American Journal of Computational Linguistics microficre 37 : 28

PLATON--A New ProcRAMMING LANGUAGE FOR
NATURAL LANGUAGE ANALYSIS

MAKOTO NAGAO AND JUN-ICHI TsuuIll

Department of Electrical Engineering
Kyoto University
Kyoto, Japan

ABSTRACT

PLATON (Programming LAnguage for Tree OperatioN) - ae
facilities of pattern matching and flexible backtracking, l. The
language is developed to simplify writing analysis programs 1 language
The pattern matching process has the facility to extract sub- rom the
input sentence and invoke semantic and contextual checking fun Inte
actions between syntactic and other components are easily obt =, If
processing results in a failure, a message which expresses t: 1se of - .
failure will be sent up. The control will be modified accoru Thi.
enables us to write fairly complicated non-deterministic prog: b RIS
manner. An example of structural analysis using PLATON is als ed -

I Introduction

In this paper we describe a nev programming language which is designed
to facilitate the writing of natural language grammars. A simple structural
analysis program using this language is given as an example. There are two
key issues in analyzing natural language by computer: 1) how to represent
knowledge (semantics, pragmatics) and the state (context) of the world, and
2) how to advance the programming technology appropriate for syntactic-
semantic, syntactic-contextual interface. The point in designing a programming

language is to make this kind of programming less painful.

29

Traditional systems which represent grammars as a set of rewriting
rules usually’have poor control mechanisms, and flexible interaction between
the syntactic and other components is not possible. Systems in which rules
of grammars are embedded in procedures, on.the other hand, make it possible
to intermix the gyntactic and semantic analyses in an intimate way. Howgver,
these systems are apt to destroy the intelligibility and regularity of
natural language grammars, because in these systems both rules and their
control mechanisms are contained in the same program.

Recently various systems for natural language analysis have been
developed T. Winograd's (1971) "PROGRAMMAR" is a typical example of
procedure oriented systems. In this system the syntactic and other components
can interact closely in the course of analyzing sentences. However, detaills
of the program are lost in the richness of this interaction. LINGOL,
developed by V. Pratt (1973) at MIT, is a language appropriate to syntax-
semantics interface and in which it is easy to write grammars in the form of
rewriting rules. The TAUM group at Montreal University (1971) has evolved a
programming language name:l System—Q in which expressions of trees, strings
and lists of them can be matched against partial expressions (structural
patterns) containing variables and can be transformed in any arbitrary
fashion.

The augmented transition network (ATN) proposed by W Woods (1970)
from our point of view gives an especially good framework for natural
language analysis systems. One of- the most attractive features is the clear
discrimination between grammatical rules and the control mechanism. This
enables us to develop the model by adding various facilities to its control
mechanism.

The ATN model has the following additional merits:

30
1. It provides power of expression equivalent to transformational

grammars.

2. Tt maintains much of the readability of context-free grammars.

3. Rules of a grammar can be changed easily, so we can improve them
through a trial-and-error process while writing the grammar.

4. Tt is possible to impose various types of semantic and pragmatic
conditions on the branches between states. By doing this, close interactions
between the syntactic and other components can be easily accomplished.

However ATN has the following shortcomings, especially when we apply
it to the parsing of Japanese sentences:

l. It scans words one-by-one from the leftmost end of an input
sentence, checks the applicability of a rule, and makes the transition from
one state to another. This method may be well suited for English sentences,
but because the order of words and phrases in Japanese sentences is relatively
free, it is preferable to check the applicability of a rule by a flexible
pattern-matching method. In addition, without a pattern-matching mechanism,
a single rewriting rule of an ordinary grammar is often to be expressed by
several rules belonging to different states in Woods ATN parser.

2. An ATN model essentially performs a kind of top-down analysis of
sentences. Therefore recovery from failures in prediction is most difficult.
Consldering these factors, we developed PLATON (a Programming
LAnguage for Tree-OperatioN), which is based on the ATN model and has various
additional capabilities such as pattern-matching, flexible backtracking, and
so on. As in System—Q and LINGOL, PLATON's pattern-matching facility makes
it easy to write rewriting rules. Moreover, it extracts substructures from

the inputs and invokes appropriate semantic and contextual checking functions.

31
These may be arbitrary LISP functions defined by the user, the arguments of
whi.n are the extracted substructures.

A backtracking mechanism is also necessary for langugage understanding
as in other fields of artificial intelligence. During the analysis, various
sorts of heuristic information should be utilizable. At any stage, analysis
based on criteria which may relate to syntactic, semantic or contextual
considerations taken separately may be unreliable. The result which fulfils
all the criteria, however, will be a correct one. The program should be
designed such that it can choose the most satisfactory rule from many
candidates according to the criteria at hand. In further processing, if the
choice is found to be wrong by other criteria, the program must be able to
backtrack to the point at which the .relevant decision was made. 1In PLATON
we can easily set up arbitrary numbers of decision points in the program.
Then, if subsequent processing results in some failure, control will come

back to the points relevant to the cause of the failure.

IT. Pattern-matching

Before proceeding to the detailed description of PLATON, we will
explain the representation schema for input sentences and parsed trees. The
process of analyzing a sentence, roughly speaking, may be regarded as the
process of transforming an ordered list of words to a tree structure, which
shows explicitly the interrelationships of each word in the input sentence.
During the process, trees which correspond to the parts already analyzed, and
lists which have not been processed yet, may coexist together in a single
structure. We therefore wish to represent such a coexisting structure of
trees and lists. A list structure is a structure in which the order of element

is not changeable. On the other hand, a tree structure consists of a single

32
root node and several nodes which are tied to the root node by distinguishable
relations. Because relations between the root and the other nodes are
explicitly specified, the order of nodes in a tree is changeable except for
the root node which is placed in the leftmost position. Different matching
schemas will be applied to trees and lists.

The formal definition of such coexisting structures is as follows.
< structure> is the fundamental data-structure into which all data processed
by PLATON must he transformed. Hereafter we refer to this as the "structure"
The formal definition of < structure> is:
<structure®> ::= <tree> I <list>»
<listy> ::= (f¢structuresd>)
£ structures> ::= l(structure) £ structures >
tree> ::= ¢ node l (<node> ¢ branches>)
¢branches» ::= <branch> | <branch®> < branches >
&branch)> ::= (£ relation> <tree>)
¢nodey ::= <list> | ARBITRARY LISP-ATOM

<relation» ::= ARBITRARY LISP-ATOM

A simple example is shown in Figure 1.

(A B D)
(*A (B ,(RLC)) (D (R2 E)
Rl "2 < (R3 (# F))
C E F G)
Coexisting Structure of Corresponding Expression
Trees and Lists in PLATON

Figure 1 Expression of Structure in PLATON

33
Two lists which have the same elements but different orderings (for example,
(XYABC) and (K A C B)), should be regarded as different structures. On
the other hand, two tree structures such as (A (R1 B) (R2 C)) and
(A (R C)(RLB)) are regarded as identical. Besides the usual rewrite
rules which treat such strings, structural patterns which contain wvariable
expressions are permitted in PLATON. The PLATON-interpreter matches
structural patterns containing variable expressions against the structure
under process and checks whether the specified pattern is found in it. At
the same time, the variables in the pattern are bound to the corresponding
Substructures.

Variables in patterns are indicated as :X (X is an arbitrary LISP
atom). The following can be expressed by variables in the above definition
of < structure) .

(1) arbitrary numbers of < structures? , that is to say, list elements in

the definition of <list™> (Figure 2, Ex. 1). We can also specify the

Results of Matching

Structural Patterns Structures
Example :
SUCCESS
(» A :K) (» A B D 3) ('K (= B D))
27;7\JH2 f;/? i;/)x\gz C//zl
c ¥1> c c D ¢
Example 2
A SUCCESS
A (B .))
B :B RI~ R Re 7 Ry
B \\\\ c B \\\OD c pd
Example 3
SUCCESS
(:'N B)

R3 \i
C D

Figure 2 Illustration of Matching

34

number of list elements by indicating variables as :X+number. For
example, the variable :D2 will match with two elements in a 1list.

(2) arbitrary numbers of <branches > , in the definition of {tree >
(Figure 2, Ex. 2).

(3) < tree> in the definition of < branch> (Figure 2, Ex. 3).

We shall cail such structural patterns <structure-1l > . By using the same
variable several times in a pattern, we can express a structure in which the
same sub-structure appears in two or more differeut places. The character

'I' in a list indicates that the next e2lement following the character is

optional.

II1 Basic Operations of PLATON

A grammar, whether generative or analytical, is represented as a
directed graph with labeled states and branches. There is one state distin-
guished as the Start State and a set of states called Final States. Each
branch is a rewriting rule and has the following elements:

(1) applicability conditions of the rule, typically represented as
a structural pattern

(2) actions which must be executed, if the rule is applicable

(3) a structural pattern into which the input structure should be
transformed,
Each state has several branches ordered according to the preference of the
rules. When the control jumps to a state, it checks the rules associated
with the state one-by-one until it finds an applicable rule. If such a rule
is found, the input structure is transformed into another structure specified

by the rule and the control makes the state transitionm.

35

In addition to the above basic mechanism the system is provided with
push-down and pop-up operations. The push-down operation is such that in the
process of applying a rule, several substructures are extracted from the
whole structure by variable binding mechanisms of pattern-matching. Then each
is analyzed from a different state. The pop-up operation is such that after
each substructure is analyzed appropriately, control comes back to the
suspended rule and execution continues. Using these operations, embedded

structures can be handled easily (See Figure 3).

Figure 3 State Diagram

Table 1 shows the formal definition cf a grammar of PLATON (See follow-
ing page). It shows that branches or rewriting rules in an ATN parser
correspond to six-turles (i.e., ¢pcond , <gstrx> , «con> , (<trans>),
(¢acts>), <end>). <strx> corresponds to the left side of a
rewriting rule and describes the structural pattern to which a rule is
applicable. < strx) is, by definition

(1) / or

(2) structure-l

36

TABLE 1 Formal Definition of Grammar in PLATON

<grammar> :: = (<«states>)

< states> :: = <Lstate> , <state> <states>

<state> :: = («state-named> <rules>)

Zrules> S I-trule> ¢rules>

Zrule> 1t = (¢ pecon> ¢strx> ¢cond (<Ltransd»)(<acts>) <end >)

< trans> 1= ' < transit> < trans>

< transit> = ((«state-name® <structure-2> ?(register—name)}) <errorps>
<variable-name>

CEerrorps> :: ,(errorp,) < errorps>

(< fallure-message> <act> «¢pros>)

cerrorp>

Z pbros> 1t = Lpro> I < Pro> <« prosp
< Pro > :: = (EXEC < trans >) I(TRANS (<state-name > <« stry>))
Cend > :: = (NEXT < state-name> < stry>)
| (NEXTB <« state-name> <stry >)
J(POP <« stry))' (FM ¢ failure-message>)
Lacts? :: = | < actpcacts>
Lact > :: = < form > | (SR «¢register-name> <« form>)
[(SU < register-name » <form>)
’(SD <register-name» <form>»)
< strx > :: = ¢structure-1>| /
<stry> 1 = <¢structure-2_> , /
<pcomj<ccony:: = <form>
{form> : = (GR (register-name>) | (v <variable- name >)

|(TR ¢structure-2>) |(TR /) | ARBITRARY LISP FORM

<variable- :: :X (X is an arbitrary LISP atom)
name

¢register- :: = /X (X is an arbitrary LISP atom)
name)

37

shows that a rule is applicable no matter what the structure under process
is The variables used in ¢ structure-l7 are bound to corresponding
substructures when matching succeeds. The results of Example 1 (See Figure 2)
indicate that the variable :K is bound to the substructure (K (B (R1 C)) D)

The scope of variable binding is limited to within the realm of the
particular rule. The same variable name in different rules has different
interpretations. In this sense, :X~type variables in <« structure-1<p are
called Local Variables. On the other hand, we can store certain kinds of re-
sults from the application of rules in registers and refer back to them in
different rules. These constitue variables which we call registers. They
are represented by the symbols /X (X is an arbitrary LISP atom).

Besides the pattern-matching, < pcon» and < con > can :lso check
the applicability of a rule. Certain parts of the results from the applica-
tion of previous rules are contained in registers, not in the structure.

We can check the contents of these registers by using < pcon 3> -part functions
like GR, GU, etc. (these functions are listed in Table 2) and other LISP
functions defined by the usual LISP function, DEFINE. (See following page for
Table 2.)

Semantic and contextual co-ordination between substruetures can be
checked by using appropriate functions in the & con > -part of a rule.
Semantic and contextual analyses cannot be expressed in the form of simple
rewriting rules. These analyses have differing requirements such as lexical
information about words which may in turn represent knowledge of the world
and contextual information which may. express the state of the world. We can
use arbitrary LISP-forms in the & con) -part, according to what semantic and

contextual models we choose.

TABLE 2 Functions of PLATON

38

Function Argument Effect Value
SR <¢register-name> SR stores the result of the the result of the
LISP - < form> evaluation of the 2nd argu- evaluation of the
ment in the register. 2nd argument
SV < variable-name> SV stores the result of the the result of the
LISP - < formy evaluation of the 2nd argu- evaluation of the
ment in the variable 2nd argument
GR < register-name> GR get the content of the the content of
register the register
GV <variable-name> GV gets the value of the the value of
variable the variable
TR <structure-2> TR transforms the variables the transformed
or [/ and registers in the struc- structure
tural pattern into their
values.
SU <register-name> SU sets the reigster of the the result of the
LISP - <form>» higher level proceseing evaluation of the
2nd argument
SD <register-name> SD sets the register of the the result of the
LISP - < form» lower level processing. evaluation of the
2nd argument
GU <register-name> GU gets the content of the the content of
register of the higher the register
level.
PUSHR £register-name> PUSHR is defined as the the result of the
LISP - < form) following. evaluation of the
(SR <register-name> 2nd argument
(CONS < form>
(GR <register-
name>)))

39

For example, suppose

strx = K (ADJ (TOK :N))(N(TOK :N1)) :I)
con = (SEM :N :N1)
Here TOK is the link between a word and its part of speech. :N and :Nl are

the words of an input sentence. SEM is a function defined by the user which

checks the semantic co-ordination between the adjective :N and the noun :N1.

By this function SEM, we can search, if necessary, through both lexical

entries and the contextual data bases.

With this approach, if a certain syntactic pattern is found in the
input structure, it is possible for an appropriate semantic runction to be
called. Hence the intimate 1interactions between syntactic and semantic
components can be obtained easily without destroying the clarity of natural
language grammars.

Arbitrary LISP-forms can be also used in g act 3» -portion. They will
be evaluated when the rule is applied. If necessary, we can set intermediate
results into registers and variables by using the functions listed in Table 2

< end > comprises four varieties, and rules are divided into four
types according to their ¢ end > types.

1. NEXT-type: The < end is in the form (NEXT <state-name™> < stry>).
The <stry> corresponds to the right side of a rewriting rule, and
represents the transformed structure. A rule of this type causes
state-transition to the <« state-name)» , when it is applied.

2. NEXTB-type: This rule also causes state-transition. Unlike with the
NEXT-type, state-saving is done and if further processing results in
some failures, control comes back to the state where this rule is applied.
The environments, that is, the contents of various registers will be

restored, and the next rule belonging to this state will be tried

40

3. POP-type: The <{end> -part of this type is in the form (POP <stry>)
When it is applied, the processing of this level is ended and the
control returns to the higher level with the value < stry> .

4. FM-type: The <end 3> -part of this type is in the form (FM <failure-
message »). The side effects of the processing at this level, that is,

register settings and so on, are cancelled (see section 4).

In <stry > we can use two kinds of variables, that is, the variables used
in «strx > and registers. We find this structural pattern, called
< structure-2 > , more suitable for writing transformational rules than

Woods BUILDQ-operation. By way of illustration consider the following:

(X CDE(A(RL (B B))) FG)

input string

(K :I (A(RL :N)) :J)

strx

stry (¢ (A (RL (% :I :N))(R2 /REG)) :J)

(G (R3H))

the content of /REG

As the result of matching, the variables :I, :N and :J are bouand to the
substructures (XX CDE), (XK B) and (X F G) respectively. The result of
evaluating the <« stry>» is

(X (A(CRL@® CDEB))(R2(G(R3H)))) FG).
If the rule is a POP-type one, then this structure will be returned to the
higher level processing. If it is NEXT- or NEXTB-type, then the control will

move to the specified state with this structure.

IV Push-down and Pop-up Operations

By means of NEXTB-type rules, we can set up decision points in a
program. We can also do this by using push-down and pop-up operations. A

rule in PLATON finds particular syntactic clues by its structural description

41
< strx> ; and at the same time, extracts substructures from the input
stxing From the structural description it is predicted that the substructures
may have particular constructions, that is, they may comprise noun phrases,
relative clauses or whatever. It is-.necessary to transfer the substructures
to states appropriate for analyzing these constructions predicted and to return
the analyzed structures back into the appropriate places In PLATON, these
operations can be described in the < trans > -part of a rule. For example,
suppose the & trans > -part of a rule is

(((SL :K:KX)) ((S2 (K :I:J)/REG)))

When the cantrol interprets this statement, the substructures corresponding
to the varilable :K and (X :I :J) are transferred to the states S1 and S2
respectively If the processings starting from these states are normally
completed (by a POP-type rule), then the results are stored in the variable
:K and the register /REG. In this manner, by means of the push-down and
pop-up mechanisms, substructures can be analyzed from appropriate states.
Processing from shese states, however, may sometimes result in failure,
That is, predictions that certain relationships will be found among the
elements of substructures may not be fulfilled. In such instances the pushed

down state will send an error-message appropriate to the cause of the failure
by an FM-type rule. An FM-type rule points out that a certain error has
occurred in the processing., If NEXTB-type rules were used in the previous
processing at this level, control will go back to the most recently used
NEXTB-type rule. If NEXTB-type rules were not used at this processing level,
the error-message specified by the FM-type rule will be sent to the <trans>

part of the rule which directed this push-down operation (see Figure 4)

Higher level processing

/// /
. /
4
/
Lower level processingL“_ NEXT
T
\
\, S~a |
A Ve
\\\ //

NEXTB-type rules were
not applied in this level

Higher level processing

—_— —— — —
— — —— — — —

//
Push-Down
/

Lower level processing

This rule will be applied next.

Figure 4 Illustration of Backtracking

42

43
According to these error-messages, control-flow can be changed

appropriately. For example, we can direct processings by describing the

& trans » -part in the following way.

((C S :K :K)(ERRL (EXEC ((S5 :K :K)) ((S6 K :I :J) /REG))))

(ERR2 (TRANS (S8 /)))

((S2 (¥ :I :J) /REG)))

In the above example, the processing of the substructure :K from the state

Sl will produce one of the following three results. According to the

returned value, the appropriate step will be taken:
(1) Normal return: the processing of :K is ended by a POP-type
rule. The result is stored in the variable :K and the next push-down

performed, that is (¥ :I :J) will be transferred to the state S2,

(2) Return with an error-message: the processing of :K results in

a failure and an FM-type rule sends up an error-message. If the message is

ERR1, then :K and QK :I :J) will be analyzed from the states S5 and S6
respectively (EXEC-type). 1If it is ERR2, the interpreter will give up the
application of the present rule, and pass the control to another state S8
(TRANS-type). If it is neither ERRL nor ERR2, the same step as (3) will be
taken

(3) Return with the value NIL: the processing from the state Sl
will send up the value NIL if it runs into a blind alley, that is, there are no
applicable rules. The interpreter will give up the application of the present
rule and proceed to the next rule attached to this state.

Mechanisms, such that control flow can be appropriately changed
according to the error-messages from lower level processings are not found in
Woods ATN parser. We can obtain flexible backtracking facilities by combining

these mechanisms with NEXTB-type rules.

44

V A Simple Example

We are now developing a deductive question-answering system with
natural language inputs —- Japanese sentences. The internal data-base is
assumed to be a set of deep case structures of input sentences. We adopted
and modified Fillmore's (1968) case grammar to analyze the input of Japanese
sentences. Japanese is a typical example ofan SOV-language in which the
object and other constituents governed by a verb usually appear before the
verb in a sentence. A typical construction of a Japanese sentence is shown

in Tigure 5.

—— [l

NP e e o P" NP"@, NP.‘

Figure 5 Typical Construction of a
Japanese Sentence

A verb may govern several noun phrases preceding it. A relative clause
modifying a noun may appear in the form -- verp + noun -- The right
boundary of the clause is easily identified by finding the verb. The left
boundary is often much more difficult to identify. 1In Figure 5, the noun
phrase NP4+, 1is a case element of the verb V On the other hand, the noun
phrase NP; is governed by the verb Vg Because the rule of projections holds
in Japanese as in other languages, all the noun phrases between NP¢+¢ and
V are governed by V , and the noun phrases before NP} are governed by V>
However, in the course of analysis, such boundaries cannot be determined
uniquely. The analysis program fixes a temporary boundary and proceeds to
the next step in processing If the temporary boundary is not correct, the

gucceeding processing will fail and the control wil come back to the point

45
at which the temporary boundary was fixed.

Now we will show a simple example of structural analysis by PLATON
The example explains how the backtracking facility is used in analyzing
Japanese sentences. Because we want to visualize the opepations of PLATON
without bothering with microscopic details of Japanese sentences, we will
take an imaginary problem as an example. The parser which is written in
PLATON is described in another paper by M Nagao and J. Tsujii (1976)

An input string is assumed to be a 1i§t. The elements of the list
are integers and trees are in the form of (X (SUM 0)). Here 'X' may be
regarded as a term modified by 'SUM O' These two kinds of elements are
arranged in an arbitrary order, except that the last element is the tree
(X(SUM 0)). The following is an example of an input string:

(5213 (X(SUMO)) 31 (X(SUMO)) 22 (X (SUMDO)))
Figure 6 An Example String to be Analyzed

The result of the transformation is expected to be in the following form:

((X (SUM 4)) (X SUM6)) (X (SUM 9)))

This result is regarded as representing the following relationships between

integers and 'X'.

i * - |
(! 2 g ! x (gém 0)) g I x & L 0)) £ 2 (X (3&3 0)))

The number associated with an 'X' by the relation 'SUM' shows the sum of

the integers which are governed by the 'X'. We can look upon the relations
between integers and an 'X' as the relations between noun phrases and the verb
in Japanese sentences. The result of the analysis is assumed to satisfy

the following conditionms.

46

(1) Governor-governed relationships between integers and an 'X' must obey
the projection rule (i.e., clauses do not overlap).
(2) As a simulation of a semantic restriction, we attach a condition that
the sum of the integers governed by an 'X' should not exceed ten.
(3) As a simulation of a contextual restriction, we dttach the condition
that a result (¥ (X (SUM num-1)) (X (SUM num-2)) (X (SUM num-N)))

should maintain the relation, num-1 € num-2 £. . . . <numN.

A set of rules is shown in the following. The corresponding state—~

diagram is shown 1n Figure 7.

NEXTB

START

NEXT

POP

Fipure 7 State Diapram of a Simple Example

SUMUP -1-

BACKTRACK

-1-

strx: = CF :I :I1 (X (SUM :N)) :J)

con: (GREATERP 10 (PLUS :N :Il1))
act: = ((SV :N (PLUS :N :I1))
(PUSHR /REG :I1))
end: = (NEXT SUMUP K :I (X (SUM :N)) :J))
strx : = (K :I (X (SUM :N)) =J)
con: = (CONTEXTCHECK /RESULT (TR (X (SUM :N))))
act: = NIL
end: = (NEXT BACKTRACK /)
strx: = (kK :I (X (SUM :N)) :J)
con: = T
act: = NIL
end: = (FM-~ERROR)
strx: = (K)
con: = T
act: = ((SR /RESULT (CONS 'X /RESULT)))

end: = (POP /RESULT)

strx: = GK :I (X (SUM :N)) :J)
con: =T

act: = ((SR /REG NIL)

(SR /RESULT (APPEND /RESULT (TR (X (SUM :N))))))

end: = (NEXTB SUMUP (¢ :I :J))
strx: = (K :I (X (SUM :N)) :J)
con: = T

act: = ((POPR /TEMP /REG)

(SV :N (MINUS :N /TEMP)))
end: = (NEXT BACKTRACK (K :I /TEMP (X (SUM :N))

HN D)

)

47

48
The input string is the list shown in Figure 6. Since the start state
is SUMUP, the first rule attached to this state is applied. This rule will
find the leftmost 'X' and an integer just before the 'X' (by SUMUP -1-, strx).
The variable :I1 is bound to this integer. This integer is added to the sum
of the integers, :N, if the total does not exceed ten (SUMUP -1-, con).
PUSHR, used in the ¢ act > =-part, is a PLATON function which puts the
second argument on the head of the first argument (SUMUP -1-, act) After
this rule is applied, the control will enter the state SUMUP again (SUMUP -1-,
end). That is, this rule is applied until there are no integers before the
first 'X' or the sum of the integers exceeds ten. As the result, the
environment is the following:
structure under processing
= (K 5 (X(sUM6)) 31 (X (SUMO)) 22 (X (sUM0)))
relationship temporarily fixed between integers and 'X'
= (5 l {—3;} 31X22X)
content of /REG
=(213)
The second rule of SUMUP will be applied next. This rule checks by its
< con> part whether the result at hand satisfies the third condition,
that is, the contextual restriction. Because the content of /RESULT is NIL,
the function CONTEXTCHECK returns the value T (SUMUP -2-, con). So this
rule is applicable. Control makes the state-transition to the state
BACKTRACK (SUMUP -2-, end) Because the first rule of BACKTRACK is a NEXTB-
type rule, state-saving is performed. That is, the following environment is
saved:® content of /REG = (2 1 3)
content of /RESULT = NIL

structure under processing =

0K 5 (X (SUM6)) 31 (X (SUMO)) 22 (X (SUMO)))

49

By this rules, the registers /REG and /RESULT are set as follows (BACKTRACK
-1-, act). /REG : = NIL
/RESULT: = ((X (SUM 6)))

And the structure is transformed to

(X 531 (X (SIM0)) 22 (X (SUM0)))
A NEXTB-type rule causes a state transition as does a NEXT-type rule. So
control returns to the state SUMUP (BACKTRACK -1-, end). At this state, a
process similar to the one described above is performed. As a result, the

following governor-dependent relationships are established.

s
(szmﬂzzx)
Here the bold lines indicate the newly established relationships. By the
first rule of BACKTRACK the following environment is saved.
content of /REG = (5 3 1)
content of JRESULT = ((X (SUM 6)))
structure under processing = (K (X (SUM 9)) 2 2 (X (SUM 0)))
And /REG and /RESULT are set as the following (BACKTRACK -1-, act).
/REG: = NIL
/RESULT: = ((X (SUM 6)) (X (SUM 9)))
The transformed structure is (BACKTRACK -1-, end)
K 2 2 (X (SWMO)))
The control is transferred to the state SUMUP. By applying the first rule

of this state repeatedly on the above structure the following structure is

obtained.

K (X SUM 4)))

50
However this result does not satisfy the contextual restriction.
So the application of the second rule of SUMUP fails because the function
CONTEXTCHECK used in < con > -part returns the value NIL (SUMUP -2-, con)
That is:

contextcheck [((X (SUM 6))(X (SUM 9))) : (X (SUM 4))] = NIL

The third rule, therefore, will be applied next. Because this rule is a
FM-type rule (SUMUP -3-, end), it causes an error and control comes back to
the point at which a NEXTB-type rule was applied most recently. The saved
nviroament is restored. This is:

/REG: = (53 1)

/RESULT: = ((X (SUM 6)))

structure under processing: = (K (X (SUM 9)) 2 2 (X (SUM 0)))

Then by applying the second rule of BACKTRACK, the governor-governad
relationship established lastly in the previous process is cancelled. The
structure and the register /REG are changed as below (BACKTRACK -2-, act):

/REG: = (3 1)

structure under processing: (} 5 (X (SUM 4)) 2 2 (X (SUM O)))

Control enters the BACKTRACK state again. The application of the

first rule saves the environment:

content of /REG = (3 1)

content of /RESULT = ((X (SUM 6))

structure under processing = (K 5 (X (SUM 4)) 2 2 (X (SUM 0)))
That is, the relationship indicated by the dotted line in the following is

cancelled:

51
Control transits to the state SUMUP (BACKTRACK -1-, end) and a

similar process is performed. However, because the governor—governed
relationship between the integer 5 and the second 'X' is cancelled, the sum
of the integers governed by the first 'X', (2 1 3), is greater than that
of the second 'X', (31). The contextual condition, therefore, is not
fulfilled, and the application of the second rule of SUMUP will not succeed.
So the temporarily established relationships will be cancelled one-by-one as

follows.

~
w
N
W p—
W

7~
wn
)
p—
w
b
w
Pt

t
)
(5 2 1 3 X 3 1 X 2 2 X)

After these relationships have been cancelled, the desired result is obtained

by the following sequence.

(5 2 [g"jg 3 1 X 2 2 X)
I b I)
(5 2 1 3 X 3 1 X 2 2 X)

H—-—:

(5 2

(5

M__
-

w

i d] 4
-
H
d
N
]

=
—
;!1
N =

52
At the final stage of the processing, the fourth rule of SUMUP a

POP-type rule, is applied and returns the value

(X (X (SUM 4)) (X (SUM 6)) (X (SUM 9)))

VI Comnclusion

We have described a programming language called PLATON for natural
language processing. The language has several additional capabilities beyond
the ATIN parser of W. Woods.

Grammars written in the lamguage not only maintain clarity of
representation but also provide adequately a natural interface between the
syntactic component amd other components. By means of the pattern-matching
facility, we can write grammars in a quite natural manner. And because of
the PLATON variable binding mechanism, semantic and contextual LISP functions
a easily incorporated in syntactic patterns.

Flexible backtracking mechanisms and push-down operations make com-

r .icateu non-deterministic processing possible in a very simple way.

We are now developing an analysis program for Japanese using this
language. The program can accept fairly complicated sentences in a textbook
of elementary chemistry It can utilize the lexical and contextual information
of chemistry adequately during the analysis. Such information in our system
is expressed in the form of a semantic network similar to that of R. F. Simmons
(1973) .

Perhaps, PLATON itself must be equipped with more semantics and
context-oriented operations such as specified lexical descriptions and functions
using them. However, what description method is most efficient, and moreover,
what semantic information must be stored in the lexicon, are not yet entirely

clear. So, as the first step, PLATON leaves many parts of these problems for

53

the user to specify by LISP programs. PLATON is written in LISPl.5 and
implemented on a FACOM 230-60 at the Kyoto University computing center and a
TOSBAC-40 mini~computer in our laboratory. The interpreter of PLATON itself

requires only 4.5 K cells.

BIBLIOGRAPHY

D. Bobrow, B. Fraser., '"An augmented state transition network analysis proce-
dure", Proc. lst IJCAI, pp. 557-568, (1969).

A. Colmerauer. 'Les systemes-q ou un formalisme pour analyser et synthetiser
des phrases sur ordinateur'', Project de Traduction automatique de 1'Universite

de Montreal, TAUM 71, Jan., (1971).

C. J. Fillmore. '"'The case for case'", in Bach and Harms (eds.), Universals in
linguistic Theory, Holt, Rinehart & Winston, pp. 1-90, (1968).

C. Hewitt. 'PLANNER: A language for manipulating models and proving theorems
in a Robot'", in Artificial Intelligence, Washington, D. C , May, (1969)

M. Nagao, J. Tsujii. "'"Mechanism of deduction in a question answering system
with natural language input", Proc. 3rd IJCAI, pp. 285-290, (1973).

M. Nagao, J. Tsujii. "Programming language for natural language processing -
PLATON", J.IPSJ, Vol. 15, pp. 654-661, (1974).

M. Nagao, J. Tsujii. "Analysis of Japanese Sertences by Using Semantic and
Contextual Information". (forthcoming in AJCL-1976)

V. Pratt. "A linguistic oriented programming language', Proc. 3rd IJCAI,
pp. 372-381, (1973).

J. Rulifson, et. al. ™QA4-A language for writing problem-solving programs”,
SRI Technical Note 48, November, (1970).

J. Therpe, P. Bratley, H. Dewar. 'The syntactic analysis of English by
machine'". In Michie (ed.), Machine Intelligence 3, New York, American

Elsevier, (1968).

T. Winograd. 'Procedures as a representation for data in a computer program
for understanding natural language', MIT Thesis, (1971).

W. Woods. 'Augmented transition network grammars for natural language
analysis', CACM, Vol. 13, pp. 591-602, (1970).

