap between two islands is small enough that it may
contain just one word, then it is likely that the arc which would
process that word may have caused a prediction from both the left
and right sides of the gap. If this is the case, and if the
predictions intersect in a single possibility, it is highly
probable that +the word (or syntactic class) so predicted is
correct. If the predictions do not intersect, parsing is
continued from the active configurations which were not tried
earlier because of their scores and from the configurations which
could begin constituents at the right end of an island. This
continued parsing is an attempt to find a path which results in a
common prediction acposs the gap. If that too fails, then the
configurations which were saved because they could lead up a
chain of PUSHes or POPs to new configurations are tried. If no
possibilities are left to try and there is still no prediction to
fill the gap, this information is noted, but it does not
definitely mean that the islands are incompatible, since in some

cases the gap could &actually be filled by two words instead of

one.

Page 33

SPARSER has two kind of predictions ~ those Which seem
highly 1likely and those which seeme less likely. A highly likely
prediction, such as one which is made from both sides of a small
gap, is output in the form of a proposal, which is a request to
the rest of the system to find a word meeting the requirements of
the proposal. A proposal contains:

1) the item being proposed, which is either a particular word
or list of words (from a WRD are), or a syntactic class (from a
CAT arc), or NIL, meaning any word (from a TST arc)

2) the left and/or right boundary point(s) of the item

3) a test which the item must satisfy (the context free test
from the arc)

4) the context of the proposal, i.e. the word match(es) on
the left and/or right side of the item being proposed. (This is
to help the 1lexical retrieval component take into account

phonological phenomena which may occur across word boundaries.)

All predictions whether or not they are confident enough to
become proposals are output f2as monitors. A monitor is a
notification to the control component that if a word meeting the
requirements of the monitor 1is somehow found (perhaps by the
action of a proposal) , it may be added to the theory. Thus a
monitor acts like a demon which sits at a particular point in the
word lattice and watches for the appearance of a word match which
it can use. A monitor contains:

1) the item being monitored for (generally a syntactic
categcry, but may be a word or a test)

2) the left or right boundary position of the item being

monitored for

Page 34

3) a test which the item must satisfy (same as for proposals)

4) the theory which generated the monitor

5) the are in the grammar which will process the item if
found

6) the configuration from which the prediction was made

7) a score, indicating roughly how important the monitor is,
i.e. how much information is likely to be gained by processing
an event for that monitor.
(Notice that monitors which are sent to the control component are

very much 1like monitors which are set in the WFST by the

occurrence of PUSH arcs.)

Once the proposals have been made and the monitors have been
set, SPARSER bundles up the information it knows about the
current theory, such as the configurations and transitions in the
theory, any configurations which are still candidates for
expansion, the constituents in the theory, the notices,
proposals, and monitors which have been created, ete. and
associates the bundle with the theory number. This insures that
SPARSER will be able to pickup where it left off if it is later

given the theory to process further.

Processing Multiple Theories

Thus far we have seen only the operations which SPARSER
performs on a single theory, but we made the assumption that
SPARSER would be given a number of theories to process in
sequence. Let us now examine what will happen when the second

(or nth) theory is processed.

Page 35

SPARSER will no longer have a blank map and WFST; instead
it will have all the configurations, transitions, and
constituents which have been constructed by all previous
theories. For concreteness, let us imagine that the theory (1
CHEMICAL 14 22) (2 ANALYSES 22 30) has been processed, resulting
in the map shown in Figure 4.6. Now we are going to process a
theory containing the island (4 NICKEL 16 22) (2 ANALYSES 22 30),
which results in the map of Figure 4.7 where the configurations

and transitions added by this theory are shown in dotted lines.

The process begins as usual with the creation of
configuration &P/ADJ:16 and three possible lead-in transitions.
The transitions for the two CAT N arcs, however terminate on
configurations which already existed in the map, so the complete
paths from configuration NP/:16 to configurations NP/N:30 and

NP/N:22 will be discovered and processed, resulting in the
construction of two new noun phrases. Those new constituents
would then result in the creation of configuration PP/PREP:16
and two new transitions. Thus we have constructed only five new
configurations and seven new transitions and have been able to

take advantage of six old configurations and six old transitions.

In this fashion any information which has once been
discovered about a possible parse path is made available to any

other path which can use it. No preparsing is ever done

SPARSER merely realizes the existence of relevant configurations

and transitions and incorporates them into the current theory.

R

NP/ADJ| car N__|NP/N|pop
o N 22 [ANALYSES T
\CAL 7
NP/ Jaume [NPART [sume [NP/QUANT | sume [NP/aps | THE T B
14 [NT '] 14 [NIC 14 NIL | 14 M o
| & &
/o Ny
NP/ADJ

N ———_——, POP
_ NP/ Lyywe NP/ART gy | NP/QUANT |yupp _INPIADJ-‘:" o —
16 JNIL L6 INL Y 6 INL Y16 - TNCKEL
PP/ PP/
22 1 30
PP/NP | POP
pust NSE |
PP/PREP mﬂ:
14 2 W0\
L N2 e
IOSON AN
T
)
p
-’ PP/NP
r=———- 1.7 | POP
{PP/PREP ¥~ oy NP/ __of 22 '
L__\E___ l—(ﬁ-‘a&_ ANALYSES

Figure 4.7

Map after processing island for "nickel analyses"

If the new word (or wobds) in a theory are at the end (or in
the middle) of an island, when SPARSER begins to parse the island
it will discover the existing configurations and transitions from
the previous theory. Whenever a transition which can be used in

the cyrrent theory is discovered in the map, it and its

terminating configuration are added to the syntactic part of the

current theory. This is called ¢tracing the transition. In
addition, all paths beginninmg with that transition which do net
require the next word of input are also included in the syntactic
part of the theory. This is accomplished by tracing from the

terminating configuration all transitions which wuse either the

Page 37

same word of input as the previous transition or no input word at
all. (A similar process is used to trace backwards, i.e. right
to left, when necessary.) When a configuration is reached which
has no traceable transitions emanating from it, the tracing
process, stops. Since both transitjons and configurations are
stored in such a way as to facilitate tracing (for example, each
transition has a code attached ¢to indicate whether or not it
consumes or tests input), this process is considerably faster
than creating that portion of the map in the first place. (To
illustrate this, a theory was processed twice, once with an empty
map and once starting with the map previously created; the time

required for processing the theory fell from 47.5 seconds to

16.5.)

Configurations which can end traced paths are put on the
active configurations 1list. If, when one of* them is picked up
for extension, it is discovered that the next word of input was
used on a transition already in the map, the tracing process is
repeated. If the pnext word of input is new (or at least has not

caused any transitions from the configuration being considered)

then parsing continues in the normal manner.

Processing Events

As- was mentioned earlier, SPARSER can be called upon to add
some new word matches to a theory it has previously processed.
In this case, SPARSER is said to process an event. An event may
be thought of rather abstractly as the discovery of a pievce of

information that has been syntactically proposed, monitored for,

Page 38

or noticed. Concretely, an event is a piece of data consisting

of:
1) the o0ld theory that proposed or set a monitor for the

event

2) something to be added to the theory (a new word match or

constituent)

4) the arc in the grammar which will process the new

information

4) the confifFuration ih the old theory which will be at one

end of the transition created by the above arc

When SPARSER is siven an event, it retrieves from its tables

the bundle of configurations, transition, ete. in the old
theory. Then using the arc and the new word or constituent in
the event, it creates the appropriate transitiont(s). Then
processing continues as usual, that is, any complete paths are

noticed and processed, and any new active configurations are

exbended, if possible.

New predictions may be made as a result of this increased
information. (A record is kept of previous predictions so none
are remade unless with a more liberal score.) Finally SPARSER
returns the new, larger theory. This new theory may be processed
as part of another event at some later time, thus gradually

reducing the number and size of the gaps in the theory.

If an event results in filling the final gap in a theory,
and if the resulting complete sequence of words can be parsed,
SPARSER notifies the control component of this faect, since the

entire utterance may have been discovered. Of course, this may

Page 39

not be the correct solution -~ it is up to the control component
to look at°: the acoustic goodness, semantic meaningfulness,
pragmatic 1likelihood, etc. of the result as well as the
syntactic structure before declaring the utterance to have been
understood. If for reasons other thah syntactic, the utterance
appears to be bad, the control component of the system could po

on to try to find another, more sultable, possibility.

Section 5

More Detalls of the Parsing Process

5.1 DEPTH vs BREADTH

The parsing strategy Jjust outlined works bottom up when
beginning to parse an island and when a constituent is created
which was not monitored for by the current theory. It works top
down after an island has been started and to make syntactic
predictions at the ends of islands. Both top down and bottom wup
techniques can be either depth or breadth first. Depth first
procéssing takes at every step the first piece of information
available and pursues its consequences. Breadth first processing
considers at every step every possible next step of every
alternative and pursues all paths in parallel. Breadth first
processing generally takes much more space than the depth Ffirst

process since many paths would have to be remembered at once

Rage 40

instead of having Jjust one stack which could be popped and reused

when necessary.

The breadth first process might save some computation steps
and might produce several ambiguous parsings simultaneously while
the depth first process would find one before the others (the
latter 1is a'small difference, since both processes would have to
be run to exhaustion to insure that all possible parsings had
bsen found). In parsing speech, some mixture of breadth first

and depth first processing can be extremely useful.

To illustrate an advantage of breadth first processing in
the speech environment, consider what might happen if, during the
processing of an island the parser picks up a configuration to
extend which has several possible ares emanating from it. If one
arc is chosen and all the others are held as alternatives (i.e.
depth first), but the chosen arc is wrong, all subsequent paths
beginning with that arc would have to block before t he
alternatives would be tried. However, if the end of the island
were reached before the success or failure of the first choiece
were confirmed, the only way that backup would ever take place
would be to have one or more events add words to the theory so
that the path could be extended until it failed. Since the gap
would be likely to be filled by (incorrect) words predicted by
the erroneous path, or by no words at all if the (incorrect)
predictions were not satisfied, it is not at all «c¢lear how the

process would ever know to back up.

Page 41

This problem cannot be eliminated completely without
pursuing all alternatives to their fullest extent (a
combinatorially unacceptable solution) but it can be modified to
a pgreat extent by a Jjudicious combination of depth and breadth
first processing to find the best path, not just the first one,
through the island. This "best path" is not guaranteed to be the
correct one, so it 1is possible to continue processing by

extending paths with were suspended earlier.

SPARSER handles the problem by assigning a score (o every
configuration which reflects the 1likelihood of the path which
terminates on that configuration to be correct. The score can
also be thought of as a measure of how good that configuration
looks in relation to others as a candidate for extension. One
question which was previously left ubhanswered, how a subset of
the active confimurations is chosen for extension, c¢an now be
answered: the subset of maximally scoring configurations is
chosen at each step until the maximal score of active
configurations begins to fall. (The score on a configuration and
the score of a path terminatinge on that configuration are the

same thing -- we will use which ever terminology scems most

natural at the time.)

The result of this process is a sort of modified breadth
first approach, where at one step all the alternatives are tried
but at the next step only thé best ones are chosen for further
extension. This is similar to the best-first parser described by
Paxton in [18] but it can be applied to the sort of partial paths

which SPARSER generates rather than requiring the perfect

Page 42

information resulting from a strictly left to rifght approach.
The success of this method is directly dependent on the relative

accuracy of the scores which are assigned to the paths.

5.2 SCORING PATHS

Several attempts have baen made to develop rigorous systems
for parsing errorful or speech-like input basedron probabllities
[1, 14, 27). These attenpts have all simplified the problem to
such an extent that it is no longer realistic or extendible, e.g.
by assuming the input is a sequence (rather than a lattice) of
probability distributions, by assuming that all the necessary
information is present in the searéh space to begin with so the
only problem 1is to find an optimal path through the space, by

requiring a small vocabulary, and/or by limiting the grammar to

be context free.

The ideal scoring mechanism for SPARSER would be one whicgh
accurately reflected at every step the probability that the path
was correct. Bayes rule could be uUsed, but it would be
necessary to know, at any point in the parsing process, what the
probability is that the next arc¢ under consideration is correct,
given that the entire path up to the current step is correct. 1In
order to use this application of Bayes rule it would be
necessary to pre-calculate the probabilities for every possible
path and partial path which could be generated -- a clearly

impossible task since there are an infinite number of such paths.

Page 43

Given that we cannot calculate the probabilities we need
2xactly, what 1is the next best option? If we ignore the effect
of the path traversed up to the current point, but ecan say for
any given state how likely each arc emanating from that state is
to be correct, we would have a model which wuses only local
information rather than one which takes into account accurately

all the left context which 1s available.

Since it was not practical to run large amounts of data
through a parser in order to obtain accurate measurements even
for the limited model, the author relied on considerable
experience with ATN grammars to assign a weight to each arc of
thq grammar representing the intuitive likelihood that the arc
{if it can be taken) is thg¢ correct ane to choose from that
state. These weights are small integers (0 through §5) -- the

jarger the weight the more likely the arc.

The question might arise as to why the score of the word
satceh used by an arc should not be used to influence the score of
the path using it. SPARSER tries to treat each theory as
independently as possible and to assign scores based only on the
syntactikc information which is available. The one exception to
this rule 1s the semantic information which is wused to score
constituents. If 1lexical word match scores were used, the
control component would not be able to separate the lexical
goodness from the syntactic goodness of the theory and make
Judgments as to thelr relative importance. 1In a syntax-driven
speech understanding system, however, it would probably be useful

to combine lexical scores with syntactic information.

Page Ui

As was described in the previous section, when SPARSER
begins to parse an island each possible partial path is begun by
creating a configuration at the head of a transition for an arc
which can use the current word. Rather arbitrarily, it was
decided to give this configuration a score of one. This starts

all partial paths out equally, a technique which is not quite

accurate, since some contexts are more likely than others. For
example, the words "to" and "For" are more likely to occur in
prepositional phrases than in sentential complements. If this
simplification appears to harm the overall performance of
SPARSER, it coulo be remedied by giving cach state an a priori

score similar to the weights on arcs. Configuratioens on lead-in

paths are also given a score of one.

After the initial step, whenever a transition (other than a
PUSH or POP) is made, the score of the subsequent configuration
is influenced by the score of the configuration being extended
and the weight on the arc being used. If the scores were actual
probabilities; they would be multiplied; since they are not, it
was arbitrarily decided to add them.

When attempting to create a configuration which already
exists (a situation encountered whenever two or more parse paths
for the same theory merge), the configuration is given the
maximum of the existing score and the score which would have been

assigned had the configuration been created anew.

When a PUSH arc is encountered and a configuration created
to bhegin the search for the required constituent, the score of

that configuration is set to be the sum of the score of the

Page 45

confipguration causing the PUSH, and the value (if any) of the
look-ahead test on the PUSH arc. For example, upon encountering
an arc such as (PUSH NP/ ((NPSTART) T T) ...) the look-ahead
function NPSTART returns a high integer value if the next word is
a noun and a lowen value if it is a verb (e.g. '"accounting
costs"). Of course, if the look-ahead functiion fails altogether,
the cenfiguration is not set up, although the monitor in the WFST

remains.

When a constituent is completed (or found in the WFST) and a
PUSH transition is about to be mwmade, the score of the
configuration on which the transition terminates is a funetion of
the score of the confiruration being extended the weirht on the
arc, and the score of the constituent itself. The score of the
constituent 1is currently very ad hoc, being a function of the
number of words in the constituent (less a function of the number
of sub-constituents subsumed by this constituent, boosted if the
constituent is a major one) and the score which is determined by
semantic verification. Thus semantically "rood" constituents

will boost the scores of the paths which use them more than

semantically "bad" ones.

Due to the level of effort required to gather accurate
statisties on the relative frequencies of arcs, the current
scores are admittedly ad hoe. It is not clear whether different
scoring mechanisms would be better, however it is clear that the
current scoring strategy is better than no scoring at all, as
preiiminary measurements indcate that the number of transitions

created (as well as the number of configurations and predicions)

Page U6

is reduced about 25% by the current strategy.

(It is reasonable to ask why semantic scores are used to
influence parse paths, since it was ijust argued that lexical
scores should not be uswed in this way Semantic scores may be
more reliable than lexical ones becausy we are assuming that the
utterande is semantically meanihgful. Under this assumption, a
constituent like "range remainder" as a noun-noun modifier
analogous to "surplus money" should be ruled out as early as
possible. Since such constituents cannot be ruled out on
syntactic grounds alone, since prosodic information (which might
help to rule them out) is not available (see discussion in
Section 7.2), and since they would seriouslv overrun the parser
with a plethora of false paths if they were not rejected, it

seems reasonable to permit semantics to influence the parser.)

5.3 SCORING PREDICTIONS

The previous section discussed three ways in which SPARSER
can make predictions about what could fill in gaps between
islands. Monitors wait for the occurrence of a word in the word
lattice (or a constituent in the WFST), proposals request a
search for a particular set of words, and notices indicate the
presence of a usable word in the word lattice (or a constituent
in the WFST). Since the processing of a typical theory is likely
to result in a number of predictions it is necessary to be able
to order them so that predictions most likely to be correct or

most likely to yield important information will be acted upon

Papge 47

first. For example, it is more important to fill a gap between
two 1islands than to extend a single island, since by filling the
gap one can check the consistency of information which was
locally good in each 1island individually but may not be
consistent when they are joined. Since two words can occur
together in (usually) many contexts but longer sequences are
generally more restrictive, adding a word to a one word island is
likely to Dbe less profitable in terms of the number ef possible
paths which are eliminated by the addition than adding a word to

a multi-word island.

It is up to the syntactic component to indicate to the
control component the relative importance attached to each notice

and monitor; the higher the score, the stronger the prediction.

Several factors influence the score attached to predictions,
One is the length of the 1island to which the prediction is
attached. One word islands, if they are processed at all, yield
very little information an¢ many predictions, hence the
predictions are not scored high. Proposals are less important if
there is already a noticeable word in the word lattice (since
that word is acoustically better than the word to be proposed,
else it would have been found earlier. However, if a proposal
fills a gap between two islands, it 1is given a higher score.
Notices are boosted in importance if an entire constituent may be
added and penalized if they will add onto a one word island.

Scores range from 0 to 95 for proposals, 0 to 40 for notices, and

0 to 15 for monitors.

Page 48

These scores appear to work fairly well with the rest of the
BBN SPEECHLIS system, but have been developed by a process of
interaction with the other components (in order to make the
scores of syntactic predictions commensurate with those of
semantic predictions) and may be changed considerably as the

entire system evolves.

Small syntactic classes (e.g. determiners and prepositions)
are proposed in their entirety (that is, their elements are to be
enumerated and piven to the lexical matching component for
verification) if the island which monitored for them is more than
one word long. If a gap between two islands is small enough for
just one word and 1if a syntactic class has been monitored for

from both sides of the gap, it is proposed ir its entirety also.

Section 6

Examples and Results

SPARSER is written in INTERLISP and runs on a PDP-10 under
the TENEX operating system . The program and initial data
structures occupy approximately 90000 words of virtual menmory.
(The other components of the BBN speech understanding system

occupy separate forks from the syntactic component.)

Page U9

At the time the '‘examples in this section were run, the
algorithm controlling the decision-making process in the control
component was undergoing revision and was not solidified into a
function which could operate automatically. Rather, there were a
number of primitive operations such as scanning an utterance (or
some specified partion of it), creating theories, calling SPARSER
with a theory or event, calling for the processing of proposals,
ete., which could be invoked by a human simulator The following
examples were produced in this mode, with the user acting as the
control component in a way which could be modelled by later

implementation.

Several convention3 have been used in tracing the operation
of SPARSER. Configurations are represented as
NUMBER : STATE : POSITION (SCORE). For exanmple, the
configuration written as 30:NP/HEAD:23(39) is the configuration
for state NP/HEAD at position 23 which has been given the
(unique) numbeér 30 and which currently has a score of 39. The
creation of a transition is indicated by naming the type of arc
causing the transition, the (unique) number of the transition,
and the configurations at <ach end of the transition. For

example,

CAT N TRANS #9 FROM 14:NP/DET:6(1) TO 15:NP/DET:19(4).

Annotations have been inserted within brackets { }; typeout

in upper case was produced by the program.

Page 50

EXAMPLE 1

This example parallels that given in Seetion Four. A word
lattice was artificially created which contained only the
following three word matches:

(1 SUMMER 12 16 100)
(2 WINTER 12 16 100)
(3 TRIP 16 21 100 =S)

(In this version or the system, regular inflectional endings are
included in word matches after the element representing the
score, hence the somewhat peculiar word wmatch for the word
"trips".) Two theories were constructed, one for word matches 2
and 3, the other for 1 and 3. What follows is an annotated (but
otherwise unedited except for considerations of spacing)
transcript of SPARSER processing these two theories in sequence,

using the MINIGRAMMAR of Figure 3.3 and Appendix I.

SPARSER PROCESSING THEORY 1:

0 12 WINTER 16 TRIP -S 21 30
{This is a linear representation of the theqQry being
processed. The endpoints are 0 and 30, but the words
occupy- only the middle part of the utterance.}

STARTING AN ISLAND
"WINTER" TRYING CAT N ARC FROM NP/ADJ TO NP/ADJ
{This is the first of two arcs retrieved from the index
tables }
CAT N TRANS #1 FROM 1:NP/ADJ:12(1) TO 2:NP/ADJ:16(3)
{The first transition is created, and since there 1is a
CAT N arc which enters state NP/ADJ, a monitor is set up
to monitor for nouns which end at position 12.}
ENDING AT 12:
MONITORING [N]
JUMP TRANS #2 FROM 3:NP/QUANT:12(1) TO 1:NP/ADJ:12(1)
{Now the lead-in transitions are being c¢reated, along
with the monitors for syntactic categories which may
precede the newly constructed configurations.
Configurations along the lead-in path are all assigned a
score of 1.}

ENBRYSoRTNG3E quant 3

Page 51

MONITORING [ADJ]
JUMP TRANS #3 FROM U4:NP/ART:12(1) TO 3:NP/QUANT: 12(1)
ENDING AT 12:
MONITORING [ART]
JUMP TRANS #4 FROM 5:NP/:12(1) TO 4:NP/ART:12(1)

"WINTER"

{The lead-in transitions are all made. Now the second
arc which can use the noun is about to be processed.}

TRYING CAT N ARC FROM NP/ADJ TO NP/N

CAT N TRANS #5 FROM 1:NP/ADJ:12(1) TO 6:NP/N:16(6)

SELECTED

{This is the second of the two arcs obtained from the

index table for "winter". The lead-in transitions to
configuration 1 have already been donstructed, so they
are not remade. Now we are ready to choose

configurations to extend. The pool of candidates for
extension contains configurations 2 and 6.}

CONFIGS (6) FOR EXTENSION

{Only this one is chosen because it has a higher score
than configuration 2, since the use of a noun as a head
noun of a noun phrase is more likely than its use as a
modifier.}

PICKING UP CONFIG 6:NP/N:16(6) WITH WORD TRIP
TRYING PUSH PP/ ARC

{No. action is taken about starting a configuration for
state PP/ because the look-ahead test which checks that
the next word can begin a prepositional phrase fails on
the word trip.}

TRYING POP ARC
POP TRANS #6 FROM 6:NP/N:16(6)

{Creating the POP transition completes a path from
configuration 5. The path is expressed as a list of
transition numbers. We are about to execute the path,
that 1is, check the context-sensitive tests and do the
register building actions along it.}

EXECUTING PATH (4 3 2 5 6)
BEGINNING AT TRANS 4, CONFIG 5

DOING

{We must begin exegcuting the path at the first
transition, because no part of it has been executed
before. Later we will see that it is possible to begin
execution of a path in the middle, since the register
contents are stored at cach step.}

JUMP ARC FROM S5:NP/ TO 4:NP/ART

DOING JUMP ARC FROM 4:NP/ART TO 3:NP/QUANT

DOING
DOING
DOING

JUMP ARC FROM 3:NP/QUANT TO 1:NP/ADJ
CAT ARC WITH WINTER FROM 1:NP/ADJ TO 6:NP/N
POP ARC FROM 6:NP/N

TEST FAILED

{The test failed because there is no determiner, and
MINIGRAMMAR requires that singular, undetermined nouns
can be complete noun phrases only if they are mass
nouns. "Winter" 1is not marked as a mass noun in our

dictionary, hence it will not parse as a complete noun
phrase.}

Page 52

SELECTED CONFIGS (?2) FOR EXTENSION
{Since extending configuration 6 did not do much for us,
we go back to try the lower scoring configuration 2.}
PICKING UP CONFIG 2:NP/ADJ:16(3) WITH WORD TRIP
TRYING CAT N ARC
CAT N TRANS #7 FROM 2:NP/ADJ:16(3) TO T:NP/N:21(8)
TRYING CAT N ARC
CAT N TRANS #8 FROM 2:NP/ADJ:16(3) TO 9:NP/§DJ:21(5)

SELECTED CONFIGS (7) FOR EXTENSION
{Again, the higher scoring of the two active
configurations, 7 and 8, is chosen.}
PICKING UP CONFIG 7:NP/N:21(8)
STARTING AT 21:
MONITORING [PP/]
SETTING UP CONFIG Q:RP/:21(8)
MONITORING [PREP]
{Since there is no next word to test, a configuration is
set up to begin processing a prepositional phrase, and
the syntactic categories which ean begin such a phrase
-~ in this case, only one -~ are monitored for.}
TRYING POP ARC
POP TRANS #9 FROM 7:NP/N:21(8)
EXECUTING PATH (4 3 2 1 7 9)
BEGINNING AT TRANS 1, CONFIG 1
{Creation of the POP trans completed a path, the first
part of which has already been executed. We can
therefore pick up in the middle of the path and execute
only the last three transitions.}
DOING CAT ARC VITi! VINTER FROM 1:NP/ADJ TQ 2:NP/ADJ
DOING CAT ARC WITE ‘RIP FROM 2:¥MP/ADJ TO T:NP/N
DOING POP ARC FROM T:NP/N
% 3% % ¥
MADE #1 FROIl 12 TO 21:
NP ADJ NP N WINTER

NU SG
N TRIP
NU PL
YY)
{The path succeeds =-- no determiner is needed since the
head noun is plural -- and a constituent is constructed.

The semantic component has been turned <off for this

example, sSo it adds nothine to the score wvhich SPARSER

assisng -- 5 poidts for each word in the constituvent.)
SYIl WEIGHT + SEM WT = 10 + 0 = 10

{No monitor exists in the WEST for a NP/ at this place,
so the ares (in MINIGRAMMAR there is only one) which
could push for a NP are processed bottom up in exactly
the same manner as the two are¢es which could use a noun
at the beginning of the island.}
NP/ WAS NEVER PUSHED FOR
PUSH NP/ TRANS #10 FROM 10:PP/PREP:12(1)

Iﬁﬂxﬂ&fﬁﬁ{uﬁff1(7)

Page 53

MONITORING [PREP]

|
SELECTED CONFIGS (11) FOR EXTENSION
PICKING UP CONFIG 11:PP/NP:21(7)
TRYING POP ARC
POP TRANS #11 FROM 11:PP/NP:21(T)

SELECTED CONFIGS (8) FOR EXTENSION
PICKING UP :CONFIG 8:NP/ADJ:21(5)
STARTING AT 21:
MONITORING [N]
MONITORING [N]
ALL ARCS TRIED AT THIS CONFIG
{Now the theory has been processed. There follows a
summary of the proposals, monitors, and notlces
constructed. The syntactic score assigned to the theory
is pgiven == here Jjust the score of the constituent
constructed. Then there is a summary of statistics.}

PREDICTIONS:

MONITORENG [PREP] STARTING AT 21, SCORE 10
MONITORING [N] STARTING AT 21, SCORE 10
MONITORING [N] ENDING AT 12, SCORE 10
MONITORING [QUANT] ENDING AT 12, SCORE 10
MONITORING [ADJ] ENDING AT 12, SCORE 10
MONITORING [ART] ENDING AT 12, SCORE 10
MCNITORING [PREP] ENDING AT 12, SCORE 10

PROPOSING (QUANT ART PREP) ENDING AT 12
FINISHED THEORY 1 WITH SYN SCORE 10

{Exclusive of tracing and fork interactions, this
processing took 5.5 seconds.}

{Now we are ready to process the second theory
syntactically.}

SPARSER PROCESSING THEORY 2:
0 12 SYUMMER 16 TRIP -S 21 30

STARTING AN ISLAND
"SUMMER" TRYING CAT N ARC FROM NP/ADJ TO NP/ADJ
CAT N TRANS #12 FROM 1:NP/ADJ:12(1) TO 2:NP/ADJ:16(3)
{This transition completes a path which includes
transitions and configurations constructed ouring the
previous theory.}
EXECUTING PATH (4 3 2 12 7 9)
BEGINNING AT TRANS 12, CONFIG 1
DOING CAT ARC WITH SUMMER FROM 1:NP/ADJ TO 2:NP/ADJ
DOING CAT ARC WITH TRIP FROM 2:NP/ADJ TO 7:NP/N
sxxyPOING POP ARC FROM T7:NP/N

Page 54

MADE #2 FROM 12 TO 21:
NP ADJ NP N SUMMER
NU* SG
N TRIP
NU PL
t 2 X3

SYN WEIGHT + SEM WT = 10 + 0 = 10

NP/ WAS PUSHED FOR AT CONFIG 10
{This time there are monitors in the WFST, one which is
looking for a NP starting at position 12 and one which
is looking for a NP ending at position 21. One
transition 1is sufficient to satisfy both of these, and
the ?reposition needed to complete a PP/ is monitored
for.

PUSH NP/ TRANS- #13 FROM T10:PP/PREP:12(1)
TO 11:PP/NP:21(8)

NP/ MAY LEAD TO CONFIG 11
{This is caused by the fact that there was a monitor for
a. noun phrase ending at confipuration 11 -« the one
created when constituent 1 was made. The transition
which would be set up is the transition Jjust created, so
it is not remade.

All of the processing which resulted from the
completion of a constituent is finished; however there
are monitors still to be set for configurations along
the path.}

ENDING AT 12:
MONITORING [PREP]
ENDING AT 12:
MONITORING [N]
ENDING AT 12:
MONITORING [QUANT]
MONITORING [ADJ]
ENDING AT 12:
MONITORING [ART]

{Since each monitor consists of the item being monitored
for, 1its associated test (if any) the theory which is
to be notified when the monitor is satisfied, and the
configuration and arc causing the monitor, monitors must
be made anew each time one of the elements changes,
although some of the list structure can be shared, hence
the seeming proliferation of monitors.}

{Now SPARSER processes the other arc which could use the
word "summer".}
"SUMMER" TRYING CAT N ARC FROM NP/ADJ TO NP/N
CAT N TRANS #14 FROM 1:NP/ADJ:12(1) TO 6:NP/N:16(6)

EXECUTING PATH (4 3 2 14 6)

BEGINNING AT TRANS 14, CONFIG 1

DOING CAT ARC WITH SUMMER FROM 1:NP/ADJ TO 6:NP/N

DOING POP ARC FROM 6:NP/N

TEST FAILED

4Efcausa "sumTer" cannot be a complete noun phrase in
S grammar.

Page 55

SELECTED CONFIGS (11) FOR EXTENSION
PICKING UP CONFIG 11:PP/NP:21(8)
TRACING POP TRANS 11 FROM 11:PP/NP:21(8)

{This transition was created before, but is now made
part of the current theory. It does not complete a pgth
or cause any further action. If it had a terminating
configuration, 1i.e. if a transition other than a POP
transition hao been traced, the terminating
configuration would have been placed on the list of
possible confipurations to extend.}

SELECTED CONFIGS (6) FOR EXTENSION
PICKING UP CONFIG 6:NP/N:16(6) WITH WORD TRIP
TRACING POP TRANS 6 FROM 6:NP/N:16(6)

SELECTED CONFIGS (2) FOR EXTENSION
PICKING UP CONFIG 2:NP/ADJ:16(3) WITH WORD TRIP
TRACING CAT N TRANS 8 USING "TRIP" FROM
2:NP/ADJ:16(3) TO 8:NP/ADJ:21(5)
STARTING AT 21:
MONITORING [N]
MONITORING [N]
{There are two noun arcs leaving state NP/ADJ, hence two
monitors.}

SELECTED CONFIGS (8) FOR EXTENSION
PICKING UP CONFIG 8:NP/ADJ:21(5)
ALL ARCS TRIED AT THIS CONFIG

PREDICTIONS:

MONITORING [N] STARTING AT 21, SCORE 10
MONITORING [* PREP] ENDING AT 12, SCORE 10
MONITORING [N] ENDING AT 12, SCORE 10
MONITORING [QUANT] ENDING AT 12, SCORE 10
MONITORING [ADJ] ENDING AT 12, SCORE 10
MONITORING [ART] ENDING AT 12, SCORE 10
PROPOSING (PREP QUANT ART) ENDING AT 12

FINISHED THEORY 2 WITH SYN SCORE 10

{The processing of this theory took approximately 4.5
seconds. }

This example has shown the trace produced by running SPARSER
on input which 1is analogous to the example presented with
illustrations of the map in Section Four. The interested reader

is urged to draw his own maps while reading the following

Pare 56

examples in order to best understand the dynamic operation of

SPARSER.

EXAMPLE 2

This example is more realistic than the previous one -- |t
shows the operation of SPARSER in the context of an utterance
which has been automatically segmented and labeled, with the
lexical retrieval and match component In operation. It
demonstrates how SPARSER can help to select the best set of words
from a more complex word lattice, This exanmple uses the

SPEECHGRAMMAR described in [4].

The utterance "What is the registration fee?" was spoken by
an adult male speaker in a quite room and was record on tape.
The utterance was automatically digitized and passed through the
segmentation and labelings routines of the BBN speech
understanding system. The initial scan of the utterance, using
the lexical retrieval component, produced a word lattice of
fifteen entries, including several for inflectional endings. (In
this version of the system, they were not combined with the root
form into a single word match, and hence could match even without
a root word.) The format for a word match is:

(NUMBER WORD LEFT-END RIGHT-END LEXICAL-S€ORE).

(2 WHAT 0 3 191)

(3 ONE 0 3 189)

(11 WHEN O 3 102)

(9 THE 4 6)

(1 REGISTRATION 6 19 237)
{10 REGISTRATION 7 19 103)
(5 HAS 9 12 121)

Page 57

B8 THIS 9 12 115)
{15 THE 9 11 90)
{6 ~-EST 10 13 118)
(12 -EST 10 14 101)
(13 IS 10 12 97)
(18 -ES 10 12 97)
(7 TRIP 12 17 116)
(& FEE 19 23 155)

The two best matches, for "what" and "registration", appear
to be good candidates for a theory, so we begin by building and

processing that theory.

pARSER PROCESSING THEORY 1:
8 §HAT 3 6 REGISTRATION 19 23

STARTING AN ISLAND
STARTING AT LEFT END OF SENTENCE
{Knowing that it is not necessary to go through the
usual startup procedure for islands when beginning an
1sland at position o, SPARSER starts with a
configuration for state S/ at position 0.}
SELECTED CONFIGS (1) FOR EXTENSION
PICKING UP CONFIG 1:S/:0(1) WITH WORD WHAT
TRYING JUNP S/Q ARC
JUMP TRANS #1 FROM 1:S/:0(1) TO 2:5/Q:0(6)

SELECTED CONFIGS (2) FOR EXTENSION
PICKING UP CONFIG 2:S/0:0(6) WITH WORD WHAT
TRYING PUSH NP/ ARC
MONITORING [NP/]
SETTING UP CONFIG 3:NP/:0(11)
TRYING CAT QWORD ARC
CAT QWORD TRANS #2 FROM 2:5/Q:0(6) TO 4:S/NP:3(11)

SELECTED CONFIGS (3 4) FOR EXTENSION
{This time two active configurations have the same
maximal score, so they are both processed.}
PICXING UP CONFIG 3:NP/:0(11) WITH WORD WHAT
TRYING CAT QDET ARC.
CAT QDET TRANS #3 FROM 3:NP/:0(11) TO 5:NP/ORD:3(16)

PICKING UP CONFIG 4:S/NP:3(11)
STARTING AT 3:
MONITORING [MODAL]
MOMITORING [V]

Page 58

TRYING POP ARC
POP TRANS #4 FROM 4:S/NP:3(11)

EXEGUTING PATH (1 2 %)

BEGINNING AT TRANS 1, CONFIG 1

DOING JUMP ARC WITH WHAT FROM 1:S/ TQ 2:S/Q

DOING CAT ARC WITH WHAT FROM 21S/Q TO Ud4:S/NP

DOING POP ARC FROM 4:S/NP

TEST FAILED
{This test failed because the grammar dows not allow
"what" to be a complete sentence.}

SELECTED CONFIGS (5) FOR EXTENSION
PICKING UP CONFIG 5:NP/ORD:3(16)
STARTING AT 3:
MONITORING [QUANT/]
SETTING UP CONFIG 6:QUANT/:3(16)
{Here all the words which can start quantifiers, like "a
hundred" or "point five", are proposed. The grammar

does not preclude a quantifier following a
question-determiner, e.g. "What three men traveled to
Spain?".}

{MONITORING [INTEGER ZERO NO POINT A]
For considerations of space, long listings of monitors
and proposals in this example will be compacted as shown
here. Such alterations to the actual trace produced
will be surrounded by brackets.}
TRYING JUMP NP/QUANT ARC
JUMP TRANS #5 FROM 5:NP/ORD:3(16) TO T7:NP/QUANT:3(21)

SELECTED CONFIGS (7) FOR EXTENSION
PICKING UP CONFIG T7:NP/QUANT:3(21)
TRYING JUMP NP/DET ARC
JUMP TRANS #6 FROM 7:NP/QUANT:3(21) TO 8:NP/DET:3(26)

SELECTED CONFIGS (8) FOR EXTENSION
PICKING UP CONFIG 8:NP/DET:3(26)
STARTING AT 3:
MONITORING [NPR/ NPP/]
{There are two PUSH NPR/ arcs from this state so two
mon%tors are created, but only one configuration is set
up.
SETTING UP CONFIG 9:NPR/:3(26)
{MONITORING [NPR NPR N ADJ N V ADV]}
TRYING JUMP NP/HEAD ARC
JUMP TRANS #7 FROM 8:NP/DET:3(26) TO 10:NP/HEAD:3(29)

SELECTED CONFIGS (10) FOR EXTENSION

PICKING UP CONFIG 10:NP/HEAD:3(29)
{This is an example of the fallibility of using only
context free tests on partial paths. The parser thinks
it has successfully reached state NP/HEAD, while in fact

this cannot be the case because no head noun has been
discovered for the noun phrase. Thus it is incorrect to

Page 59

predict relative clauses at this point. This issue will
be discussed in more detail below.]
STARTING AT 3:

MONITORING [R/ PP/ R/NIL]

SETTING UP CONFIG 11:R/:3(29)

{MONITORING [PREP WHOSE WHO WHICH THAT WHOM]}
{PROPOSING "WHOSE" "WHO" "WHICH" "THAT" "WHOM"}
SETTING UP CONFIG 12:PP/:3(29)

MONITORING [PREP]

SETTING UP CONFIG 13:R/NIL:3(29)

MONITORING [THERE]

PROPOSING "THERE"
TRYING POP ARC
POP TRANS #8 FROM 10:NP/HEAD:3(29)

EXECUTING PATH (35 6 7 8)
BEGINNING AT TRANS 3, CONFIG 3

DOING CAT ARC WITH WHQ FROM 3:NP/ TO 5:NP/ORD

DOING JUMP ARC FROM 5:NP/ORD TO T7:NP/QUANT

DOING JUMP ARC FROM 7:NP/QUANT TO 8:NP/DET

DOING JUMP ARC FROM 8:NP/DET TO 10:NP/HEAD
TEST FAILED

{A question-determiner alone cannot be a complete noun

phrase; although this 1is permitted by considering
"what" as a QWORD as in transition #2.}

STARTING AN ISLAND
"REGISTRATION" TRYING CAT N ARC FROM NP/DET TO NP/DET
CAT N TRANS #9 FROM 14:NP/DET:6(1) TO 15:NP/DET:19(4)
{This arc is using "registration" as a noun modifier for
some future head noun.}
ENDING AT 6:
{MONITORING [NPR/ ADJ N V]}

JUMP TRANS #10 FROM 16:NP/QUANT:6(1) TO 14:NP/DET:6(1)
ENDING AT 6:

MONITORING [QUANT/]

JUMP TRANS #11 FROM 17:NP/ORD:6(1) TO 16:NP/QUANT:6(1)
ENDING AT 6:

{MONITORING [ORD QDET ONLY 1]}

PROPOSING "ONLY"
JUMP TRANS #12 FROM 18:NP/ART:6(1) TO 17:NP/ORD:6(1)
ENDING AT 6:

{MONITORING [ART QUANT POSS WHOSE 1]}

NOTICING "THE"

PROPOSING "WHOSE"

JUMP TRANS #13 FROM 19:NP/ONLY:6(1) TO 18:NP/ART:6(1)
ENDING AT 6:

MONITORING [ONLY]
PROPOSING ""ONLY"
JUMP TRA!S #14 FROM 20:NP/:6(1) TO 19:NP/ONLY:6(1)

REGISTRATION" TRYING CAT N ARC FROM NP/DET TO NP/HEAD
CAT N TRANS #)5 FROM 14:NP/DET:6(1) TO 21:NP/HEAD:19(6)

{This arc is using "registration" as the head noun of
noun phrase.}

)]

Page 60

SELECTED CONFIGS (21) FOR EXTENSION
PICKING UP CONFIG 21:NP/HEAD:19(6)
STARTING AT 10:
MONITQRING [R/ PP/ R/NIL]
SETTING UP CONFIG 22:R/:19(6)
{MONITORING [PREP WHOSE WHO WHICH THAT WHOM]}
SETTING UP CONFIG 23:PP/:10(6)
MONITORING [PREP]
SETTING UP CONFIG 24:R/NIL:19(6)
MONITORING [THERE]
NOTICING "FEE"
{This notice is in response to the look-ahecad test on
the push arc to state R/NIL. Since "fee" can start a
reduced retrative clause, it i1s noticed, but there is not
a specific monitor set up because the are within the
relative clause network which will actually process the
word "fee" is not known.}
TRYING POP ARC
POP TRANS #16 FROM 21:NP/HEAD:19(6)
EXECUTING PATH (14 13 12 11 10 15 16)
BEGINNING AT TRANS 14, CONFIG 20
TEST FAILED
{The path failed because there is no determiner for
"registration."}

PREDICTIONS:
NOTICING (4 FEE 19 23 155 Q), SCORE =5
NOTICING (9 THE 4 6 103 0), SCORE ©
PROPOSING (ONLY WHOSE) ENDING AT 6
PROPOSING (ZERO NO POINT A WHOSE WHO WHICH THAT WHOM THERE)
STARTING AT 3
{MONITORING [PREP]} STARTING AT 19, SCORE 0
MONITORING [WHOSE WHO WHICH THAT WHOM THERE]
STARTING AT 19, SCORE 5
MONITORING [ADJ N V ORD QDET ART QUANT POSS]
ENDING AT 6, SCORE O
MONITORING [WHOSE ONLY] ENDING AT 6, SCORE 5
MONITORING [MODAL V INTEGER NPR N ADJ V ADV PREP]
STARTING AT 3, SCORE O
MONITORING [WHOSE WHO WHICH THAT WHO!{ THERE ZERO NO POINT A]
STARTING AT 3, SCORE 5}
PROPOSING (V N ADJ) FROM 3 TO 6
{Proposals were made to fill the gap because there were
monitors from both sides of a gap small enough to
contain one word.}

FINISHED THEORY 1 WITH SYN SCORE O

{It took 11.9 seconds to process this theory.]}

{Processing the proposals just made results, notably, in
the detection of the word "other" between "what" and
"registration", but the word match score 1is very low.
Word matches for "is" and "are" from position 3 (next to
what") to position 4 are also found, but since they do

Page 61

not fill the gap, the event scores are low. The best

event is that for the word "fee'". Processing

fairly uninteresting, since it completes no tonstituent,

so we will omit the trace of that event. After

been processed, however, the best event is that for the

word "the" and the theory just created.}

SYNTAX PROCESSING EVENT FOR THEORY#2
WITH NEW WORD (4 THE 6)
TO GET NEW THEORY#3.
0 WHAT 3 4 THE 6 REGISTRATION 19 FEE 23

"THE" TRYING (CAT ART --) FROM STATE NP/ONLY TO CONFIG 18
CAT ART TRANS #26 FROM 32:NP/ONLY:4(3) TO 18:NP/ART:6(6)
ENDING AT 4:
MONITORING [ONLY]
PROPOSING "ONLY"
JUMP TRANS #27 FROM 33:NP/:4(1) TO 32:NP/ONLY:4(3)
EXECUTING PATH (27 26 12 11 10 9 22 25)
BEGINNING AT TRANS 22, CONFIG 15
* % % %
MADE #1 FROM U4 TO 23:
NP DET ART THE
ADJ NP N RECISTRATION
NU SC
N FEE

FEATS NU.SG
RN

{The format of this noun phrase is slightly different
from that in the previous example because the structure
building action for noun phrases in SPEECHGRAMMAR

different from that in MINIGRAMMAR.

There are many places in the SPEECHGRAMMAR which push
for noun phrases, and since there were no monitors in
the WFST which can us® this constituent, all of them
must be tried, resulting in a number of predictions and

notices.}
SYN WEIGHT + SEM WT = 15 + 0 = 15

NP/ WAS NEVER PUSHED FOR

PUSH NP/ TRANS #28 FROM 34:FOR/FOR:4(1) TO 35:T0/:23(10)
ENDING AT 4:

MONITORING [FOR]
PROPOSING "FOT

NP/ WAS NEVER PUSHED FOR

PUSH NP/ TRANS #29 FROM 36:PP/PREP:4(1) TO 37:PP/NP:23(10)

ENDING AT 4:
MONITORING [PREP]

NP/ WAS NEVER PUSHED FOR
PUSH NP/ TRANS #30 FROM 38:R/NIL:4(1) TO 39:S/NP:23(9)

NP/ WAS NEVER PUSHED FOR

Page 62

PUSH NP/ TRANS #31 FROM 40:R/WH:4(1) TO 39:S/NP:23(9)
ENDING AT U4:

MONITORING [R/WHOSE]

MONITORING [WHICH THAT WHO WHOM WHICH WHOM]

{PROPOSING "WHICH" "THAT" "WHO" "WHOM"™ "WHICH" "WHOM")
{There are two arcs entering state R/WH which use the
words ‘"which" and "whom". There is a check made to see
that duplicate proposals are not actually communicated
to the control component, although they appear to be
duplicated in the trace.}

NP/ WAS NEVER PUSHED FOR
PUSH NP/ TRANS #32 FROM 41:S/DCL:4(1) TO 39:S/NP:23(9)
JUMP TRANS #33 FROM 42:S/:4(1) TO 41:S/DCL:4(1)
ENDING AT 4:
MONITORING [PP/]

NP/ WAS NEVER PUSHED FOR
PUSH NP/ TRANS #34 FROM 43:S/NO-SUBJ:4(1) TO
44:vP/Vv:23(9)
JUMP TRANS #35 FROM 45:S/AUX:U4(1) TO 43:S/NO-SUBJ:4(1)
ENDING AT 4:
{MONITORING [MODAL NEG V 1]}
{NOTICING "IS" "ARE"}

NP/ WAS NEVER PUSHED FOR
PUSH NP/ TRANS #36 FROM 46:S/Q:4(1) TO 39:S/NP:23(9)
ENDING AT 4:
MONITORING [QADV]

NP/ WAS NEVER PUSHED FOR
PUSH NP/ TRANS #37 FROM 47:VP/HEAD:4(1) TO u48:VP/NP:23(Q)
ENDING AT 4:
MONITORING [PARTICLE]
MONITORING [Vv]
JUMP TRANS #38 FROM 49:VP/V:4(1) TO 47:VP/HEAD:4(1)
ENDING AT 4:
{MONITORING [NP/ NP/ V V ADV V]}
{NOTICING "IS" "ARE"™ "IS" "ARE"}
{The words "is" and "are" failed the context free test
on the arc causing thae last monitor, hence they are not
noticed.}
JUMP TRANS #39 FROM 45:S/AUX:4(1) TO 49:VP/V:4(1)
JUMP TRANS #40 FROM 43:S/NO-SUBJ:4(1) TO 49:VP/V:4(1)
JUMP TRANS #41 FROM 43:S/NO-SUBJ:4(1) TO U49:VP/V:4(1)
JUMP TRANS #42 FROM 50:S/THERE:4(1) TO 49:VP/V:4(1)
ENDING AT 4:
MONITORING [THERE]
PROPOSING "THERE"

NP/ WAS NEVER PUSHED FOR
PUSH NP/ TRANS #43 FROM 51:VP/NP:4(1) TO 52:VP/VP:23(9)
ENDING AT 4:
MONITORING [NP/]
JUMP TRANS #44 FROM 4T7:VP/HEAD:4(1) TO S51:VP/NP:4(1)

NP/ WAS NEVER PUSHED FOR

Page 63

PUSH NP/ TRANS #45 FROM 49:VP/V:4(1) TO 44:VP/V:23(9)

{The creation of transition #27 completed 3 paths. The
first two have been executed, resulting respectively in
failure and the completion of a constituent with all the
processing that entails. Now the third path is still
pending and is about to be executed.}
EXECUTING PATH (27 26 12 11 10 15 16)
BEGINNING AT TRANS 15, CONFIG 14
DOING CAT ARC WITH REGISTRATION FROM 14:NP/DET TO
21:NP/HEAD
DOING POP ARC FROM 21&NP/HEAD
Ty
MADE #2 FROM 4 TO 19:
NP DET ART THE
N REGISTRATION
FEATS NU SG
HRRR
{This constituent can now satisfy the monitors set by
the discovery of the larger one, resulting in the
creation of many new transitions but no new
predictions.}
SYN WEIGHT + SEM WT = 10 + 0 = 10

NP/ WAS PUSHED FOR AT CONFIG 34
PUSH NP/ TRANS #46 FROM 34:FOR/FOR:4(1) TO 53:T0/:19(8)
{Similar NP/ transitions are set up at configurations
36,38,40,41,43,46,47,49, and 51 because of the monitors
set when the first constituent was found.}

SELECTED CONFIGS (55 54 39 37) FOR EXTENSION
{Because these are the maximally scoring configurations
from the large pool of possibilities.}
PICKING UP CONFIG 55:S/NP:19(8) WITH WORD FEE
TRYING POP ARC
POP TRANS #56 FROM 55:S/NP:19(8)
EXECUTING PATH (48 56)
BEGINNING AT TRANS 48, CONFIG 38
TEST FAILED
EXECUTING PATH (33 50 56)

BEGINNING AT TRANS 33, CONFIG 42
% % %

MADE #3 FROM 4 TO 19:
S NPU
NP DET ART THE
ADJ NP N REGISTRATION
NU SG
N FEE

FEATS NU. SG
WITH FEATURES (NPU)

%% %%
{Here is an example of a constituent which has features
attached to it. The feature NPU can be tested by the
semantic component to determine that the constituent is
a noun phrase utterance. If necessary, it could also be
tested on a PUSH S/ arc in the grammar, since there are

some times, e.g. during the construction of a

Page 64

sentential complement, when an embedded sentence nmust
contain a verb.}

SYN WEIGHT + SEM WT = 10 + 0 = 10
{No arcs in this grammar push for noun phrase
utterances, so this constituent is not used further.}

PICKING UP CONFIG 54:PP/NP:19(8) WITH WORD FEE
TRYING POP ARC

POP TRANS #57 FROM S54:PP/NP:19(8)

PICKING UP CONFIG 39:S/NP:23(9)
TRYING POP ARC
POP TRANS #58 FROM 39:S/NP:23(9)
EXECUTING PATH (30 58)
BEGINNING AT TRANS 30, CONFIG 38
TEST FAILED
EXECUTING PATH (33 32 58)
BEGINNING AT TRANS 32, CONFIG i1
X X X
MADE #4 FROM 4 TO 23:
S NPU
NP ADJ NP N REGISTRATION
NU SG
DET ART THE
N FEE
FEATS NU SG
WITH FEATURES (NPU)
t 2 X 3]

SYN WEIGHT + SEM WT = 15 + 0 = 15

PICKING UP CONFIG 37:PP/NP:23(10)
TRYING POP ARC
POP TRANS #59 FROM 37:PP/NP:23(10)

PREDICTIONS:

NOTICING (19 IS 3 4 =79 0), SCORE 10

NOTICING (20 ARE 3 4 -128 0), SCORE 10

PROPOSING (ONLY FOR WHICH THAT WHO WHOM THERE) ENDING AT 4

{MONITORING [ONLY FOR WHICH THAT WHO WHOM THERE]
ENDING AT 4, SCORE 15

MONITORING [MODAL NEG V QADV PARTICLE V V V ADV PREP V]
ENDING AT 4, SCORE 10

MONITORING [MODAL V INTEGER NPR N ADJ V ADV PREP]
STARTING AT 3, SCORE O

MONITORING [ZERO NO POINT A WHOSE WHO WHICH THAT WHOM THERE]
STARTING At 3, SCORE 5}

PROPOSING (MODAL) FROM 3 TO 4

PROPOSING (MODAL PREP) STARTING AT 3
PROPOSING (PREP MODAL NEG QADV) ENDING AT 4

CREATING THEORY 3:

0 WHAT 3 4 THE 6 REGISTRATION 19 FEE 23
WITH SYN SCORE 15

{This event took 34.5 seconds, largely because of the
extensive bottom up processing necessitated by the

Page 65

discovery of the noun phrases which were not monitored
for.}

{Processing the proposals from this theory results in
the best event being the one for "is" in the last gap.
The word "are" also fills the gap, but the lower lexical
score prevents the event for it from surfacing. If it
were syntactically processed, however, no new theory
would be created since the completed string would be
ungrammatical.}

SYNTAX PROCESSING EVENT FOR THEORY#3
WITH NEW WORD (3 IS 4)
'TO GET NEW THEORY#4:
0O WHAT 3 IS 4 THE 6 REGISTRATION 19 FEE 23

"IS" TRYING (CAT V ~-) FROM CONFIG 4
CAT V TRANS #60 FROM Y4:S/NP:3(11) TO 45:S/AUX:4(16)
{This ¢transition does not immediately complete any
paths, so the best scoring configurations of the theory
are tried.}

SELECTED CONFIGS (31) FOR EXTENSION
PICKING UP CONFIG 31:NP/DET:23(36)
TRYING JUMP NP/HEAD ARC
JUMP TRANS #61 FROM 31:NP/DET:23(36) TO
30:NP/HEAD:23(39)

SELECTED CONFIGS (52 48 u44) FOR EXTENSION
PICKING UP CONFIG 52:VP/VP:23(9)
TRYING JUMP S/VP ARC
JUMP TRANS #62 FROM 52:VP/VP:23(9) TO 59:S/VP:23(12)
PICKING UP CONFIG 48:VP/NP:23(9)
TRYING JUMP VP/VP ARC
JUMP TRANS #63 FROM U48:VP/NP:23(9) TO 52:VP/VP:23(11)
PICKING UP CONFIG 4Yy:vP/Vv:23(9)
TRYING JUMP VP/HEAD ARC
JUMP TRANS #64 FROM A44:VP/V:23(9) TO 60:VP/HEAD:23(13)

SELECTED CONFIGS (60) FOR EXTENSION
PICKING UP CONFIG 60:VEB/HEAD:23(13)
TRYING JUMP VP/NP ARC

JUMP TRANS #65 FROM 60:VP/HEAD:23(13) TO 48:VP/NP:23(16)

SELECTED CONFIGS (59) FOR EXTENSION
PICKING UP CONFIG 59:S/VP:23(12)
TRYING JUMP S/S ARC

JUMP TRANS #66 FROM 59:S/VP:23(12) TO 61:S/5:23(14)

;ﬁ&gﬁ&PD CONFIGS (61) FOR EXTENSION
UP CONFIG 61:S/S:23(14)

Page 66

TRYING POP ARC
POP TRANS #67 FROM 61:S/S:23(14)
EXECUTING PATH (1 2 60 35 34 64 €5 63 62 66 67)
BEGINNING AT TRANS 34, CONFIG 43
XA
MADE #5 FROM 0 TO 23.:.
S Q
SUBJ NP DET ART THE
ADJ NP N REGISTRATION
NU SG
N FEE
FEATS NU SG
AUX TNS PRESENT
VOICE ACTIVE
VP V BE
OBJ NP N WHAT
FEATS NU SG/PL
HNER
{This is the complete parse of the utterance, but
SPARSER continues the operations it has pending before
returning to Control.}
NO SEMANTICS FOR HEAD
{This is a comment from the semantic component

indicating that it cannot currently interpret the
construction.}

SYN WEIGHT + SEM WT = 25 + Q = 25

S/ WAS NEVER PUSHED FOR

PUSH S/ TRANS #68 FROM 62:COMPL/NTYPE:0(1) TO
63:COMPL/S:23(15)

S/ WAS NEVER PUSHED FOR
PUSH S/ TRANS #69 FROM 64:S/THEN:0(1) TO
65:S/IFTHEN:23(15)

S/ WAS NEVER PUSHED FOR
PUSH S/ TRANS #70 FROM 66:VP/HEAD:0(1) TO
52:VP/VP:23(13)
JUMP TRANS #71 FROM 67:VP/V:0(1) TO 66:VP/HEAD:0(1)
JUMP TRANS #72 FROM 68:S/AUX:0(1) TO 67:VP/V:0(1)
JUMP TRANS #73 FROM 69:S/NO-SUBJ:0(1) TO 67:VP/V:0(1)
JUMP TRANS #74 FROM 68:S/AUX:0(1) TO 69:S/NO-SUBJ:0(1)
JUMP TRANS #75 FROM 69:S/NO-SUBJ:0(1) TO 67:VP/V:0(1)
JUMP TRANS #76 FROM TO:S/THERE:0(1) TO 67:VP/V:0(1)

{One of the pending operations is to check the other
ares which caused monitors for the verb "is".}
"IS" TRYING (CAT V --) FROM STATE S/NP TO CONFIG 45

"IS" TRYING (CAT V --) FROM STATE FOR/TO TO CONFIG 40
CAT V TRANS #77 FROM 71:FOR/TO:3(5) TO 49:VP/V:4(20)

"IS" TRYING (CAT V --) FROM STATE VP/V TO CONFIG 49
CAT V TRANS {#78 FROM 72:VP/V:3(5) TO 49:VP/V:4(20)

JUMP TRANS #79 FROM 73:S/AUX:3(1) TO 72:VP/V:3(5)

Page 67

JUMP TRANS #80 FROM T4:S/NO-SUBJ:3(1) TO T72:VP/V:3(5)

JUMP TRANS #81 FROM 73:S/AUX:3(1) TO Tu4:S/NO-SUBJ:3(1)
JUMP TRANS #82 FROM T74:S/NO-SUBJ:3(1) TO 72:VP/V:3(5)

JUMP TRANS #83 FROM 75:S/THERE:3(1) TO T72:VP/V:3(5)

CREATING THEORY 4:

O WHAT 3 IS 4 THE 6 REGISTRATION 19 FEE 23
WITH SYN SCORE 15

{This processing took 34.45 seconds.}

This example was run with a very simple, mechanical control
structure. After the processing of the initial theory, the
proposals which had been made by SPARSER were processed by the
lexical retrieval component and the results added to the word
lattice -- a process whiech can set off monitors and result in the
creation of event notices. The events are scored by a
combination of the monitor score assigned by SPARSER and the
lexical score assigned by the word match component. In this
sentence, syntax and lexical score alone were sufficient to make
the best scoring event at cach step be one which resulted in a

correct extension of the theory.

EXAMPLE 3

We now show how the same utterance used in the previous
example cah be recognized when different theories are created and
when events and theories are processed in a different orded from
that in Example 2. Suppose that after the initial scan of the
utterance the semantic component created two theories, one for
the words "what" and "fee" and the other for the wobds "what' and
"reristration" Let us see what happens in SPARSER when we berin

by processipg these two theories in sequence.

Page 68

SPARSER PROCESSING THEORY 1:

0 WHAT 3

STARTING
STARTING

19 FEE 23
{The processing of this theory is very similar to that
of the first theory in the previous example, and will
not be commented upon here. The purpose in showineg it

is to provide a map, part of which the next call to
SPARSER will trace.}

AN ISLAND
AT LEFT END OF SENTENCE

SELECTED CONFIGS (1) FOR EXTENSION
PICKING UP CONFIG 1:S/:0(1) WITH WORD WHAT
TRYING PUSH PP/ ARC
TRYING JUMP S/Q ARC
JUMP TRANS #1 FROM 1:S/:0(1) TO 2:S/Q:0(6)
TRYING WRD IF ARC
TRYING JUMP S/IMP ARC
TRYING JUMP S/DCL ARC

SELECTED CONFIGS (2) FOR EXTENSION
PICKING UP CONFIG 2:5/Q:0(6) WITH WORD WHAT
TRYING PUSH NP/ ARC
MONITORING [NP/]

SETTING UP CONFIG 3:NP/:0(11)

TRYING WRD HOW ARC

TRYING CAT QWORD ARC

CAT QWORD TRANS #2 FRO!l 2:S/Q:0(6) TO U4:S/NP:3(11)
TRYING CAT QADV ARC

TRYING JUMP S/NP ARC

SELECTED CONFIGS (3 4) FOR EXTENSION

PICKING UP CONFIG 3:NP/:0(11) WITH WORD WHAT

TRYING WRD ONLY ARC
TRYING CAT QDET ARC
CAT QDET TRANS #3 FROM 3:NP/:0(11) TO 5:NP/ORD:3(16)
TRYING PUSH DATE/ ARC
TRYING TST ARC
TRYING JUMP NP/ONLY ARC

-

PICKING UP CONFIG 4:S/NP:3(11)
STARTING AT 3:
MONITORING [MODAL]
MONITORING [V]
TRYING POP ARC
POP TRANS #4 FROM 4:S/NP:3(11)
EXECUTING PATH (1 2 4)
BEGINNING AT TRANS 1, CONFIG 1
DOING JUMP ARC WITH WHAT FROM 1:S/ TO 2:S/Q
DOING CAT ARC WITH WHAT FROM 2:S/Q TO 4:S/NP
DOING POP ARC FROM Y4:S/NP
TEST FAILED

SELECTED CONFIGS (5) FOR EXTENSION
PICKING UP CONFIG 5:NP/ORD:3(16)
STARTING AT 3:

Page 69

MONITORING [QUANT/]
SETTING UP CONFIG 6:QUANT/:3(16)
MONITORING [INTEGER]
TRYING JUMP NP/QUANT ARC
JUMP TRANS #5 FROM S5:NP/ORD:3(16) TO T7:NP/QUANT:3(21)

SELECTED CONFIGS (7) FOR EXTENSION
PICKING UP CONFIG T:NP/QUANT:3(21)
TRYING JUMP NP/DET ARC
JUMP TRANS #6 FROM 7:NP/QUANT:3(21) TO 8:NP/DET:3(26)

SELECTED CONFIGS (8) FOR EXTENSION
PICKING UP CONFIG 8:NP/DET:3(26)
STARTING AT 3:
{MONITORING [NPR/ NPR/ NPR NPR N ADJ N V ADV]}
SETTING UP CONFIG 9:NPR/:3(26)
TRYING JUMP NP/HEAD ARC
JUMP TRANS #7 FROM 8:NP/DET:3(26) TO 10:NP/HEAD:3(29)

SELECTED CONFIGS (10) FOR EXTENSION
PICKING UP CONFIG 10:NP/HEAD:3(20)
STARTING AT 3:
{MONITORING [R/ PP/ R/NIL PREP WHOSE WHO WHICH THAT WHOM]}
SETTING UP CONFIG 11:R/:3(29)
{PROPOSING "WHOSE"™ "WHO" "WHICH"™ "THAT" "WHOM"}
SETTING UP CONFIG 12:PP/:3(29)
MONITORING [PREP]
SETTING UP CONFIG 13:R/NIL:3(29)
MONITORING [THERE]
PROPOSING "THERE"
TRYING POP ARC
POP TRANS #8 FROM 10:NP/HEAD:3(29)
EXECUTING PATH (3 5 4% 7 8)
BEGINNING AT TRANS 3, CONFIG 3
DOING CAT ARC WITH WHQ FROM 3:NP/ TO S5:NP/ORD
DOING JUMP ARC FROM 5:NP/ORD TO T:NP/QUANT
DOING JUMP ARC FROM T7:NP/QUANT TO 8:NP/DET
DOING JUMP ARC FROM 8:NP/DET TO 10:NP/HEAD
TEST FAILED

STARTING AN ISLAND
"FEE" TRYING CAT N ARC FROM NP/DET TO NP/DET

CAT N TRANS #9 FROM 14:NP/DET:19(1) TO 15:NP/DET:23(4)
ENDING AT 19:

MONITORING [NPR/ 1]
MONITORING [ADJ]
MONITORING [N]
NOTICING "REGISTRATION"
NOTICING "REGISTRATION"
{There are two instances of the word '"registration" in
the word lattice, hence two notices are created.}
MONITORING [V]
JUMP TRANS #10 FROM 16:NP/QUANT:19(1) TO 14:NP/DET:19(1)
ENDING AT 19:
MONITORING QUANT/]
JUJP %RAN #11 FROM 17:NP/ORD:19(1) TO 16:NP/QUANT:19(1)

ENDING AT 19:
{MONITORING [ORD QDET ONLY 1]}
PROPOSING "ONLY"
JUMP TRANS #12 FROM 18:NP/ART:19(1) TO 17:NP/ORD:19(1)
ENDING AT 19:
{MONITORING [ART QUANT POSS WHOSE]}
PROPOSING "“"WHOSE"
JUMP TRANS #13 FROM 19:NP/ONLY:10(1) TO 18:NP/ART:10(1)
ENDING AT 19:
MONITORING [ONLY]
PROPOSING "ONLY"
JUMP TRANS #14 FROM 20:NP/:19(1) TO 190:NP/ONLY:19(1)

"FEE" TRYING CAT N ARC FROM NP/DET TO NP/HEAD
CAT N TRANS #15 FROM 14:NP/DET:19(1) TO 21:NP/HEAD:23(6)

SELECTED CONFIGS (21) FOR EXTENSION
PICKING UP CONFIG 21:NP/HEAD:23(6)
TRYING POP ARC
POP TRANS #16 FROM 21:NP/HEAD:23(6)
EXECUTING PATH (14 12 12 11 10 15 16)
BEGINNING AT TRANS 14, CONFIG 20
TEST FAILED

PREDICTIONS:

NOTICING (1 REGISTRATION 6 19 277 0), SCORE -5

NOTICING (10 REGISTRATION 7 19 103 0), SCORE -5

PROPOSING (ONLY WHOSE) ENDING AT 10

PROPOSING (WHOSE WHO WHICH THAT WHOM THERE) STARTING AT 3

{MONITORING [ADJ N V ORD QDET ART QUANT POSS]
ENDING AT 19, SCORE O

MONITORING [WHOSE OHNLY] ENDING AT 19, SCORE 5

MONITORING [MODAL V INTEGER NPR N ADJ V. ADV PREP]
STARTING AT 3, SCORE 0

MONITORING [WHOSE WHO WHICH THAT WHOM THERE]
STARTING AT 3, SCORE 5}

FINISHED THEORY 1 WITH SYN SCORE O

{This processing took 12.5 scconds.}

{Now we will process the second theory.}
SPARSER PROCESSING THEORY 2:

0 WHAT 3 & REGISTRATION 19 23

STARTING AN ISLAND
STARTING AT LEFT END OF SENTENCE

SELECTED CONFIGS (1) FOR EXTENSION

Pape 70

{Upon picking up this configuration to extend
SPARSER finds the transitions which were created during
the processing of the word "what" by the previous
theory. It "traces" them all, that is, it does not
recreate them but simply puts the transition numbers
a list which will form part of the syntactic information

Page T1

associated with the current theory. The tracing process
also involves the creation of monitors (and notices,
where applicable) for constituents along the path.
These moniters and notices must be remade, since the
previous nmonitors will activate only the previous
theory.

Due to the recursive nature of the tracing process,
the transitions are not necessarily followa@d in the same
order that they were originally c¢reated, nor are the
monitors made in exactly the same order.

Notice that the many ares which were tried but
which did not result in the creation of transitions in
the previous theory are not retried here.}

PICKING UP CONFIG 1:S/:0(1) WITH WORD WHAT
TRAGING JUMP S/Q TRANS 1 FROM 1:S/:0(1) TO 2:S5/Q:0(6)
MONITORING [NP/]
TRACING CAT QWORD TRANS 2 USING "WHAT" FROM 2:5/Q:0(6)
TO 4:S/NP:3(11)
STARTING AT 3:
MONITORING [MOBAL]
MONITORING [V]
TRACING POP TRANS 4 FROM H4:S/NP:3(11)
TRACING CAT QDET TRANS 3 USING "WHQ" FROM 3:NP/:0(11)
TO 5:NP/ORD:3(16)
STARTING AT 3:
MONITORING [QUANT/]
SETTING UP CONFIG 6:QUANT/:3(16)
{This does not mean that configuration 6 was just
created. Since it already existed in the map, having
been created during the processing of the previous
theory, the configuration number is merely put on the
list of configurations in the current theory.}
MONITORING [INTEGER]
TRACING JUMP NP/QUANT TRANS 5 FROM 5:NP/ORD:3(16) TO
T7:NP/QUANT:3(21)
TRACING JUMP NP/DET TRANS 6 FROM T:NP/QUANT:3(21) TO
8:NP/DET:3(26)
STARTING AT 3:
{MONITORING { NPR/ NPR/ NPR NPR N ADJ N V ADV 1]}
SETTING UP CONFIG 9:NPR/:3(26)
TRACING JUMP NP/HEAD TRANS 7 FROM 8:NP/DET:3(26) TO
10:NP/HEAD:3(29)
STARTING AT 3:
{MONITORING [R/ PP/ R/NIL.PREP WHOSE WHO WHICH
THAT WHOM PREP THERE]}
SETTING UP CONFIG 11:R/:3(29)
{NOTICING "WHOSE" "WHO" }
SETTING UP CONFIG 12:PP/:3(29)
SETTING UP CONFIG 13:R/NIL:3(29)
{No proposals were made here because proposals are not
theory dependent; that 1is, the word proposals which
were made during the processing of the previous theory
resulted in some words being placed in the word lattice
which were noticed here. Remaking the proposals would
not lead to the discovery of any new information.}
TRAGQING POP TRANS 8 FROM 10:NP/HEAD:3(29)

Page 72

{The processing of the 1island for T"registration" |is
idéntical to that in the last example, so the remainder
of the trace will be omitted. The total processing took
12.2 seconds.}

{Let us now process the event which adds the word "the"
to the theory Jjust processed. This will result in the
creation of a constituent event.}

SYNTAX PROCESSING EVENT FOR THEORY#2
WITH NEW WQRD (4 THE 6)

TO GET
0 WHAT 3

NEW THEORY#3:
4 THE 6 REGISTRATION 19 23

"THE® TRYING (CAT ART --) FROM STATE NP/ONLY TO CONFIG 25
CAT ART TRANS #25 FROM 32:NP/ONLY:4(3) TO 25:NP/ART:6(6)
ENDING AT U4:
MONITORING [ONLY]
PROPOSING "ONLY"
JUMP TRANS #26 FROM 33:NP/:4(1) TO 32:NP/QNLY:4(R)
EXECUTING PATH (26 25 20 19 18 17 15 16)
BEGINNING AT TRANS 26, CONFIG 33

EXNN

MADE #1 FROM 4 TO 23:
NP DET ART THE
ADJ NP N REGISTRATION

NU SG

N FEE
FEATS NU SG

% 3 % %

NOTIFYING THEORY 3 ABOUT CONSTITUENT #1

{This constituent cannot be used immediately by this
theory because it contains a word ("fee") which is not
in the theory. Therefore a notice is sent to Control
which may be turned into an event at some later time.
Nothing further is done with this constituent at this
time, i.e., no transitions using it are crcated. It is,
however, placed in the WFST for later use.}

EXECUTING PATH (26 25 20 19 18 23 24)
BEGINNING AT TRANS 23, CONFIG 22

{The creation of transition #26 completes another path.}

MADE #2 FROM 4 TO 19:
NP DET ART THE
N REGISTRATION
FEATS NU SG

% 3% % ¥

SYN WEIGHT + SEM WT = 10 + 0 = 10

{This constituent 1is completely consistent with the
current theory, that 1is, it is composed only of word
matches already in the theory, and there are no monitors
in the WFST for it, so it is processed bottom up as we
have seen before.}

NP/ WAS NEVER PUSHED FOR

PUSH NP/ TRANS #27 FROM 34:FOR/FOR:4(1) TO 35:T0/:19(7)
ENDING AT 4:
MONITORING [FOR]
PROPOSING "FOR"

NP/ WAS NEVER PUSHED FOR
PUSH NP/ TRANS #28 FROM 36:PP/PREP:4(1) TO
37:PP/NP:19(7)
ENDING AT 4:
MONITORING [PREP)

NP/ WAS NEVER PUSHED FOR
PUSH NP/ TRANS #29 FRQM 38:R/NIL:4(1) TO 39:S/NP:19(6)

NP/ WAS NEVER PUSHED FOR
PUSH NP/ TRANS #30 FROM 40:R/WH:U4(1) TO 39:S/NP:19(6)
ENDING AT U4:
MONITORING [R/WHOSE]
MONITORING [WHICH THAT WHO WHOM WHICH WHOM]
{NOTICING "WHO" "WHOM" "WHICH" "WHOM"}

NP/ WAS NEVER PUSHED FOR
PUSH NP/ TRANS #31 FROM 41:S/DCL:4(1) TO 39:S/NP:19(6)
JUMP TRANS #32 FROM 42:5/:4(1) TO 41:S/DCL:4(1)
ENDING AT 4:
MONITORING [PP/]

NP/ WAS NEVER PUSHED FOR
PUSH NP/ TRANS #33 FROM 43:S/NO-SUBJ:4(1) TO
Yu4:YP/V:19(6)
JUMP TRANS #34 FROM 45:S/AUX:4(1) TO 43:S/NO-SUBJ:U4(1)
ENDING AT U:
{MONITORING [MODAL NEG V]}
{NOTICING "IS" “ARE"™ "PAY")

NP/ WAS NEVER PUSHED FOR
PUSH NP/ TRANS #35 FROM 46:S/Q:4(1) TO 39:S/NP:19(T)
ENDING AT U4:
MONITORING [QADV]

NP/ WAS NEVER PUSHED FOR
PUSH NP/ TRANS #36 FROM 4T7:VP/HEAD:4(1) TO
48:VP/NP:19(7)
ENDING AT 4:
MONITORING [PARTICLE]
MONITORING [V]
NOTICING "PAY"
JUMP TRANS #37 FROM 49:VP/V:U4(1) TO 4T7:VP/HEAD:4(1)
ENDING AT 4:
{MONITORING [NP/ NP/ V ADV V]}
{NOTICING "IS" "AREII "PAY" "IS" "ARE" I'I‘PAY"}
JUMP TRANS #38 FROM U45:S/AUX:4(1) TO 49:VP/V:4(1)
JUMP TRANS #39 FROM 43:S/NO-SUBJ:4(1) TO 49:VP/V:4(1)
JUMP TRANS #40 FROM 43:S/NO-SUBJ:4(1) TO 49:VP/V:4(1)
JUMP TRANS #4177 FROM 50:S/THERE:4(1) TO 49:VP/V:U(1)
ENDING AT U4:
MONITORING [THERE .)

Page T3

Page Tl
PROPOSING "THERE"

NP/ WAS NEVER PUSHED FOR
PUSH NP/ TRANS #42 FROM 51:VP/NP:4(1) TO 52:VP/VP:19(6)
ENDING AT 4:
MONITORING [NP/]

JUMP TRANS #u43 FROM UT:VP/HEAD:4(1) TO 51:VP/NP:U4(1)

NP/ WAS NEVER PUSHED FOR
PUSH NP/ TRANS #44 FROM 49:VP/V:H4(1) TO 44:VP/V:19(T7)

SELECTED CONFIGS (35 37 39 44 48) FOR EXTENSION
PICKING UP CONFIG 35:T0/:19(7)
STARTING AT 19:
MONITORING [NEG]
MONITORING [TO]
PROPOSING "TQ"
ALL ARCS TRIED AT THIS CONFIG

PICKING UP CONFIG 37:PP/NP:19(7)
TRYING POP ARC
POP TRANS #45 FROM 37:PP/NP:19(7)

PICKING UP CONFIG 39:S/NP:19(7)
STARTING AT 19:
MONITORING [MODAL]
MONITORING [V]
TRYING POP ARC
POP TRANS #46 FROM 39:S/NP:19(7)
EXECUTING PATH (32 31 u46)
BEGINNING AT TRANS 32, CONFIG 42
%% % %
MADE #3 FROM 4 TO 19:
S NPU
NP DET ART THE
N REGISTRATION
FEATS NU SG
WITH FEATURES (NPU)
2 X X

SYN WEIGHT + SEM WT = 10 + 0 = 10

PICKING UP CONFIG u44:VP/V:19(7)
STARTING AT 19:
{MONITORING [NP/ N-QDET ADJ INTEGER ARE QUANT
PRO NPR POSS V V ADV TEST(NOT (CAT V)) 1]}
SETTING UP CONFIG 20:NP/:19(7)
NOTICING "FEE"
ALL ARCS TRIED AT THIS CONFIG

PICKING UP CONFIG 48:VP/NP:19(7)
STARTING AT 19:

{MONITORING [COMPL/ TO/ COMPL/ NP/ FOR THAT TO FOR THAT
N QDET ADJ INTEGER ARE QUANT PRO NPR POSS
V PARTICLE]}

SETTING UP CONFIG 53:COMPL/:19(7)

SETTING UP CONFIG 35:T0/:19(7)

SETTING UP CONFIG 53:COMPL/:19(7)

Page 75

SETTING UP GONFIG 20:NP/:19(7)
NOTICING "FEE"
TRYING JUMP VP/VP ARC
JUMP TRANS #47 FROM 48:VP/NP:19(7) TO 52:VP/VP:19(9)

SELECTED CONFIGS (52) FOR EXTENSION
PICKING UP CONFIG 52:VP/VP:19(9)
STARTING AT 19:
MONITORING [PP/]
SETTING UP CONFIG 30:PP/:19(9)
MONITORING [PREP]
MONITORING [PREP]
TRYING JUMP S/VP ARC
JUMP TRANS #48 FROM 52:VP/VP:1Q(9) TO 54:5/VP:19(12)

SELECTED CONFIGS (54) FOR EXTENSION
PICKING UP CONFIG 58<S/VP:19(12)
TRYING JUMP S/S ARC
JUNP TRANS #49 FROIl 54:8/VP:10(12) TO 55:8/S:10(14)

SELECTED CONFIGS (55) FOR KXTENISION
PICKING UP CONFIG 55:5/S:19(14)
TRYING POP ARC
POP TRANS #50 FROM 55:S/S8:10(14)

PREDICTIONS:
NOTICING (4 FEE 19 23 155 0), SCORE 5

NOTICING (19 WHO 3 4 -180 0), SCORE 10

NOTICING (21 IS 3 4 -39 0), SCORE 10

NOTICING (23 ARE 3 4 -128 0), SCORE 10

NOTICING (25 PAY 3 4 -146 0), SCORE 5

PROPOSING (TO) STARTING AT 19

PROPOSING (ONLY FOR WHOM WHICH THERE) ENDING AT U4
PROPOSING (V [1ODAL) FRO!f 3 TO 4
PROPOSING (MODAL PREP) STARTING AT 3

-

PROPOSING (PREP MODAL NEG QADV) ENDING AT 4

{The lengthy summary of monitors sc¢t by this event
omitted.}

CREATING THEORY 3:

0 WHAT 3 4 THE 6 REGISTRATION 19 23
WITH SYN SCORE 15

{This took 30.8 seconds.}
{Now we will process the constituent event for

theory Jjust created. Because of the constituent
"the registration” there ar¢ now monitors in the

i3

the
for

WFST

for a noun phrase beginning at position &4, so the

appropriate transitions are made.}

SYNTAX PROCESSING EVENT FOR THEORY#3 WITH CONSTITUENT #1
TO GET NEW THEORY#UY

O WHAT 3 4 THE 6 REGISTRATION 19 FEE 23

{Processing begins exactly where it left off when

the

Page 76

constituent was made -- the constituent is semantically
evaluated with respect to this theory so that the
constituent weight may be altered. In this case,

however, Semantics has been turned off, so there is no
increment in the score.}

SYN WEIGHT «+ SEM WT = 15 + 0 = 15

NP/ WAS PUSHED FOR AT CONFIG 34
PUSH NP/ TRANS #51 FROHl 3U:FOR/FOR:u4(1) TO 56:T0/:23(11)

SELECTED

{Similar transitions are set up for all 0 other
configurations where an NP/ was used in the previous
theory. The monitors set by these paths are copied from
the previous theory, so there is no indication here of a
new monitor beinpg created.}

CONFIGS (58 K7) FOR EXTENSION

PICKING UP CONFIG 58:S/NP:23(10)
TRYING POP ARC
POP TRANS #61 FRO! 58:S/NP:23(10)
EXKCUTING PATH (32 55 61)
BEGINNING AT TRANS 55, CONFIG 41
DOING PUSH ARC WITH #1 FROM 41:S/DCL TO 58:S/NP
DOING POP ARC FROH 58:S/NP

31
MADE

S NPU

NP

WITH
%N

#4 FROM 4 TO 23:

DET ART THE

ADJ NP N REGISTRATION
NU SG

N FEE

FEATS NU SG

FEATURES (NPU)

SYN WEIGHT + SEM WT = 15 + 0 = 15

PICKING UP CORFIG 57:PP/NP:23(11)
TRYING POP ARC
POP TRANS #62 FROM 57:PP/NP:23(11)

PREDICTIONS:

NOTICING (19 WHO 3 4 -180 0), SCORE 10
NOTICING (21 IS 3 4 -39 0), SCORE 10
NOTICING (23 ARE 3 4 -128 0), SCORE 10
NCTICING (25 PAY 3 4 -1u46 0), SCORE 5

PROPOSING (V MODAL) FROM 3 TO 4

PROPOSING (MODAL PREP) STARTING AT 3

PROPOSING (PREP MODAL NEG QADV) ENDING AT A4

CREATING
0 WHAT 3

{Again, the monitor list is omitted for considerations
of space.}

THEORY U4:
4y THE 6 REGISTRATION 19 FEE 23

WITH SYN SCORE 15

{This event took only 9.7 seconds.]}

Page T7

The processing of the final event, that which adds the word

"ig" to the theory Jjust created, will not be shown.

Thes® examples have shown that SPARSER is a useful tool in
the automatic recognition oF speech. The timing measurements
indicate that considerable processing is done when the parser is
forced to work in bottom up mode, especially with a large
grammar Of course there is some implementaion overhead involved
in doing the timings themselves. If the parsing alrorithm were
to be carefully recoded in assembly language a speed up of at
least a factqr of 20 (and perhaps much more) could be achieved.
Another way to cut down the time-consuming processing mirht be to
attempt to obtain nmore semantic guidance. For example, if the
semantic hypothesis associated with a theory indicates that a
particular noun is 1likely to be used in a noun phrase modifier
(e.p. "tomorrow"), then SPARSER should be able to take advantage
of this informgtion by scoring the PUSH NP/ transition from a
configuration for state PP/ (i.e. to pet something like "by
tomorrow") higher than those PUSH NP/ transitions for other
syntactic slots. In fact, the others may not need to be
constructed at all. The grammar could also be further tuned to

eliminate some spurious predictions and reduce the time spent

following erroneous paths.

Page 78

Section 7

Conclusions and Further Research

T.)] STRENGTHS AND WEAKNESSES OF SPARSER

One of the weak points of the current system is the fact
that some context information is not used until a path is
complete, resulting in the c¢reation of false paths and
predictions which should not have been made. This is partly
mitigated by the fact that this avoids a too great dependence on
left context and allows the creation of partial paths which may

be followed if an earlier word is changed.

It is important, however, to minimize the number of
predictions which are made and to make the predictions as
accurate as possible. In this regard, it is unfonptunate that the
current system makes predictions on the left of an island solely
on the basis of the first word in the island and . makes
predictions on the right end from configurations which, if

context sensitive tests had been done along the path, would never

nave been created.

One way to help tighten the predictions would be to take
ceach context free path thrsugh an island and walk it in a special
mode after the island has been processed but before predictions
are communicated to the conhtrol component. This mode would set
and check registers, assuming that any tests which require

unknown left context are true. Only if the path did not fail

Page 79

under this mode of operation would the predictions at either end

of it be made. If a really efficient way of handling unknown

left context and of storing this informafion were developed, it
could be used in place of the context free pass in the first

place, thus eliminhating all inconsistent paths.

The problem with storing all possible contexts is that they
must be recomputed <ach time a new step is added to the path.
This is relatively easy if the next step is taken to the right of
an existing path, since ATN s are more suited to left to ripht
processing, but it becomes extremely complex when a transition is
added to the left end of a path (or set of paths) or when a
transition joins two sets of paths together. To be absolutely
sure that no contexts have been missed, all the paths would have
to be walked and their contexts reprocessed and copied in whole
or in part (since the new step may be wrong, the old context must
be preserved.) Of eourse this is not the only approach which
could be .used -- a mereing technique like that of Earley’s
algorithm might be feasible, if the structure of the grammar were

also changed to make it less left to right oriented.

One srreat strength of the system is its ability to store and
merge information in such a way that it does not have to be
redone when the context is changed. For example, once an arec has
been tried with a particular word match, a transition will be
created if the arc may be taken and the arc will be removed from
further consideration if it may not be taken. Then, if the
conFiguration should ever be reached with the same word match

again (perhaps in a later theory) not only will any relevant

transitions be recosnized without having to po throurh the work
of re-creating them, but also no arcs which had previously failed

will ever be retried.

Another feature of SPARSER.is the fact that it wus desirned
and implemented with many unsolved problerms and unavailable data
in mind, and therefore many "holes" have been left on which to
"hook" further developments. For example, althourh prosodic
verification of constituents is not yet available, the scorine
mechaniam for constituents is structured in such a way that it
would be easy to include the results of verification by prosodics
(or any other component). The orisrinal implementation of SPARSER
used a depth first search but was implemented in such a way that
the change to nrodified breadth first was quite simple. This
foresight has paid off in a flexible system which has shown that
it can be preadily experimented with in order to explore many
still unsolved problems concerning the nature and use of

syntactic information in understanding

7.2 PROSODICS

A tremeéndous amount of information in speech is conveyed by
proscdic features: stress, intonation duration, loudness,
pauses, pitch. For example, if John mumbles to Bill, '"The
mailman left something for you," Bill may reply either "What?"
with much energy and a sharply risifig intonation or "What?" with
a flat or falling intonation. In the first case John is very

likely to shout "I said, The mailman left something for you "

Page 81

interpreting . "What?" to mean "What did you say?" whereas in the
second case he is likely to say something like "A package from
your mother," interpreting "What?" to mean "What is it?" To
ignore prosodics is to ignore a source of information whieh has
been shown repeatedly to be an extremely important factor in

human understanding.

Consider the following examples of sentences and sentence
fragments which illustrate some of the ways prosodies are used:

1. I stepped on the man with black shoes. (Who was wearing
the shqes?)

2a. The new gnu Knew news.

2b. The gnu knew new gnus.

3. I m going to move on Thursday. (stress on "move"
implies moving to a new house; stress on "on" implies
traveling to a new place.)

Ja. Can you swim to Daddy?

4b. Can you swim too, Daddy?

5a. es. two-fifty for ...

5b. ee. two=fifty=four ...

Prosodic verification could help a lot in rejecting
semantically correct, syntactically consistent phrases which are
nonetheless wrong. If the constituent Yspeech understanding"®
were identified and relied upon, it might be very difficult to
produce a correct analysis of the utterance: "Because of

peculiarities in his speech, understanding Joe is not easy."

Page 82

Besides indicating syntactic boundaries and/or providing
intonation contours for certain constituents, prosodic featurces
can be used to mark emphasis, introduce new topics, convey
information about the speaker s internal mental and ermotional
state (e.g. whether he is teasing or serious), and probably
mory. It is particularly interestine to note that some well
known phenonena such as "pronouns are almost never stressed" and
"in discourse wvwhen a new topic word iz mentioned it 13 almost
always stressed" have very natural explainations in lipht of what
we know about acoustic processing. Stressed words are renerally
easier to identify because there is less acoustic ambiruity, but
unstressed words may differ srreatdy from their ideal
pronunciation and hence are harder to reliably identify
Pronouns refer to antecedents which are presumably known to the
listener, so he can anticipate them or at 1least verify them
easily, hence they need not have good acoustic characteristics.
A new topic may not have been anticipated, so the listener will
have to depend heavily on identifying the word from acoustic
information alone and the speaker can provide this extra reliable

information by stressing the word.

Unfortunately, not a great deal is known about eifther the
acoustic correlates of prosodic features or the ways in which
they are used. Many- of the rules which have been developed thus
far are speaker dependent and are sufficient for conveying
information but are not necessary. This makes them difficult to
use in the analysis mode. Although a good start has been made in
exploring prosodies (sece, for example, Lea [52, 13] and Bates and

Wolf [8]), much more work remains to be done before proscodic

Page 83
information can be reliably used by speech understanding systems.

SPARSER could use prosodic information in several ways.
Verification of constituents would be a prest help, but local
prosicid information could be used even earlier in the parsing
process. For example, if major constituent boundaries could be
accurately determined, then instead of both POPing a constituent
and continuing it 1in parallel, as is done now, one alternative
could be chosen instead of the other on the bhadis of prosodic
information. If, as is more likely, some major boundaries could
be reliably detected, then it would be cvasy to revise SPARSER to
begin processing at such places even within an island at states
which can begin constituents. This would again reduce the number

of partial paths created when parsing an island.

T.3 EXTENSIONS AND FURTHER RESEARCH

Ungrammatical input

One of the obvious extensions to a basic speech
understanding system is to relax the restrictions on the input to
the system. Syntactically, this can mean removing the
requirement that the initial wutterance be grammatical. Since
people frequently speak ungrammatically in informal discourse,

this is a natural step to want to take.

In order to extend SPARSER to handle such input, several
approaches are possible. Certain types of errors may be called

errors of style (and may not be called errors at all by some

Page 84

people) such as the use of "ain’t" and the occurrence of a
preposition at the end of a sentence. These rerularities ray
simply be declared grammatical by modifying the grammar to accept
them. Many speech errors have been shown to follow recsulsar

patterns and hence may be amcenable to this approach,

Qther common errors viol-ate specitffic tests which appear o0
the arces of the grammar, for exanple, to prohibit douhlee
neratives and to check for number arsreenent between sudbrecot and
verb or between determiner and noun (e.p. ®#"There is sore verly
Severe restrictions on this rule."). In this case, rather than
renoving the tests from the gFrammar it would be rore suitable to
modify therm sc that if they failed the arce could still be tagen,
thourh with a mueh reduced weipht or with an indication in sore
resister that an error has occurred. Cne way to implement thus
would be to have all tests return a nurber as their value

indicating how well they succeeded on some scalde from "perfectly"”

to "not at all'".

Not all arc tests are of this relaxable nature, however,
since certain types of errors are so rare, if they occur at all,
that they may be judged unacceptalic. Examples of such tests are
the case checks for pronouns (e.g. #*"I gave it to he") and the
requirement that a verb modifying- a noun must be in either the
present or past participle form (e.g. '"the singing brook" vs.

¥"the sineg brook").

These methods would not allow all tvpes of grammatical
errors to be hdndled (in particular it irfnores the probler of

constituent ordering errors such as "Throw Mama from the train a

Page 85

kiss"), but would handle many of the most common syntactic

errors.

AD gxperiment

Keepine in mind that SPARSER is not intended to be a nodel
of human syntactic analysis, it is nonetheless reasonable to ask
whether there are anv similarities which may be seen. The
following experiment is sygrested with the hypothesis that it
will indicate that people do considerable processing at the end
of svntactic constituents in a way similar to-some reprister

settine and testing actions and semantic (or other) verification

The experiment is this: a subject is seated in front of a
switch which h& is asked td press whenever he is sure that he is
hearineg an anomalous sentence, He 1is then presented with a
number of recorded utterances, some of which are incorrect, e.r.

#The cat and dog which lives next door are friendly.

*T saw.a red big barn on the farm,

I hypothesize that the subject will indicate the presence of an
error at a point shortlIy after the end of the constituent in
which the error occurred more oftén thand shortly after the

earliest possible place wherd the error coul be detected.

%2 4 €ONCLUSION

In conclusion, it is ebvibus that there is much work yet to
be done in the problem.of speech understanding, but it is hoped

thd{ th® system presented here has not. only advanced our current

understanding of the role of syntactic knowledre n comprehens.on

but will continue tc . a useful tool for further exploration

Page 87

APPENDIX I

MINIGRAMMAR

This appendix contains a 1listing (slightly edited for
clarity) of theegrammar called MINIGRAMMAR which was discussed in
Section Three (illustrated in Figure 3.3) and which was wused in

Section Six.

(NP/
(CAT ART (T T)

5
(SETR,ART (BUILDQ ((ART %))))
(TO" NP/ART))

(JUME)§P/ART (T T)

(NP/ADJ
(CAT N (T T)

2
(SETR N.%)
(SETR NU (GETFEATURE NUMBER))
(TO NP/N))
(CAT N (T T)
2
(ADDL ADJS (BUILDQ (ADJ (NP (N %)
(NU)))
(GETFEATURE NUMBER)))
(TO NP/ADJ)))

(NP/ART
(CATueunNT (T T)

(SETR QUANT (BUILDQ ((QUANT %*))))
(TO NP/QUANT))

(JUMP)?P/QUANT (T T)
5

(NP/QUANT
(CATuADJ (T T)
(ADDR ADJS (BUILD?*§§ (ADJ)
FEATURES))
(TQ NP/QUANT))
(JUM§)§P/ADJ (T T)

(NP/N
(PUSH PP/ ((PPSTART)
TT)
y
(ADDL NMODS #*)
(TO NP/N))
(POP (BUILDQ (€@ (NP)
+ + + ((N +))
((NU +))

+)

ART QUANT ADJS N NU NMODS)

(T (DETAGREE))
5))

(PP/
(CAT PREP (T T)
5
(SETR PREP ¥)
(TO PP/PREP)))

(PP/PREP
(PUSH NP/ ((NPSTART)
TT) -
5
(SETR NP ¥)
(TO PP/NP)))

(PP/NP
(POP (BUILDQ §PP (PREP +)
-+
PREP NP)
(T T)
5))

Page 88

Page 89

APPENDIX II

Vocabulary and Syntax Classes

This appendix lists the 351 words which we&re in the
dictionary of the BBN speech understanding system when the
examples in Chapter Six were run (July 1975). (A 569, word
dictionary and one with 1000 entries arc now available. After
the listing of the words in the dictionary, they are. broken into
syntactic c¢lasses, with the number of words in ecach aglass
indicated beside the class name. Finally, the syntactic features
are given together with a 1list of the words which carry edch
feature. Features may be of the form FEATURE, (FEATURE), or
(FEATURE VALUE).

This is not a listing of the dictionary as it appears to the
system, but rather a derived cross reference which indicates the

various parts of speech and syntactic features for cach word

The words:

(A ABOUT ABOVE ACL ACOUSTICAL ACOUSTICS ADDITIONAL AFFORD AFTER
AI AIR AIRPLANE ALL ALREADY ALSO AM AMHERST AMOUNT AN AND
ANTICIPATE ANY ANYONE ANYWHERE APRJL ARE ARPA ARRANGE ASA ASK
ASSOCIATION ASSUME ASSUMPTION AT ATTEND AUGUST AVAILABLE BATES 3E
BECAUSE BEEN BEFORE BEGINNING BEING BIG BILL BOPNNIE BOSTON BUTH
BREAKDOWN BUDGET BUS BY CALIFORNIA CAN CANCEL CAR CARNEGIE CENT
CHANGE CITY COLARUSSO COMPUTATIONAL CONFERENCE CONTINUE COSELL
COST COSTING COSTS COUNTRY CRAIG CURRENT DATE DAYE)AY DECEMBER
DENNIS DID DIVISION DO DOES DOLLAR DONE DUEETO DURING EACH EIGHT
EIGHTEEN EIGHTEENTH EIGHTH EIGHTY EITHER ELEVEN ELEVENTH END
ENGLAND ENOUGH ESTIMATE-N ESTIMATE-V EVERY EVERYONE EXPECT
EXPENSE EXPENSIVE FALL FARE FEBRUARY EEE FIFTEEN FIFTEENTH FIFTH
FIFTY FIGURE FINAL FIRST FISCAL FIVE FOR FORTY FOUR FOURTEEN

Page Q0

FOURTEENTH FOURTH GET GETS GETTING GIVE GIVEN GIVES GIVING GO
GOES GOING GONE GOT GOTTEN GROUP HAD HALF HALVES HAS HAVE HAVING
HE HER HIM HIS HOW HOWMANY HOWMUCH HUNDRED I IF IFIP IJCAI IN
INTERNATIONAL IS IT JANUARY JERRY JOHN JULY JUNE K KNOW L.A.
LAST LATE LEFT LINDA LINGUISTICS LIST LONDON LONG LOS@ANGELES LYN
LYNN MADE MAKE MAKES MAKHOUL MAKING MANY MARCH MASSACHUSETTS MAY
ME MEETING MEMBER MISCELLANEOUS MONEY MONTH MORE MOST MUCH MY
NEED NEW@YORK NEXT NINE NINETEEN NINETEENTH NINETY NINTH NO NQT
NOTE NOVEMBER NOW- OCTOBER OF ON ONE GONLY OR OTHER OUT OVERHEAD
PAJARRO®DUNES PARTICIPANT PAUL PAY PENNSYLVANIA PEOPLE PER PERSON
PHONOLOGY PITTSBURGH PLACE PLEASE PLUS PRINT PROJECT~N PROJECT-V
PURPOSE QUARTER REGISTRATION REMAIN REST REVISE RICH RICHARD
ROUND@TRIP SANTA@BARBARA SCHEDULE SECOND SEND SENDING SENDS SENT
SEPTEMBER SEVEN SEVENTEEN SEVENTEENTH SEVENTH SEVENTY SHE SINCE
SETE SIX SIXTEEN SIXTEENTH SIXTH SIXTY SO SOCIETY SOME SOHEONE
SPEECH SPEND SPENDING SPENDS SPENT SPRING ST.LOUIS START STATUS
STOCKHOLM SUMMER SUPPOSE SUPPOSED SUPPOSITION SUR SWEDEN TAKE
TAKEN TAKES TAKING TEN TENTH THAN THANK@YOU THAT THE THEIR THEM
THERE THESE THEY THIRD THIRTEEN THIRTEENTH THIRTIETH THIRTY THIS
THOSE THOUSAND THREE TIME TO TOO TOOK TOTAL TRAVEL TRIP TWELFTH
TWELVE TWENTIETH TWENTY TWO UNANTICIPATED UNBUDGETED UNSPENT
UNTAKEN US VARIOUS VISIT WANT WAS WASHINGTON WE WEEK WENT WERE
WHAT WHEN WHERE WHICH WHO WHOM WHOSE WILL WINTER WISCONSIN WITH
WITHIN WORKSHOP YEAR YES YOU)

The syntactic categories:

(ADJ 23 (ACOUSTICAL ADDITIONAL AVAILABLE BIG COMPUTATIONAL
CURRENT EACH ENOUGH EXPENSIVE FINAL FISCAL INTERNATIONAL
LATE LEFT LONG MANY MISCELLANEOUS OTHER UNANTICIPATED
UNBUDGETED UNSPENT UNTAKEN VARIOUS))

(ADV 18 (ALREADY ALSO ANYWHERE EITHER ENOUGH HOW LATE LONG MORE
MOST MUCH NOW ONLY PLEASE SO THERE TCO YES))

(ART 8 (A AN NO THAT THE THESE THIS THOSE))
(CONJ 8 (AND BECAUSE BOTH IF OR PLUS SINCE S0))

(INTEGER 27 (EIGHT EIGHTEEN EIGHTY ELEVEN FIFTEEN FIFTY FIVE
FORTY FOUR FOURTEEN NINE NINETEEN NINETY ONE SEVEN

SEVENTEEN SEVENTY SIX SIXTEEN SIXTY TEN THIRTEEN THIRTY
THREE TWELVE TWENTY TWO))

(MODAL 5 (CAN DID DO DOES WILL))

(N 70 (ACOUSTICS AIR AIRPLANE AMOUNT ASSOCIATION ASSUMPTION
BEGINNING BREAKDOWN BUDGET BUS CAR CENT CHANGE CITY
CONFERENCE COST COUNTRY DATE DAY DIVISION END ESTIMATE-N
EXPENSE FALL FARE FEE FIGURE GROUP HALF HALVES LINGUISTICS
LIST MEETING MEMBER MONEY MONTH MUCH NEED NOTE OVERHEAD
PARTICIPANT PEOPLE PERSON PHONOLOGY PLACE PROJECT-N
PURPOSE QUARTER REGISTRATION REST ROUNDE@TRIP SCHEDULE SITE
SOCIETY SOME SPEECH SPRING STATUS SUMMER SUPPOSITION

Page 91

THANK@YOU TIME TOTAL TRAVEL TRIP VISIT WEEK WINTER
WORKSHOP YEAR))

(NEG 1 (NOT))

(NPR 53 (ACL AI AMHERST APRIL ARPA SA AUGUST BATES BILL BONNIE
BOSTON CALIFORNIA CARNEGIE CuLARUSSC COSELL CRAIG DECEMBER
DENNIS ENGLAND FEBRUARY IFIP IJCAI JANUARY JERRY JOHN JULY
JUNE L.A. LINDA LONDON LOSE NGELES LYN LYNN MAKHOUL MARCH
MASSACHUSETTS MAY NEW@YORK NOVEMBER OCTOBER PAJARRO&DUNES.
PENNSYLVANIA PITTSBURGH RICH RICHARD SANTAE@BARBARA
SEPTEMBER ST.LOUIS STOCKHOLM SUR SWEDEN WASHINGTON
WISCONSIN))

(ORD 23 (EIGHTEENTH EIGHTH ELEVENTH FIFTEENTH FIFTH FIRST
FOURTEENTH FOURTH LAST NEXT NINETEENTH NINTH SECOND
SEVENTEENT!H SEVENTH SIXTEENTH SIXTH TENTH THIRD THIRTEENTH
THIRTIETH TWELFTH TWENTIETH))

(PARTICLE 3 (IN ON OUT))
(POSS 5 (HER HIS MY THEIR WHOSE))
(PRECONJ 2 (BOTH EITHER))

(PREP 18 (ABOUT ABOVE AFTER AT BEFORE BY DUEETO DURING FOR IN OF
ON OUT PER SINCE TO WITH WITHIN))

(PRO 23 (ANYONE EVERYONE HE HER HIM I IT ME ONE SHE SOMEONE THAT
THEM THESE THEY THIS THOSE US WE WHAT WHO WHOM YOU))

(QADV 2 (WHEN WHERE))
(QDET 5 (HOWMANY HOWMUCH WHAT WHICH WHOSE))

(QUANT 14 (ALL ANY BOTH EACH EITHER ENOUGH EVERY HOWMANY HOWMUCH
MANY MORE MUCH OTHER SOME))

(QWORD 7 (HOW HOWMANY HOWMUCH WHAT WHICH WHO WHOM))
(SPECIAL 8 (DOLLAR HUNDRED K NO THAN THANK@¥QU THOUSAND YES))

(V 85 (AFFORD AM ANTICIPATE ARE ARRANGE ASK ASSUME ATTEND BE BEEN
BEGINNING BEING BUDGET CAN CANCEL CHANGE CONTINUE COST
COSTING COSTS DID DO DOES DONE END ESTIMATE-V EXPECT
FIGURE GET GETS GETTING GIVE GIVEN GIVES GIVING GO GOES
GOING GONE GOT GOTTEN HAD HAS HAVE HAVING IS KNOW LAST
LEFT LIST MADE MAKE MAKES MAKING NEED NOTE PAY PRINT
PROJECT-V REMAIN REVISE SCHEDULE SEND SENDING SENDS SENT
SPEND SPENDING SPENDS SPENT START SUPPOSE TAKE TAKEN TAKES
TAKING TOOK TOTAL TRAVEL VISIT WANT WAS WENT WERE WILL))

Page 92

The syntactic features:

(INGCOMP (CANCEL CONTINUE GIVE START START))
(INTRANS (CONTINUE GO GO GO START))
(PASSIVE (CANCEL CONTINUE FIGURE GET GIVE MAKE MAKE SEND SEND
START START TAKE))
(QCOMP (CANCEL CONTINUE FIGURE GIVE SEND SEND TAKE))
(THATCOMP (END FIGURE))
(TRANS (CANCEL CONTINUE END FIGURE GET GIVE MAKE MAKE SEND SEND
START START TAKE))
((ANAPHORIC) (WHICH))
((DETERMINED) (ANYONE I IT ME THAT THESE THIS THOSE US WE WHO
WHOM YOU))
((INDOBJ FOR) (MAKE MAKE))
((NUMBER PL) (HALVES PEOPLE THEM THESE THEY THOSE US WE))
((NUMBER SG) (ANYONE HE HER HIM I IT ME ONE SHE SOMEONE THAT THIS
WHO WHOM WHOM))
((NUMBER SG/PL) (WHAT WHAT WHICH WHO YOU))
((PARTICLEOF (LEAVE PUT ADD)) (IN))
((PARTICLEOF (ADD CONTINUE)) (ON))
((PARTI%LEog)(LEAVE PRINT SEND MJMKE CANCEL FIGURE FIND GO))
OUT
((PASTPART) (BEEN COST DONE GIVEN GONE GOTTEN HAD LEFT MADE SENT
SPENT TAKEN))
((PNCODE 13SG) (WAS))
((PNCODE 1SG) (AM))
((PNCODE 3SG) (COST COST COST COST COSTS DOES DOES GETS GIVES
GOES HAS IS MAKES SENDS SPENDS TAKES))
((PNCODE anx, (CAN CAN DID))
((PNCODE X13SG) (ARE WERE))
((PNCODE X3SG) (COST DO WILL))
((PRESPART) (BEGINNING BEING COSTING GETTING GIVING GOING HAVING
MAKING SENDING SPENDING TAKING))
(ROLE OBJ) (HER HIM ME THEM US WHOM WHOM))
(ROLE SUBJ) (HE I SHE WE))
(ROLE SUBJ/0BJ) (WHAT WHICH WHO WHO))
(TNS FUTURE) (WILL WILL))
(TNS PAST) (COST DID DID GOT HAD MADE SENT SPENT TOOK WAS WENT
WERE))
((TNS PRESENT) (AM ARE CAN CAN CJST COST COST COST COST COSTS DO

DOES DOES GETS GIVES GOES HAS IS MAKES SENDS SPENDS TAKES
WILL))

((UNTENSED) (BE WILL)))))

(
(
(
(
(

Page 93

BIBLIOGRAPHY

[1) Baker, James K. (1975b)
Stochastic Modeling as a Means of Automatic Speech
RecpgnitiQn
PhD thesis, Speech and Computer Science,
Carnegie-Mellon Univ., April 1975

[2] Barnett, Jeffrey (1973)
A Vocal Data Management System

IEEE Trans. on Audio and Electroacoustics,
AU-21:3 (June 1973) p. 185-188

[3] Bates, M. (1974)
The Use of Syntax in a Speech Understanding System
in Erman; IEEE Symposium on $peech Recognition,
p. 226=-233

[4] Rates, M. (1975%)
Syntactic Analysis in a Speech Understanding System
Ph.D. thesis, Harvard University, 1975
also BBN Report No. 3116, Bolt Beranek and
Newman Incd., Cambridge, Mass. August 1975

[5] Bates, M..and Wolf, J. (1975)
Prosodics
technical report in BBN Speech Understanding
System QPR no. 2, BBN Report no 3080 (AI
Report no. 30), Bolt Beranek and Newman Inc,
Cambridge, Mass. (May, 1975)

[6] Bruce, Bertram (1976)
Pragmatics. in Speech Understanding
Proceedings of the IJCAI, 1976

(7] Erman, Lee (ed.) (1974)

IEEE Symposium on Speech Kecognition
IEEE, Inc. (1974)

[8] Forgie, James W. (1974b)

Speech Understanding Systems;-Semiannual Technical Summary
Lincoln Laboratory, Lexington, Mass., 31 May 1974

[9] Fu, K.C. (1976)
SYNTACTIC PATTERN RECOGNITION
Springer-VerYag. N.Y.«

[10] Hyde, S.R. {1968)
Automatic Speech Recognition: Literatbre Survey, and
Discussion
Report No. U5, Post Office Research Dept.
Dollis Hill, London, 1968

[11] Klovstad, John W. (1975)
personal communication

Pape QU

[12] Lea, W., Medress M., and Skinner, T. (1072)
Prosodic Aids to Speech Recosnition:
I. Basic Alrorithms and Stress Studies
Univac Report no. PX7940, Oct. 1072

[13]) Lea, W., Medress, M., and Skinner, T. (1973)
Prosodic Aids to Speech Recognition:
II. Syntactic Sepmentation and Stressed
Syllable Location
Univac Report no. PX10232, April 15, 107X

(14] Lipton, ‘Richard J. and Snyder, Lawrence (1074)
On the Optimal Parsing of Speech
Research Report 37, (Oct. 1974) Dept oY Cornuter
Seience, Ynle University, New Paver, (onr.,
[15] Nash-=Webher, Ponnie (1074)
Semantic Support for a Speech Understanding Sys
IEEE Trans. on ASSP, 23:1 {Feb. 1°78), p. 4

[16] Neely, R.B. (1973)

On the use of Syntax and Semantics in a Speech

Understanding System

PhD. thesis, Stanford Univ, 1973

also Tech Rept. Comp. Sei. Dept. CMU, May, 1973
[17) Newell, A. et &1 (1973)

SPEECH UNDERSTANDING SYSTEMS:

Final Report of a Study Group

North-Holland, Amsterdam

[18] Paxton, William H. (1974)
A Best-~First Parser

in Erman, IEEE Symposium on Speech Recognition,

[19] Paxton, William H. and Robinson, Ann E. (1975)
System Integration and Control in a Speech Understanding
. Systemn
Technical Note 111, Artificial Intelligence Center,
Stanford Research Institute, September 1975

[20] Ré&ddy, D.R., Erman, L., and Neely, R.B. (1970)
The GMU Speech Recognition Project

IEEE System Sciences and Cybreneties Conf.,
Pgh. Pa., 1970

[21] Reddy, D.R.,et.al. (1973b)
The HEARSAY Speech Understanding System:
An Example of the Recognition Process
Proc. 3rd IJCAI, Stanford, August, 1973, p. 185-193

[22] Reddy, D. R. (&d.) (1975)
Speech Recognition (Invited Papers Presented at the 1974
IEEE Symposium)
Academic Press, New York

[25]

[26]

[27]

(28]

[29]

(30]

[31]

[32]

[33]

[34]

Page 95

Rovner, P., Nash-Webber, B., and Woods, W. (1974)
Control Concepts in a Speech Understanding System
IEEE Trans. on ASSP,, 32:1 (Feb. 1975), p. 136-140

Rovner, P., et.al. (1974)

Where the Words are:

Lexical Retrieval - ‘in a Speech Understanding System
in Erman, IEEE Symposium on Speech Recognition,

p. 160-164

Rustin, Randall (ed.) (1973)
NATURAL LANGUAGE PROCESSING
Alrorithmics Press, N.Y. 1973

Schwartz, R. and Makhoul, J. (1974)

Where the Phonemes are:

Dealine with Ambipulty in Acoustic-Phonetic Recognition
IEEE Trans. on ASSP, 23:1 (Feb. 1975), p. 50-53

Shirai, K. and Fulisawa, H. (1974)

An Alporithm for Spoken Sentence Recognition and its
Application to the Speech Input-Output System

IEEE Trans. on Systems, Man, and Cybrenctics,

Sept 1974, p. 475-479

Walker, Donald E. (1972)
Speech Understanding Research
SRI Annual Technical Report, QOct 1971 - Oct 1972

Walker, Donald E. (1973a)
Speech Understanding Through Syntactic

and Semantic Analysis

Proec. 3rd IJCAI, Stanford, Aug. 1973, p. 208-215

Walker, Donald E. (1973b)
Automated Language Processing

in Cuadra (ed.), Annual Review of Information Science and
Technology, vol §

Wolf, Jared (1976)
Speech Recognition and Understanding
in Fu, Syntactic Pattern Recognition

Woods, W.A: (3197¢)

Transition Network Grammars for Natural Language Analysis
CACM, 13:10 (Oct 1970) p. 591-606

Woods, W.A. (1974)
Motivation and Overview of BBN SPEECHLIS«

An Experimental Prototype for Speech Understandihg Research
IEEE Trans. on ASSP, 23:1 (Feb. 1975), p. 2-10

Woods, W.A. (1975)

Syntax, Semantics, and Speech

in Reddy, Speech Recognition: Invited Papers
Presented at the IEEE Symposium, Academic Press

Pape 96

[35] Woods, W.A. et. al. (1974)

Natural Language Communication with Computers,

Final Report, Volume I, Speech Understanding Research
at BBN

BBN Report 2976, Bolt Beranek and Newman Inc.,
Cambridse, Mass., Dec., 1974

[36] Woods, W.A,, et.al. (1072)
The Lunar Sciences Natural Languare Information
System: Final Report

Report No. 2378, Bolt Beranck and Newman Inc.,
Cambridge, Mass.

| e,:; EELE
o o
:: liz=2=

